Small-step Operational Semantics

CS 6371: Advanced Programming Languages

Kevin W. Hamlen

February 6, 2024

Advanced Programming Languages

L Small-step Operational Semantics

Large-step Operational Semantics

e-step Judgments

A large-step judgment declares that a configuration converges to a store or

value:
command judgments (c,o) | o’ (o' ex)
arithmetic judgments (a,0) § n (nez)
boolean judgments (b,o) U p (pe{T,F})

where “converges to” ({}) means “terminates and returns a value of ..."

= Advantages:

m relatively simple to reason about (few inference rules)

m good when code correctness means returning the correct result
m Disadvantages:

m mostly cannot prove things about non-terminating programs
m insufficient when code correctness depends on what the program does as it
executes (e.g., side-effects)

Advanced Programming Languages

L Small-step Operational Semantics

Small-step Operational Semantics

Alternative: Small-step Operational Semantics

Small-step Judg s

A small-step judgment declares that a configuration steps to a new
configuration:

command judgments (c,0) = (c/,0")
arithmetic judgments (a,0) = (a,0")
boolean judgments (b,a) = (b',0")

where “steps to” (—:) means “keeps executing in this next configuration.”

m Advantages:

m can prove things about non-terminating code
m can prove things about all machine states realized by a computation

m Disadvantage:

m more complex (more rules)
m harder to reason about terminating programs (more induction)

Advanced Programming Languages

L Small-step Operational Semantics

Small-step Rule for skip

(skip,0) =1 (7,7)

Advanced Programming Languages

L Small-step Operational Semantics

Small-step Rule for skip

(skip, o) =1 (skip, o)

This is incorrect. Why? What does this rule actually say?

Advanced Programming Languages

L Small-step Operational Semantics

Small-step Rule for skip

Need a way to say that skip has no “next configuration.” It's done.
Solution: No rule for skip!
Sometimes write: (skip, o) /1

Definition (final configuration): (skip, o), (n,o), (true,o) and (false,o)
are final configurations for all o € X..

Advanced Programming Languages

L Small-step Operational Semantics

Small-step Rule for Sequence

(cr3¢2,0) =1 (2,7)

Advanced Programming Languages

L Small-step Operational Semantics

Small-step Rule for Sequence

{c1,0) =1 (c1,0")
(cr3¢2,0) =1 (2,7)

Advanced Programming Languages

L Small-step Operational Semantics

Small-step Rule for Sequence

{c1,0) =1 (c1,0")

(c15¢2,0) =1 (cl;e2,07)

Advanced Programming Languages

L Small-step Operational Semantics

Small-step Rule for Sequence

{c1,0) =1 (c,0")

(S1)
{c1;¢2,0) =1 {c};c2,0")

But how do we ever execute c2?
Need some way to say, “If ¢; can’t take any more steps, then work on c2.”

“can't take any more steps” = “final configuration”

Advanced Programming Languages

L Small-step Operational Semantics

Small-step Rules for Sequence

Solution: Two rules

{e1,0) =1 (ch,0)

(s1)
{e15e2,0) =1 (chse2,0")

(S2)
(skip;c2,0) =1 {(c2,0)

Advanced Programming Languages

L Small-step Operational Semantics

Small-step Rule for Assignment

(vi=a,0) =1 (7,7)

Advanced Programming Languages

L Small-step Operational Semantics

Small-step Rule for Assignment

(v:=a,0) — (skip,ofv — al)

Advanced Programming Languages

L Small-step Operational Semantics

Small-step Rule for Assignment

(v:=a,0) — (skip,olv — a])

This is type-incorrect because a is not necessarily an integer.

Advanced Programming Languages

L Small-step Operational Semantics

Small-step Rule for Assignment

(a,0) =1 (n,0)

(v:=a,0) — (skip, o[v — n])

Still wrong: What if a takes many steps to finally yield an answer n?

Don't confuse large-step and small-step semantics!

Advanced Programming Languages

L Small-step Operational Semantics

Small-step Rules for Assignment

Solution: Again, two rules

<ll, 0> —1
VR (S3)
a,o) —n ,O

(vi=a.0)

o~ |~

a',o’)
vi=a

(S4)
(v:i=n,o) = (skip, olv — n])

Advanced Programming Languages

L Small-step Operational Semantics

Small-step Rules for Conditionals

For conditionals we need three rules:

{(b,a) — (b, 0")

(if b then c; else c2,0) — (if b’ then c; else c2,0”)

(S5)

(S6)
(if true then ¢ else c2,0) =1 (c1,0)

(87)
(if false then c; else c2,0) — {(c2,0)

Advanced Programming Languages

L Small-step Operational Semantics

Small-step Rule for While-loop

For while-loop we'll use the same trick from large-step semantics:

(s8)
(while b do ¢,0) — (if b then (c;while b do c) else skip, o)

Advanced Programming Languages

L Small-step Operational Semantics

Other Small-step Rules

m This completes the small-step rules for commands.
m Also need rules for arithmetic and boolean judgments.
m Nothing particularly surprising, but requires lots of rules (26 total)

m See online lecture notes for full list.
m Exercise: See if you can figure them out on your own, then check the notes.

Advanced Programming Languages

L Properties of Derivation Systems

Totality

Definition (total relation): A relation R is total if every domain element « is
related to a range element y (i.e., Vz,Jy, 2 R y).

Question: Is || a total relation?

In other words, is there any program c and store o for which there is no o’
satisfying (c,0) | 0’7

Advanced Programming Languages

L Properties of Derivation Systems

Totality

Definition (total relation): A relation R is total if every domain element x is
related to a range element y (i.e., Vz,3y,z R y).

Question: Is |} a total relation?

In other words, is there any program c and store o for which there is no o’
satisfying (c,o) || 0’7

Answer: | is not total. For example, if we choose ¢ = while true do skip
(and any o), there is no o' satisfying (c,o) | o’

Follow-up question: What about aside from infinite loops?

Advanced Programming Languages

L Properties of Derivation Systems

Totality

Definition (total relation): A relation R is total if every domain element z is
related to a range element y (i.e., Vz,3y,z R y).

Question: Is || a total relation?

Answer: |} is not total. For example, if we choose ¢ = while true do skip
(and any o), there is no o’ satisfying (c,o) | o’

Follow-up question: What about aside from infinite loops?
Answer: We could also choose ¢ = (x :=y) and any o such that y € 0.

Two cases of non-totality:
infinite loops (limitation of large-step semantics)

uninitialized reads (intentionally implementation-defined)

Advanced Programming Languages

L Properties of Derivation Systems

Ambiguity

Definition (ambiguity): A derivation system is said to be ambiguous if there
exists a judgment having multiple distinct derivations.

Question: Are our large-step semantics ambiguous?

In other words, is there some judgment (c, o) |} o’ that is derivable in two
different ways?

Advanced Programming Languages

L Properties of Derivation Systems

Ambiguity

Definition (ambiguity): A derivation system is said to be ambiguous if there
exists a judgment having multiple distinct derivations.

Question: Are our large-step semantics ambiguous?

In other words, is there some judgment (c, o) |} o’ that is derivable in two
different ways?

Answer: No. For every judgment that's derivable, there's only one way to derive
it.

Advanced Programming Languages

L Properties of Derivation Systems

Ambiguity

Derivation systems for real languages usually have ambiguity (and that's okay
because it gives implementors choices).

Example: Adding these rules makes our system ambiguous.
<b17 J) I F
<bl &&b270'> U F

<627U> I F
<b1&&b2,0’> UF

Advanced Programming Languages

L Properties of Derivation Systems

Determinism

Definition (deterministic): A relation R is deterministic (also called a
function) if every domain element x is related to at most one range element y
(e, Vz,Yy1,y2, (R y1) A (x Ry2) = y1 = y2).

Question: Is || deterministic?

Advanced Programming Languages

L Properties of Derivation Systems

Determinism

Definition (deterministic): A relation R is deterministic (also called a
function) if every domain element x is related to at most one range element y
(i.e., Vz,Vy1,y2, (Ry1) A (2 Ry2) = y1 = y2).

Question: Is || deterministic?

Answer: Yes.

Advanced Programming Languages

L Properties of Derivation Systems

Determinism

Our system would become non-deterministic if we added something like this:

au=--- | rand

n € Z
(rand,o) y n

	Small-step Operational Semantics
	Properties of Derivation Systems

