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Advanced Programming Languages
L History

Historical Roots

First, some mathematical history...
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Deductive Logic

m Euclid's The Elements

m written c. 300 B.C.

m deductive reasoning: 23
definitions, 10 axioms

m geometry, algebra, number theory

m foundation of western
mathematics for about 2000
years

m Problem: Some theorems
unprovable from axioms
m Example: Two circles with
centers closer than the sum of
their radii have an intersection
point.
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Set Theory

m First proposed by Georg Cantor in 1874
m new foundation for mathematics
m early versions contained paradoxes
m Russel’s Paradox: the set of all sets that
do not contain themselves
m Deductive Set Theory
m axiomized by Zermelo and Fraenkel
between 1908 and 1930
m Zermelo-Fraenkel set theory with axiom of
choice (ZFC)
m Problem: some theorems still unprovable!

m Example (Continuum Hypothesis): There
is no set larger than N but smaller than R.
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L History

Hilbert's Program

m Proposed by David Hilbert in 1921

m Goals:
m Provide an unassailable foundation for all
mathematics
m Find a set of axioms and rules of logical
inference sufficient to deductively prove
all mathematical theorems.

m Required properties:
m Soundness: no untrue statement provable
m Completeness: all true statements
provable
m Decidability: procedure for determining
whether any mathematical statement is
true or false
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Godel’s Incompleteness Theorem

Proved by Kurt Godel in 1931

m Theorem: No finite collection of axioms is
both sound and complete(!)
m Ramifications:

m Given any sound axiomization of
mathematics, there are true statements
that are unprovable.

m There exists no decision algorithm for
mathematical truth.

Essentially destroyed Hilbert's program

Raised another question: What is
decidable?
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L History

Theory of Computation

Ala.n .Turing - Alonzo Church
m “Decide” = “Compute”
m 1936: Two models of “computation” proposed:
m Turing Machines (Alan Turing)
m A-calculus (Alonzo Church)

m Both models equivalent in power

m Church-Turing Thesis: All (reasonable) models of computation are equally
powerful.
m Birth of Computer Science

m Turing Machines = imperative programming
m \-calculus = functional programming
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Fun Fact: My Mathematical Ancestry

Alonzo Church
(PhD Princeton 1927)

Stephen Kleene
(PhD Princeton 1934)

Bob Constable
(PhD Wisconsin-Madison 1968)

Bob Harper
(PhD Cornell 1985)

Greg Morrisett
(PhD Carnegie Mellon 1995)

Kevin Hamlen
(PhD Cornell 2006)
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Today

Today: A-calculus



Advanced Programming Languages

L Language Definition

Syntax

ex=v| Av.e| ees
Only three syntaxes:
m variables v
m abstractions Av.e (functions)

m applications eje2

Some simple examples:
m \z.z (the identity function)
B (Az.z)(Ay.yy) =1 Ay.yy
m Az.((Ay.y)x) does not reduce (already a value)
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L Language Definition

Free Variables

Legal A\-expressions must be closed (no free variables), where we define the set
of free variables F'V (e) by

FV(v) = {v}
FV(hv.e) = FV(e)\{v}
FV(eleg) = FV(el) @] FV(eg)

We require F'V (e) = 0.
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L Language Definition

Semantics

Small-step semantics of A-calculus:

€1 — €

S (B-reduction)
e1e2 — €1e2 (Av.e1)ez =1 e1ez/v]

where notation e1[e/v] denotes capture-avoiding substitution:

vle/v

| =
vi[e/v2] = v1 when v1 # vz (i.e., different variables)
(Av.e1)[e/v] = Av.ex
(Avr.e1)[e/v2] = Avi.(e1]e/v2]) when vy # v (i.e. different variables)
] =

(erez)le/v] = (er[e/v])(eze/v])

Intuition: ei[e2/x] means replace only the free z's in e; with es.

Optional exercise: Devise equivalent large-step and denotational semantics.
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L Language Definition

Reduction example

(. (Ny-(29))) Ay.y)) (Az.2) =1 ?
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L Language Definition

Reduction example

(. (Ay-(2))) Ay y)) (Az.2) =1 ?
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L Language Definition

Reduction example

(Qa=(Ay.(29))) Ay .9)) (Az.2) =
(M- (A-y)y) (Az.2) =17
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L Language Definition

Reduction example
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(29))(Ay-y)) (Az.2) =
(A=((Ay-y)y)) (Az.2) =
Y)(Az.2) =1 7
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L Language Definition

Reduction example

(/\y Y)Yy ))(Az Z) —
Ay) (A2.2) =
)
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L Language Definition

Reduction example

Important observations:
m Don't change any variable names as you evaluate!
m There are no stores involved here!
m Semantics of A-calculus are based on capture-avoiding substitution, not
stores or variable renaming.
m Function bodies never evaluate (even if they could) until their A-binder gets
stripped off (at which point they're not functions anymore).

Strategy: Pretend that “Av.e” is OCaml “fun v — €.
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L Language Definition

Precedence and Associativity

Precedence and associativity conventions:

Av.erez = Av.(erez) (application binds tighter than abstraction)

erezen = (erez)es (application associates left)

Parenthesize anything else that might be ambiguous.



Advanced Programming Languages

L Turing-completeness

Encodings and Reductions

Amazing fact: This extremely simple language is Turing-complete (can perform
any computation implementable by modern computers)!

Proof by reduction (recall from computability theory): Let's reduce a (simple)
Turing-complete programming language to A-calculus.



Advanced Programming Languages

L Turing-completeness

Higher-arity Functions

A-calculus only gives us 1-argument functions Awv.e.

Q: How could | create a multi-argument function?
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L Turing-completeness

Higher-arity Functions

A-calculus only gives us 1-argument functions A\v.e.

Q: How could | create a multi-argument function?
A: Nest the \'s: Az.A\y.Az.(...)

Definition (currying): In functional programming, changing a function on
tuple-arguments to use distinct (non-tuple) arguments is called currying the
function.

Example:
Uncurried: let add (x,y) = x+y;;
Curried: let add x y = x+y;;

Benefits: More opportunities for code-reuse through partial evaluation, and more
opportunities for compiler optimization through specialization
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L Turing-completeness

Booleans

How might we encode boolean expressions as A\-terms? Let's start with
constants and the ternary operator:

true =7
false =7
=7

61?62:63
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L Turing-completeness

Booleans

How might we encode boolean expressions as A\-terms? Let's start with
constants and the ternary operator:
true = (Az.\y.xz)
false = (Az.\y.y)

e1?ez:es = ((e1)(e2)(es))
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L Turing-completeness

Booleans

How might we encode boolean expressions as A\-terms? Let's start with
constants and the ternary operator:
true = (Az.\y.xz)
false = (Az.\y.y)

e1?ez:es = ((e1)(e2)(es))

Using the above, how might we encode not, and, and or as functions over
booleans?

not =

and =

NN N

or =
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L Turing-completeness

Booleans

How might we encode boolean expressions as A\-terms? Let's start with
constants and the ternary operator:
true = (Az.\y.xz)
false = (Az.\y.y)

e1?ez:es = ((e1)(e2)(es))

Using the above, how might we encode not, and, and or as functions over
booleans?

not = (Ab.(b 7 false : true))

and =7

or =7
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L Turing-completeness

Booleans

How might we encode boolean expressions as A\-terms? Let's start with
constants and the ternary operator:

true = (Az.\y.xz)
false = (Az.\y.y)

e1?ez:es = ((e1)(e2)(es))

Using the above, how might we encode not, and, and or as functions over
booleans?

not = (Ab.(b7 false : true))
and = ()\bl Abg (b1 ? b2 : :Ealse))
=7
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L Turing-completeness

Booleans

How might we encode boolean expressions as A\-terms? Let's start with
constants and the ternary operator:

true = (Az.\y.xz)
false = (Az.\y.y)

e1?ez:es = ((e1)(e2)(es))

Using the above, how might we encode not, and, and or as functions over
booleans?

not = (Ab.(b7 false : true))
and = (Ab1.Ab2.(b1 7 bs : false))
or = (Ab1.Ab2.(b1 ? true : by))



Advanced Programming Languages

L Turing-completeness

Tuples

How might we encode pairs?
m The pair function should take two arguments (could be anything) and
package them together into some kind of object.
m The 7 function (£st in OCaml) should accept a pair as input and recover
(project out) the first element.
m The 72 function (snd in OCaml) should analogously project out the second

element.
pair = (Az.\y. ?)

™ = ()\p 7)
T2 = ()\p 7)
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L Turing-completeness

Tuples

How might we encode pairs?

m The pair function should take two arguments (could be anything) and
package them together into some kind of object.

m The 7 function (£st in OCaml) should accept a pair as input and recover
(project out) the first element.

m The 72 function (snd in OCaml) should analogously project out the second
element.

pair = Az Ay Ab.(b? z 1 y))
m1 = (Ap . ptrue)
w2 = (A\p.pfalse)
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L Turing-completeness

Natural Numbers

How might we encode natural numbers?
m Each number 0, 1,,2,... should be encoded as a A-calculus value (must
not reduce to something else).

m Approach: Encode O, then code up a successor function succy.

m Should also have predecessor pred,, (don’t care what it returns for 0)

m Also need a test iszero, (returns a boolean).

ON

3
~

?

succy, = (An.

pred, = (An. 7)
=(An.7)

3

iszero
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L Turing-completeness

Natural Numbers

How might we encode natural numbers?
m Each number 0, 1,,2,... should be encoded as a A-calculus value (must
not reduce to something else).
m Approach: Encode O, then code up a successor function succy.
m Should also have predecessor pred,, (don’t care what it returns for 0)

m Also need a test iszero, (returns a boolean).

0, = (A\z.z)
succ, = (An . pair (?) n)
pred, = (An.?)
(
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L Turing-completeness

Natural Numbers

How might we encode natural numbers?

m Each number 0, 1,,2,... should be encoded as a A-calculus value (must

not reduce to something else).
m Approach: Encode O, then code up a successor function succy.
m Should also have predecessor pred,, (don’t care what it returns for 0)

m Also need a test iszero, (returns a boolean).

0, = (A\z.z)
succ, = (An . pair (?) n)
pred, = m2

iszeroy = (An.?7)
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L Turing-completeness

Natural Numbers

How might we encode natural numbers?

m Each number 0, 1,,2,... should be encoded as a A-calculus value (must

not reduce to something else).
m Approach: Encode O, then code up a successor function succy.
m Should also have predecessor pred,, (don’t care what it returns for 0)

m Also need a test iszero, (returns a boolean).

0, = (A\z.z)
succ, = (An . pair false n)
pred, = m2

iszeroy = (An.?7)
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L Turing-completeness

Natural Numbers

How might we encode natural numbers?

m Each number 0, 1,,2,... should be encoded as a A-calculus value (must
not reduce to something else).

m Approach: Encode O, then code up a successor function succy.
m Should also have predecessor pred,, (don’t care what it returns for 0)

m Also need a test iszero, (returns a boolean).

0, = (A\z.z)
succ, = (An . pair false n)
pred, = m2

iszeroy = m
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L Turing-completeness

Natural Numbers

0y = (A\z.z)
succy, = (An . pair false n)
pred, = m2
iszeroy = m

Does iszero(0,) really work (should return true)?

0, = (Az.z) is not even a pair!
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L Turing-completeness

Natural Numbers

0y, = (A\z.x)
succy = (An . pair false n)
pred, = m2

iszeroy = m
Does iszero(0,) really work (should return true)?

iszeroy(0,) = m(Az.z) = (Ap . p true)(Az.z)
—1 (Az.x)true

—; true
It worked!™*

*Warning: On the homework, I'll ask you to first fully expand all the encodings into pure A-terms before doing any
evaluation steps. | did it without expanding true here to illustrate a point, but technically | should have first
expanded true into a A-term before applying the small-step semantics of A-calculus to a term containing it.
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L Turing-completeness

Untypedness

Take-aways:

m A-calculus is an untyped language.
m Every syntactically legal, closed term evaluates to something.
m Can do some very weird things (as we will see...)!

m There is a different language (which we will learn) called typed A-calculus.
m Don’t confuse it with this language!
m Watch out for web resources that look similar but that concern a different

A-calculus (there are many)!



Advanced Programming Languages

L Turing-completeness

Loops

We're close to a full Turing-complete language now, but one major thing is
missing: loops.

Q: Is it possible to code an infinite loop in A-calculus?
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L Turing-completeness

Loops

We're close to a full Turing-complete language now, but one major thing is
missing: loops.

Q: Is it possible to code an infinite loop in A-calculus?
A: Yes. Smallest example: (Az.zz)(Ax.zz)



Advanced Programming Languages

L Turing-completeness

Recursion

What about useful loops?
Case-study: Can we code an addition function for natural numbers?

add, = Am.An.?
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L Turing-completeness

Recursion

What about useful loops?
Case-study: Can we code an addition function for natural numbers?

add, = Am.An.(iszero,m ? n : add, (pred,m)(succ,n))
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L Turing-completeness

Recursion

What about useful loops?
Case-study: Can we code an addition function for natural numbers?

add, = Am.An.(iszero,m ? n : add, (pred,m)(succ,n))

Circular definition! Remember, the encoding part (=) is supposed to be a
definition; it's not part of the A-term.

How can we remove the recursion from this formula?
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L Turing-completeness

Fixed points

add, = Am.An.(iszero,m ? n : add, (pred,m)(succ,n))

Define a functional whose least fixed point is add,:
Add,, = A\f.Am.\n.(iszeroym ? n : f(pred,m)(succ,n))
Then define add,, to be its least fixed point:
add,, = fiz(Add,)

But fiz is not part of A\-calculus, so we're still stuck...?
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L Turing-completeness

Y-combinator

A very interesting function (discovered by Haskell Curry):

Y = Af.(z.f(zx))(Az. f(zx))
Amazing claim: Y = fiz

Proof: Let's evaluate it...

Yg%l?
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L Turing-completeness

Y-combinator

A very interesting function (discovered by Haskell Curry):
Y = Af.(Ax. f(zz))(Ax. f(xz))

Amazing claim: Y = fiz

Proof: Let's evaluate it...

Y g =1 (Az.g(zx))(Az.g(zx))
—1 7
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L Turing-completeness

Y-combinator

A very interesting function (discovered by Haskell Curry):
Y = Af.(Ax. f(zz))(Ax. f(xz))

Amazing claim: Y = fiz

Proof: Let's evaluate it...

Y g =1 (Az.g(zx))(Az.g(zx))
—1 g((/\:vg(:vx))()\mg(mx)))



Advanced Programming Languages

L Turing-completeness

Y-combinator

A very interesting function (discovered by Haskell Curry):
Y = Af.(Ax. f(zz))(Ax. f(xz))

Amazing claim: Y = fiz

Proof: Let's evaluate it...

Y g =1 (Az.g(zx))(Az.g(zx))
=1 9((A\z.g(zz))(Az.g(wx))) = g(Y g)

Conclusion: Y g is the least fixed point of g. (Whoa!)



Advanced Programming Languages

L Turing-completeness

Solving Recursion Problems with Y

Exercise: Define an addition function in A-calculus.

The following definition is illegal (not well-founded):
add, = Am.An.(iszero,m ? n : add, (pred,m)(succ,n))
So instead define a functional whose least fixed point is add,:
Af.Am.An. (iszero,m ? n : f(pred,m)(succ,n))
Then apply Y to it:
add, = Y (Af.Am.An.(iszero,m 7 n : f(pred,m)(succyn)))

Now we have a legal definition of an addition function with no explicit recursions
in it.
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L Turing-completeness

Exercise: Multiplication

Exercise: Define a multiplication function for natural numbers in A-calculus.

Try to define it recursively first:

mul, = Am.An.
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L Turing-completeness

Exercise: Multiplication

Exercise: Define a multiplication function for natural numbers in A-calculus.

Try to define it recursively first:

mul, = Am.An.(iszero, m ? 0, : add, (mul, (pred,m)n)n)
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L Turing-completeness

Exercise: Multiplication

Exercise: Define a multiplication function for natural numbers in A-calculus.

Try to define it recursively first:
mul, = Am.An.(iszero, m ? 0, : add, (mul, (pred,m)n)n)
Then change it to a non-recursive functional and apply Y to it:

mul, =Y (Af.Am.An.(iszero, m ? 0, : add, (f(pred,m)n)n))
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L Turing-completeness

Readability

When solving these sorts of problems on homeworks, quizzes, and exams:
m Please DO use the abbreviations in your code.
m Don't write (Az.\y.z) when you mean true.
m Strive for readability (otherwise becomes very hard to grade!).
m Please DO define named helper functions.

m Less writing is good; don't repeatedly write out same subroutine.
m But any recursions must always be eliminated with Y.
m Use informative names (not f).

m Don’t name variables the same as any helper functions (really confusing!).

m \-calculus is a math formalism not a modern language, so extra effort is
required to make it readable.
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Equality

A-terms are ASTs. They are only “equal’ (=) if they are identical after
expansion of all macro abbreviations.

(Also recall that the parentheses are not symbols in the AST; they just show the
structucture of the AST.)

Examples:
Ayy)(Ax.x) # Az (though they evaluate to the same terms)
(Az.(x)) = Az.x
Ar.x # Ay.y

However, there are some notions of term equivalence that are important to
understand.
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L Term Equivalence

a-equivalence

Definition (a-equivalence): Term Az.e is a-equivalent to term Ay.(e'[y/x])
(written A\z.e =, \y.(e’[y/z])) whenever e =, €’ (recursively).

Intuition: Terms that are identical except for consistent, capture-avoiding
renaming of the variables are a-equivalent.

Examples:

AT.X =q AY.Y
AL L. =4 A\Y.AT.T
ALAT.T Zo ANY.AT.Y

Colloquially: Functional programmers refer to renaming their variables as
“a-conversion” .
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L Term Equivalence

[B-equivalence

Definition (S-equivalence): Terms (\v.e1)ez and ei[e2/x] are S-equivalent
(written (Av.e1)e2 =g e1]e2/x]).

Intuition: An application of a function f to an argument a is $-equivalent to a
term consisting of the body of f with all its parameters replaced with the
argument term a.

Examples:
(Az.zz)(Ay.y) =p (Ay-y)(Ay.y)

(Az.xzz)(A\y.y) =5 A\y.y (by transitivity)
((Az.zz)(Ay.y))(Az.2) #5 (Ay-y)(Ay-y))(Az.2)

The last example is because that reduction doesn't only use the S-rule. In that
case the left subterms are (5-equivalent, but not the full-sized terms that contain
them.
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L Term Equivalence

n-equivalence

Definition (n-equivalence): Terms Av.(fv) and f are n-equivalent (written

M. (fv) =, f)ifog FV(f).

Intuition: A “wrapper function” that merely applies some other function f to
whatever argument it receives is equivalent to just f.

Example:
An . pair false n =, pair false

Example from OCaml:

let sum x = List.fold_left (+) O x;;

=n
let sum = List.fold_left (+) 0;;
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L Term Equivalence

Equivalence vs. Operational and Denotational Semantics

Don't confuse equivalence with the operational semantics of A-calculus:
m Only S-equivalence is a rule of the operational semantics.

m a-equivalent terms don't always evaluate to the same final terms (variables
might be different, which makes them different ASTs).

m [-equivalent terms do always evaluate to the same terms.

B 7-equivalent terms “behave the same” when applied, but n-equivalence is not
a reduction step of A-calculus.

m There is no = or = test operation in A-calculus!
m The following is NOT a legal A-term:

Az Ay.(x =y) ? true : false

m It is impossible to code up such an operation (exercise: prove it!).
m In denotational semantics, A-terms denote (mathematical) functions.

m In math we have another definition of functional equivalence (identical
input-output relations).

m But functional equivalence is not decidable (Rice's Theorem).

m And equivalence of A-term denotations is NOT the same as equivalence of
the terms themselves.
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