Properties of Axiomatic Semantics
CS 4301/6371: Advanced Programming Languages

Kevin W. Hamlen

April 25, 2024
Goals of any axiomatic semantics:

- **Soundness:** If a Hoare triple $\{A\} c \{B\}$ is derivable, it is “true”.
- **Completeness:** If a Hoare triple $\{A\} c \{B\}$ is “true”, it is derivable.

Are our 6 axiomatic semantic rules sound and complete?

- Must first formally define what is meant by “true” in the above
- Typically we define this using... *denotational semantics*!
Denotations of Assertion Expressions

(1) Extend expression denotations \mathcal{E} to include meta-variables \bar{v}:

- stores: $\Sigma : v \rightarrow \mathbb{Z}$
- interpretations: $\bar{\Sigma} : \bar{v} \rightarrow \mathbb{Z}$
- exp denotations: $\mathcal{E} : e \rightarrow \bar{\Sigma} \rightarrow \Sigma \rightarrow \mathbb{Z}$

\[
\begin{align*}
\mathcal{E}[n]\bar{\sigma}\sigma &= n \\
\mathcal{E}[v]\bar{\sigma}\sigma &= \sigma(v) \\
\mathcal{E}[\bar{v}]\bar{\sigma}\sigma &= \bar{\sigma}(\bar{v}) \\
\mathcal{E}[e_1 + e_2]\bar{\sigma}\sigma &= \mathcal{E}[e_1]\bar{\sigma}\sigma + \mathcal{E}[e_2]\bar{\sigma}\sigma \\
\mathcal{E}[e_1 - e_2]\bar{\sigma}\sigma &= \mathcal{E}[e_1]\bar{\sigma}\sigma - \mathcal{E}[e_2]\bar{\sigma}\sigma \\
\mathcal{E}[e_1 \ast e_2]\bar{\sigma}\sigma &= \mathcal{E}[e_1]\bar{\sigma}\sigma \cdot \mathcal{E}[e_2]\bar{\sigma}\sigma
\end{align*}
\]
(2) Define denotations \mathcal{A} of assertions A:

assertion denotations \(\mathcal{A} : A \rightarrow \Sigma \rightarrow \Sigma \rightarrow \{T, F\} \)

\[
\begin{align*}
\mathcal{A}[T]\bar{\sigma}\sigma &= T \\
\mathcal{A}[F]\bar{\sigma}\sigma &= F \\
\mathcal{A}[e_1 \leq e_2]\bar{\sigma}\sigma &= \mathcal{E}[e_1]\bar{\sigma}\sigma \leq \mathcal{E}[e_2]\bar{\sigma}\sigma \\
\mathcal{A}[A_1 \Rightarrow A_2]\bar{\sigma}\sigma &= \mathcal{A}[A_1]\bar{\sigma}\sigma \Rightarrow \mathcal{A}[A_2]\bar{\sigma}\sigma \\
\mathcal{A}[\forall \bar{v}.A]\bar{\sigma}\sigma &= \forall i \in \mathbb{Z}, \mathcal{A}[A](\bar{\sigma}[\bar{v} \mapsto i])\sigma \\
\vdots
\end{align*}
\]
(3) Notations:
\[\bar{\sigma}, \sigma \models A \text{ asserts } A[\bar{A}]\bar{\sigma}\sigma \]
\[\sigma \models A \text{ asserts } \forall \bar{\sigma} \in \bar{\Sigma}, (\bar{\sigma}, \sigma \models A) \]
\[\models A \text{ asserts } \forall \sigma \in \Sigma, (\sigma \models A) \]

Note: \(\models A \) is our notation from the Rule of Consequence.

(4) Hoare Triple Denotations: \(\models \{A\}c\{B\} \) asserts:

\[\forall \bar{\sigma} \in \bar{\Sigma}, \forall \sigma, \sigma' \in \Sigma, (\bar{\sigma}, \sigma \models A) \land ((\sigma, \sigma') \in C[\cdot]) \Rightarrow (\bar{\sigma}, \sigma' \models B) \]

Note: \(C[\cdot] \) is the denotational semantics of the target programming language.
Proving Soundness

Theorem (Soundness)

If \(\{A\}c\{B\} \) is derivable then \(\models \{A\}c\{B\} \) holds.

Proof

Let \(\bar{\sigma} \in \bar{\Sigma} \) and \(\sigma, \sigma' \in \Sigma \) be given such that \(\bar{\sigma}, \sigma \models A \) and \((\sigma, \sigma') \in C[c] \).

(Goal: Prove \(\bar{\sigma}, \sigma' \models B \).)
Proving Soundness

Theorem (Soundness)
If \(\{A\}c\{B\} \) is derivable then \(\models \{A\}c\{B\} \) holds.

Proof
Let \(\bar{\sigma} \in \bar{\Sigma} \) and \(\sigma, \sigma' \in \Sigma \) be given such that \(\bar{\sigma}, \sigma \models A \) and \((\sigma, \sigma') \in C[c] \).
Let \(D \) be a derivation of \(\{A\}c\{B\} \). Proof is by structural induction over \(D \).

IH: If \(\{A_0\}c_0\{B_0\} \) has a derivation \(D_0 < D \), then \(\models \{A_0\}c_0\{B_0\} \) holds.

Case 1: Suppose \(D \) ends in Rule 1:

\[
D = \frac{\{A\}\text{skip}\{A\}}{(1)}
\]

Thus \(c = \text{skip} \) and \(B = A \).

(Goal: Prove \(\bar{\sigma}, \sigma' \models B \).)
Proving Soundness

Theorem (Soundness)

If \(\{A\}c\{B\} \) is derivable then \(\models \{A\}c\{B\} \) holds.

Proof

Let \(\bar{\sigma} \in \bar{\Sigma} \) and \(\sigma, \sigma' \in \Sigma \) be given such that \(\bar{\sigma}, \sigma \models A \) and \((\sigma, \sigma') \in C[c] \).
Let \(D \) be a derivation of \(\{A\}c\{B\} \). Proof is by structural induction over \(D \).

IH: If \(\{A_{0}\}c_{0}\{B_{0}\} \) has a derivation \(D_{0} < D \), then \(\models \{A_{0}\}c_{0}\{B_{0}\} \) holds.

Case 1: Suppose \(D \) ends in Rule 1:

\[
D = \begin{array}{c}
\{A\}skip\{A\}
\end{array}
\]

(1)

Thus \(c = skip \) and \(B = A \). Since \(\sigma' = C[skip]\sigma = \sigma \) and \(B = A \), assumption \(\bar{\sigma}, \sigma \models A \) implies \(\bar{\sigma}, \sigma' \models B \).

\[
\cdots
\]

(Goal: Prove \(\bar{\sigma}, \sigma' \models B \).)
Recall: $\models \{A\}c\{B\}$ asserts

$$\forall \bar{\sigma} \in \bar{\Sigma}, \forall \sigma, \sigma' \in \Sigma, (\bar{\sigma}, \sigma \models A) \land ((\sigma, \sigma') \in C[c]) \Rightarrow (\bar{\sigma}, \sigma' \models B)$$

Theorem (Completeness)

If $\models \{A\}c\{B\}$ then $\{A\}c\{B\}$ is derivable.

Proof

Assume $\models \{A\}c\{B\}$.
Completeness

Recall: \(\models \{ A \} c \{ B \} \) asserts

\[
\forall \bar{\sigma} \in \bar{\Sigma}, \forall \sigma, \sigma' \in \Sigma, (\bar{\sigma}, \sigma \models A) \land ((\sigma, \sigma') \in C[c]) \Rightarrow (\bar{\sigma}, \sigma' \models B)
\]

Theorem (Completeness)
If \(\models \{ A \} c \{ B \} \) then \(\{ A \} c \{ B \} \) is derivable.

- Impossible! Recall our friend Kurt Gödel:

 No finite collection of axioms is both sound and complete.

- BUT... Stephen Cook\(^1\) (of P v. NP fame) comes to our rescue:
 - **Relative Completeness:** Given an oracle that (magically) derives the \(\models A \) premises in the Rule of Consequence (whenever they are true), Hoare logic is complete.
 - In essence, Hoare Logic is “as complete as possible” given the inherent incompleteness of mathematics in general.

Preconditions & Postconditions

Edsger Dijkstra’s idea: The strongest correctness assertions are those where

- the precondition is “weakest” (fewest assumptions)
- the postcondition is “strongest” (most conclusions)

Formally:

- We say “D is (strictly) weaker than C” and “C is (strictly) stronger than D” if $C \Rightarrow D$ (and $D \not\Rightarrow C$).
- A is a **weakest precondition** of program c for postcondition B iff every precondition A_0 satisfying $\{A_0\}c\{B\}$ implies A.
- B is a **strongest postcondition** of program c for precondition A iff B implies every postcondition B_0 satisfying $\{A\}c\{B_0\}$.
Can Weakest Preconditions be Computed?

Idea

\[wp(c, B) \] should return a weakest precondition \(A \) for command \(c \) with postcondition \(B \).

\[wp(\text{skip}, B) = ? \]
Can Weakest Preconditions be Computed?

Idea

\(wp(c, B) \) should return a weakest precondition \(A \) for command \(c \) with postcondition \(B \).

\[
wp(\texttt{skip}, B) = B
\]
Can Weakest Preconditions be Computed?

Idea

wp\((c, B)\) should return a weakest precondition \(A\) for command \(c\) with postcondition \(B\).

\[
wp(\text{skip}, B) = B \\
wp(c_1 ; c_2, B) =
\]
Can Weakest Preconditions be Computed?

Idea

$wp(c, B)$ should return a weakest precondition A for command c with postcondition B.

\[
wp(\text{skip}, B) = B \\
wp(c_1 ; c_2, B) = wp(c_1, wp(c_2, B))
\]
Can Weakest Preconditions be Computed?

Idea

\(wp(c, B) \) should return a weakest precondition \(A \) for command \(c \) with postcondition \(B \).

\[
\begin{align*}
wp(\text{skip}, B) &= B \\
wp(c_1 ; c_2, B) &= wp(c_1, wp(c_2, B)) \\
wp(x := e, B) &=
\end{align*}
\]
Can Weakest Preconditions be Computed?

Idea

\(wp(c, B) \) should return a weakest precondition \(A \) for command \(c \) with postcondition \(B \).

- \(wp(\text{skip}, B) = B \)
- \(wp(c_1 ; c_2, B) = wp(c_1, wp(c_2, B)) \)
- \(wp(x := e, B) = B[e/x] \)
Can Weakest Preconditions be Computed?

Idea

\(wpc, B) \) should return a weakest precondition \(A \) for command \(c \) with postcondition \(B \).

\[
\begin{align*}
wp(\text{skip}, B) &= B \\
wp(c_1; c_2, B) &= wp(c_1, wp(c_2, B)) \\
wp(x := e, B) &= B[e/x] \\
wp(\text{if } b \text{ then } c_1 \text{ else } c_2, B) &=
\end{align*}
\]
Can Weakest Preconditions be Computed?

Idea

$\wp(c, B)$ should return a weakest precondition A for command c with postcondition B.

\[
\begin{align*}
\wp(\text{skip}, B) &= B \\
\wp(c_1 ; c_2, B) &= \wp(c_1, \wp(c_2, B)) \\
\wp(x := e, B) &= B[e/x] \\
\wp(\text{if } b \text{ then } c_1 \text{ else } c_2, B) &= (b \Rightarrow \wp(c_1, B)) \land (\neg b \Rightarrow \wp(c_2, B))
\end{align*}
\]
Can Weakest Preconditions be Computed?

Idea

$\wp(c, B)$ should return a weakest precondition A for command c with postcondition B.

\[
\begin{align*}
\wp(\text{skip}, B) &= B \\
\wp(c_1; c_2, B) &= \wp(c_1, \wp(c_2, B)) \\
\wp(x := e, B) &= B[e/x] \\
\wp(\text{if } b \text{ then } c_1 \text{ else } c_2, B) &= (b \implies \wp(c_1, B)) \land (\neg b \implies \wp(c_2, B)) \\
\wp(\text{while } b \text{ do } c, B) &=
\end{align*}
\]
Can Weakest Preconditions be Computed?

Idea

\(\text{wp}(c, B) \) should return a weakest precondition \(A \) for command \(c \) with postcondition \(B \).

\[
\begin{align*}
\text{wp}(\text{skip}, B) &= B \\
\text{wp}(c_1 ; c_2, B) &= \text{wp}(c_1, \text{wp}(c_2, B)) \\
\text{wp}(x := e, B) &= B[e/x] \\
\text{wp}(\text{if } b \text{ then } c_1 \text{ else } c_2, B) &= (b \Rightarrow \text{wp}(c_1, B)) \land (\neg b \Rightarrow \text{wp}(c_2, B)) \\
\text{wp}(\text{while } b \text{ do } c, B) &= \text{undecidable?}
\end{align*}
\]
Can Weakest Preconditions be Computed?

Idea

$wp(c, B)$ should return a weakest precondition A for command c with postcondition B.

$$
wp(\text{skip}, B) = B \\
wp(c_1 ; c_2, B) = wp(c_1, wp(c_2, B)) \\
wp(x := e, B) = B[e/x] \\
wp(\text{if } b \text{ then } c_1 \text{ else } c_2, B) = (b \Rightarrow wp(c_1, B)) \land (\neg b \Rightarrow wp(c_2, B)) \\
wp(\text{while } b \text{ do } c, B) = \forall \sigma \in \Sigma, \forall \bar{k}, \left(\forall i, (0 \leq i < \bar{k}) \Rightarrow C[c]^i \sigma \models b \right) \\
\Rightarrow \left(C[c]^\bar{k} \sigma \models b \lor B\right)
$$
Can Weakest Preconditions be Computed?

Idea

$\text{wp}(c, B)$ should return a weakest precondition A for command c with postcondition B.

$$
\text{wp}(\text{skip}, B) = B \\
\text{wp}(c_1 ; c_2, B) = \text{wp}(c_1, \text{wp}(c_2, B)) \\
\text{wp}(x := e, B) = B[e/x] \\
\text{wp}(\text{if } b \text{ then } c_1 \text{ else } c_2, B) = (b \Rightarrow \text{wp}(c_1, B)) \land (\neg b \Rightarrow \text{wp}(c_2, B)) \\
\text{wp}(\text{while } b \text{ do } c, B) = \forall \sigma \in \Sigma, \forall \bar{k}, (\forall i, (0 \leq i < \bar{k}) \Rightarrow C[c]^i \sigma \models b) \\
\Rightarrow (C[c]^\bar{k} \sigma \models b \lor B)
$$

Not supported by our assertion language (but turns out one can encode them):

- quantification over non-integers ($\forall \sigma \in \Sigma \ldots$)
- all of denotational semantics(!) ($C[c]$)
- function n-composition (f^n)
- axiomatic denotations (\models)
Exercise: Define an algorithm \(sp(A, c) \) that computes the strongest postcondition \(B \) for program \(c \) with precondition \(A \).

- Don’t worry about while-loops (hard!)
- Mostly similar to \(wp \) algorithm but assignment rule is messy

More (optional) topics:

- Read about *Dijkstra guarded commands*.
- Read “The Science of Programming” by David Gries (classic text).
- Read about *verification condition generators*.