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Advanced Programming Languages

History

Historical Roots

First, some mathematical history...
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History

Deductive Logic

Euclid’s The Elements
written c. 300 B.C.
deductive reasoning: 23
definitions, 10 axioms
geometry, algebra, number theory
foundation of western
mathematics for about 2000
years

Problem: Some theorems
unprovable from axioms

Example: Two circles with
centers closer than the sum of
their radii have an intersection
point.



Advanced Programming Languages

History

Set Theory

First proposed by Georg Cantor in 1874
new foundation for mathematics
early versions contained paradoxes

Russel’s Paradox: the set of all sets that
do not contain themselves

Deductive Set Theory
axiomized by Zermelo and Fraenkel
between 1908 and 1930
Zermelo-Fraenkel set theory with axiom of
choice (ZFC)

Problem: some theorems still unprovable!
Example (Continuum Hypothesis): There
is no set larger than N but smaller than R.
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History

Hilbert’s Program

Proposed by David Hilbert in 1921

Goals:
Provide an unassailable foundation for all
mathematics
Find a set of axioms and rules of logical
inference sufficient to deductively prove
all mathematical theorems.

Required properties:
Soundness: no untrue statement provable
Completeness: all true statements
provable
Decidability: procedure for determining
whether any mathematical statement is
true or false
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History

Gödel’s Incompleteness Theorem

Proved by Kurt Gödel in 1931

Theorem: No finite collection of axioms is
both sound and complete(!)

Ramifications:
Given any sound axiomization of
mathematics, there are true statements
that are unprovable.
There exists no decision algorithm for
mathematical truth.

Essentially destroyed Hilbert’s program

Raised another question: What is
decidable?
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History

Theory of Computation

Alan Turing Alonzo Church

“Decide” = “Compute”

1936: Two models of “computation” proposed:
Turing Machines (Alan Turing)
λ-calculus (Alonzo Church)

Both models equivalent in power

Church-Turing Thesis: All (reasonable) models of computation are equally
powerful.

Birth of Computer Science
Turing Machines = imperative programming
λ-calculus = functional programming
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History

Fun Fact: My Mathematical Ancestry

Alonzo Church
(PhD Princeton 1927)∣∣
Stephen Kleene

(PhD Princeton 1934)∣∣
Bob Constable

(PhD Wisconsin-Madison 1968)∣∣
Bob Harper

(PhD Cornell 1985)∣∣
Greg Morrisett

(PhD Carnegie Mellon 1995)∣∣
Kevin Hamlen
(PhD Cornell 2006)
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History

Today

Today: λ-calculus
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Language Definition

Syntax

e ::= v | λv.e | e1e2
Only three syntaxes:

variables v

abstractions λv.e (functions)

applications e1e2

Some simple examples:

λx.x (the identity function)

(λx.x)(λy.yy)→1 λy.yy

λx.((λy.y)x) does not reduce (already a value)
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Language Definition

Free Variables

Legal λ-expressions must be closed (no free variables), where we define the set
of free variables FV (e) by

FV (v) = {v}
FV (λv.e) = FV (e)\{v}
FV (e1e2) = FV (e1) ∪ FV (e2)

We require FV (e) = ∅.
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Language Definition

Semantics

Small-step semantics of λ-calculus:

e1 →1 e
′
1

e1e2 →1 e
′
1e2

(β-reduction)
(λv.e1)e2 →1 e1[e2/v]

where notation e1[e/v] denotes capture-avoiding substitution:

v[e/v] = e

v1[e/v2] = v1 when v1 6= v2 (i.e., different variables)

(λv.e1)[e/v] = λv.e1

(λv1.e1)[e/v2] = λv1.(e1[e/v2]) when v1 6= v2 (i.e. different variables)

(e1e2)[e/v] = (e1[e/v])(e2[e/v])

Intuition: e1[e2/x] means replace only the free x’s in e1 with e2.

Optional exercise: Devise equivalent large-step and denotational semantics.
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Language Definition

Reduction example

(
(λx.(λy.(xy)))(λy.y)

)
(λz.z)→1 ?
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Language Definition

Reduction example

(
(λx.(λy.(xy)))(λy.y)

)
(λz.z)→1(

λy.((λy.y)y)
)
(λz.z)→1 ?
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Language Definition

Reduction example

(
(λx.(λy.(xy)))(λy.y)

)
(λz.z)→1(

λy.((λy.y)y)
)
(λz.z)→1

(λy.y)(λz.z)→1 ?
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Language Definition

Reduction example

(
(λx.(λy.(xy)))(λy.y)
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λy.((λy.y)y)
)
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Language Definition

Reduction example

(
(λx.(λy.(xy)))(λy.y)

)
(λz.z)→1(

λy.((λy.y)y)
)
(λz.z)→1

(λy.y)(λz.z)→1

(λz.z)

Important observations:

Don’t change any variable names as you evaluate!

There are no stores involved here!

Semantics of λ-calculus are based on capture-avoiding substitution, not
stores or variable renaming.

Function bodies never evaluate (even if they could) until their λ-binder gets
stripped off (at which point they’re not functions anymore).

Strategy: Pretend that “λv.e” is OCaml “fun v → e”.
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Language Definition

Precedence and Associativity

Precedence and associativity conventions:

λv.e1e2 = λv.(e1e2) (application binds tighter than abstraction)

e1e2e2 = (e1e2)e3 (application associates left)

Parenthesize anything else that might be ambiguous.
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Turing-completeness

Encodings and Reductions

Amazing fact: This extremely simple language is Turing-complete (can perform
any computation implementable by modern computers)!

Proof by reduction (recall from computability theory): Let’s reduce a (simple)
Turing-complete programming language to λ-calculus.



Advanced Programming Languages

Turing-completeness

Higher-arity Functions

λ-calculus only gives us 1-argument functions λv.e.

Q: How could I create a multi-argument function?
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Turing-completeness

Higher-arity Functions

λ-calculus only gives us 1-argument functions λv.e.

Q: How could I create a multi-argument function?
A: Nest the λ’s: λx.λy.λz.(. . .)

Definition (currying): In functional programming, changing a function on
tuple-arguments to use distinct (non-tuple) arguments is called currying the
function.

Example:
Uncurried: let add (x,y) = x+y;;

Curried: let add x y = x+y;;

Benefits: More opportunities for code-reuse through partial evaluation, and more
opportunities for compiler optimization through specialization
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Turing-completeness

Booleans

How might we encode boolean expressions as λ-terms? Let’s start with
constants and the ternary operator:

true = ?

false = ?

e1 ? e2 : e3 = ?

Using the above, how might we encode not, and, and or as functions over
booleans?

not = ?

and = ?

or = ?
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Turing-completeness

Booleans

How might we encode boolean expressions as λ-terms? Let’s start with
constants and the ternary operator:

true = (λx.λy.x)

false = (λx.λy.y)

e1 ? e2 : e3 = ((e1)(e2)(e3))

Using the above, how might we encode not, and, and or as functions over
booleans?

not = (λb.(b ? false : true))

and = ?

or = ?
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Turing-completeness

Booleans

How might we encode boolean expressions as λ-terms? Let’s start with
constants and the ternary operator:

true = (λx.λy.x)

false = (λx.λy.y)

e1 ? e2 : e3 = ((e1)(e2)(e3))

Using the above, how might we encode not, and, and or as functions over
booleans?

not = (λb.(b ? false : true))

and = (λb1.λb2.(b1 ? b2 : false))

or = ?
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Turing-completeness

Booleans

How might we encode boolean expressions as λ-terms? Let’s start with
constants and the ternary operator:

true = (λx.λy.x)

false = (λx.λy.y)

e1 ? e2 : e3 = ((e1)(e2)(e3))

Using the above, how might we encode not, and, and or as functions over
booleans?

not = (λb.(b ? false : true))

and = (λb1.λb2.(b1 ? b2 : false))

or = (λb1.λb2.(b1 ? true : b2))



Advanced Programming Languages

Turing-completeness

Tuples

How might we encode pairs?

The pair function should take two arguments (could be anything) and
package them together into some kind of object.

The π1 function (fst in OCaml) should accept a pair as input and recover
(project out) the first element.

The π2 function (snd in OCaml) should analogously project out the second
element.

pair = (λx.λy. ?)

π1 = (λp. ?)

π2 = (λp. ?)
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Turing-completeness

Tuples

How might we encode pairs?

The pair function should take two arguments (could be anything) and
package them together into some kind of object.

The π1 function (fst in OCaml) should accept a pair as input and recover
(project out) the first element.

The π2 function (snd in OCaml) should analogously project out the second
element.

pair = (λx.λy.λb.(b ? x : y))

π1 = (λp . p true)

π2 = (λp . p false)
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Turing-completeness

Natural Numbers

How might we encode natural numbers?

Each number 0N , 1N , 2N , . . . should be encoded as a λ-calculus value (must
not reduce to something else).

Approach: Encode 0N , then code up a successor function succN .

Should also have predecessor predN (don’t care what it returns for 0N)

Also need a test iszeroN (returns a boolean).

0N = ?

succN = (λn . ?)

predN = (λn . ?)

iszeroN = (λn . ?)
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Natural Numbers
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Turing-completeness

Natural Numbers

How might we encode natural numbers?

Each number 0N , 1N , 2N , . . . should be encoded as a λ-calculus value (must
not reduce to something else).

Approach: Encode 0N , then code up a successor function succN .

Should also have predecessor predN (don’t care what it returns for 0N)

Also need a test iszeroN (returns a boolean).

0N = (λx.x)

succN = (λn . pair false n)

predN = π2

iszeroN = (λn . ?)
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Turing-completeness

Natural Numbers

How might we encode natural numbers?

Each number 0N , 1N , 2N , . . . should be encoded as a λ-calculus value (must
not reduce to something else).

Approach: Encode 0N , then code up a successor function succN .

Should also have predecessor predN (don’t care what it returns for 0N)

Also need a test iszeroN (returns a boolean).

0N = (λx.x)

succN = (λn . pair false n)

predN = π2

iszeroN = π1
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Turing-completeness

Natural Numbers

0N = (λx.x)

succN = (λn . pair false n)

predN = π2

iszeroN = π1

Does iszeroN(0N) really work (should return true)?

0N = (λx.x) is not even a pair!
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Turing-completeness

Natural Numbers

0N = (λx.x)

succN = (λn . pair false n)

predN = π2

iszeroN = π1

Does iszeroN(0N) really work (should return true)?

iszeroN(0N) = π1(λx.x) = (λp . p true)(λx.x)

→1 (λx.x)true

→1 true

It worked!∗

*Warning: On the homework, I’ll ask you to first fully expand all the encodings into pure λ-terms before doing any
evaluation steps. I did it without expanding true here to illustrate a point, but technically I should have first
expanded true into a λ-term before applying the small-step semantics of λ-calculus to a term containing it.
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Turing-completeness

Untypedness

Take-aways:

λ-calculus is an untyped language.
Every syntactically legal, closed term evaluates to something.
Can do some very weird things (as we will see...)!

There is a different language (which we will learn) called typed λ-calculus.
Don’t confuse it with this language!
Watch out for web resources that look similar but that concern a different
λ-calculus (there are many)!
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Turing-completeness

Loops

We’re close to a full Turing-complete language now, but one major thing is
missing: loops.

Q: Is it possible to code an infinite loop in λ-calculus?
A: Yes. Smallest example: (λx.xx)(λx.xx)
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Turing-completeness

Loops

We’re close to a full Turing-complete language now, but one major thing is
missing: loops.

Q: Is it possible to code an infinite loop in λ-calculus?
A: Yes. Smallest example: (λx.xx)(λx.xx)
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Turing-completeness

Recursion

What about useful loops?
Case-study: Can we code an addition function for natural numbers?

addN = λm.λn.?

Circular definition! Remember, the encoding part (=) is supposed to be a
definition; it’s not part of the λ-term.

How can we remove the recursion from this formula?
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Turing-completeness

Recursion

What about useful loops?
Case-study: Can we code an addition function for natural numbers?

addN = λm.λn.
(
iszeroNm ? n : addN(predNm)(succNn)

)
Circular definition! Remember, the encoding part (=) is supposed to be a
definition; it’s not part of the λ-term.

How can we remove the recursion from this formula?
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Turing-completeness

Recursion

What about useful loops?
Case-study: Can we code an addition function for natural numbers?

addN = λm.λn.
(
iszeroNm ? n : addN(predNm)(succNn)

)
Circular definition! Remember, the encoding part (=) is supposed to be a
definition; it’s not part of the λ-term.
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Turing-completeness

Fixed points

addN = λm.λn.
(
iszeroNm ? n : addN(predNm)(succNn)

)
Define a functional whose least fixed point is addN :

AddN = λf.λm.λn.
(
iszeroNm ? n : f(predNm)(succNn)

)
Then define addN to be its least fixed point:

addN = fix (AddN)

But fix is not part of λ-calculus, so we’re still stuck...?
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Turing-completeness

Y-combinator

A very interesting function (discovered by Haskell Curry):

Y = λf.(λx.f(xx))(λx.f(xx))

Amazing claim: Y = fix

Proof: Let’s evaluate it...

Y g →1 ?

→1 ? = g(Y g)

Conclusion: Y g is the least fixed point of g. (Whoa!)
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Y-combinator
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Amazing claim: Y = fix
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Turing-completeness

Solving Recursion Problems with Y

Exercise: Define an addition function in λ-calculus.

The following definition is illegal (not well-founded):

addN = λm.λn.
(
iszeroNm ? n : addN(predNm)(succNn)

)
So instead define a functional whose least fixed point is addN :

λf.λm.λn.
(
iszeroNm ? n : f(predNm)(succNn)

)
Then apply Y to it:

addN = Y
(
λf.λm.λn.(iszeroNm ? n : f(predNm)(succNn))

)
Now we have a legal definition of an addition function with no explicit recursions
in it.
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Turing-completeness

Exercise: Multiplication

Exercise: Define a multiplication function for natural numbers in λ-calculus.

Try to define it recursively first:

mulN = λm.λn.
(
iszeroN m ? 0N : addN(mulN(predNm)n)n

)
Then change it to a non-recursive functional and apply Y to it:

mulN = Y
(
λf.λm.λn.(iszeroN m ? 0N : addN(f(predNm)n)n)

)
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Turing-completeness

Readability

When solving these sorts of problems on homeworks, quizzes, and exams:

Please DO use the abbreviations in your code.
Don’t write (λx.λy.x) when you mean true.
Strive for readability (otherwise becomes very hard to grade!).

Please DO define named helper functions.
Less writing is good; don’t repeatedly write out same subroutine.
But any recursions must always be eliminated with Y .
Use informative names (not f).

Don’t name variables the same as any helper functions (really confusing!).

λ-calculus is a math formalism not a modern language, so extra effort is
required to make it readable.
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Term Equivalence

Equality

λ-terms are ASTs. They are only “equal” (=) if they are identical after
expansion of all macro abbreviations.

(Also recall that the parentheses are not symbols in the AST; they just show the
structucture of the AST.)

Examples:

(λy.y)(λx.x) 6= λx.x (though they evaluate to the same terms)

(λx.(x)) = λx.x

λx.x 6= λy.y

However, there are some notions of term equivalence that are important to
understand.
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Term Equivalence

α-equivalence

Definition (α-equivalence): Term λx.e is α-equivalent to term λy.(e′[y/x])
(written λx.e ≡α λy.(e

′[y/x])) whenever e ≡α e
′ (recursively).

Intuition: Terms that are identical except for consistent, capture-avoiding
renaming of the variables are α-equivalent.

Examples:

λx.x ≡α λy.y

λx.λx.x ≡α λy.λx.x

λx.λx.x 6≡α λy.λx.y

Colloquially: Functional programmers refer to renaming their variables as
“α-conversion”.
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Term Equivalence

β-equivalence

Definition (β-equivalence): Terms (λv.e1)e2 and e1[e2/x] are β-equivalent
(written (λv.e1)e2 ≡β e1[e2/x]).

Intuition: An application of a function f to an argument a is β-equivalent to a
term consisting of the body of f with all its parameters replaced with the
argument term a.

Examples:

(λx.xx)(λy.y) ≡β (λy.y)(λy.y)

(λx.xx)(λy.y) ≡β λy.y (by transitivity)

((λx.xx)(λy.y))(λz.z) 6≡β ((λy.y)(λy.y))(λz.z)

The last example is because that reduction doesn’t only use the β-rule. In that
case the left subterms are β-equivalent, but not the full-sized terms that contain
them.



Advanced Programming Languages

Term Equivalence

η-equivalence

Definition (η-equivalence): Terms λv.(fv) and f are η-equivalent (written
λv.(fv) ≡η f) if v 6∈ FV (f).

Intuition: A “wrapper function” that merely applies some other function f to
whatever argument it receives is equivalent to just f .

Example:
λn . pair false n ≡η pair false

Example from OCaml:

let sum x = List.fold left (+) 0 x;;

≡η

let sum = List.fold left (+) 0;;
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Term Equivalence

Equivalence vs. Operational and Denotational Semantics

Don’t confuse equivalence with the operational semantics of λ-calculus:

Only β-equivalence is a rule of the operational semantics.
α-equivalent terms don’t always evaluate to the same final terms (variables
might be different, which makes them different ASTs).
β-equivalent terms do always evaluate to the same terms.
η-equivalent terms “behave the same” when applied, but η-equivalence is not
a reduction step of λ-calculus.

There is no = or ≡ test operation in λ-calculus!
The following is NOT a legal λ-term:

λx.λy.(x= y) ? true : false

It is impossible to code up such an operation (exercise: prove it!).

In denotational semantics, λ-terms denote (mathematical) functions.
In math we have another definition of functional equivalence (identical
input-output relations).
But functional equivalence is not decidable (Rice’s Theorem).
And equivalence of λ-term denotations is NOT the same as equivalence of
the terms themselves.
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