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Advanced Programming Languages

Forms of Induction

Structural Induction

Induction over N:
Weak induction (over N):

1 Prove that P (0) holds (called the base case).
2 For arbitrary n ≥ 1, prove P (n− 1)⇒ P (n). (Assumption P (n− 1) called the

(weak) inductive hypothesis (IH).)

Strong induction (over N):

For arbitrary n ∈ N, prove (∀n0 < n,P (n0))⇒ P (n). (Assumption
∀n0 < n,P (n0) called the (strong) IH).

Structural Induction
1 Base case(s): Prove that P (D) holds for “minimal” structure(s) D.
2 Inductive case(s): Assume (IH) that P (D0) holds for all structures D0

“smaller than” D, and prove P (D).

These are all actually special cases of a much more general inductive
principle called fixed-point induction.
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Forms of Induction

Fixed-point Induction

To prove that a recursively defined function f : A ⇀ A satisfies a property P :

1 Define a non-recursive functional F : (A ⇀ A)→ (A ⇀ A) such that
fix (F ) = f .

2 Base Case: Prove P (⊥A).

3 Inductive Case: Assume P (g) holds for some arbitrary function g : A ⇀ A
(IH), and prove that this implies P (F (g)).

Lecture Outline:

Do an example fixed-point induction proof for a simple f .

Show how the same technique can be used to prove things about loops.

Big picture: how this approach generalizes structural induction and
motivates denotational semantics
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Examples of Fixed-point Induction

First Example Proof

Theorem (recursive factorial definition correctness):

Define f : Z⇀ Z as follows:

f(x) = (x=0→ 1 | x>0→ xf(x− 1))

For all x ∈ Z, f(x) is either undefined or equals x!.

(Turns out f(x) is defined for all x ≥ 0, but we won’t prove that here.)
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Examples of Fixed-point Induction

Defining a Non-recursive Functional

Theorem (recursive factorial definition correctness):

Define f : Z⇀ Z as follows:

f(x) = (x=0→ 1 | x>0→ xf(x− 1))

For all x ∈ Z, f(x) is either undefined or equals x!.

Proof

Define property P (g) ≡ ∀x ∈ g←, g(x) = x!. We wish to prove P (f).
Define functional F : (Z⇀ Z)→ (Z⇀ Z) as follows:

F (g) = λx, (x=0→ 1 | x>0→ xg(x− 1))

Notation λv, . . . means “function that accepts v as input and returns . . .”.

Functional F ’s definition must be a verbatim copy of f , but with all recursive
calls to f replaced with calls of new parameter g.
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Examples of Fixed-point Induction

Least Fixed Point of Functional

Theorem (recursive factorial definition correctness):

Define f : Z⇀ Z as follows:

f(x) = (x=0→ 1 | x>0→ xf(x− 1))

For all x ∈ Z, f(x) is either undefined or equals x!.

Proof

Define property P (g) ≡ ∀x ∈ g←, g(x) = x!. We wish to prove P (f).
Define functional F : (Z⇀ Z)→ (Z⇀ Z) as follows:

F (g) = λx, (x=0→ 1 | x>0→ xg(x− 1))

By construction, fix(F ) = f .

Q: How do we know this?
A: This is actually the mathematical definition of recursion! When we write a
recursive function in math class, we’re actually referring to the least fixed point
of the functional defined in this way.
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Examples of Fixed-point Induction

Setting up the Induction

Theorem (recursive factorial definition correctness):

Define f : Z⇀ Z as follows:

f(x) = (x=0→ 1 | x>0→ xf(x− 1))

For all x ∈ Z, f(x) is either undefined or equals x!.

Proof

Define property P (g) ≡ ∀x ∈ g←, g(x) = x!. We wish to prove P (f).
Define functional F : (Z⇀ Z)→ (Z⇀ Z) as follows:

F (g) = λx, (x=0→ 1 | x>0→ xg(x− 1))

By construction, fix(F ) = f . To prove P (f), we will prove P (fix(F )) by fixed-point
induction.

Remember, always tell me:

what kind of induction (fixed-point in this case).

what the induction is over (functional F in this case).
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Examples of Fixed-point Induction

Base Case

Proof

Define property P (g) ≡ ∀x ∈ g←, g(x) = x!. We wish to prove P (f).
Define functional F : (Z⇀ Z)→ (Z⇀ Z) as follows:

F (g) = λx, (x=0→ 1 | x>0→ xg(x− 1))

By construction, fix(F ) = f . To prove P (f), we will prove P (fix(F )) by fixed-point
induction.

Base Case: ?

(We need to prove P (⊥Z) here.)
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Examples of Fixed-point Induction

Base Case

Proof

Define property P (g) ≡ ∀x ∈ g←, g(x) = x!. We wish to prove P (f).
Define functional F : (Z⇀ Z)→ (Z⇀ Z) as follows:

F (g) = λx, (x=0→ 1 | x>0→ xg(x− 1))

By construction, fix(F ) = f . To prove P (f), we will prove P (fix(F )) by fixed-point
induction.

Base Case: P (⊥Z) holds vacuously.

Look at the defintion of P . Property P (⊥) asserts that something is true of all
members of ⊥←, but ⊥← is the empty set. So ⊥ trivially (“vacuously”) satisfies
this P .

Base case almost always vacuously true, but not guaranteed so always check P .



Advanced Programming Languages

Examples of Fixed-point Induction

Inductive Hypothesis

Proof

Define property P (g) ≡ ∀x ∈ g←, g(x) = x!. We wish to prove P (f).
Define functional F : (Z⇀ Z)→ (Z⇀ Z) as follows:

F (g) = λx, (x=0→ 1 | x>0→ xg(x− 1))

By construction, fix(F ) = f . To prove P (f), we will prove P (fix(F )) by fixed-point
induction.

Base Case: P (⊥) holds vacuously.

IH: Let g : Z⇀ Z be an arbitrary function satisfying P (g). That is, assume
∀x0 ∈ g←, g(x0) = x0!.

Don’t invent a different IH! In a fixed-point induction, IH is always exactly P (g),
and g must be arbitrary (not f , not F , has no relation to them).

Strongly recommended that you write out definition of P (g). Otherwise I must
guess whether you really know what the IH is (which can come into doubt if your
proof has flaws).
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Examples of Fixed-point Induction

Inductive Case

Proof

Define property P (g) ≡ ∀x ∈ g←, g(x) = x!. We wish to prove P (f).
Define functional F : (Z⇀ Z)→ (Z⇀ Z) as follows:

F (g) = λx, (x=0→ 1 | x>0→ xg(x− 1))

By construction, fix(F ) = f . To prove P (f), we will prove P (fix(F )) by fixed-point
induction.

Base Case: P (⊥) holds vacuously.

IH: Let g : Z⇀ Z be an arbitrary function satisfying P (g). That is, assume
∀x0 ∈ g←, g(x0) = x0!.

Inductive Case: ?

We must prove P (F (g)) here. What does P (F (g)) say?
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Examples of Fixed-point Induction

Inductive Case

Proof

Define property P (g) ≡ ∀x ∈ g←, g(x) = x!. We wish to prove P (f).
Define functional F : (Z⇀ Z)→ (Z⇀ Z) as follows:

F (g) = λx, (x=0→ 1 | x>0→ xg(x− 1))

By construction, fix(F ) = f . To prove P (f), we will prove P (fix(F )) by fixed-point
induction.

Base Case: P (⊥) holds vacuously.

IH: Let g : Z⇀ Z be an arbitrary function satisfying P (g). That is, assume
∀x0 ∈ g←, g(x0) = x0!.

Inductive Case: Let x ∈ F (g)← be given. ...

P (F (g)) ≡ ∀x ∈ F (g)←, F (g)(x) = x!, so we must prove F (g)(x) = x! now.
What is F (g)(x)?
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Examples of Fixed-point Induction

Inductive Case

Proof

Define property P (g) ≡ ∀x ∈ g←, g(x) = x!. We wish to prove P (f).
Define functional F : (Z⇀ Z)→ (Z⇀ Z) as follows:

F (g) = λx, (x=0→ 1 | x>0→ xg(x− 1))

By construction, fix(F ) = f . To prove P (f), we will prove P (fix(F )) by fixed-point
induction.

Base Case: P (⊥) holds vacuously.

IH: Let g : Z⇀ Z be an arbitrary function satisfying P (g). That is, assume
∀x0 ∈ g←, g(x0) = x0!.

Inductive Case: Let x ∈ F (g)← be given.

Case 1: Assume x = 0. ...
Case 2: Assume x > 0. ...

P (F (g)) ≡ ∀x ∈ F (g)←, F (g)(x) = x!, so we must prove F (g)(x) = x! now.
Definition of F (g)(x) has two cases, so let’s take one at a time...



Advanced Programming Languages

Examples of Fixed-point Induction

Inductive Case

Proof

Define property P (g) ≡ ∀x ∈ g←, g(x) = x!. We wish to prove P (f).
Define functional F : (Z⇀ Z)→ (Z⇀ Z) as follows:

F (g) = λx, (x=0→ 1 | x>0→ xg(x− 1))

By construction, fix(F ) = f . To prove P (f), we will prove P (fix(F )) by fixed-point
induction.

Base Case: P (⊥) holds vacuously.

IH: Let g : Z⇀ Z be an arbitrary function satisfying P (g). That is, assume
∀x0 ∈ g←, g(x0) = x0!.

Inductive Case: Let x ∈ F (g)← be given.

Case 1: If x = 0 then F (g)(x) = 1 by definition of F . ...
Case 2: Assume x > 0. ...

P (F (g)) ≡ ∀x ∈ F (g)←, F (g)(x) = x!, so we must prove F (g)(x) = x! now.
Definition of F (g)(x) has two cases, so let’s take one at a time...
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Examples of Fixed-point Induction

Inductive Case

Proof

Define property P (g) ≡ ∀x ∈ g←, g(x) = x!. We wish to prove P (f).
Define functional F : (Z⇀ Z)→ (Z⇀ Z) as follows:

F (g) = λx, (x=0→ 1 | x>0→ xg(x− 1))

By construction, fix(F ) = f . To prove P (f), we will prove P (fix(F )) by fixed-point
induction.

Base Case: P (⊥) holds vacuously.

IH: Let g : Z⇀ Z be an arbitrary function satisfying P (g). That is, assume
∀x0 ∈ g←, g(x0) = x0!.

Inductive Case: Let x ∈ F (g)← be given.

Case 1: If x = 0 then F (g)(x) = 1 by definition of F . And 0! = 1.
Case 2: Assume x > 0. ...

P (F (g)) ≡ ∀x ∈ F (g)←, F (g)(x) = x!, so we must prove F (g)(x) = x! now.
Definition of F (g)(x) has two cases, so let’s take one at a time...
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Examples of Fixed-point Induction

Inductive Case

Proof

Define property P (g) ≡ ∀x ∈ g←, g(x) = x!. We wish to prove P (f).
Define functional F : (Z⇀ Z)→ (Z⇀ Z) as follows:

F (g) = λx, (x=0→ 1 | x>0→ xg(x− 1))

By construction, fix(F ) = f . To prove P (f), we will prove P (fix(F )) by fixed-point
induction.

Base Case: P (⊥) holds vacuously.

IH: Let g : Z⇀ Z be an arbitrary function satisfying P (g). That is, assume
∀x0 ∈ g←, g(x0) = x0!.

Inductive Case: Let x ∈ F (g)← be given.

Case 1: If x = 0 then F (g)(x) = 1 by definition of F . And 0! = 1.
Case 2: If x > 0 then F (g)(x) = xg(x− 1) by definition of F . ...

Need to prove xg(x− 1) = x!. How?
Remember, g is a completely arbitrary function. May not assume it’s f
(circular reasoning)!
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Examples of Fixed-point Induction

Inductive Case

Proof

Define property P (g) ≡ ∀x ∈ g←, g(x) = x!. We wish to prove P (f).
Define functional F : (Z⇀ Z)→ (Z⇀ Z) as follows:

F (g) = λx, (x=0→ 1 | x>0→ xg(x− 1))

By construction, fix(F ) = f . To prove P (f), we will prove P (fix(F )) by fixed-point
induction.

Base Case: P (⊥) holds vacuously.

IH: Let g : Z⇀ Z be an arbitrary function satisfying P (g). That is, assume
∀x0 ∈ g←, g(x0) = x0!.

Inductive Case: Let x ∈ F (g)← be given.

Case 1: If x = 0 then F (g)(x) = 1 by definition of F . And 0! = 1.
Case 2: If x > 0 then F (g)(x) = xg(x− 1) by definition of F . By IH (with
x0 = x− 1), g(x− 1) = (x− 1)!.
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Examples of Fixed-point Induction

Inductive Case

Proof

Define property P (g) ≡ ∀x ∈ g←, g(x) = x!. We wish to prove P (f).
Define functional F : (Z⇀ Z)→ (Z⇀ Z) as follows:

F (g) = λx, (x=0→ 1 | x>0→ xg(x− 1))

By construction, fix(F ) = f . To prove P (f), we will prove P (fix(F )) by fixed-point
induction.

Base Case: P (⊥) holds vacuously.

IH: Let g : Z⇀ Z be an arbitrary function satisfying P (g). That is, assume
∀x0 ∈ g←, g(x0) = x0!.

Inductive Case: Let x ∈ F (g)← be given.

Case 1: If x = 0 then F (g)(x) = 1 by definition of F . And 0! = 1.
Case 2: If x > 0 then F (g)(x) = xg(x− 1) by definition of F . By IH (with
x0 = x− 1), g(x− 1) = (x− 1)!. Therefore, F (g)(x) = x(x− 1)! = x!.

Note: At no point did we say anything like, “Function f keeps multiplying
consecutive integers until it eventually reaches x.” That’s not a proof.

If you find yourself using the word “eventually” (or synonyms), you’ve
abandoned the induction and are appealing to intuition instead of math.
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Examples of Fixed-point Induction

Proof for a Looping Program

Now let’s apply the same strategy to prove something about a program that
loops:

Theorem

Property P (C[[c]]) holds, where c is SIMPL program
while 2 <= x do (y := y * x;x := x - 1) and property P is defined by
P (f) ≡ ∀(σ, σ′) ∈ f,

(
(σ(x) ≥ 1 ∧ σ(y) = 1) =⇒ σ′(y) = σ(x)!

)
.
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Examples of Fixed-point Induction

Setting up the Induction

Theorem

Property P (C[[c]]) holds, where c is SIMPL program
while 2 <= x do (y := y * x;x := x - 1) and property P is defined by
P (f) ≡ ∀(σ, σ′) ∈ f,

(
(σ(x) ≥ 1 ∧ σ(y) = 1) =⇒ σ′(y) = σ(x)!

)
.

Proof

By definition of C, C[[c]] = fix(Γ) where Γ is defined by:

Γ(f) = {(σ, σ) | (σ, F ) ∈ B[[2 <= x]]} ∪
{(σ, f(C[[y := y * x;x := x - 1]]σ)) | (σ, T ) ∈ B[[2 <= x]]}

= {(σ, σ) | 2 > σ(x)} ∪
{(σ, f(σ[y 7→ σ(y)σ(x)][x 7→ σ(x)− 1])) | 2 ≤ σ(x)}

We can therefore prove P (C[[c]]) by fixed point induction over Γ.

Must expand (very carefully!) the definition of Γ for this c. Write it out!
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Examples of Fixed-point Induction

Base Case

Theorem

Property P (C[[c]]) holds, where c is SIMPL program
while 2 <= x do (y := y * x;x := x - 1) and property P is defined by
P (f) ≡ ∀(σ, σ′) ∈ f,

(
(σ(x) ≥ 1 ∧ σ(y) = 1) =⇒ σ′(y) = σ(x)!

)
.

Proof

By definition of C, C[[c]] = fix(Γ) where Γ is defined by:

Γ(f) = {(σ, σ) | (σ, F ) ∈ B[[2 <= x]]} ∪
{(σ, f(C[[y := y * x;x := x - 1]]σ)) | (σ, T ) ∈ B[[2 <= x]]}

= {(σ, σ) | 2 > σ(x)} ∪
{(σ, f(σ[y 7→ σ(y)σ(x)][x 7→ σ(x)− 1])) | 2 ≤ σ(x)}

We can therefore prove P (C[[c]]) by fixed point induction over Γ.

Base Case: ?

Must prove P (⊥).
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Examples of Fixed-point Induction

Base Case

Theorem

Property P (C[[c]]) holds, where c is SIMPL program
while 2 <= x do (y := y * x;x := x - 1) and property P is defined by
P (f) ≡ ∀(σ, σ′) ∈ f,

(
(σ(x) ≥ 1 ∧ σ(y) = 1) =⇒ σ′(y) = σ(x)!

)
.

Proof

By definition of C, C[[c]] = fix(Γ) where Γ is defined by:

Γ(f) = {(σ, σ) | (σ, F ) ∈ B[[2 <= x]]} ∪
{(σ, f(C[[y := y * x;x := x - 1]]σ)) | (σ, T ) ∈ B[[2 <= x]]}

= {(σ, σ) | 2 > σ(x)} ∪
{(σ, f(σ[y 7→ σ(y)σ(x)][x 7→ σ(x)− 1])) | 2 ≤ σ(x)}

We can therefore prove P (C[[c]]) by fixed point induction over Γ.

Base Case: P (⊥) holds vacuously.
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Examples of Fixed-point Induction

Base Case

Theorem

Property P (C[[c]]) holds, where c is SIMPL program
while 2 <= x do (y := y * x;x := x - 1) and property P is defined by
P (f) ≡ ∀(σ, σ′) ∈ f,

(
(σ(x) ≥ 1 ∧ σ(y) = 1) =⇒ σ′(y) = σ(x)!

)
.

Proof

By definition of C, C[[c]] = fix(Γ) where Γ is defined by:

Γ(f) = {(σ, σ) | (σ, F ) ∈ B[[2 <= x]]} ∪
{(σ, f(C[[y := y * x;x := x - 1]]σ)) | (σ, T ) ∈ B[[2 <= x]]}

= {(σ, σ) | 2 > σ(x)} ∪
{(σ, f(σ[y 7→ σ(y)σ(x)][x 7→ σ(x)− 1])) | 2 ≤ σ(x)}

We can therefore prove P (C[[c]]) by fixed point induction over Γ.

Base Case: P (⊥) holds vacuously.

IH: Let g : Σ ⇀ Σ be an arbitrary function satisfying P . That is, assume
∀(σ0, σ′0) ∈ g,

(
(σ0(x) ≥ 1 ∧ σ0(y) = 1) =⇒ σ′0(y) = σ0(x)!

)
.
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Examples of Fixed-point Induction

Inductive Case

Theorem

... where P (f) ≡ ∀(σ, σ′) ∈ f,
(
(σ(x) ≥ 1 ∧ σ(y) = 1) =⇒ σ′(y) = σ(x)!

)
.

Proof

By definition of C, C[[c]] = fix(Γ) where Γ is defined by:

Γ(f) = {(σ, σ) | 2 > σ(x)} ∪
{(σ, f(σ[y 7→ σ(y)σ(x)][x 7→ σ(x)− 1])) | 2 ≤ σ(x)}

We can therefore prove P (C[[c]]) by fixed point induction over Γ.

Base Case: P (⊥) holds vacuously.

IH: Let g : Σ ⇀ Σ be an arbitrary function satisfying P . That is, assume
∀(σ0, σ′0) ∈ g,

(
(σ0(x) ≥ 1 ∧ σ0(y) = 1) =⇒ σ′0(y) = σ0(x)!

)
.

Inductive Case: ?

We must prove P (Γ(g)) now. What does it say?
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Examples of Fixed-point Induction

Inductive Case

Theorem

... where P (f) ≡ ∀(σ, σ′) ∈ f,
(
(σ(x) ≥ 1 ∧ σ(y) = 1) =⇒ σ′(y) = σ(x)!

)
.

Proof

By definition of C, C[[c]] = fix(Γ) where Γ is defined by:

Γ(f) = {(σ, σ) | 2 > σ(x)} ∪
{(σ, f(σ[y 7→ σ(y)σ(x)][x 7→ σ(x)− 1])) | 2 ≤ σ(x)}

We can therefore prove P (C[[c]]) by fixed point induction over Γ.

Base Case: P (⊥) holds vacuously.

IH: Let g : Σ ⇀ Σ be an arbitrary function satisfying P . That is, assume
∀(σ0, σ′0) ∈ g,

(
(σ0(x) ≥ 1 ∧ σ0(y) = 1) =⇒ σ′0(y) = σ0(x)!

)
.

Inductive Case: ?

We must prove P (Γ(g)) now, which says ∀(σ, σ′) ∈ Γ(g), . . .
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Examples of Fixed-point Induction

Inductive Case

Theorem

... where P (f) ≡ ∀(σ, σ′) ∈ f,
(
(σ(x) ≥ 1 ∧ σ(y) = 1) =⇒ σ′(y) = σ(x)!

)
.

Proof

By definition of C, C[[c]] = fix(Γ) where Γ is defined by:

Γ(f) = {(σ, σ) | 2 > σ(x)} ∪
{(σ, f(σ[y 7→ σ(y)σ(x)][x 7→ σ(x)− 1])) | 2 ≤ σ(x)}

We can therefore prove P (C[[c]]) by fixed point induction over Γ.

Base Case: P (⊥) holds vacuously.

IH: Let g : Σ ⇀ Σ be an arbitrary function satisfying P . That is, assume
∀(σ0, σ′0) ∈ g,

(
(σ0(x) ≥ 1 ∧ σ0(y) = 1) =⇒ σ′0(y) = σ0(x)!

)
.

Inductive Case: Let (σ, σ′) ∈ Γ(g) be given.

We must now prove (σ(x) ≥ 1 ∧ σ(y) = 1) =⇒ σ′(y) = σ(x)!.
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Examples of Fixed-point Induction

Inductive Case

Theorem

... where P (f) ≡ ∀(σ, σ′) ∈ f,
(
(σ(x) ≥ 1 ∧ σ(y) = 1) =⇒ σ′(y) = σ(x)!

)
.

Proof

By definition of C, C[[c]] = fix(Γ) where Γ is defined by:

Γ(f) = {(σ, σ) | 2 > σ(x)} ∪
{(σ, f(σ[y 7→ σ(y)σ(x)][x 7→ σ(x)− 1])) | 2 ≤ σ(x)}

We can therefore prove P (C[[c]]) by fixed point induction over Γ.

Base Case: P (⊥) holds vacuously.

IH: Let g : Σ ⇀ Σ be an arbitrary function satisfying P . That is, assume
∀(σ0, σ′0) ∈ g,

(
(σ0(x) ≥ 1 ∧ σ0(y) = 1) =⇒ σ′0(y) = σ0(x)!

)
.

Inductive Case: Let (σ, σ′) ∈ Γ(g) be given. Assume σ(x) ≥ 1 and σ(y) = 1.

Goal: Must now prove σ′(y) = σ(x)!.

(Hint: Use assumption (σ, σ′) ∈ Γ(g) first.)
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Examples of Fixed-point Induction

Inductive Case

Proof

By definition of C, C[[c]] = fix(Γ) where Γ is defined by:

Γ(f) = {(σ, σ) | 2 > σ(x)} ∪
{(σ, f(σ[y 7→ σ(y)σ(x)][x 7→ σ(x)− 1])) | 2 ≤ σ(x)}

We can therefore prove P (C[[c]]) by fixed point induction over Γ.

Base Case: P (⊥) holds vacuously.

IH: Let g : Σ ⇀ Σ be an arbitrary function satisfying P . That is, assume
∀(σ0, σ′0) ∈ g,

(
(σ0(x) ≥ 1 ∧ σ0(y) = 1) =⇒ σ′0(y) = σ0(x)!

)
.

Inductive Case: Let (σ, σ′) ∈ Γ(g) be given. Assume σ(x) ≥ 1 and σ(y) = 1.

Case 1: Assume 2 > σ(x). ...

Case 2: Assume 2 ≤ σ(x). ...

Goal: Must prove σ′(y) = σ(x)!.
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Examples of Fixed-point Induction

Inductive Case

Proof

By definition of C, C[[c]] = fix(Γ) where Γ is defined by:

Γ(f) = {(σ, σ) | 2 > σ(x)} ∪
{(σ, f(σ[y 7→ σ(y)σ(x)][x 7→ σ(x)− 1])) | 2 ≤ σ(x)}

...
IH: Let g : Σ ⇀ Σ be an arbitrary function satisfying P . That is, assume
∀(σ0, σ′0) ∈ g,

(
(σ0(x) ≥ 1 ∧ σ0(y) = 1) =⇒ σ′0(y) = σ0(x)!

)
.

Inductive Case: Let (σ, σ′) ∈ Γ(g) be given. Assume σ(x) ≥ 1 and σ(y) = 1.

Case 1: Assume 2 > σ(x). By definition of Γ, σ′ = σ. ...

Case 2: Assume 2 ≤ σ(x). ...

Goal: Must prove σ′(y) = σ(x)!.



Advanced Programming Languages

Examples of Fixed-point Induction

Inductive Case

Proof

By definition of C, C[[c]] = fix(Γ) where Γ is defined by:

Γ(f) = {(σ, σ) | 2 > σ(x)} ∪
{(σ, f(σ[y 7→ σ(y)σ(x)][x 7→ σ(x)− 1])) | 2 ≤ σ(x)}

...
IH: Let g : Σ ⇀ Σ be an arbitrary function satisfying P . That is, assume
∀(σ0, σ′0) ∈ g,

(
(σ0(x) ≥ 1 ∧ σ0(y) = 1) =⇒ σ′0(y) = σ0(x)!

)
.

Inductive Case: Let (σ, σ′) ∈ Γ(g) be given. Assume σ(x) ≥ 1 and σ(y) = 1.

Case 1: Assume 2 > σ(x). By definition of Γ, σ′ = σ. Since 1 ≤ σ(x) < 2 (and
σ→ = Z), we infer σ(x) = 1. ...

Case 2: Assume 2 ≤ σ(x). ...

Goal: Must prove σ′(y) = σ(x)!.
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Saying σ′ = g(σ2) is the same as saying (σ2, σ
′) ∈ g. (Recall: Partial functions

are sets of input-output pairs.)
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σ2(y) = 1 because ...?

Goal: Must prove σ′(y) = σ(x)!.
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Examples of Fixed-point Induction

Inductive Case

Proof

By definition of C, C[[c]] = fix(Γ) where Γ is defined by:
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σ→ = Z), we infer σ(x) = 1. Thus, σ′(y) = σ(y) = 1 = 1! = σ(x)!.

Case 2: Assume 2 ≤ σ(x). By definition of Γ, σ′ = g(σ2) where
σ2 = σ[y 7→ σ(y)σ(x)][x 7→ σ(x)− 1]. Apply IH with σ0 = σ2 and σ′0 = σ′.

σ2(x) ≥ 1 because σ2(x) = σ(x)− 1 and σ(x) ≥ 2.

σ2(y) = 1 because σ2(y) = σ(y)σ(x) and ... ?

Hmm. This looks bad. I think we’re stuck.
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Examples of Fixed-point Induction

Mathematical Rigor

Essential skill for faithfully verifying software:

Don’t blindly “force” a proof forward (usually by just stating what you
want to be true) when the assumptions don’t support it!

The theorem might be false! The code might be wrong! Lives could be at stake!

Recognizing a proof failure and pointing it out will earn you maximal partial
credit.

Unmarked false proof steps (where you really didn’t know how to prove it
but just pretended it was proved) solicit maximal point deductions.
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Examples of Fixed-point Induction

Generalizing the Theorem

Back to our problem... How to fix?

Theorem

Property P (C[[c]]) holds, where c is SIMPL program
while 2 <= x do (y := y * x;x := x - 1) and property P is defined by
P (f) ≡ ∀(σ, σ′) ∈ f,

(
(σ(x) ≥ 1 ∧ σ(y) = 1) =⇒ σ′(y) = σ(x)!

)
.

This theorem has an assumption that is true at the start of the loop but does
not remain true as the loop iterates. What is it?



Advanced Programming Languages

Examples of Fixed-point Induction

Generalizing the Theorem

Back to our problem... How to fix?

Theorem

Property P (C[[c]]) holds, where c is SIMPL program
while 2 <= x do (y := y * x;x := x - 1) and property P is defined by
P (f) ≡ ∀(σ, σ′) ∈ f,

(
(σ(x) ≥ 1 ∧ σ(y) = 1) =⇒ σ′(y) = σ(x)!

)
.

This theorem has an assumption that is true at the start of the loop but does
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Generalizing the Theorem

Back to our problem... How to fix?

Theorem

Property P (C[[c]]) holds, where c is SIMPL program
while 2 <= x do (y := y * x;x := x - 1) and property P is defined by
P (f) ≡ ∀(σ, σ′) ∈ f,

(
(σ(x) ≥ 1 ∧ σ(y) = 1) =⇒ σ′(y) = σ(x)!

)
.

This theorem has an assumption that is true at the start of the loop but does
not remain true as the loop iterates.

This is a problem because when we start our induction, we get a “weak”
inductive hypothesis (assumptions are too “strong”) that we cannot apply.

Solution: Can we formulate a different theorem that implies this one, but
without that assumption or generalized in some way? If so, we can prove that
instead to get this theorem.
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Examples of Fixed-point Induction

Generalizing the Theorem

Back to our problem... How to fix?

Lemma

Property P ′(C[[c]]) holds, where c is SIMPL program
while 2 <= x do (y := y * x;x := x - 1) and property P ′ is defined by
P ′(f) ≡ ∀(σ, σ′) ∈ f,

(
(σ(x) ≥ 1 ∧ σ(y) = 1) =⇒ σ′(y) = σ(y) · σ(x)!

)
.

This theorem has an assumption that is true at the start of the loop but does
not remain true as the loop iterates.

This is a problem because when we start our induction, we get a “weak”
inductive hypothesis (assumptions are too “strong”) that we cannot apply.

Solution: Can we formulate a different theorem that implies this one, but
without that assumption or generalized in some way? If so, we can prove that
instead to get this theorem.
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Examples of Fixed-point Induction

Generalizing the Theorem

Theorem

Property P (C[[c]]) holds, where c is SIMPL program
while 2 <= x do (y := y * x;x := x - 1) and property P is defined by
P (f) ≡ ∀(σ, σ′) ∈ f,

(
(σ(x) ≥ 1 ∧ σ(y) = 1) =⇒ σ′(y) = σ(x)!

)
.

Lemma

Property P ′(C[[c]]) holds, where c is SIMPL program
while 2 <= x do (y := y * x;x := x - 1) and property P ′ is defined by
P ′(f) ≡ ∀(σ, σ′) ∈ f,

(
σ(x) ≥ 1 =⇒ σ′(y) = σ(y) · σ(x)!

)
.

Proof

Property P ′(f) implies P (f) because P is merely the special case of P ′ when σ(y) = 1.
Proving P ′(C[[c]]) therefore suffices to prove P (C[[c]]). We will prove P ′(C[[c]]) by
fixed-point induction over Γ. ...
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Examples of Fixed-point Induction

Generalizing the Theorem

Proof

By definition of C, C[[c]] = fix(Γ) where Γ is defined by:

Γ(f) = {(σ, σ) | 2 > σ(x)} ∪
{(σ, f(σ[y 7→ σ(y)σ(x)][x 7→ σ(x)− 1])) | 2 ≤ σ(x)}

We can therefore prove P ′(C[[c]]) by fixed point induction over Γ.

Base Case: P ′(⊥) holds vacuously.

IH: Let g : Σ ⇀ Σ be an arbitrary function satisfying P ′. That is, assume
∀(σ0, σ′0) ∈ g,

(
σ0(x) ≥ 1 =⇒ σ′0(y) = σ0(y) · σ0(x)!

)
.

Inductive Case: Let (σ, σ′) ∈ Γ(g) be given. Assume σ(x) ≥ 1 and σ(y) = 1.

Case 1: Assume 2 > σ(x). By definition of Γ, σ′ = σ. Since 1 ≤ σ(x) < 2 (and
σ→ = Z), we infer σ(x) = 1. Thus, σ′(y) = σ(y) = σ(y) · 1! = σ(y) · σ(x)!.

Case 2: Assume 2 ≤ σ(x). By definition of Γ, σ′ = g(σ2) where
σ2 = σ[y 7→ σ(y)σ(x)][x 7→ σ(x)− 1]. Apply IH with σ0 = σ2 and σ′0 = σ′.

σ2(x) ≥ 1 because σ2(x) = σ(x)− 1 and σ(x) ≥ 2.

σ2(y) = 1 because ...
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Inductive Case

Proof

By definition of C, C[[c]] = fix(Γ) where Γ is defined by:
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We can therefore prove P ′(C[[c]]) by fixed point induction over Γ.

Base Case: P ′(⊥) holds vacuously.
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.

Inductive Case: Let (σ, σ′) ∈ Γ(g) be given. Assume σ(x) ≥ 1 and σ(y) = 1.
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σ→ = Z), we infer σ(x) = 1. Thus, σ′(y) = σ(y) = σ(y) · 1! = σ(y) · σ(x)!.

Case 2: Assume 2 ≤ σ(x). By definition of Γ, σ′ = g(σ2) where
σ2 = σ[y 7→ σ(y)σ(x)][x 7→ σ(x)− 1]. Apply IH with σ0 = σ2 and σ′0 = σ′.

σ2(x) ≥ 1 because σ2(x) = σ(x)− 1 and σ(x) ≥ 2.

From IH we infer that σ′(y) = σ2(y) · σ2(x)!.

Goal: Prove σ′(y) = σ(y) · σ(x)!
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Take-aways

Big Picture

Denotational Semantics
The fact that loops in imperative languages denote least fixed points gives us
a powerful tool for mathematically proving things about them.
Fixed-point induction much nicer than infinite unions once you get the hang
of it.

“Turning the crank” of the induction
Choosing the right generalization of the theorem is key to carrying out all
forms of induction.
Intuition: Remove/generalize theorem assumptions that are not invariant
(always true) throughout the loop’s iterations.
Wrong choice will lead to proof stuck point, which will reveal new theorem
generalization ...
... but only if you don’t “force” proofs by blowing past stuck points
pretending they’re proved!
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Take-aways

Fixed-point Induction Generalizes Structural Induction

Why is fixed-point induction a generalization of structural induction?

Goal: Prove ∀D, P (D) (i.e., some property P holds for all derivations).

Two options:

1 Let D be given and prove P (D) by structural induction.

2 Define D to be the (countably infinite) set of all derivations, and define
P(D0) ≡ ∀D ∈ D0, P (D). Prove P(D) by fixed-point induction.

Turns out D is the least fixed point of a functional.
Optional Exercise: Define the appropriate functional!
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Closed Form

Eliminating Recursion

Exercise

Consider the following recursively defined function f : Z→ Z.

f(x) =
(
x=0→ 0 | x>0→ 2− f(1− x) | x<0→ f(−x)

)
Find a closed-form definition of f and prove your answer.

Definition (closed form): A closed-form definition of a function is a definition
that contains no recursion, or references to fixpoints or other recursively defined
functions.

How to guess a closed-form definition of a recursively defined function?

A Just plug many numbers in and see if a pattern emerges.

B Use the functional and try to discern a pattern.

Neither is a proof; they just give you a hypothesis to prove/disprove.
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Closed Form

Functional Approach to Closed-form Discovery

f(x) =
(
x=0→ 0 | x>0→ 2− f(1− x) | x<0→ f(−x)

)
F (g) = λx.

(
x=0→ 0 | x>0→ 2− g(1− x) | x<0→ g(−x)

)
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Closed Form

Functional Approach to Closed-form Discovery

f(x) =
(
x=0→ 0 | x>0→ 2− f(1− x) | x<0→ f(−x)

)
F (g) = λx.

(
x=0→ 0 | x>0→ 2− g(1− x) | x<0→ g(−x)

)
F 0(⊥) = {}
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Closed Form

Functional Approach to Closed-form Discovery

f(x) =
(
x=0→ 0 | x>0→ 2− f(1− x) | x<0→ f(−x)

)
F (g) = λx.

(
x=0→ 0 | x>0→ 2− g(1− x) | x<0→ g(−x)

)
F 0(⊥) = {}

F 1(⊥) = λx.
(
x=0→ 0 | x>0→ 2− F 0(⊥)(1− x) | x<0→ F 0(⊥)(−x)

)
= {(0, 0)}
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Closed Form

Functional Approach to Closed-form Discovery

f(x) =
(
x=0→ 0 | x>0→ 2− f(1− x) | x<0→ f(−x)

)
F (g) = λx.

(
x=0→ 0 | x>0→ 2− g(1− x) | x<0→ g(−x)

)
F 0(⊥) = {}

F 1(⊥) = {(0, 0)}

F 2(⊥) = λx.
(
x=0→ 0 | x>0→ 2− F 1(⊥)(1− x) | x<0→ F 1(⊥)(−x)

)
= {(0, 0), (1, 2)}
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Closed Form

Functional Approach to Closed-form Discovery

f(x) =
(
x=0→ 0 | x>0→ 2− f(1− x) | x<0→ f(−x)

)
F (g) = λx.

(
x=0→ 0 | x>0→ 2− g(1− x) | x<0→ g(−x)

)
F 0(⊥) = {}

F 1(⊥) = {(0, 0)}

F 2(⊥) = {(0, 0), (1, 2)}

F 2(⊥) = λx.
(
x=0→ 0 | x>0→ 2− F 2(⊥)(1− x) | x<0→ F 2(⊥)(−x)

)
= {(−1, 2), (0, 0), (1, 2)}
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Closed Form

Functional Approach to Closed-form Discovery

f(x) =
(
x=0→ 0 | x>0→ 2− f(1− x) | x<0→ f(−x)

)
F (g) = λx.

(
x=0→ 0 | x>0→ 2− g(1− x) | x<0→ g(−x)

)
F 0(⊥) = {}

F 1(⊥) = {(0, 0)}

F 2(⊥) = {(0, 0), (1, 2)}

F 2(⊥) = {(−1, 2), (0, 0), (1, 2)}
...

F 7(⊥) = {(−3, 2), (−2, 0), (−1, 2), (0, 0), (1, 2), (2, 0), (3, 2)}

Hypothesis (unproved):

f(x) =

{
2 if x is odd

0 if x is even
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Closed Form

Proving Function Equivalence

Theorem

Consider the following recursively defined function f : Z→ Z.

f(x) =
(
x=0→ 0 | x>0→ 2− f(1− x) | x<0→ f(−x)

)
Function f is equal to hypothesis function h defined by

h(x) =

{
2 if x is odd

0 if x is even

Proof

Define property P (g) ≡ ∀x ∈ g←, g(x) = h(x). We wish to prove P (f). Define
functional F as on the previous slide and observe that fix(F ) = f by construction.
Thus, to prove P (f) it suffices to prove P (fix(F )) by fixed-point induction over F . ...

Note: This actually only proves f ⊆ h. To complete the proof you would also
have to prove h ⊆ f , but we won’t do that in this class.
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Other Kinds of Recursive Functions

What if f is a multi-argument function (e.g., f(x, y) = · · · )?

Same procedure except elements of f look like ((x, y), z).

See sample exercise #2 in the online notes.

What if we have a nest of mutually recursive functions?

f(x) =
(
P1(x)→ · · · | P2(x)→ · · · g(x− 1) · · ·

)
g(x) =

(
P3(x)→ · · · | P4(x)→ · · · f(x− 5) · · ·

)
Trick: Turn it into a single function by adding an extra argument:

h(s, x) =
(
s = 1 ∧ P1(x)→ · · · | s = 1 ∧ P2(x)→ · · ·h(2, x− 1) · · ·
| s = 2 ∧ P3(x)→ · · · | s = 2 ∧ P4(x)→ · · ·h(1, x− 5) · · ·

)
So now f(x) = h(1, x) and g(x) = h(2, x). Can prove things about f and g by
proving things about h.
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