λ-calculus
 CS 4301/6371: Advanced Programming Languages

Kevin W. Hamlen

March 19, 2024

Historical Roots

First, some mathematical history...

Deductive Logic

■ Euclid's The Elements

- written c. 300 B.C.
- deductive reasoning: 23 definitions, 10 axioms
- geometry, algebra, number theory
- foundation of western mathematics for about 2000 years
- Problem: Some theorems unprovable from axioms
- Example: Two circles with centers closer than the sum of their radii have an intersection point.

Set Theory

■ First proposed by Georg Cantor in 1874

- new foundation for mathematics
- early versions contained paradoxes

■ Russel's Paradox: the set of all sets that do not contain themselves

- Deductive Set Theory
- axiomized by Zermelo and Fraenkel between 1908 and 1930
■ Zermelo-Fraenkel set theory with axiom of choice (ZFC)
- Problem: some theorems still unprovable!
- Example (Continuum Hypothesis): There is no set larger than \mathbb{N} but smaller than \mathbb{R}.

Hilbert's Program

■ Proposed by David Hilbert in 1921
■ Goals:

- Provide an unassailable foundation for all mathematics
- Find a set of axioms and rules of logical inference sufficient to deductively prove all mathematical theorems.
■ Required properties:
■ Soundness: no untrue statement provable
- Completeness: all true statements provable
- Decidability: procedure for determining whether any mathematical statement is
 true or false

Gödel's Incompleteness Theorem

■ Proved by Kurt Gödel in 1931

- Theorem: No finite collection of axioms is both sound and complete(!)
- Ramifications:
- Given any sound axiomization of mathematics, there are true statements that are unprovable.
- There exists no decision algorithm for mathematical truth.
- Essentially destroyed Hilbert's program

■ Raised another question: What is decidable?

Theory of Computation

Alonzo Church
■ "Decide" = "Compute"

- 1936: Two models of "computation" proposed:
- Turing Machines (Alan Turing)
- λ-calculus (Alonzo Church)
- Both models equivalent in power

■ Church-Turing Thesis: All (reasonable) models of computation are equally powerful.

- Birth of Computer Science
- Turing Machines $=$ imperative programming

■ λ-calculus $=$ functional programming

Fun Fact: My Mathematical Ancestry

Alonzo Church
(PhD Princeton 1927)
Stephen Kleene
(PhD Princeton 1934)
Bob Constable

Today

Today: λ-calculus

Syntax

$$
e::=v|\lambda v . e| e_{1} e_{2}
$$

Only three syntaxes:

- variables v
- abstractions $\lambda v . e$ (functions)
- applications $e_{1} e_{2}$

Some simple examples:

- $\lambda x \cdot x$ (the identity function)

■ $(\lambda x . x)(\lambda y . y y) \rightarrow_{1} \lambda y . y y$

- $\lambda x .((\lambda y . y) x)$ does not reduce (already a value)

Free Variables

Legal λ-expressions must be closed (no free variables), where we define the set of free variables $F V(e)$ by

$$
\begin{aligned}
F V(v) & =\{v\} \\
F V(\lambda v . e) & =F V(e) \backslash\{v\} \\
F V\left(e_{1} e_{2}\right) & =F V\left(e_{1}\right) \cup F V\left(e_{2}\right)
\end{aligned}
$$

We require $F V(e)=\emptyset$.

Semantics

Small-step semantics of λ-calculus:

$$
\frac{e_{1} \rightarrow_{1} e_{1}^{\prime}}{e_{1} e_{2} \rightarrow_{1} e_{1}^{\prime} e_{2}}
$$

$$
\overline{\left(\lambda v . e_{1}\right) e_{2} \rightarrow_{1} e_{1}\left[e_{2} / v\right]}(\beta \text {-reduction })
$$

where notation $e_{1}[e / v]$ denotes capture-avoiding substitution:

$$
\begin{aligned}
v[e / v] & =e \\
v_{1}\left[e / v_{2}\right] & =v_{1} \text { when } v_{1} \neq v_{2} \text { (i.e., different variables) } \\
\left(\lambda v . e_{1}\right)[e / v] & =\lambda v . e_{1} \\
\left(\lambda v_{1} \cdot e_{1}\right)\left[e / v_{2}\right] & =\lambda v_{1} \cdot\left(e_{1}\left[e / v_{2}\right]\right) \text { when } v_{1} \neq v_{2} \text { (i.e. different variables) } \\
\left(e_{1} e_{2}\right)[e / v] & =\left(e_{1}[e / v]\right)\left(e_{2}[e / v]\right)
\end{aligned}
$$

Intuition: $e_{1}\left[e_{2} / x\right]$ means replace only the free x 's in e_{1} with e_{2}.
Optional exercise: Devise equivalent large-step and denotational semantics.

Reduction example

$$
((\lambda x \cdot(\lambda y \cdot(x y)))(\lambda y \cdot y))(\lambda z \cdot z) \rightarrow_{1} ?
$$

Reduction example

$$
((\lambda x \cdot(\lambda y \cdot(x y)))(\lambda y \cdot y))(\lambda z . z) \rightarrow_{1} ?
$$

Reduction example

$$
\begin{gathered}
((\lambda x \cdot(\lambda y \cdot(x y)))(\lambda y \cdot y))(\lambda z . z) \rightarrow_{1} \\
(\lambda y \cdot((\lambda y \cdot y) y))(\lambda z . z) \rightarrow_{1} ?
\end{gathered}
$$

Reduction example

$$
\begin{gathered}
((\lambda x .(\lambda y \cdot(x y)))(\lambda y . y))(\lambda z . z) \rightarrow_{1} \\
(\lambda y \cdot((\lambda y . y) y))(\lambda z . z) \rightarrow_{1} \\
(\lambda y . y)(\lambda z . z) \rightarrow_{1} ?
\end{gathered}
$$

Reduction example

$$
\begin{aligned}
((\lambda x . & (\lambda y \cdot(x y)))(\lambda y . y))(\lambda z . z) \rightarrow_{1} \\
& (\lambda y \cdot((\lambda y \cdot y) y))(\lambda z . z) \rightarrow_{1} \\
& (\lambda y \cdot y)(\lambda z . z) \rightarrow_{1} \\
& (\lambda z . z)
\end{aligned}
$$

Reduction example

$$
\begin{aligned}
((\lambda x . & (\lambda y \cdot(x y)))(\lambda y \cdot y))(\lambda z . z) \rightarrow_{1} \\
& (\lambda y \cdot((\lambda y \cdot y) y))(\lambda z . z) \rightarrow_{1} \\
& (\lambda y . y)(\lambda z . z) \rightarrow_{1} \\
& (\lambda z . z)
\end{aligned}
$$

Important observations:

- Don't change any variable names as you evaluate!
- There are no stores involved here!

■ Semantics of λ-calculus are based on capture-avoiding substitution, not stores or variable renaming.
■ Function bodies never evaluate (even if they could) until their λ-binder gets stripped off (at which point they're not functions anymore).
Strategy: Pretend that " $\lambda v . e$ " is OCaml "fun $v \rightarrow e$ ".

Precedence and Associativity

Precedence and associativity conventions:

$$
\begin{aligned}
\lambda v \cdot e_{1} e_{2} & =\lambda v \cdot\left(e_{1} e_{2}\right) & & \text { (application binds tighter than abstraction) } \\
e_{1} e_{2} e_{2} & =\left(e_{1} e_{2}\right) e_{3} & & \text { (application associates left) }
\end{aligned}
$$

Parenthesize anything else that might be ambiguous.

Encodings and Reductions

Amazing fact: This extremely simple language is Turing-complete (can perform any computation implementable by modern computers)!

Proof by reduction (recall from computability theory): Let's reduce a (simple) Turing-complete programming language to λ-calculus.

Higher-arity Functions

λ-calculus only gives us 1-argument functions $\lambda v . e$.
Q: How could I create a multi-argument function?

Higher-arity Functions

λ-calculus only gives us 1-argument functions $\lambda v . e$.

Q: How could I create a multi-argument function?
A: Nest the λ 's: $\lambda x . \lambda y . \lambda z .(\ldots)$
Definition (currying): In functional programming, changing a function on tuple-arguments to use distinct (non-tuple) arguments is called currying the function.

Example:
Uncurried: let add (x, y) $=\mathrm{x}+\mathrm{y}$; ; Curried: let add $\mathrm{x} y=\mathrm{x}+\mathrm{y}$;

Benefits: More opportunities for code-reuse through partial evaluation, and more opportunities for compiler optimization through specialization

Booleans

How might we encode boolean expressions as λ-terms? Let's start with constants and the ternary operator:

$$
\begin{aligned}
\text { true } & =? \\
\text { false } & =? \\
e_{1} ? e_{2}: e_{3} & =?
\end{aligned}
$$

Booleans

How might we encode boolean expressions as λ-terms? Let's start with constants and the ternary operator:

$$
\begin{aligned}
\text { true } & =(\lambda x \cdot \lambda y \cdot x) \\
\text { false } & =(\lambda x \cdot \lambda y \cdot y) \\
e_{1} ? e_{2}: e_{3} & =\left(\left(e_{1}\right)\left(e_{2}\right)\left(e_{3}\right)\right)
\end{aligned}
$$

Booleans

How might we encode boolean expressions as λ-terms? Let's start with constants and the ternary operator:

$$
\begin{aligned}
\text { true } & =(\lambda x \cdot \lambda y \cdot x) \\
\text { false } & =(\lambda x \cdot \lambda y \cdot y) \\
e_{1} ? e_{2}: e_{3} & =\left(\left(e_{1}\right)\left(e_{2}\right)\left(e_{3}\right)\right)
\end{aligned}
$$

Using the above, how might we encode not, and, and or as functions over booleans?

$$
\begin{aligned}
\text { not } & =? \\
\text { and } & =? \\
\text { or } & =?
\end{aligned}
$$

Booleans

How might we encode boolean expressions as λ-terms? Let's start with constants and the ternary operator:

$$
\begin{aligned}
\text { true } & =(\lambda x \cdot \lambda y \cdot x) \\
\text { false } & =(\lambda x \cdot \lambda y \cdot y) \\
e_{1} ? e_{2}: e_{3} & =\left(\left(e_{1}\right)\left(e_{2}\right)\left(e_{3}\right)\right)
\end{aligned}
$$

Using the above, how might we encode not, and, and or as functions over booleans?

$$
\begin{aligned}
\text { not } & =(\lambda b \cdot(b ? \text { false }: \text { true })) \\
\text { and } & =? \\
\text { or } & =?
\end{aligned}
$$

Booleans

How might we encode boolean expressions as λ-terms? Let's start with constants and the ternary operator:

$$
\begin{aligned}
\text { true } & =(\lambda x \cdot \lambda y \cdot x) \\
\text { false } & =(\lambda x \cdot \lambda y \cdot y) \\
e_{1} ? e_{2}: e_{3} & =\left(\left(e_{1}\right)\left(e_{2}\right)\left(e_{3}\right)\right)
\end{aligned}
$$

Using the above, how might we encode not, and, and or as functions over booleans?

$$
\begin{aligned}
\text { not } & =(\lambda b \cdot(b ? \text { false }: \text { true })) \\
\text { and } & =\left(\lambda b_{1} \cdot \lambda b_{2} \cdot\left(b_{1} ? b_{2}: \mathrm{false}\right)\right) \\
\text { or } & =?
\end{aligned}
$$

Booleans

How might we encode boolean expressions as λ-terms? Let's start with constants and the ternary operator:

$$
\begin{aligned}
\text { true } & =(\lambda x \cdot \lambda y \cdot x) \\
\text { false } & =(\lambda x \cdot \lambda y \cdot y) \\
e_{1} ? e_{2}: e_{3} & =\left(\left(e_{1}\right)\left(e_{2}\right)\left(e_{3}\right)\right)
\end{aligned}
$$

Using the above, how might we encode not, and, and or as functions over booleans?

$$
\begin{aligned}
\text { not } & =(\lambda b \cdot(b ? \text { false }: \text { true })) \\
\text { and } & =\left(\lambda b_{1} \cdot \lambda b_{2} \cdot\left(b_{1} ? b_{2}: \text { false }\right)\right) \\
\text { or } & =\left(\lambda b_{1} \cdot \lambda b_{2} \cdot\left(b_{1} ? \text { true }: b_{2}\right)\right)
\end{aligned}
$$

Tuples

How might we encode pairs?

- The pair function should take two arguments (could be anything) and package them together into some kind of object.
- The π_{1} function (fst in OCaml) should accept a pair as input and recover (project out) the first element.
- The π_{2} function (snd in OCaml) should analogously project out the second element.

$$
\begin{aligned}
\text { pair } & =(\lambda x . \lambda y . ?) \\
\pi_{1} & =(\lambda p . ?) \\
\pi_{2} & =(\lambda p . ?)
\end{aligned}
$$

Tuples

How might we encode pairs?

- The pair function should take two arguments (could be anything) and package them together into some kind of object.
- The π_{1} function (fst in OCaml) should accept a pair as input and recover (project out) the first element.
- The π_{2} function (snd in OCaml) should analogously project out the second element.

$$
\begin{aligned}
\text { pair } & =(\lambda x \cdot \lambda y \cdot \lambda b \cdot(b ? x: y)) \\
\pi_{1} & =(\lambda p \cdot p \text { true }) \\
\pi_{2} & =(\lambda p \cdot p \text { false })
\end{aligned}
$$

Natural Numbers

How might we encode natural numbers?

- Each number $0_{\mathbb{N}}, 1_{\mathbb{N}}, 2_{\mathbb{N}}, \ldots$ should be encoded as a λ-calculus value (must not reduce to something else).
- Approach: Encode $0_{\mathbb{N}}$, then code up a successor function $\operatorname{succ}_{\mathbb{N}}$.
- Should also have predecessor $\operatorname{pred}_{\mathbb{N}}$ (don't care what it returns for $0_{\mathbb{N}}$)
- Also need a test iszero ${ }_{\mathbb{N}}$ (returns a boolean).

$$
\begin{aligned}
0_{\mathbb{N}} & =? \\
\operatorname{succ}_{\mathbb{N}} & =(\lambda n . ?) \\
\operatorname{pred}_{\mathbb{N}} & =(\lambda n . ?) \\
\text { iszero }_{\mathbb{N}} & =(\lambda n . ?)
\end{aligned}
$$

Natural Numbers

How might we encode natural numbers?

- Each number $0_{\mathbb{N}}, 1_{\mathbb{N}}, 2_{\mathbb{N}}, \ldots$ should be encoded as a λ-calculus value (must not reduce to something else).
- Approach: Encode $0_{\mathbb{N}}$, then code up a successor function $\operatorname{succ}_{\mathbb{N}}$.
- Should also have predecessor $\operatorname{pred}_{\mathbb{N}}$ (don't care what it returns for $0_{\mathbb{N}}$)
- Also need a test iszero ${ }_{\mathrm{N}}$ (returns a boolean).

$$
\begin{aligned}
0_{\mathbb{N}} & =(\lambda x \cdot x) \\
\operatorname{succ}_{\mathbb{N}} & =(\lambda n \cdot \text { pair }(?) n) \\
\operatorname{pred}_{\mathbb{N}} & =(\lambda n \cdot ?) \\
\text { iszero }_{\mathbb{N}} & =(\lambda n \cdot ?)
\end{aligned}
$$

Natural Numbers

How might we encode natural numbers?

- Each number $0_{\mathbb{N}}, 1_{\mathbb{N}}, 2_{\mathbb{N}}, \ldots$ should be encoded as a λ-calculus value (must not reduce to something else).
- Approach: Encode $0_{\mathbb{N}}$, then code up a successor function $\operatorname{succ}_{\mathbb{N}}$.
- Should also have predecessor $\operatorname{pred}_{\mathbb{N}}$ (don't care what it returns for $0_{\mathbb{N}}$)
- Also need a test iszero ${ }_{\mathrm{N}}$ (returns a boolean).

$$
\begin{aligned}
0_{\mathbb{N}} & =(\lambda x \cdot x) \\
\operatorname{succ}_{\mathbb{N}} & =(\lambda n \cdot \text { pair }(?) n) \\
\operatorname{pred}_{\mathbb{N}} & =\pi_{2} \\
\text { iszero }_{\mathbb{N}} & =(\lambda n \cdot ?)
\end{aligned}
$$

Natural Numbers

How might we encode natural numbers?

- Each number $0_{\mathbb{N}}, 1_{\mathbb{N}}, 2_{\mathbb{N}}, \ldots$ should be encoded as a λ-calculus value (must not reduce to something else).
- Approach: Encode $0_{\mathbb{N}}$, then code up a successor function $\operatorname{succ}_{\mathbb{N}}$.
- Should also have predecessor $\operatorname{pred}_{\mathbb{N}}$ (don't care what it returns for $0_{\mathbb{N}}$)
- Also need a test iszero ${ }_{\mathrm{N}}$ (returns a boolean).

$$
\begin{aligned}
0_{\mathbb{N}} & =(\lambda x \cdot x) \\
\operatorname{succ}_{\mathbb{N}} & =(\lambda n \cdot \text { pair false } n) \\
\operatorname{pred}_{\mathbb{N}} & =\pi_{2} \\
\text { iszero }_{\mathbb{N}} & =(\lambda n \cdot ?)
\end{aligned}
$$

Natural Numbers

How might we encode natural numbers?

- Each number $0_{\mathbb{N}}, 1_{\mathbb{N}}, 2_{\mathbb{N}}, \ldots$ should be encoded as a λ-calculus value (must not reduce to something else).
- Approach: Encode $0_{\mathbb{N}}$, then code up a successor function $\operatorname{succ}_{\mathbb{N}}$.
- Should also have predecessor $\operatorname{pred}_{\mathbb{N}}$ (don't care what it returns for $0_{\mathbb{N}}$)
- Also need a test iszero ${ }_{\mathrm{N}}$ (returns a boolean).

$$
\begin{aligned}
0_{\mathbb{N}} & =(\lambda x \cdot x) \\
\operatorname{succ}_{\mathbb{N}} & =(\lambda n \cdot \text { pair false } n) \\
\operatorname{pred}_{\mathbb{N}} & =\pi_{2} \\
\text { iszero }_{\mathbb{N}} & =\pi_{1}
\end{aligned}
$$

Natural Numbers

$$
\begin{aligned}
0_{\mathbb{N}} & =(\lambda x \cdot x) \\
\operatorname{succ}_{\mathbb{N}} & =(\lambda n \cdot \text { pair false } n) \\
\operatorname{pred}_{\mathbb{N}} & =\pi_{2} \\
\text { iszero }_{\mathbb{N}} & =\pi_{1}
\end{aligned}
$$

Does iszero ${ }_{\mathbb{N}}\left(0_{\mathbb{N}}\right)$ really work (should return true)?
$0_{\mathbb{N}}=(\lambda x . x)$ is not even a pair!

Natural Numbers

$$
\begin{aligned}
0_{\mathbb{N}} & =(\lambda x \cdot x) \\
\operatorname{succ}_{\mathbb{N}} & =(\lambda n \cdot \text { pair false } n) \\
\operatorname{pred}_{\mathbb{N}} & =\pi_{2} \\
\text { iszero }_{\mathbb{N}} & =\pi_{1}
\end{aligned}
$$

Does iszero ${ }_{\mathbb{N}}\left(0_{\mathbb{N}}\right)$ really work (should return true)?

$$
\begin{aligned}
& \text { iszero }_{\mathbb{N}}\left(0_{\mathbb{N}}\right)=\pi_{1}(\lambda x \cdot x)=(\lambda p \cdot p \text { true })(\lambda x \cdot x) \\
& \rightarrow_{1}(\lambda x \cdot x) \text { true } \\
& \rightarrow_{1} \text { true }
\end{aligned}
$$

It worked!*

*Warning: On the homework, l'll ask you to first fully expand all the encodings into pure λ-terms before doing any evaluation steps. I did it without expanding true here to illustrate a point, but technically I should have first expanded true into a λ-term before applying the small-step semantics of λ-calculus to a term containing it.

Untypedness

Take-aways:

- λ-calculus is an untyped language.
- Every syntactically legal, closed term evaluates to something.
- Can do some very weird things (as we will see...)!
- There is a different language (which we will learn) called typed λ-calculus.
- Don't confuse it with this language!
- Watch out for web resources that look similar but that concern a different λ-calculus (there are many)!

Loops

We're close to a full Turing-complete language now, but one major thing is missing: loops.

Q: Is it possible to code an infinite loop in λ-calculus?

Loops

We're close to a full Turing-complete language now, but one major thing is missing: loops.

Q: Is it possible to code an infinite loop in λ-calculus?
A: Yes. Smallest example: $(\lambda x . x x)(\lambda x . x x)$

Recursion

What about useful loops?
Case-study: Can we code an addition function for natural numbers?

$$
\operatorname{add}_{\mathbb{N}}=\lambda m \cdot \lambda n . ?
$$

Recursion

What about useful loops?
Case-study: Can we code an addition function for natural numbers?

$$
\operatorname{add}_{\mathbb{N}}=\lambda m \cdot \lambda n \cdot\left(\operatorname{iszero}_{\mathbb{N}} m ? n: \operatorname{add}_{\mathbb{N}}\left(\operatorname{pred}_{\mathbb{N}} m\right)\left(\operatorname{succ}_{\mathbb{N}} n\right)\right)
$$

Recursion

What about useful loops?
Case-study: Can we code an addition function for natural numbers?

$$
\operatorname{add}_{\mathbb{N}}=\lambda m \cdot \lambda n \cdot\left(\operatorname{iszero}_{\mathbb{N}} m ? n: \operatorname{add}_{\mathbb{N}}\left(\operatorname{pred}_{\mathbb{N}} m\right)\left(\operatorname{succ}_{\mathbb{N}} n\right)\right)
$$

Circular definition! Remember, the encoding part ($=$) is supposed to be a definition; it's not part of the λ-term.

How can we remove the recursion from this formula?

Fixed points

$$
\operatorname{add}_{\mathbb{N}}=\lambda m \cdot \lambda n \cdot\left(\operatorname{iszero}_{\mathbb{N}} m ? n: \operatorname{add}_{\mathbb{N}}\left(\operatorname{pred}_{\mathbb{N}} m\right)\left(\operatorname{succ}_{\mathbb{N}} n\right)\right)
$$

Define a functional whose least fixed point is $\operatorname{add}_{\mathbb{N}}$:

$$
\operatorname{Add}_{\mathbb{N}}=\lambda f \cdot \lambda m \cdot \lambda n \cdot\left(\text { iszero }_{\mathbb{N}} m ? n: f\left(\operatorname{pred}_{\mathbb{N}} m\right)\left(\operatorname{succ}_{\mathbb{N}} n\right)\right)
$$

Then define $\operatorname{add}_{\mathbb{N}}$ to be its least fixed point:

$$
\operatorname{add}_{\mathbb{N}}=f i x\left(\operatorname{Add}_{\mathbb{N}}\right)
$$

But $f i x$ is not part of λ-calculus, so we're still stuck...?

Y-combinator

A very interesting function (discovered by Haskell Curry):

$$
Y=\lambda f .(\lambda x \cdot f(x x))(\lambda x . f(x x))
$$

Amazing claim: $Y=f i x$
Proof: Let's evaluate it...

$$
Y g \rightarrow_{1} ?
$$

Y-combinator

A very interesting function (discovered by Haskell Curry):

$$
Y=\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))
$$

Amazing claim: $Y=f i x$
Proof: Let's evaluate it...

$$
\begin{aligned}
Y g & \rightarrow_{1}(\lambda x \cdot g(x x))(\lambda x \cdot g(x x)) \\
& \rightarrow_{1} ?
\end{aligned}
$$

Y-combinator

A very interesting function (discovered by Haskell Curry):

$$
Y=\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))
$$

Amazing claim: $Y=f i x$
Proof: Let's evaluate it...

$$
\begin{aligned}
Y g & \rightarrow_{1}(\lambda x \cdot g(x x))(\lambda x \cdot g(x x)) \\
& \rightarrow_{1} g((\lambda x \cdot g(x x))(\lambda x \cdot g(x x)))
\end{aligned}
$$

Y-combinator

A very interesting function (discovered by Haskell Curry):

$$
Y=\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))
$$

Amazing claim: $Y=f i x$
Proof: Let's evaluate it...

$$
\begin{aligned}
& Y g \rightarrow_{1}(\lambda x \cdot g(x x))(\lambda x \cdot g(x x)) \\
& \quad \rightarrow_{1} g((\lambda x \cdot g(x x))(\lambda x \cdot g(x x)))=g(Y g)
\end{aligned}
$$

Conclusion: $Y g$ is the least fixed point of g. (Whoa!)

Solving Recursion Problems with Y

Exercise: Define an addition function in λ-calculus.

The following definition is illegal (not well-founded):

$$
\operatorname{add}_{\mathbb{N}}=\lambda m \cdot \lambda n \cdot\left(\operatorname{iszero}_{\mathbb{N}} m ? n: \operatorname{add}_{\mathbb{N}}\left(\operatorname{pred}_{\mathbb{N}} m\right)\left(\operatorname{succ}_{\mathbb{N}} n\right)\right)
$$

So instead define a functional whose least fixed point is $\operatorname{add}_{\mathbb{N}}$:

$$
\lambda f . \lambda m \cdot \lambda n \cdot\left(\text { iszero }_{\mathbb{N}} m ? n: f\left(\operatorname{pred}_{\mathbb{N}} m\right)\left(\operatorname{succ}_{\mathbb{N}} n\right)\right)
$$

Then apply Y to it:

$$
\operatorname{add}_{\mathbb{N}}=Y\left(\lambda f \cdot \lambda m \cdot \lambda n \cdot\left(\text { iszero }_{\mathbb{N}} m ? n: f\left(\operatorname{pred}_{\mathbb{N}} m\right)\left(\operatorname{succ}_{\mathbb{N}} n\right)\right)\right)
$$

Now we have a legal definition of an addition function with no explicit recursions in it.

Exercise: Multiplication

Exercise: Define a multiplication function for natural numbers in λ-calculus.

Try to define it recursively first:

$$
\operatorname{mul}_{\mathbb{N}}=\lambda m \cdot \lambda n
$$

Exercise: Multiplication

Exercise: Define a multiplication function for natural numbers in λ-calculus.
Try to define it recursively first:

$$
\operatorname{mul}_{\mathbb{N}}=\lambda m \cdot \lambda n \cdot\left(\text { iszero }_{\mathbb{N}} m ? 0_{\mathbb{N}}: \operatorname{add}_{\mathbb{N}}\left(\operatorname{mul}_{\mathbb{N}}\left(\operatorname{pred}_{\mathbb{N}} m\right) n\right) n\right)
$$

Exercise: Multiplication

Exercise: Define a multiplication function for natural numbers in λ-calculus.
Try to define it recursively first:

$$
\operatorname{mul}_{\mathbb{N}}=\lambda m \cdot \lambda n \cdot\left(\text { iszero }_{\mathbb{N}} m ? 0_{\mathbb{N}}: \operatorname{add}_{\mathbb{N}}\left(\operatorname{mul}_{\mathbb{N}}\left(\operatorname{pred}_{\mathbb{N}} m\right) n\right) n\right)
$$

Then change it to a non-recursive functional and apply Y to it:

$$
\operatorname{mul}_{\mathbb{N}}=Y\left(\lambda f \cdot \lambda m \cdot \lambda n \cdot\left(\text { iszero }_{\mathbb{N}} m ? 0_{\mathbb{N}}: \operatorname{add}_{\mathbb{N}}\left(f\left(\operatorname{pred}_{\mathbb{N}} m\right) n\right) n\right)\right)
$$

Readability

When solving these sorts of problems on homeworks, quizzes, and exams:
■ Please DO use the abbreviations in your code.

- Don't write ($\lambda x . \lambda y . x$) when you mean true.
- Strive for readability (otherwise becomes very hard to grade!).
- Please DO define named helper functions.
- Less writing is good; don't repeatedly write out same subroutine.
- But any recursions must always be eliminated with Y.
- Use informative names (not f).

■ Don't name variables the same as any helper functions (really confusing!).

- λ-calculus is a math formalism not a modern language, so extra effort is required to make it readable.

Equality

λ-terms are ASTs. They are only "equal" ($=$) if they are identical after expansion of all macro abbreviations.
(Also recall that the parentheses are not symbols in the AST; they just show the structucture of the AST.)

Examples:

$$
\begin{aligned}
(\lambda y \cdot y)(\lambda x \cdot x) & \neq \lambda x \cdot x \quad \text { (though they evaluate to the same terms) } \\
(\lambda x \cdot(x)) & =\lambda x \cdot x \\
\lambda x \cdot x & \neq \lambda y \cdot y
\end{aligned}
$$

However, there are some notions of term equivalence that are important to understand.

α-equivalence

Definition (α-equivalence): Term $\lambda x . e$ is α-equivalent to term $\lambda y .\left(e^{\prime}[y / x]\right)$ (written $\lambda x . e \equiv_{\alpha} \lambda y .\left(e^{\prime}[y / x]\right)$) whenever $e \equiv_{\alpha} e^{\prime}$ (recursively).

Intuition: Terms that are identical except for consistent, capture-avoiding renaming of the variables are α-equivalent.

Examples:

$$
\begin{gathered}
\lambda x \cdot x \equiv_{\alpha} \lambda y \cdot y \\
\lambda x \cdot \lambda x \cdot x \equiv{ }_{\alpha} \lambda y \cdot \lambda x \cdot x \\
\lambda x \cdot \lambda x \cdot x \not \equiv{ }_{\alpha} \lambda y \cdot \lambda x \cdot y
\end{gathered}
$$

Colloquially: Functional programmers refer to renaming their variables as " α-conversion".

β-equivalence

Definition (β-equivalence): Terms ($\left.\lambda v . e_{1}\right) e_{2}$ and $e_{1}\left[e_{2} / x\right]$ are β-equivalent (written ($\left.\lambda v . e_{1}\right) e_{2} \equiv \beta e_{1}\left[e_{2} / x\right]$).

Intuition: An application of a function f to an argument a is β-equivalent to a term consisting of the body of f with all its parameters replaced with the argument term a.

Examples:

$$
\begin{aligned}
(\lambda x \cdot x x)(\lambda y \cdot y) & \equiv_{\beta}(\lambda y \cdot y)(\lambda y \cdot y) \\
(\lambda x \cdot x x)(\lambda y \cdot y) & \equiv_{\beta} \lambda y \cdot y \\
((\lambda x \cdot x x)(\lambda y \cdot y))(\lambda z \cdot z) & \not 三_{\beta}((\lambda y \cdot y)(\lambda y \cdot y))(\lambda z . z)
\end{aligned}
$$

The last example is because that reduction doesn't only use the β-rule. In that case the left subterms are β-equivalent, but not the full-sized terms that contain them.

η-equivalence

Definition (η-equivalence): Terms $\lambda v .(f v)$ and f are η-equivalent (written $\left.\lambda v .(f v) \equiv_{\eta} f\right)$ if $v \notin F V(f)$.

Intuition: A "wrapper function" that merely applies some other function f to whatever argument it receives is equivalent to just f.

Example:

$$
\lambda n . \text { pair false } n \equiv_{\eta} \text { pair false }
$$

Example from OCaml:

$$
\begin{aligned}
& \text { let sum } \mathrm{x}=\mathrm{List} . \mathrm{fold} \mathrm{_left} \mathrm{(+)} 0 \mathrm{x} ; ; \\
& \\
& \equiv_{\eta} \\
& \text { let sum }=\text { List.fold_left (+) } 0 ;
\end{aligned}
$$

Equivalence vs. Operational and Denotational Semantics

Don't confuse equivalence with the operational semantics of λ-calculus:
■ Only β-equivalence is a rule of the operational semantics.

- α-equivalent terms don't always evaluate to the same final terms (variables might be different, which makes them different ASTs).
- β-equivalent terms do always evaluate to the same terms.
- η-equivalent terms "behave the same" when applied, but η-equivalence is not a reduction step of λ-calculus.
- There is no $=$ or \equiv test operation in λ-calculus!
- The following is NOT a legal λ-term:

$$
\lambda x \cdot \lambda y \cdot(x=y) ? \text { true : false }
$$

- It is impossible to code up such an operation (exercise: prove it!).
- In denotational semantics, λ-terms denote (mathematical) functions.
- In math we have another definition of functional equivalence (identical input-output relations).
- But functional equivalence is not decidable (Rice's Theorem).
- And equivalence of λ-term denotations is NOT the same as equivalence of the terms themselves.

