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Large-step Operational Semantics

Large-step Judgments

A large-step judgment declares that a configuration converges to a store or
value:

command judgments 〈c, σ〉 ⇓ σ′ (σ′ ∈ Σ)

arithmetic judgments 〈a, σ〉 ⇓ n (n ∈ Z)

boolean judgments 〈b, σ〉 ⇓ p (p ∈ {T, F})

where “converges to” (⇓) means “terminates and returns a value of ...”

Advantages:
relatively simple to reason about (few inference rules)
good when code correctness means returning the correct result

Disadvantages:
mostly cannot prove things about non-terminating programs
insufficient when code correctness depends on what the program does as it
executes (e.g., side-effects)
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Small-step Operational Semantics

Alternative: Small-step Operational Semantics

Small-step Judgments

A small-step judgment declares that a configuration steps to a new
configuration:

command judgments 〈c, σ〉 →1 〈c′, σ′〉
arithmetic judgments 〈a, σ〉 →1 〈a′, σ′〉
boolean judgments 〈b, σ〉 →1 〈b′, σ′〉

where “steps to” (→1) means “keeps executing in this next configuration.”

Advantages:
can prove things about non-terminating code
can prove things about all machine states realized by a computation

Disadvantage:
more complex (more rules)
harder to reason about terminating programs (more induction)
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〈skip, σ〉 →1 〈?, ?〉
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Small-step Rule for skip

〈skip, σ〉 →1 〈skip, σ〉

This is incorrect. Why? What does this rule actually say?
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Small-step Rule for skip

Need a way to say that skip has no “next configuration.” It’s done.

Solution: No rule for skip!

Sometimes write: 〈skip, σ〉 6→1

Definition (final configuration): 〈skip, σ〉, 〈n, σ〉, 〈true, σ〉 and 〈false, σ〉
are final configurations for all σ ∈ Σ.
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?

〈c1;c2, σ〉 →1 〈?, ?〉
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Small-step Rule for Sequence

〈c1, σ〉 →1 〈c′1, σ′〉
(S1)

〈c1;c2, σ〉 →1 〈c′1;c2, σ′〉

But how do we ever execute c2?

Need some way to say, “If c1 can’t take any more steps, then work on c2.”

“can’t take any more steps” = “final configuration”
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Small-step Rules for Sequence

Solution: Two rules

〈c1, σ〉 →1 〈c′1, σ′〉
(S1)

〈c1;c2, σ〉 →1 〈c′1;c2, σ′〉

(S2)
〈skip;c2, σ〉 →1 〈c2, σ〉
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Small-step Rule for Assignment

〈v := a, σ〉 →1 〈?, ?〉
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Small-step Rule for Assignment

〈v := a, σ〉 →1 〈skip, σ[v 7→ a]〉
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Small-step Rule for Assignment

〈v := a, σ〉 →1 〈skip, σ[v 7→ a]〉

This is type-incorrect because a is not necessarily an integer.
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Small-step Rule for Assignment

〈a, σ〉 →1 〈n, σ〉
〈v := a, σ〉 →1 〈skip, σ[v 7→ n]〉

Still wrong: What if a takes many steps to finally yield an answer n?

Don’t confuse large-step and small-step semantics!
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Small-step Rules for Assignment

Solution: Again, two rules

〈a, σ〉 →1 〈a′, σ′〉
(S3)

〈v := a, σ〉 →1 〈v := a′, σ′〉

(S4)
〈v :=n, σ〉 →1 〈skip, σ[v 7→ n]〉
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Small-step Rules for Conditionals

For conditionals we need three rules:

〈b, σ〉 →1 〈b′, σ′〉
(S5)

〈if b then c1 else c2, σ〉 →1 〈if b′ then c1 else c2, σ
′〉

(S6)
〈if true then c1 else c2, σ〉 →1 〈c1, σ〉

(S7)
〈if false then c1 else c2, σ〉 →1 〈c2, σ〉
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Small-step Rule for While-loop

For while-loop we’ll use the same trick from large-step semantics:

(S8)
〈while b do c, σ〉 →1 〈if b then (c;while b do c) else skip, σ〉
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Other Small-step Rules

This completes the small-step rules for commands.

Also need rules for arithmetic and boolean judgments.
Nothing particularly surprising, but requires lots of rules (26 total)
See online lecture notes for full list.
Exercise: See if you can figure them out on your own, then check the notes.
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Definition (total relation): A relation R is total if every domain element x is
related to a range element y (i.e., ∀x,∃y, xR y).

Question: Is ⇓ a total relation?

In other words, is there any program c and store σ for which there is no σ′

satisfying 〈c, σ〉 ⇓ σ′?
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Definition (total relation): A relation R is total if every domain element x is
related to a range element y (i.e., ∀x,∃y, xR y).

Question: Is ⇓ a total relation?

In other words, is there any program c and store σ for which there is no σ′

satisfying 〈c, σ〉 ⇓ σ′?

Answer: ⇓ is not total. For example, if we choose c = while true do skip

(and any σ), there is no σ′ satisfying 〈c, σ〉 ⇓ σ′.

Follow-up question: What about aside from infinite loops?
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Properties of Derivation Systems

Totality

Definition (total relation): A relation R is total if every domain element x is
related to a range element y (i.e., ∀x,∃y, xR y).

Question: Is ⇓ a total relation?

Answer: ⇓ is not total. For example, if we choose c = while true do skip

(and any σ), there is no σ′ satisfying 〈c, σ〉 ⇓ σ′.

Follow-up question: What about aside from infinite loops?

Answer: We could also choose c = (x := y) and any σ such that y 6∈ σ←.

Two cases of non-totality:

1 infinite loops (limitation of large-step semantics)

2 uninitialized reads (intentionally implementation-defined)
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Ambiguity

Definition (ambiguity): A derivation system is said to be ambiguous if there
exists a judgment having multiple distinct derivations.

Question: Are our large-step semantics ambiguous?

In other words, is there some judgment 〈c, σ〉 ⇓ σ′ that is derivable in two
different ways?
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Properties of Derivation Systems

Ambiguity

Definition (ambiguity): A derivation system is said to be ambiguous if there
exists a judgment having multiple distinct derivations.

Question: Are our large-step semantics ambiguous?

In other words, is there some judgment 〈c, σ〉 ⇓ σ′ that is derivable in two
different ways?

Answer: No. For every judgment that’s derivable, there’s only one way to derive
it.
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Properties of Derivation Systems

Ambiguity

Derivation systems for real languages usually have ambiguity (and that’s okay
because it gives implementors choices).

Example: Adding these rules makes our system ambiguous.

〈b1, σ〉 ⇓ F
〈b1 && b2, σ〉 ⇓ F
〈b2, σ〉 ⇓ F

〈b1 && b2, σ〉 ⇓ F
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Properties of Derivation Systems

Determinism

Definition (deterministic): A relation R is deterministic (also called a
function) if every domain element x is related to at most one range element y
(i.e., ∀x, ∀y1, y2, (xR y1) ∧ (xR y2)⇒ y1 = y2).

Question: Is ⇓ deterministic?
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Determinism

Definition (deterministic): A relation R is deterministic (also called a
function) if every domain element x is related to at most one range element y
(i.e., ∀x, ∀y1, y2, (xR y1) ∧ (xR y2)⇒ y1 = y2).

Question: Is ⇓ deterministic?

Answer: Yes.
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Determinism

Our system would become non-deterministic if we added something like this:

a ::= · · · | rand

n ∈ Z
〈rand, σ〉 ⇓ n
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