
Small-step Operational Semantics
CS 6371: Advanced Programming Languages

Kevin W. Hamlen

February 6, 2024



Advanced Programming Languages

Small-step Operational Semantics

Large-step Operational Semantics

Large-step Judgments

A large-step judgment declares that a configuration converges to a store or
value:

command judgments 〈c, σ〉 ⇓ σ′ (σ′ ∈ Σ)

arithmetic judgments 〈a, σ〉 ⇓ n (n ∈ Z)

boolean judgments 〈b, σ〉 ⇓ p (p ∈ {T, F})

where “converges to” (⇓) means “terminates and returns a value of ...”

Advantages:
relatively simple to reason about (few inference rules)
good when code correctness means returning the correct result

Disadvantages:
mostly cannot prove things about non-terminating programs
insufficient when code correctness depends on what the program does as it
executes (e.g., side-effects)



Advanced Programming Languages

Small-step Operational Semantics

Small-step Operational Semantics

Alternative: Small-step Operational Semantics

Small-step Judgments

A small-step judgment declares that a configuration steps to a new
configuration:

command judgments 〈c, σ〉 →1 〈c′, σ′〉
arithmetic judgments 〈a, σ〉 →1 〈a′, σ′〉
boolean judgments 〈b, σ〉 →1 〈b′, σ′〉

where “steps to” (→1) means “keeps executing in this next configuration.”

Advantages:
can prove things about non-terminating code
can prove things about all machine states realized by a computation

Disadvantage:
more complex (more rules)
harder to reason about terminating programs (more induction)



Advanced Programming Languages

Small-step Operational Semantics

Small-step Rule for skip

〈skip, σ〉 →1 〈?, ?〉



Advanced Programming Languages

Small-step Operational Semantics

Small-step Rule for skip

〈skip, σ〉 →1 〈skip, σ〉

This is incorrect. Why? What does this rule actually say?



Advanced Programming Languages

Small-step Operational Semantics

Small-step Rule for skip

Need a way to say that skip has no “next configuration.” It’s done.

Solution: No rule for skip!

Sometimes write: 〈skip, σ〉 6→1

Definition (final configuration): 〈skip, σ〉, 〈n, σ〉, 〈true, σ〉 and 〈false, σ〉
are final configurations for all σ ∈ Σ.



Advanced Programming Languages

Small-step Operational Semantics

Small-step Rule for Sequence

?

〈c1;c2, σ〉 →1 〈?, ?〉



Advanced Programming Languages

Small-step Operational Semantics

Small-step Rule for Sequence

〈c1, σ〉 →1 〈c′1, σ′〉
〈c1;c2, σ〉 →1 〈?, ?〉



Advanced Programming Languages

Small-step Operational Semantics

Small-step Rule for Sequence

〈c1, σ〉 →1 〈c′1, σ′〉
〈c1;c2, σ〉 →1 〈c′1;c2, σ′〉



Advanced Programming Languages

Small-step Operational Semantics

Small-step Rule for Sequence

〈c1, σ〉 →1 〈c′1, σ′〉
(S1)

〈c1;c2, σ〉 →1 〈c′1;c2, σ′〉

But how do we ever execute c2?

Need some way to say, “If c1 can’t take any more steps, then work on c2.”

“can’t take any more steps” = “final configuration”



Advanced Programming Languages

Small-step Operational Semantics

Small-step Rules for Sequence

Solution: Two rules

〈c1, σ〉 →1 〈c′1, σ′〉
(S1)

〈c1;c2, σ〉 →1 〈c′1;c2, σ′〉

(S2)
〈skip;c2, σ〉 →1 〈c2, σ〉



Advanced Programming Languages

Small-step Operational Semantics

Small-step Rule for Assignment

〈v := a, σ〉 →1 〈?, ?〉



Advanced Programming Languages

Small-step Operational Semantics

Small-step Rule for Assignment

〈v := a, σ〉 →1 〈skip, σ[v 7→ a]〉



Advanced Programming Languages

Small-step Operational Semantics

Small-step Rule for Assignment

〈v := a, σ〉 →1 〈skip, σ[v 7→ a]〉

This is type-incorrect because a is not necessarily an integer.



Advanced Programming Languages

Small-step Operational Semantics

Small-step Rule for Assignment

〈a, σ〉 →1 〈n, σ〉
〈v := a, σ〉 →1 〈skip, σ[v 7→ n]〉

Still wrong: What if a takes many steps to finally yield an answer n?

Don’t confuse large-step and small-step semantics!



Advanced Programming Languages

Small-step Operational Semantics

Small-step Rules for Assignment

Solution: Again, two rules

〈a, σ〉 →1 〈a′, σ′〉
(S3)

〈v := a, σ〉 →1 〈v := a′, σ′〉

(S4)
〈v :=n, σ〉 →1 〈skip, σ[v 7→ n]〉



Advanced Programming Languages

Small-step Operational Semantics

Small-step Rules for Conditionals

For conditionals we need three rules:

〈b, σ〉 →1 〈b′, σ′〉
(S5)

〈if b then c1 else c2, σ〉 →1 〈if b′ then c1 else c2, σ
′〉

(S6)
〈if true then c1 else c2, σ〉 →1 〈c1, σ〉

(S7)
〈if false then c1 else c2, σ〉 →1 〈c2, σ〉



Advanced Programming Languages

Small-step Operational Semantics

Small-step Rule for While-loop

For while-loop we’ll use the same trick from large-step semantics:

(S8)
〈while b do c, σ〉 →1 〈if b then (c;while b do c) else skip, σ〉



Advanced Programming Languages

Small-step Operational Semantics

Other Small-step Rules

This completes the small-step rules for commands.

Also need rules for arithmetic and boolean judgments.
Nothing particularly surprising, but requires lots of rules (26 total)
See online lecture notes for full list.
Exercise: See if you can figure them out on your own, then check the notes.



Advanced Programming Languages

Properties of Derivation Systems

Totality

Definition (total relation): A relation R is total if every domain element x is
related to a range element y (i.e., ∀x,∃y, xR y).

Question: Is ⇓ a total relation?

In other words, is there any program c and store σ for which there is no σ′

satisfying 〈c, σ〉 ⇓ σ′?



Advanced Programming Languages

Properties of Derivation Systems

Totality

Definition (total relation): A relation R is total if every domain element x is
related to a range element y (i.e., ∀x,∃y, xR y).

Question: Is ⇓ a total relation?

In other words, is there any program c and store σ for which there is no σ′

satisfying 〈c, σ〉 ⇓ σ′?

Answer: ⇓ is not total. For example, if we choose c = while true do skip

(and any σ), there is no σ′ satisfying 〈c, σ〉 ⇓ σ′.

Follow-up question: What about aside from infinite loops?



Advanced Programming Languages

Properties of Derivation Systems

Totality

Definition (total relation): A relation R is total if every domain element x is
related to a range element y (i.e., ∀x,∃y, xR y).

Question: Is ⇓ a total relation?

Answer: ⇓ is not total. For example, if we choose c = while true do skip

(and any σ), there is no σ′ satisfying 〈c, σ〉 ⇓ σ′.

Follow-up question: What about aside from infinite loops?

Answer: We could also choose c = (x := y) and any σ such that y 6∈ σ←.

Two cases of non-totality:

1 infinite loops (limitation of large-step semantics)

2 uninitialized reads (intentionally implementation-defined)



Advanced Programming Languages

Properties of Derivation Systems

Ambiguity

Definition (ambiguity): A derivation system is said to be ambiguous if there
exists a judgment having multiple distinct derivations.

Question: Are our large-step semantics ambiguous?

In other words, is there some judgment 〈c, σ〉 ⇓ σ′ that is derivable in two
different ways?



Advanced Programming Languages

Properties of Derivation Systems

Ambiguity

Definition (ambiguity): A derivation system is said to be ambiguous if there
exists a judgment having multiple distinct derivations.

Question: Are our large-step semantics ambiguous?

In other words, is there some judgment 〈c, σ〉 ⇓ σ′ that is derivable in two
different ways?

Answer: No. For every judgment that’s derivable, there’s only one way to derive
it.



Advanced Programming Languages

Properties of Derivation Systems

Ambiguity

Derivation systems for real languages usually have ambiguity (and that’s okay
because it gives implementors choices).

Example: Adding these rules makes our system ambiguous.

〈b1, σ〉 ⇓ F
〈b1 && b2, σ〉 ⇓ F
〈b2, σ〉 ⇓ F

〈b1 && b2, σ〉 ⇓ F



Advanced Programming Languages

Properties of Derivation Systems

Determinism

Definition (deterministic): A relation R is deterministic (also called a
function) if every domain element x is related to at most one range element y
(i.e., ∀x, ∀y1, y2, (xR y1) ∧ (xR y2)⇒ y1 = y2).

Question: Is ⇓ deterministic?



Advanced Programming Languages

Properties of Derivation Systems

Determinism

Definition (deterministic): A relation R is deterministic (also called a
function) if every domain element x is related to at most one range element y
(i.e., ∀x, ∀y1, y2, (xR y1) ∧ (xR y2)⇒ y1 = y2).

Question: Is ⇓ deterministic?

Answer: Yes.



Advanced Programming Languages

Properties of Derivation Systems

Determinism

Our system would become non-deterministic if we added something like this:

a ::= · · · | rand

n ∈ Z
〈rand, σ〉 ⇓ n


	Small-step Operational Semantics
	Properties of Derivation Systems

