
Logic Programming
CS 4301/6371: Advanced Programming Languages

Kevin W. Hamlen

March 26 – April 2, 2024

Advanced Programming Languages

Relational Programming

FP vs. LP

Functional Programming
centered around first-class functions
strong, parametric polymorphic type systems
single-assignment
operational semantics based on λ-calculus

Logic Programming
centered around relations
no type system
no explicit assignment operation(!)
operational semantics based on unification and depth-first search

Advanced Programming Languages

Relational Programming

Relations

Relation
Definition (relation): A relation is a cartesian product A×B of two sets A
and B.
Example: ≤ relation over N×N: {(0, 0), (0, 1), (1, 1), (0, 2), (1, 2), (2, 2), . . .}

Relations generalize functions.
Recall: We write (partial) functions f : A ⇀ B as sets of pairs A×B.
Relations (as defined above) are also sets of pairs.
Function f encodes relation {(x, f(x)) | x ∈ f←}
Unlike functions, relations can map the same domain element to multiple
different range elements.

Advanced Programming Languages

Relational Programming

Relational Programming

Three ways to define a function/relation:
Imperatively:

factorial(x) := {z := 1; for i := 1 to x do z := z ∗ i; return z}

Functionally:

factorial(x) := (if x ≤ 0 then 1 else x ∗ factorial(x− 1))

Relationally:

factorial(0, 1).

factorial(x, y) if factorial(x− 1, y/x).

Note the differences in approach:
Imperative style is an operational recipe.

You are essentially doing the compiler’s job.
Compiler must reverse-engineer your code to optimze it!

Functional is a mathematical recipe.
better, but still somewhat operational

Relational defines necessary and sufficient conditions.
Compiler creates a search algorithm for the solution
Implementation details abstracted away from programmer
Search algorithm can be highly optimized by language implementation

Advanced Programming Languages

Introduction to Prolog

Syntax and Usage

Prolog Programming

Prolog programs consist of:
facts (unconditional truths)
rules (conditional truths)
queries (cause the program to “run” by initiating a search for a solution to a
question)

Example: factorial program

factorial(0,1).
factorial(X,Y) :- X2 is X-1, factorial(X2,Y2), Y is X*Y2.

?- factorial(5,X).
X = 120

Advanced Programming Languages

Introduction to Prolog

Syntax and Usage

LP Applications

Originally invented by Robert Kowalski (for theorem-proving) and Alain
Colmeraur (for NLP) [1973]

Now used primarily for:
artificial intelligence
scheduling problems
databases (Datalog)
model-checking
compilers
software engineering (verification, etc.)
network protocol analysis
many other applications...

Advanced Programming Languages

Introduction to Prolog

Syntax and Usage

Running Prolog

One Prolog programming assignment (see eLearning)

Two installation options:
Install SWI Prolog on your machine (see link on course web page)
Use CS Dept linux machines to do the assignment

Programming
Create a text file name “lastname.pl”.
Text file contains facts and rules (no queries)

Running your program
Type “pl” at the Unix prompt.
Type “consult(lastname).” at the Prolog prompt.
Enter queries at the Prolog prompt.
To reload after changing programs, just type “make.”
Exit by hitting Control-C then pressing “e”.

Advanced Programming Languages

Introduction to Prolog

Syntax and Usage

Prolog Syntax

Each program line has one of two forms:
p(t1,. . .,tn).
p(t1,. . .,tn) :- p1(t1,. . .,ti), p2(t1,. . .,tj), . . ., pm(t1,. . .,tk).
Don’t forget the period ending each line!
p is a predicate consisting of lower-case letters (e.g., “factorial”).
t1, . . . , tn are terms (defined below)

Terms can be:
integer constants (1, -13, etc.)
atoms (non-numerical constants)

consist of lower-case letters or surrounded by single-quotes
Examples: x, abc, ’Foo’

variables (captialized identifiers)
Examples: X, Foo

structures (tree-shaped data structures)
Examples: foo(3,12), foo(foo(13),foo(16,12))
Warning: Syntax resembles predicates but means something completely different!
No type system, so be careful!

Advanced Programming Languages

Introduction to Prolog

Syntax and Usage

Example: Family Tree Relational Data Structure

father(tony,abe).
father(tony,sarah).
father(abe,john).
father(bill,susan).
father(john,jill).
father(rob,phil).
mother(lisa,abe).
mother(lisa,sarah).
mother(nancy,john).
mother(sarah,susan).
mother(mary,jill).
mother(susan,phil).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Syntax and Usage

Reasoning About Family Trees

Q1: How might we decide parent relations?

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

Q2: Grandparent?

gp(X,Y) :- parent(X,Z), parent(Z,Y).

Q3: Great-grandparent?

ggp(X,Y) :- gp(X,Z), parent(Z,Y).

Q4: Ancestor?

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Syntax and Usage

Reasoning About Family Trees

Q1: How might we decide parent relations?

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

Q2: Grandparent?

gp(X,Y) :- parent(X,Z), parent(Z,Y).

Q3: Great-grandparent?

ggp(X,Y) :- gp(X,Z), parent(Z,Y).

Q4: Ancestor?

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Syntax and Usage

Reasoning About Family Trees

Q1: How might we decide parent relations?

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

Q2: Grandparent?

gp(X,Y) :- parent(X,Z), parent(Z,Y).

Q3: Great-grandparent?

ggp(X,Y) :- gp(X,Z), parent(Z,Y).

Q4: Ancestor?

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Syntax and Usage

Reasoning About Family Trees

Q1: How might we decide parent relations?

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

Q2: Grandparent?

gp(X,Y) :- parent(X,Z), parent(Z,Y).

Q3: Great-grandparent?

ggp(X,Y) :- gp(X,Z), parent(Z,Y).

Q4: Ancestor?

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Syntax and Usage

Reasoning About Family Trees

Q1: How might we decide parent relations?

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

Q2: Grandparent?

gp(X,Y) :- parent(X,Z), parent(Z,Y).

Q3: Great-grandparent?

ggp(X,Y) :- gp(X,Z), parent(Z,Y).

Q4: Ancestor?

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Syntax and Usage

Reasoning About Family Trees

Q1: How might we decide parent relations?

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

Q2: Grandparent?

gp(X,Y) :- parent(X,Z), parent(Z,Y).

Q3: Great-grandparent?

ggp(X,Y) :- gp(X,Z), parent(Z,Y).

Q4: Ancestor?

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Syntax and Usage

Reasoning About Family Trees

Q1: How might we decide parent relations?

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

Q2: Grandparent?

gp(X,Y) :- parent(X,Z), parent(Z,Y).

Q3: Great-grandparent?

ggp(X,Y) :- gp(X,Z), parent(Z,Y).

Q4: Ancestor?

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Syntax and Usage

Reasoning About Family Trees

Q1: How might we decide parent relations?

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

Q2: Grandparent?

gp(X,Y) :- parent(X,Z), parent(Z,Y).

Q3: Great-grandparent?

ggp(X,Y) :- gp(X,Z), parent(Z,Y).

Q4: Ancestor?

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Syntax and Usage

Query Examples

?- father(abe,john).
true.

?- father(tony,X).
X = abe ; (user presses semicolon)
X = sarah.

?- parent(X,susan).
X = bill ; (user presses semicolon)
X = sarah ; (user presses semicolon)
false.

?-

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Syntax and Usage

Queries

typed at Prolog prompt (not in external files)

consist of a predicate possibly containing variables
if no variables, result is either true or false
otherwise, result is an instantiation of variables or false

no solutions, one solution, or many solutions
no solution: false
after printing one solution, Prolog waits for user input
hit 〈RETURN〉 to stop search; Prolog says true
hit ; to find more solutions; Prolog either finds another and waits for more
input or says false

convergence not guaranteed!
queries can diverge (i.e., loop infinitely)
hit 〈CTRL-C〉 to interrupt, then “a” to abort

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Procedure

How does Prolog search for query solutions?

Three internal data structures:
search tree in which each node has ...
a list of goals (predicates), and
a set of variable bindings (instantiations)

Two important concepts:
unification: find instantiation of vars to make equal terms (if such
instantiation exists)
back-tracking: revisiting past decisions after a failed goal is reached

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Procedure

Initially...
search tree has just a root node
goal list consists only of the query
set of variable bindings is empty

Step 1: Scan file from top to bottom for a fact or rule whose lhs
potentially matches the current goal.

for each such fact/rule, add a child node to the search tree
descend to the leftmost child

Step 2: Unify the top goal with this rule’s lhs, yielding more variable
instantiations

Step 3: Add all rhs predicates to goal list, left to right

Return to Step 1.

Steps 1 or 2 may fail
no matching rule or failed unification
if so, backtrack to parent node and try next child
if root node fails, stop and return false

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Example

ancestor(tony,phil)

ancestor(X1,Y1) :- parent(X1,Y1).
X1 = tony, Y1 = phil

parent(tony,phil)

parent(X2,Y2) :- father(X2,Y2).
X1 = X2 = tony, Y1 = Y2 = phil

father(tony,phil)

FAILS

parent(X2,Y2) :- mother(X2,Y2).
X1 = X2 = tony, Y1 = Y2 = phil

mother(tony,phil)

FAILS

ancestor(X1,Y1) :- parent(X1,Z1),
ancestor(Z1,Y1).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Example

ancestor(tony,phil)

ancestor(X1,Y1) :- parent(X1,Y1).
X1 = tony, Y1 = phil

parent(tony,phil)

parent(X2,Y2) :- father(X2,Y2).
X1 = X2 = tony, Y1 = Y2 = phil

father(tony,phil)

FAILS

parent(X2,Y2) :- mother(X2,Y2).
X1 = X2 = tony, Y1 = Y2 = phil

mother(tony,phil)

FAILS

ancestor(X1,Y1) :- parent(X1,Z1),
ancestor(Z1,Y1).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Example

ancestor(tony,phil)

ancestor(X1,Y1) :- parent(X1,Y1).
X1 = tony, Y1 = phil

parent(tony,phil)

parent(X2,Y2) :- father(X2,Y2).
X1 = X2 = tony, Y1 = Y2 = phil

father(tony,phil)

FAILS

parent(X2,Y2) :- mother(X2,Y2).
X1 = X2 = tony, Y1 = Y2 = phil

mother(tony,phil)

FAILS

ancestor(X1,Y1) :- parent(X1,Z1),
ancestor(Z1,Y1).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Example

ancestor(tony,phil)

ancestor(X1,Y1) :- parent(X1,Y1).
X1 = tony, Y1 = phil

parent(tony,phil)

parent(X2,Y2) :- father(X2,Y2).
X1 = X2 = tony, Y1 = Y2 = phil

father(tony,phil)

FAILS

parent(X2,Y2) :- mother(X2,Y2).
X1 = X2 = tony, Y1 = Y2 = phil

mother(tony,phil)

FAILS

ancestor(X1,Y1) :- parent(X1,Z1),
ancestor(Z1,Y1).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Example

ancestor(tony,phil)

ancestor(X1,Y1) :- parent(X1,Y1).
X1 = tony, Y1 = phil

parent(tony,phil)

parent(X2,Y2) :- father(X2,Y2).
X1 = X2 = tony, Y1 = Y2 = phil

father(tony,phil)

FAILS

parent(X2,Y2) :- mother(X2,Y2).
X1 = X2 = tony, Y1 = Y2 = phil

mother(tony,phil)

FAILS

ancestor(X1,Y1) :- parent(X1,Z1),
ancestor(Z1,Y1).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Example

ancestor(tony,phil)

ancestor(X1,Y1) :- parent(X1,Y1).
X1 = tony, Y1 = phil

parent(tony,phil)

parent(X2,Y2) :- father(X2,Y2).
X1 = X2 = tony, Y1 = Y2 = phil

father(tony,phil)

FAILS

parent(X2,Y2) :- mother(X2,Y2).
X1 = X2 = tony, Y1 = Y2 = phil

mother(tony,phil)

FAILS

ancestor(X1,Y1) :- parent(X1,Z1),
ancestor(Z1,Y1).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Example

ancestor(tony,phil)

ancestor(X1,Y1) :- parent(X1,Y1).
X1 = tony, Y1 = phil

parent(tony,phil)

parent(X2,Y2) :- father(X2,Y2).
X1 = X2 = tony, Y1 = Y2 = phil

father(tony,phil)

FAILS

parent(X2,Y2) :- mother(X2,Y2).
X1 = X2 = tony, Y1 = Y2 = phil

mother(tony,phil)

FAILS

ancestor(X1,Y1) :- parent(X1,Z1),
ancestor(Z1,Y1).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Example

ancestor(tony,phil)

ancestor(X1,Y1) :- parent(X1,Y1).
X1 = tony, Y1 = phil

parent(tony,phil)

parent(X2,Y2) :- father(X2,Y2).
X1 = X2 = tony, Y1 = Y2 = phil

father(tony,phil)

FAILS

parent(X2,Y2) :- mother(X2,Y2).
X1 = X2 = tony, Y1 = Y2 = phil

mother(tony,phil)

FAILS

ancestor(X1,Y1) :- parent(X1,Z1),
ancestor(Z1,Y1).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Example

ancestor(tony,phil)

.

.

.
ancestor(X1,Y1) :- parent(X1,Z1), ancestor(Z1,Y1).

X1 = tony, Y1 = phil

parent(tony,Z1), ancestor(Z1,phil)

parent(X2,Y2) :- father(X2,Y2).
X1 = X2 = tony, Y1 = phil, Y2 = Z1

father(tony,Z1), ancestor(Z1,phil)

father(tony,abe).
X1 = X2 = tony, Y1 = phil, Y2 = Z1 = abe

ancestor(abe,phil)
· · ·

EVENTUALLY FAILS

father(tony,sarah).
X1 = X2 = tony, Y1 = phil, Y2 = Z1 = sarah

ancestor(sarah,phil)

parent(X2,Y2) :- mother(X2,Y2).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Example

ancestor(tony,phil)

.

.

.
ancestor(X1,Y1) :- parent(X1,Z1), ancestor(Z1,Y1).

X1 = tony, Y1 = phil

parent(tony,Z1), ancestor(Z1,phil)

parent(X2,Y2) :- father(X2,Y2).
X1 = X2 = tony, Y1 = phil, Y2 = Z1

father(tony,Z1), ancestor(Z1,phil)

father(tony,abe).
X1 = X2 = tony, Y1 = phil, Y2 = Z1 = abe

ancestor(abe,phil)
· · ·

EVENTUALLY FAILS

father(tony,sarah).
X1 = X2 = tony, Y1 = phil, Y2 = Z1 = sarah

ancestor(sarah,phil)

parent(X2,Y2) :- mother(X2,Y2).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Example

ancestor(tony,phil)

.

.

.
ancestor(X1,Y1) :- parent(X1,Z1), ancestor(Z1,Y1).

X1 = tony, Y1 = phil

parent(tony,Z1), ancestor(Z1,phil)

parent(X2,Y2) :- father(X2,Y2).
X1 = X2 = tony, Y1 = phil, Y2 = Z1

father(tony,Z1), ancestor(Z1,phil)

father(tony,abe).
X1 = X2 = tony, Y1 = phil, Y2 = Z1 = abe

ancestor(abe,phil)
· · ·

EVENTUALLY FAILS

father(tony,sarah).
X1 = X2 = tony, Y1 = phil, Y2 = Z1 = sarah

ancestor(sarah,phil)

parent(X2,Y2) :- mother(X2,Y2).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Example

ancestor(tony,phil)

.

.

.
ancestor(X1,Y1) :- parent(X1,Z1), ancestor(Z1,Y1).

X1 = tony, Y1 = phil

parent(tony,Z1), ancestor(Z1,phil)

parent(X2,Y2) :- father(X2,Y2).
X1 = X2 = tony, Y1 = phil, Y2 = Z1

father(tony,Z1), ancestor(Z1,phil)

father(tony,abe).
X1 = X2 = tony, Y1 = phil, Y2 = Z1 = abe

ancestor(abe,phil)
· · ·

EVENTUALLY FAILS

father(tony,sarah).
X1 = X2 = tony, Y1 = phil, Y2 = Z1 = sarah

ancestor(sarah,phil)

parent(X2,Y2) :- mother(X2,Y2).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Example

ancestor(tony,phil)

.

.

.
ancestor(X1,Y1) :- parent(X1,Z1), ancestor(Z1,Y1).

X1 = tony, Y1 = phil

parent(tony,Z1), ancestor(Z1,phil)

parent(X2,Y2) :- father(X2,Y2).
X1 = X2 = tony, Y1 = phil, Y2 = Z1

father(tony,Z1), ancestor(Z1,phil)

father(tony,abe).
X1 = X2 = tony, Y1 = phil, Y2 = Z1 = abe

ancestor(abe,phil)
· · ·

EVENTUALLY FAILS

father(tony,sarah).
X1 = X2 = tony, Y1 = phil, Y2 = Z1 = sarah

ancestor(sarah,phil)

parent(X2,Y2) :- mother(X2,Y2).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Example

ancestor(tony,phil)

.

.

.
ancestor(X1,Y1) :- parent(X1,Z1), ancestor(Z1,Y1).

X1 = tony, Y1 = phil

parent(tony,Z1), ancestor(Z1,phil)

parent(X2,Y2) :- father(X2,Y2).
X1 = X2 = tony, Y1 = phil, Y2 = Z1

father(tony,Z1), ancestor(Z1,phil)

father(tony,abe).
X1 = X2 = tony, Y1 = phil, Y2 = Z1 = abe

ancestor(abe,phil)
· · ·

EVENTUALLY FAILS

father(tony,sarah).
X1 = X2 = tony, Y1 = phil, Y2 = Z1 = sarah

ancestor(sarah,phil)

parent(X2,Y2) :- mother(X2,Y2).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Example

ancestor(tony,phil)

.

.

.
ancestor(X1,Y1) :- parent(X1,Z1), ancestor(Z1,Y1).

X1 = tony, Y1 = phil

parent(tony,Z1), ancestor(Z1,phil)

parent(X2,Y2) :- father(X2,Y2).
X1 = X2 = tony, Y1 = phil, Y2 = Z1

father(tony,Z1), ancestor(Z1,phil)

father(tony,abe).
X1 = X2 = tony, Y1 = phil, Y2 = Z1 = abe

ancestor(abe,phil)
· · ·

EVENTUALLY FAILS

father(tony,sarah).
X1 = X2 = tony, Y1 = phil, Y2 = Z1 = sarah

ancestor(sarah,phil)

parent(X2,Y2) :- mother(X2,Y2).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Example

ancestor(tony,phil)

.

.

.
ancestor(X1,Y1) :- parent(X1,Z1), ancestor(Z1,Y1).

X1 = tony, Y1 = phil

parent(tony,Z1), ancestor(Z1,phil)

parent(X2,Y2) :- father(X2,Y2).
X1 = X2 = tony, Y1 = phil, Y2 = Z1

father(tony,Z1), ancestor(Z1,phil)

father(tony,abe).
X1 = X2 = tony, Y1 = phil, Y2 = Z1 = abe

ancestor(abe,phil)
· · ·

EVENTUALLY FAILS

father(tony,sarah).
X1 = X2 = tony, Y1 = phil, Y2 = Z1 = sarah

ancestor(sarah,phil)

parent(X2,Y2) :- mother(X2,Y2).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Example

father(tony,sarah).
X1 = X2 = tony, Y1 = phil, Y2 = Z1 = sarah

ancestor(sarah,phil)

...
ancestor(susan,phil)

ancestor(X3,Y3) :- parent(X3,Y3).
X3 = susan, Y3 = phil

parent(susan,phil)

father(susan,phil).
FAILS

mother(susan,phil).
SUCCEEDS

ancestor(X3,Y3) :- parent(X3,Z3),
ancestor(Z3,Y3).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Example

father(tony,sarah).
X1 = X2 = tony, Y1 = phil, Y2 = Z1 = sarah

ancestor(sarah,phil)

...
ancestor(susan,phil)

ancestor(X3,Y3) :- parent(X3,Y3).
X3 = susan, Y3 = phil

parent(susan,phil)

father(susan,phil).
FAILS

mother(susan,phil).
SUCCEEDS

ancestor(X3,Y3) :- parent(X3,Z3),
ancestor(Z3,Y3).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Example

father(tony,sarah).
X1 = X2 = tony, Y1 = phil, Y2 = Z1 = sarah

ancestor(sarah,phil)

...
ancestor(susan,phil)

ancestor(X3,Y3) :- parent(X3,Y3).
X3 = susan, Y3 = phil

parent(susan,phil)

father(susan,phil).
FAILS

mother(susan,phil).
SUCCEEDS

ancestor(X3,Y3) :- parent(X3,Z3),
ancestor(Z3,Y3).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Example

father(tony,sarah).
X1 = X2 = tony, Y1 = phil, Y2 = Z1 = sarah

ancestor(sarah,phil)

...
ancestor(susan,phil)

ancestor(X3,Y3) :- parent(X3,Y3).
X3 = susan, Y3 = phil

parent(susan,phil)

father(susan,phil).
FAILS

mother(susan,phil).
SUCCEEDS

ancestor(X3,Y3) :- parent(X3,Z3),
ancestor(Z3,Y3).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Example

father(tony,sarah).
X1 = X2 = tony, Y1 = phil, Y2 = Z1 = sarah

ancestor(sarah,phil)

...
ancestor(susan,phil)

ancestor(X3,Y3) :- parent(X3,Y3).
X3 = susan, Y3 = phil

parent(susan,phil)

father(susan,phil).
FAILS

mother(susan,phil).
SUCCEEDS

ancestor(X3,Y3) :- parent(X3,Z3),
ancestor(Z3,Y3).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Example

father(tony,sarah).
X1 = X2 = tony, Y1 = phil, Y2 = Z1 = sarah

ancestor(sarah,phil)

...
ancestor(susan,phil)

ancestor(X3,Y3) :- parent(X3,Y3).
X3 = susan, Y3 = phil

parent(susan,phil)

father(susan,phil).
FAILS

mother(susan,phil).
SUCCEEDS

ancestor(X3,Y3) :- parent(X3,Z3),
ancestor(Z3,Y3).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Backtracking Search

Search Example

father(tony,sarah).
X1 = X2 = tony, Y1 = phil, Y2 = Z1 = sarah

ancestor(sarah,phil)

...
ancestor(susan,phil)

ancestor(X3,Y3) :- parent(X3,Y3).
X3 = susan, Y3 = phil

parent(susan,phil)

father(susan,phil).
FAILS

mother(susan,phil).
SUCCEEDS

ancestor(X3,Y3) :- parent(X3,Z3),
ancestor(Z3,Y3).

jill

mary john

nancy abe

lisa

phil

susan

sarah

tony

bill

rob

Advanced Programming Languages

Introduction to Prolog

Order Sensitivity

Important Points

Order matters!
order of facts/rules in file
order of predicates on rhs of each rule
order only affects termination (as long as you stick to a certain language
subset...), but does not change answers

Tips for good ordering:
put facts before rules (base cases first)
put “easy” predicates before “harder” ones

Advanced Programming Languages

Introduction to Prolog

Order Sensitivity

Impact of Reordering

Our definition of ancestor:
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

Q1: What would happen if we reversed the rule order?
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).
ancestor(X,Y) :- parent(X,Y).

Q2: What if we reversed the conjunct order within the last rule?
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- ancestor(Z,Y), parent(X,Z).

Q3: What if we did both?
ancestor(X,Y) :- ancestor(Z,Y), parent(X,Z).
ancestor(X,Y) :- parent(X,Y).

Advanced Programming Languages

Features and Use Cases

Comparisons

Equality Predicates

“=” means “unifiable”
attempts a unification (possibly adding new variable bindings)
Example #1: f(X,a)=f(b,Y). (succeeds with X = b, Y = a)
Example #2: X=a, X=b. (fails)
Example #3: X=a, a=X. (succeeds with X = a)

“==” means “physically equal”
tests existing bindings (no new unification!)
Example #1: a==b (fails)
Example #2: X==Z (fails)
Example #3: X=Z, X==Z (succeeds)
Example #4: X==a (fails)
Example #5: X=a, X==a (succeeds)

“\== is negation of “==”
sibling(X,Y) :- parent(Z,X), parent(Z,Y), X \== Y.

Advanced Programming Languages

Features and Use Cases

Comparisons

Inequalities

Numerical inequalities
X < Y, X > Y, X =< Y, X >= Y
succeed only when both X and Y are already bound to integers
no unification occurs
no arithmetic expressions permitted!

Example: X+3 < X+4 (syntax error)

Non-numerical comparisons
X @< Y, X @> Y, X @=< Y, X @>= Y
compare arbitrary atoms according to a “standard” ordering
Example: bar @< foo (succeeds)
X and Y must be bound

Advanced Programming Languages

Features and Use Cases

Disjunction

Choice Operators

Semicolon is disjunction
Example: parent(X,Y) :- (father(X,Y); mother(X,Y)), X \== Y.
Always replacable with multiple rules, so never necessary
But it can sometimes be very convenient.

Ternary operator: P1 -> P2 ; P3

If P1 succeeds, do P2 (and discard P3); otherwise do P3 (and discard P2)
Not quite the same as logical implication (think of it as “if P1 is provable...”
rather than “if P1 is true...”)
Diverges when P1 diverges
Always replacable with multiple rules (like disjunction)

Underscore is a wildcard

isparent(X) :- parent(X,_).

If you write a variable on a rule’s lhs that’s never used on its rhs, you’ll get a
warning. Use underscore instead.
Warnings help programmer identify typos (e.g., mistyped variable names).

Advanced Programming Languages

Features and Use Cases

Negation

Negation

“\+ P” succeeds when predicate P terminates with failure
NOT the same as logical negation!
think of it more like “P is disprovable”
loops when P loops
can exacerbate order-sensitivity issues
avoid spurious uses, but sometimes needed

Advanced Programming Languages

Features and Use Cases

Arithmetic

Arithmetic

“is” keyword
Syntax: X is 3+5
single variable on left
arithmetic expression on right
no unbound variables permitted on right!

Examples:
X=5, X is 4+2 (fails)
X is Y+3 (aborts with error if Y unbound)
X=5, Y is X+3 (succeeds with Y = 8)

Equality does not solve arithmetic
X = 3+5 (binds X to the literal structure “3+5”)

The “is” keyword is not an assignment operation
X is X+1 (always fails)
X=X+1 (always fails)

Advanced Programming Languages

Features and Use Cases

Lists

Lists

Syntax
[] is the empty list
[H|T] is a list with head H and tail T

Recall: list tail is list of all elements except head
tail can be empty

[X,Y|Z] is a list with first two elements X and Y, and remaining elements Z

Exercise: Implement a predicate sum(L,S) that succeeds with S equal to
the sum of numbers in list L.

sum([],0).

sum([H|T],S) :- sum(T,S1), S is H+S1.

Advanced Programming Languages

Features and Use Cases

Lists

Lists

Syntax
[] is the empty list
[H|T] is a list with head H and tail T

Recall: list tail is list of all elements except head
tail can be empty

[X,Y|Z] is a list with first two elements X and Y, and remaining elements Z

Exercise: Implement a predicate sum(L,S) that succeeds with S equal to
the sum of numbers in list L.

sum([],0).

sum([H|T],S) :- sum(T,S1), S is H+S1.

Advanced Programming Languages

Features and Use Cases

Lists

Lists

Syntax
[] is the empty list
[H|T] is a list with head H and tail T

Recall: list tail is list of all elements except head
tail can be empty

[X,Y|Z] is a list with first two elements X and Y, and remaining elements Z

Exercise: Implement a predicate sum(L,S) that succeeds with S equal to
the sum of numbers in list L.

sum([],0).

sum([H|T],S) :- sum(T,S1), S is H+S1.

Advanced Programming Languages

Features and Use Cases

Lists

More List Examples

Exercise: Implement a predicate append(L1,L2,L3) that succeeds with L3
equal to list L1 appended by list L2.

append([],L,L).

append([H1|T1],L2,[H1|T3]) :- append(T1,L2,T3).

Exercise: Implement a predicate pick(X,L1,L2) that succeeds when X is a
member of list L1, and L2 is list L1 without the first X.

pick(X,[X|T],T).

pick(X,[Y|T1],[Y|T2]) :- X \== Y, pick(X,T1,T2).

Advanced Programming Languages

Features and Use Cases

Lists

More List Examples

Exercise: Implement a predicate append(L1,L2,L3) that succeeds with L3
equal to list L1 appended by list L2.

append([],L,L).

append([H1|T1],L2,[H1|T3]) :- append(T1,L2,T3).

Exercise: Implement a predicate pick(X,L1,L2) that succeeds when X is a
member of list L1, and L2 is list L1 without the first X.

pick(X,[X|T],T).

pick(X,[Y|T1],[Y|T2]) :- X \== Y, pick(X,T1,T2).

Advanced Programming Languages

Features and Use Cases

Lists

More List Examples

Exercise: Implement a predicate append(L1,L2,L3) that succeeds with L3
equal to list L1 appended by list L2.

append([],L,L).

append([H1|T1],L2,[H1|T3]) :- append(T1,L2,T3).

Exercise: Implement a predicate pick(X,L1,L2) that succeeds when X is a
member of list L1, and L2 is list L1 without the first X.

pick(X,[X|T],T).

pick(X,[Y|T1],[Y|T2]) :- X \== Y, pick(X,T1,T2).

Advanced Programming Languages

Features and Use Cases

Lists

More List Examples

Exercise: Implement a predicate append(L1,L2,L3) that succeeds with L3
equal to list L1 appended by list L2.

append([],L,L).

append([H1|T1],L2,[H1|T3]) :- append(T1,L2,T3).

Exercise: Implement a predicate pick(X,L1,L2) that succeeds when X is a
member of list L1, and L2 is list L1 without the first X.

pick(X,[X|T],T).

pick(X,[Y|T1],[Y|T2]) :- X \== Y, pick(X,T1,T2).

Advanced Programming Languages

Features and Use Cases

Lists

More List Examples

Exercise: Implement a predicate append(L1,L2,L3) that succeeds with L3
equal to list L1 appended by list L2.

append([],L,L).

append([H1|T1],L2,[H1|T3]) :- append(T1,L2,T3).

Exercise: Implement a predicate pick(X,L1,L2) that succeeds when X is a
member of list L1, and L2 is list L1 without the first X.

pick(X,[X|T],T).

pick(X,[Y|T1],[Y|T2]) :- X \== Y, pick(X,T1,T2).

Advanced Programming Languages

Features and Use Cases

Lists

More List Examples

Exercise: Implement a predicate append(L1,L2,L3) that succeeds with L3
equal to list L1 appended by list L2.

append([],L,L).

append([H1|T1],L2,[H1|T3]) :- append(T1,L2,T3).

Exercise: Implement a predicate pick(X,L1,L2) that succeeds when X is a
member of list L1, and L2 is list L1 without the first X.

pick(X,[X|T],T).

pick(X,[Y|T1],[Y|T2]) :- X \== Y, pick(X,T1,T2).

Advanced Programming Languages

Features and Use Cases

Logical Arithmetic

Logical Arithmetic

Encode natural numbers as structures:
zero is 0
one is s(0)
two is s(s(0))

Exercise: Implement a predicate num(N) that succeeds when N is a valid
logical arithmetic encoding.

num(0).

num(s(N)) :- num(N).

Exercise: Implement a predicate lplus(X,Y,Z) that succeeds with Z equal
to the logical numeral that encodes the sum of logical numerals X and Y.

lplus(0,Y,Y).

lplus(s(X),Y,s(Z)) :- lplus(X,Y,Z).

Advanced Programming Languages

Features and Use Cases

Logical Arithmetic

Logical Arithmetic

Encode natural numbers as structures:
zero is 0
one is s(0)
two is s(s(0))

Exercise: Implement a predicate num(N) that succeeds when N is a valid
logical arithmetic encoding.

num(0).

num(s(N)) :- num(N).

Exercise: Implement a predicate lplus(X,Y,Z) that succeeds with Z equal
to the logical numeral that encodes the sum of logical numerals X and Y.

lplus(0,Y,Y).

lplus(s(X),Y,s(Z)) :- lplus(X,Y,Z).

Advanced Programming Languages

Features and Use Cases

Logical Arithmetic

Logical Arithmetic

Encode natural numbers as structures:
zero is 0
one is s(0)
two is s(s(0))

Exercise: Implement a predicate num(N) that succeeds when N is a valid
logical arithmetic encoding.

num(0).

num(s(N)) :- num(N).

Exercise: Implement a predicate lplus(X,Y,Z) that succeeds with Z equal
to the logical numeral that encodes the sum of logical numerals X and Y.

lplus(0,Y,Y).

lplus(s(X),Y,s(Z)) :- lplus(X,Y,Z).

Advanced Programming Languages

Features and Use Cases

Logical Arithmetic

Logical Arithmetic

Exercise: Implement a predicate lminus(X,Y,Z) that succeeds with Z equal to
the logical numeral that encodes the difference between logical numerals X and
Y.

lminus(X,Y,Z) :- lplus(Y,Z,X).

Exercise: Implement a predicate ltimes(X,Y,Z) that succeeds with Z equal to
the logical numeral that encodes the product of logical numerals X and Y.

ltimes(0,Y,0).

ltimes(s(X),Y,Z) :- ltimes(X,Y,XY), lplus(XY,Y,Z).

Advanced Programming Languages

Features and Use Cases

Logical Arithmetic

Logical Arithmetic

Exercise: Implement a predicate lminus(X,Y,Z) that succeeds with Z equal to
the logical numeral that encodes the difference between logical numerals X and
Y.

lminus(X,Y,Z) :- lplus(Y,Z,X).

Exercise: Implement a predicate ltimes(X,Y,Z) that succeeds with Z equal to
the logical numeral that encodes the product of logical numerals X and Y.

ltimes(0,Y,0).

ltimes(s(X),Y,Z) :- ltimes(X,Y,XY), lplus(XY,Y,Z).

Advanced Programming Languages

Features and Use Cases

Logical Arithmetic

Logical Arithmetic

Exercise: Implement a predicate lminus(X,Y,Z) that succeeds with Z equal to
the logical numeral that encodes the difference between logical numerals X and
Y.

lminus(X,Y,Z) :- lplus(Y,Z,X).

Exercise: Implement a predicate ltimes(X,Y,Z) that succeeds with Z equal to
the logical numeral that encodes the product of logical numerals X and Y.

ltimes(0,Y,0).

ltimes(s(X),Y,Z) :- ltimes(X,Y,XY), lplus(XY,Y,Z).

Advanced Programming Languages

Features and Use Cases

Logical Arithmetic

Logical Arithmetic

Exercise: Implement a predicate lminus(X,Y,Z) that succeeds with Z equal to
the logical numeral that encodes the difference between logical numerals X and
Y.

lminus(X,Y,Z) :- lplus(Y,Z,X).

Exercise: Implement a predicate ltimes(X,Y,Z) that succeeds with Z equal to
the logical numeral that encodes the product of logical numerals X and Y.

ltimes(0,Y,0).

ltimes(s(X),Y,Z) :- ltimes(X,Y,XY), lplus(XY,Y,Z).

Advanced Programming Languages

Features and Use Cases

Logical Arithmetic

Logical Arithmetic

Exercise: Implement a predicate lminus(X,Y,Z) that succeeds with Z equal to
the logical numeral that encodes the difference between logical numerals X and
Y.

lminus(X,Y,Z) :- lplus(Y,Z,X).

Exercise: Implement a predicate ltimes(X,Y,Z) that succeeds with Z equal to
the logical numeral that encodes the product of logical numerals X and Y.

ltimes(0,Y,0).

ltimes(s(X),Y,Z) :- ltimes(X,Y,XY), lplus(XY,Y,Z).

Advanced Programming Languages

Features and Use Cases

Cryptarithmetic

Cryptarithmetic Puzzles

AM
+ P M

D A Y

Exercise: Use Prolog to find a mapping from letters to digits such that:

no leftmost digit is a zero

no two letters are assigned the same digit

Specifically, solve([A,M,P,D,Y]) should succeed with a list of digits for the
corresponding letters satisfying all above constraints.

Advanced Programming Languages

Features and Use Cases

Cryptarithmetic

Cryptarithmetic Solution

AM
+ P M

D A Y

solve([A,M,P,D,Y]) :-
pick(M,[0,1,2,3,4,5,6,7,8,9],L1),
Y is (M+M) mod 10,
C1 is (M+M) // 10,
pick(Y,L1,L2),
pick(A,L2,L3), A \== 0,
pick(P,L3,L4), P \== 0,
A is (A+P+C1) mod 10,
D is (A+P+C1) // 10, D \== 0,
pick(D,L4,_).

Advanced Programming Languages

Features and Use Cases

Cryptarithmetic

Cryptarithmetic Solution

AM
+ P M

D A Y

solve([A,M,P,D,Y]) :-
pick(M,[0,1,2,3,4,5,6,7,8,9],L1),
Y is (M+M) mod 10,
C1 is (M+M) // 10,
pick(Y,L1,L2),
pick(A,L2,L3), A \== 0,
pick(P,L3,L4), P \== 0,
A is (A+P+C1) mod 10,
D is (A+P+C1) // 10, D \== 0,
pick(D,L4,_).

Advanced Programming Languages

Features and Use Cases

Cryptarithmetic

Cryptarithmetic Solution

AM
+ P M

D A Y

solve([A,M,P,D,Y]) :-
pick(M,[0,1,2,3,4,5,6,7,8,9],L1),
Y is (M+M) mod 10,
C1 is (M+M) // 10,
pick(Y,L1,L2),
pick(A,L2,L3), A \== 0,
pick(P,L3,L4), P \== 0,
A is (A+P+C1) mod 10,
D is (A+P+C1) // 10, D \== 0,
pick(D,L4,_).

Advanced Programming Languages

Features and Use Cases

Cryptarithmetic

Cryptarithmetic Solution

AM
+ P M

D A Y

solve([A,M,P,D,Y]) :-
pick(M,[0,1,2,3,4,5,6,7,8,9],L1),
Y is (M+M) mod 10,
C1 is (M+M) // 10,
pick(Y,L1,L2),
pick(A,L2,L3), A \== 0,
pick(P,L3,L4), P \== 0,
A is (A+P+C1) mod 10,
D is (A+P+C1) // 10, D \== 0,
pick(D,L4,_).

Advanced Programming Languages

Features and Use Cases

Cryptarithmetic

Cryptarithmetic Solution

AM
+ P M

D A Y

solve([A,M,P,D,Y]) :-
pick(M,[0,1,2,3,4,5,6,7,8,9],L1),
Y is (M+M) mod 10,
C1 is (M+M) // 10,
pick(Y,L1,L2),
pick(A,L2,L3), A \== 0,
pick(P,L3,L4), P \== 0,
A is (A+P+C1) mod 10,
D is (A+P+C1) // 10, D \== 0,
pick(D,L4,_).

Advanced Programming Languages

Features and Use Cases

Cryptarithmetic

Cryptarithmetic Solution

AM
+ P M

D A Y

solve([A,M,P,D,Y]) :-
pick(M,[0,1,2,3,4,5,6,7,8,9],L1),
Y is (M+M) mod 10,
C1 is (M+M) // 10,
pick(Y,L1,L2),
pick(A,L2,L3), A \== 0,
pick(P,L3,L4), P \== 0,
A is (A+P+C1) mod 10,
D is (A+P+C1) // 10, D \== 0,
pick(D,L4,_).

Advanced Programming Languages

Features and Use Cases

Cryptarithmetic

Cryptarithmetic Solution

AM
+ P M

D A Y

solve([A,M,P,D,Y]) :-
pick(M,[0,1,2,3,4,5,6,7,8,9],L1),
Y is (M+M) mod 10,
C1 is (M+M) // 10,
pick(Y,L1,L2),
pick(A,L2,L3), A \== 0,
pick(P,L3,L4), P \== 0,
A is (A+P+C1) mod 10,
D is (A+P+C1) // 10, D \== 0,
pick(D,L4,_).

Advanced Programming Languages

Features and Use Cases

Cryptarithmetic

Cryptarithmetic Solution

AM
+ P M

D A Y

solve([A,M,P,D,Y]) :-
pick(M,[0,1,2,3,4,5,6,7,8,9],L1),
Y is (M+M) mod 10,
C1 is (M+M) // 10,
pick(Y,L1,L2),
pick(A,L2,L3), A \== 0,
pick(P,L3,L4), P \== 0,
A is (A+P+C1) mod 10,
D is (A+P+C1) // 10, D \== 0,
pick(D,L4,_).

Advanced Programming Languages

Features and Use Cases

Cryptarithmetic

Cryptarithmetic Solution

AM
+ P M

D A Y

solve([A,M,P,D,Y]) :-
pick(M,[0,1,2,3,4,5,6,7,8,9],L1),
Y is (M+M) mod 10,
C1 is (M+M) // 10,
pick(Y,L1,L2),
pick(A,L2,L3), A \== 0,
pick(P,L3,L4), P \== 0,
A is (A+P+C1) mod 10,
D is (A+P+C1) // 10, D \== 0,
pick(D,L4,_).

Advanced Programming Languages

Features and Use Cases

Cut

Cut Operator

Predicate “!” always succeeds and cannot be backtracked over.
prunes the search tree when it appears
can make code significantly more difficult to understand and debug

Example: List membership

mem(X,[X|_]) :- !.

mem(X,[_|T]) :- mem(X,T).

How does this differ from pick(X,L)?
What happens if we delete the cut (and the whole first rule)?

Green vs. red cuts
Green cut: a cut that doesn’t change any success/failure if removed (only
improves efficiency)
Red cut: a non-green cut
Many logic programmers consider red cuts to be poor programming, and
consider green cuts to be at best a necessary evil.

Advanced Programming Languages

Features and Use Cases

Cut

Strategic Cuts

In this class:

I won’t require you to know anything about cuts (all problems solvable
without them).

You should avoid using cuts until you are a proficient logic programmer
(comfortable with most other aspects of the language).

If you use cuts, stick to green cuts only. (If you aren’t sure, you shouldn’t
be using cuts!)

Read more about them online (cuts surround much theory, history, and
opinion of logic programming!).

Advanced Programming Languages

Conclusion

Final Remarks

Prolog has no function calls!
f(...) as an argument to a predicate is a structure (not evaluated).
f(...) as a predicate sometimes feels like a function, but it’s not. It’s a search.
Easy to get confused if you’re an imperative or functional programmer.

Inputs vs. outputs
There are no functions, so there are no return values.
Many (most?) predicates are intended to work with certain arguments being
“inputs” and others being “outputs” (but they can be in any order).
If this is desired, I will try to be clear about it: mypredicate(X,Y,Out).
Really great solutions work correctly with any/all combinations of arguments
being bound and unbound!

Ordering
Success does not stop the program (e.g., user may press semicolon, caller
may backtrack, etc.)!
Correct code must never later succeed on wrong answers.

Grading and partial credit
Don’t write me a Java program. I’m evaluating whether you can think like a
logic programmer.
If you rely upon predicates we’ve defined in class or on homework, you must
define them again (because their exact definitions often affect whether your
code works).
Good logic programs are usually short (relative to imperative and even
functional code), elegant, and clear.

	Relational Programming
	Introduction to Prolog
	Syntax and Usage
	Backtracking Search
	Order Sensitivity

	Features and Use Cases
	Comparisons
	Disjunction
	Negation
	Arithmetic
	Lists
	Logical Arithmetic
	Cryptarithmetic
	Cut

	Conclusion

