λ-calculus

CS 4301/6371: Advanced Programming Languages

Kevin W. Hamlen

March 19, 2024
First, some mathematical history...
Euclid’s *The Elements*
- written c. 300 B.C.
- deductive reasoning: 23 definitions, 10 axioms
- geometry, algebra, number theory
- foundation of western mathematics for about 2000 years

Problem: Some theorems unprovable from axioms
- Example: Two circles with centers closer than the sum of their radii have an intersection point.
Set Theory

- First proposed by Georg Cantor in 1874
 - new foundation for mathematics
 - early versions contained paradoxes
 - Russel’s Paradox: the set of all sets that do not contain themselves

- Deductive Set Theory
 - axiomized by Zermelo and Fraenkel between 1908 and 1930
 - Zermelo-Fraenkel set theory with axiom of choice (ZFC)

- Problem: some theorems still unprovable!
 - Example (Continuum Hypothesis): There is no set larger than \mathbb{N} but smaller than \mathbb{R}.
Proposed by David Hilbert in 1921

Goals:
- Provide an unassailable foundation for all mathematics
- Find a set of axioms and rules of logical inference sufficient to deductively prove all mathematical theorems.

Required properties:
- **Soundness**: no untrue statement provable
- **Completeness**: all true statements provable
- **Decidability**: procedure for determining whether any mathematical statement is true or false
Gödel’s Incompleteness Theorem

- Proved by Kurt Gödel in 1931
- Theorem: No finite collection of axioms is both sound and complete(!)
- Ramifications:
 - Given any sound axiomization of mathematics, there are true statements that are unprovable.
 - There exists no decision algorithm for mathematical truth.
- Essentially destroyed Hilbert’s program
- Raised another question: What is decidable?
“Decide” = “Compute”

1936: Two models of “computation” proposed:
- Turing Machines (Alan Turing)
- \(\lambda\)-calculus (Alonzo Church)

Both models equivalent in power

Church-Turing Thesis: All (reasonable) models of computation are equally powerful.

Birth of Computer Science
- Turing Machines = imperative programming
- \(\lambda\)-calculus = functional programming
Fun Fact: My Mathematical Ancestry

Alonzo Church
(PhD Princeton 1927)

Stephen Kleene
(PhD Princeton 1934)

Bob Constable
(PhD Wisconsin-Madison 1968)

Bob Harper
(PhD Cornell 1985)

Greg Morrisett
(PhD Carnegie Mellon 1995)

Kevin Hamlen
(PhD Cornell 2006)
Today: \(\lambda \)-calculus
$$e ::= v \mid \lambda v. e \mid e_1 e_2$$

Only three syntaxes:

- variables v
- abstractions $\lambda v. e$ (functions)
- applications $e_1 e_2$

Some simple examples:

- $\lambda x. x$ (the identity function)
- $(\lambda x. x)(\lambda y. y y) \rightarrow_1 \lambda y. y y$
- $\lambda x. (\lambda y. y x)$ does not reduce (already a value)
Free Variables

Legal λ-expressions must be closed (no free variables), where we define the set of free variables $FV(e)$ by

$$FV(v) = \{v\}$$

$$FV(\lambda v. e) = FV(e) \setminus \{v\}$$

$$FV(e_1 e_2) = FV(e_1) \cup FV(e_2)$$

We require $FV(e) = \emptyset$.
Semantics

Small-step semantics of λ-calculus:

\[
\begin{align*}
\frac{e_1 \to_1 e_1'}{e_1 e_2 \to_1 e_1' e_2} & \quad (\lambda v.e_1)e_2 \to_1 e_1[e_2/v]
\end{align*}
\]

(\beta\text{-reduction})

where notation $e_1[e/v]$ denotes capture-avoiding substitution:

\[
\begin{align*}
v[e/v] &= e \\
v_1[e/v_2] &= v_1 \text{ when } v_1 \neq v_2 \text{ (i.e., different variables)} \\
(\lambda v.e_1)[e/v] &= \lambda v.e_1 \\
(\lambda v_1.e_1)[e/v_2] &= \lambda v_1.(e_1[e/v_2]) \text{ when } v_1 \neq v_2 \text{ (i.e. different variables)} \\
(e_1 e_2)[e/v] &= (e_1[e/v])(e_2[e/v])
\end{align*}
\]

Intuition: $e_1[e_2/x]$ means replace only the free x’s in e_1 with e_2.

Optional exercise: Devise equivalent large-step and denotational semantics.
Reduction example

\[(\lambda x. (\lambda y. (xy))(\lambda y. y))(\lambda z. z) \rightarrow_1 ?\]
Reduction example

\[((\lambda x. (\lambda y. (xy))) (\lambda y. y)) (\lambda z. z) \rightarrow_1 \]
Reduction example

\[\left((\lambda x. (\lambda y. (xy))) (\lambda y. y)\right) (\lambda z. z) \rightarrow_1\]

\[(\lambda y. ((\lambda y. y)y)) (\lambda z. z) \rightarrow_1?\]
Reduction example

\[
((\lambda x.(\lambda y.(xy)))(\lambda y.y))(\lambda z.z) \rightarrow_1 \\
(\lambda y.((\lambda y.y)y))(\lambda z.z) \rightarrow_1 \\
(\lambda y.y)(\lambda z.z) \rightarrow_1 ?
\]
Reduction example

\[
\begin{align*}
((\lambda x.(\lambda y.(xy)))(\lambda y.y))(\lambda z.z) & \rightarrow_1 \\
(\lambda y.((\lambda y.y)y))(\lambda z.z) & \rightarrow_1 \\
(\lambda y.y)(\lambda z.z) & \rightarrow_1 \\
(\lambda z.z) &
\end{align*}
\]
Reduction example

\[
((\lambda x. (\lambda y. (xy))) (\lambda y. y)) (\lambda z. z) \rightarrow_1 \\
(\lambda y. ((\lambda y. y)y)) (\lambda z. z) \rightarrow_1 \\
(\lambda y. y)(\lambda z. z) \rightarrow_1 \\
(\lambda z. z)
\]

Important observations:

- Don’t change any variable names as you evaluate!
- There are no stores involved here!
- Semantics of \(\lambda\)-calculus are based on capture-avoiding substitution, not stores or variable renaming.
- Function bodies never evaluate (even if they could) until their \(\lambda\)-binder gets stripped off (at which point they’re not functions anymore).

Strategy: Pretend that “\(\lambda v. e\)” is OCaml “\texttt{fun } v \rightarrow e”.
Precedence and Associativity

Precedence and associativity conventions:

\[\lambda v.e_1 e_2 = \lambda v.(e_1 e_2) \]
(application binds tighter than abstraction)

\[e_1 e_2 e_2 = (e_1 e_2)e_3 \]
(application associates left)

Parenthesize anything else that might be ambiguous.
Amazing fact: This extremely simple language is Turing-complete (can perform any computation implementable by modern computers)!

Proof by reduction (recall from computability theory): Let’s reduce a (simple) Turing-complete programming language to λ-calculus.
λ-calculus only gives us 1-argument functions $\lambda v.e$.

Q: How could I create a multi-argument function?
Higher-arity Functions

\(\lambda\)-calculus only gives us 1-argument functions \(\lambda v. e\).

Q: How could I create a multi-argument function?

A: Nest the \(\lambda\)'s: \(\lambda x. \lambda y. \lambda z. (\ldots)\)

Definition (currying): In functional programming, changing a function on tuple-arguments to use distinct (non-tuple) arguments is called *currying* the function.

Example:
Uncurried: `let add (x,y) = x+y;;`
Curried: `let add x y = x+y;;`

Benefits: More opportunities for code-reuse through partial evaluation, and more opportunities for compiler optimization through specialization
Booleans

How might we encode boolean expressions as λ-terms? Let’s start with constants and the ternary operator:

\[
\begin{align*}
\text{true} &= ? \\
\text{false} &= ? \\
\text{if } e_1 \text{ then } e_2 \text{ else } e_3 &= ?
\end{align*}
\]
How might we encode boolean expressions as λ-terms? Let’s start with constants and the ternary operator:

\[
\begin{align*}
\text{true} &= (\lambda x.\lambda y.x) \\
\text{false} &= (\lambda x.\lambda y.y) \\
\text{if } e_1 \text{? } e_2 : e_3 &= ((e_1)(e_2)(e_3))
\end{align*}
\]
Booleans

How might we encode boolean expressions as λ-terms? Let’s start with constants and the ternary operator:

$$\text{true} = (\lambda x. \lambda y. x)$$

$$\text{false} = (\lambda x. \lambda y. y)$$

$$e_1 ? e_2 : e_3 = ((e_1)(e_2)(e_3))$$

Using the above, how might we encode not, and, and or as functions over booleans?

$$\text{not} = ?$$

$$\text{and} = ?$$

$$\text{or} = ?$$
How might we encode boolean expressions as \(\lambda \)-terms? Let’s start with constants and the ternary operator:

\[
\begin{align*}
\text{true} &= (\lambda x.\lambda y. x) \\
\text{false} &= (\lambda x.\lambda y. y) \\
\text{all} &= \text{true}?
\end{align*}
\]

Using the above, how might we encode not, and, and or as functions over booleans?

\[
\begin{align*}
\text{not} &= (\lambda b.(b \text{? false : true})) \\
\text{and} &= ? \\
\text{or} &= ?
\end{align*}
\]
How might we encode boolean expressions as λ-terms? Let’s start with constants and the ternary operator:

\[\text{true} = (\lambda x.\lambda y.x) \]
\[\text{false} = (\lambda x.\lambda y.y) \]
\[e_1 \ ? \ e_2 : e_3 = ((e_1)(e_2)(e_3)) \]

Using the above, how might we encode not, and, and or as functions over booleans?

\[\text{not} = (\lambda b. (b \ ? \ false : true)) \]
\[\text{and} = (\lambda b_1.\lambda b_2. (b_1 \ ? \ b_2 : false)) \]
\[\text{or} = ? \]
How might we encode boolean expressions as λ-terms? Let’s start with constants and the ternary operator:

\[
\begin{align*}
\text{true} & = (\lambda x.\lambda y. x) \\
\text{false} & = (\lambda x.\lambda y. y) \\
e_1 \ ? \ e_2 : e_3 & = ((e_1)(e_2)(e_3))
\end{align*}
\]

Using the above, how might we encode not, and, and or as functions over booleans?

\[
\begin{align*}
\text{not} & = (\lambda b. (b \ ? \ \text{false} : \text{true})) \\
\text{and} & = (\lambda b_1. \lambda b_2. (b_1 \ ? \ b_2 : \text{false})) \\
\text{or} & = (\lambda b_1. \lambda b_2. (b_1 \ ? \ \text{true} : b_2))
\end{align*}
\]
How might we encode pairs?

- The pair function should take two arguments (could be anything) and package them together into some kind of object.
- The π_1 function (\texttt{fst} in OCaml) should accept a pair as input and recover (project out) the first element.
- The π_2 function (\texttt{snd} in OCaml) should analogously project out the second element.

\[
\text{pair} = (\lambda x. \lambda y. ?) \\
\pi_1 = (\lambda p. ?) \\
\pi_2 = (\lambda p. ?)
\]
Tuples

How might we encode pairs?

- The `pair` function should take two arguments (could be anything) and package them together into some kind of object.
- The π_1 function (`fst` in OCaml) should accept a pair as input and recover (project out) the first element.
- The π_2 function (`snd` in OCaml) should analogously project out the second element.

\[
\begin{align*}
\text{pair} &= (\lambda x. \lambda y. \lambda b. (b \, ? \, x : y)) \\
\pi_1 &= (\lambda p. \, p \, \text{true}) \\
\pi_2 &= (\lambda p. \, p \, \text{false})
\end{align*}
\]
How might we encode natural numbers?

- Each number $0_N, 1_N, 2_N, \ldots$ should be encoded as a λ-calculus value (must not reduce to something else).
- Approach: Encode 0_N, then code up a successor function succ_N.
- Should also have predecessor pred_N (don’t care what it returns for 0_N).
- Also need a test iszero_N (returns a boolean).

\[
\begin{align*}
0_N &= ? \\
\text{succ}_N &= (\lambda n. ?) \\
\text{pred}_N &= (\lambda n. ?) \\
\text{iszero}_N &= (\lambda n. ?)
\end{align*}
\]
Natural Numbers

How might we encode natural numbers?

- Each number $0_N, 1_N, 2_N, \ldots$ should be encoded as a λ-calculus value (must not reduce to something else).
- Approach: Encode 0_N, then code up a successor function succ_N.
- Should also have predecessor pred_N (don’t care what it returns for 0_N).
- Also need a test iszero_N (returns a boolean).

\[
0_N = (\lambda x. x) \\
\text{succ}_N = (\lambda n. \text{pair}(?) n) \\
\text{pred}_N = (\lambda n. ?) \\
\text{iszero}_N = (\lambda n. ?)
\]
How might we encode natural numbers?

- Each number $0_N, 1_N, 2_N, \ldots$ should be encoded as a λ-calculus value (must not reduce to something else).

- Approach: Encode 0_N, then code up a successor function succ_N.

- Should also have predecessor pred_N (don’t care what it returns for 0_N).

- Also need a test iszero_N (returns a boolean).

\[
0_N = (\lambda x. x) \\
\text{succ}_N = (\lambda n. \text{pair}(?) n) \\
\text{pred}_N = \pi_2 \\
\text{iszero}_N = (\lambda n. ?)
\]
Natural Numbers

How might we encode natural numbers?

- Each number $0_N, 1_N, 2_N, \ldots$ should be encoded as a λ-calculus value (must not reduce to something else).
- Approach: Encode 0_N, then code up a successor function succ_N.
- Should also have predecessor pred_N (don’t care what it returns for 0_N).
- Also need a test iszero_N (returns a boolean).

$$0_N = (\lambda x.x)$$
$$\text{succ}_N = (\lambda n. \text{pair false } n)$$
$$\text{pred}_N = \pi_2$$
$$\text{iszero}_N = (\lambda n. ?)$$
How might we encode natural numbers?

- Each number $0_N, 1_N, 2_N, \ldots$ should be encoded as a λ-calculus value (must not reduce to something else).
- Approach: Encode 0_N, then code up a successor function succ_N.
- Should also have predecessor pred_N (don’t care what it returns for 0_N).
- Also need a test iszero_N (returns a boolean).

$$0_N = (\lambda x.x)$$

$$\text{succ}_N = (\lambda n. \text{pair} \, \text{false} \, n)$$

$$\text{pred}_N = \pi_2$$

$$\text{iszero}_N = \pi_1$$
Natural Numbers

\[0_N = (\lambda x. x)\]
\[\text{succ}_N = (\lambda n. \text{pair} \ false \ n)\]
\[\text{pred}_N = \pi_2\]
\[\text{iszero}_N = \pi_1\]

Does \(\text{iszero}_N(0_N)\) really work (should return true)?

\[0_N = (\lambda x. x)\] is not even a pair!
Natural Numbers

\[0_N = (\lambda x.x) \]
\[\text{succ}_N = (\lambda n. \text{pair} \ false \ n) \]
\[\text{pred}_N = \pi_2 \]
\[\text{iszero}_N = \pi_1 \]

Does \(\text{iszero}_N(0_N) \) really work (should return true)?

\[\text{iszero}_N(0_N) = \pi_1(\lambda x.x) = (\lambda p. p \ true)(\lambda x.x) \]
\[\rightarrow_1 (\lambda x.x)\text{true} \]
\[\rightarrow_1 \text{true} \]

It worked!*

*Warning: On the homework, I'll ask you to first fully expand all the encodings into pure \(\lambda \)-terms before doing any evaluation steps. I did it without expanding \text{true} here to illustrate a point, but technically I should have first expanded \text{true} into a \(\lambda \)-term before applying the small-step semantics of \(\lambda \)-calculus to a term containing it.
Untypedness

Take-aways:

- \(\lambda\)-calculus is an **untyped** language.
 - Every syntactically legal, closed term evaluates to something.
 - Can do some very weird things (as we will see...)
- There is a different language (which we will learn) called **typed** \(\lambda\)-calculus.
 - Don’t confuse it with this language!
 - Watch out for web resources that look similar but that concern a different \(\lambda\)-calculus (there are many)!
Loops

We’re close to a full Turing-complete language now, but one major thing is missing: loops.

Q: Is it possible to code an infinite loop in λ-calculus?
We’re close to a full Turing-complete language now, but one major thing is missing: loops.

Q: Is it possible to code an infinite loop in \(\lambda \)-calculus?
A: Yes. Smallest example: \((\lambda x.xx)(\lambda x.xx)\)
What about useful loops?
Case-study: Can we code an addition function for natural numbers?

\[\text{add}_N = \lambda m.\lambda n.? \]
What about useful loops?
Case-study: Can we code an addition function for natural numbers?

\[
\text{add}_N = \lambda m. \lambda n. (\text{iszero}_N m \ ? \ n : \text{add}_N (\text{pred}_N m)(\text{succ}_N n))
\]
Recursion

What about useful loops?
Case-study: Can we code an addition function for natural numbers?

\[\text{add}_N = \lambda m. \lambda n. (\text{iszero}_N m \, ? \, n : \text{add}_N (\text{pred}_N m) (\text{succ}_N n)) \]

Circular definition! Remember, the encoding part (\(=\)) is supposed to be a definition; it’s not part of the \(\lambda\)-term.

How can we remove the recursion from this formula?
Define a functional whose least fixed point is add_N:

$$\text{Add}_N = \lambda f. \lambda m. \lambda n. (\text{iszero}_N m \, ? \, n : f(\text{pred}_N m)(\text{succ}_N n))$$

Then define add_N to be its least fixed point:

$$\text{add}_N = \text{fix}(\text{Add}_N)$$

But fix is not part of λ-calculus, so we’re still stuck...?
A very interesting function (discovered by Haskell Curry):

\[Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx)) \]

Amazing claim: \(Y = \text{fix} \)

Proof: Let’s evaluate it...

\[Y \ g \rightarrow_1 ? \]
A very interesting function (discovered by Haskell Curry):

\[Y = \lambda f. (\lambda x. f(xx))(\lambda x. f(xx)) \]

Amazing claim: \(Y = \text{fix} \)

Proof: Let’s evaluate it...

\[Y \ g \rightarrow_1 (\lambda x. g(xx))(\lambda x. g(xx)) \]

\[\rightarrow_1 \ ? \]
A very interesting function (discovered by Haskell Curry):

\[Y = \lambda f. (\lambda x. f(xx))(\lambda x. f(xx)) \]

Amazing claim: \(Y = fix \)

Proof: Let’s evaluate it...

\[
\begin{align*}
Y \ g & \rightarrow_1 (\lambda x.g(xx))(\lambda x.g(xx)) \\
& \rightarrow_1 g((\lambda x.g(xx))(\lambda x.g(xx)))
\end{align*}
\]
Advanced Programming Languages

- Turing-completeness

Y-combinator

A very interesting function (discovered by Haskell Curry):

\[
Y = \lambda f. (\lambda x. f(xx))(\lambda x. f(xx))
\]

Amazing claim: \(Y = fix \)

Proof: Let’s evaluate it...

\[
Y g \rightarrow_1 (\lambda x. g(xx))(\lambda x. g(xx)) \\
\rightarrow_1 g((\lambda x. g(xx))(\lambda x. g(xx))) = g(Y g)
\]

Conclusion: \(Y g \) is the least fixed point of \(g \). (Whoa!)
Exercise: Define an addition function in λ-calculus.

The following definition is illegal (not well-founded):

$$ add_n = \lambda m. \lambda n. (\text{iszero}_n m \ ? \ n : add_n (\text{pred}_n m)(\text{succ}_n n)) $$

So instead define a functional whose least fixed point is add_n:

$$ \lambda f. \lambda m. \lambda n. (\text{iszero}_n m \ ? \ n : f(\text{pred}_n m)(\text{succ}_n n)) $$

Then apply Y to it:

$$ add_n = Y (\lambda f. \lambda m. \lambda n. (\text{iszero}_n m \ ? \ n : f(\text{pred}_n m)(\text{succ}_n n))) $$

Now we have a legal definition of an addition function with no explicit recursions in it.
Exercise: Define a multiplication function for natural numbers in λ-calculus.

Try to define it recursively first:

$$\text{mul}_N = \lambda m.\lambda n.$$
Exercise: Multiplication

Exercise: Define a multiplication function for natural numbers in λ-calculus.

Try to define it recursively first:

$$ mul_N = \lambda m. \lambda n. (\text{iszero}_N m \ ? 0_N : \text{add}_N (mul_N (\text{pred}_N m) n) n) $$
Exercise: Define a multiplication function for natural numbers in λ-calculus.

Try to define it recursively first:

$$\text{mul}_N = \lambda m.\lambda n. (\text{iszero}_N m ? 0_N : \text{add}_N (\text{mul}_N (\text{pred}_N m) n) n)$$

Then change it to a non-recursive functional and apply Y to it:

$$\text{mul}_N = Y (\lambda f. \lambda m. \lambda n. (\text{iszero}_N m ? 0_N : \text{add}_N (f(\text{pred}_N m) n) n))$$
When solving these sorts of problems on homeworks, quizzes, and exams:

- Please DO use the abbreviations in your code.
 - Don’t write \((\lambda x.\lambda y.x)\) when you mean \texttt{true}.
 - Strive for readability (otherwise becomes very hard to grade!).

- Please DO define named helper functions.
 - Less writing is good; don’t repeatedly write out same subroutine.
 - But any recursions must always be eliminated with \(Y\).
 - Use informative names (not \(f\)).

- Don’t name variables the same as any helper functions (really confusing!).

- \(\lambda\)-calculus is a math formalism not a modern language, so extra effort is required to make it readable.
equality

λ-terms are ASTs. They are only “equal” (\equiv) if they are identical after expansion of all macro abbreviations.

(Also recall that the parentheses are not symbols in the AST; they just show the structure of the AST.)

Examples:

$$(\lambda y. y)(\lambda x. x) \neq \lambda x. x \quad \text{(though they evaluate to the same terms)}$$

$$\lambda x. (x) = \lambda x. x$$

$$\lambda x.x \neq \lambda y.y$$

However, there are some notions of term equivalence that are important to understand.
Definition (**α-equivalence**): Term $\lambda x.e$ is α-equivalent to term $\lambda y.(e'[y/x])$ (written $\lambda x.e \equiv_\alpha \lambda y.(e'[y/x])$) whenever $e \equiv_\alpha e'$ (recursively).

Intuition: Terms that are identical except for consistent, capture-avoiding renaming of the variables are α-equivalent.

Examples:

\[
\begin{align*}
\lambda x.x & \equiv_\alpha \lambda y.y \\
\lambda x.\lambda x.x & \equiv_\alpha \lambda y.\lambda x.x \\
\lambda x.\lambda x.x & \not\equiv_\alpha \lambda y.\lambda x.y
\end{align*}
\]

Colloquially: Functional programmers refer to renaming their variables as “α-conversion.”
\textbf{Definition (\(\beta\)-equivalence):} Terms \((\lambda v. e_1)e_2\) and \(e_1[e_2/x]\) are \(\beta\)-equivalent (written \((\lambda v. e_1)e_2 \equiv_\beta e_1[e_2/x]\)).

Intuition: An application of a function \(f\) to an argument \(a\) is \(\beta\)-equivalent to a term consisting of the body of \(f\) with all its parameters replaced with the argument term \(a\).

Examples:

\[
(\lambda x.xx)(\lambda y.y) \equiv_\beta (\lambda y.y)(\lambda y.y)
\]

\[
(\lambda x.xx)(\lambda y.y) \equiv_\beta \lambda y.y \quad \text{(by transitivity)}
\]

\[
((\lambda x.xx)(\lambda y.y))(\lambda z.z) \not\equiv_\beta ((\lambda y.y)(\lambda y.y))(\lambda z.z)
\]

The last example is because that reduction doesn’t only use the \(\beta\)-rule. In that case the left subterms are \(\beta\)-equivalent, but not the full-sized terms that contain them.
Definition (η-equivalence): Terms $\lambda v. (fv)$ and f are η-equivalent (written $\lambda v. (fv) \equiv_\eta f$) if $v \not\in FV(f)$.

Intuition: A “wrapper function” that merely applies some other function f to whatever argument it receives is equivalent to just f.

Example:

$$\lambda n. \text{pair false } n \equiv_\eta \text{pair false}$$

Example from OCaml:

```ocaml
code
let sum x = List.fold_left (+) 0 x;;
≡_η
let sum = List.fold_left (+) 0;;
```

```
Advanced Programming Languages

Term Equivalence

Equivalence vs. Operational and Denotational Semantics

Don’t confuse equivalence with the operational semantics of \( \lambda \)-calculus:

- Only \( \beta \)-equivalence is a rule of the operational semantics.
  - \( \alpha \)-equivalent terms don’t always evaluate to the same final terms (variables might be different, which makes them different ASTs).
  - \( \beta \)-equivalent terms do always evaluate to the same terms.
  - \( \eta \)-equivalent terms “behave the same” when applied, but \( \eta \)-equivalence is not a reduction step of \( \lambda \)-calculus.
- There is no \( = \) or \( \equiv \) test operation in \( \lambda \)-calculus!
  - The following is NOT a legal \( \lambda \)-term:
    \[
    \lambda x. \lambda y. (x = y) \ ? \ true : false
    \]
    - It is impossible to code up such an operation (exercise: prove it!).
- In denotational semantics, \( \lambda \)-terms denote (mathematical) functions.
  - In math we have another definition of functional equivalence (identical input-output relations).
  - But functional equivalence is not decidable (Rice’s Theorem).
  - And equivalence of \( \lambda \)-term denotations is NOT the same as equivalence of the terms themselves.