Large-step Operational Semantics

Large-step Judgments

A large-step judgment declares that a configuration converges to a store or value:

- **command judgments** \[\langle c, \sigma \rangle \Downarrow \sigma' \quad (\sigma' \in \Sigma) \]
- **arithmetic judgments** \[\langle a, \sigma \rangle \Downarrow n \quad (n \in \mathbb{Z}) \]
- **boolean judgments** \[\langle b, \sigma \rangle \Downarrow p \quad (p \in \{T, F\}) \]

where “converges to” (\(\Downarrow\)) means “terminates and returns a value of ...”

- **Advantages:**
 - relatively simple to reason about (few inference rules)
 - good when code correctness means returning the correct result

- **Disadvantages:**
 - mostly cannot prove things about non-terminating programs
 - insufficient when code correctness depends on what the program does as it executes (e.g., side-effects)
Small-step Operational Semantics

Alternative: Small-step Operational Semantics

Small-step Judgments

A small-step judgment declares that a configuration **steps to** a new configuration:

- **command judgments**
 \[\langle c, \sigma \rangle \rightarrow_1 \langle c', \sigma' \rangle \]
- **arithmetic judgments**
 \[\langle a, \sigma \rangle \rightarrow_1 \langle a', \sigma' \rangle \]
- **boolean judgments**
 \[\langle b, \sigma \rangle \rightarrow_1 \langle b', \sigma' \rangle \]

where “steps to” \(\rightarrow_1 \) means “keeps executing in this next configuration.”

- **Advantages:**
 - can prove things about non-terminating code
 - can prove things about all machine states realized by a computation

- **Disadvantage:**
 - more complex (more rules)
 - harder to reason about terminating programs (more induction)
Small-step Rule for skip

\[\langle \text{skip}, \sigma \rangle \rightarrow_1 \langle ?, ? \rangle \]
Small-step Rule for \textit{skip}

\[
\langle \text{skip}, \sigma \rangle \rightarrow_1 \langle \text{skip}, \sigma \rangle
\]

This is incorrect. Why? What does this rule actually say?
Small-step Rule for \textit{skip}

Need a way to say that \textit{skip} has no “next configuration.” It’s done.

Solution: No rule for \textit{skip}!

Sometimes write: $\langle \text{skip}, \sigma \rangle \not\rightarrow_1$

\textbf{Definition (final configuration):} $\langle \text{skip}, \sigma \rangle$, $\langle n, \sigma \rangle$, $\langle \text{true}, \sigma \rangle$ and $\langle \text{false}, \sigma \rangle$ are final configurations for all $\sigma \in \Sigma$.
Small-step Rule for Sequence

\[
\begin{align*}
\langle c_1 ; c_2, \sigma \rangle & \rightarrow_1 \langle ?, ? \rangle \\
\end{align*}
\]
Small-step Rule for Sequence

\[
\langle c_1, \sigma \rangle \rightarrow_1 \langle c'_1, \sigma' \rangle \\
\langle c_1 ; c_2, \sigma \rangle \rightarrow_1 \langle ?, ? \rangle
\]
Small-step Rule for Sequence

\[\langle c_1, \sigma \rangle \rightarrow_1 \langle c'_1, \sigma' \rangle \]

\[\langle c_1; c_2, \sigma \rangle \rightarrow_1 \langle c'_1; c_2, \sigma' \rangle \]
Small-step Rule for Sequence

\[
\langle c_1, \sigma \rangle \rightarrow_1 \langle c'_1, \sigma' \rangle \\
\langle c_1 ; c_2, \sigma \rangle \rightarrow_1 \langle c'_1 ; c_2, \sigma' \rangle \tag{S1}
\]

But how do we ever execute \(c_2 \)?

Need some way to say, “If \(c_1 \) can’t take any more steps, then work on \(c_2 \).”

“can’t take any more steps” = “final configuration”
Solution: Two rules

\[
\begin{align*}
\langle c_1, \sigma \rangle \xrightarrow{1} \langle c'_1, \sigma' \rangle \\
\langle c_1; c_2, \sigma \rangle \xrightarrow{1} \langle c'_1; c_2, \sigma' \rangle \\
\langle \text{skip}; c_2, \sigma \rangle \xrightarrow{1} \langle c_2, \sigma \rangle
\end{align*}
\]
Small-step Rule for Assignment

\[\langle v := a, \sigma \rangle \rightarrow_1 \langle ?, ? \rangle \]
Small-step Rule for Assignment

\[
\langle v := a, \sigma \rangle \rightarrow_1 \langle \text{skip}, \sigma[v \mapsto a] \rangle
\]
Small-step Rule for Assignment

\[\langle v := a, \sigma \rangle \rightarrow_1 \langle \text{skip}, \sigma[v \mapsto a] \rangle \]

This is type-incorrect because \(a \) is not necessarily an integer.
Small-step Rule for Assignment

\[
\begin{align*}
\langle a, \sigma \rangle & \rightarrow_1 \langle n, \sigma \rangle \\
\langle v := a, \sigma \rangle & \rightarrow_1 \langle \text{skip}, \sigma[v \mapsto n] \rangle
\end{align*}
\]

Still wrong: What if \(a \) takes many steps to finally yield an answer \(n \)?

Don’t confuse large-step and small-step semantics!
Solution: Again, two rules

\[
\begin{align*}
\langle a, \sigma \rangle & \rightarrow_1 \langle a', \sigma' \rangle \\
\langle v := a, \sigma \rangle & \rightarrow_1 \langle v := a', \sigma' \rangle \\
\langle v := n, \sigma \rangle & \rightarrow_1 \langle \text{skip}, \sigma[v \mapsto n] \rangle
\end{align*}
\]
Small-step Rules for Conditionals

For conditionals we need three rules:

\[
\langle b, \sigma \rangle \rightarrow_1 \langle b', \sigma' \rangle \quad (S5)
\]

\[
\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \sigma \rangle \rightarrow_1 \langle \text{if } b' \text{ then } c_1 \text{ else } c_2, \sigma' \rangle \quad (S6)
\]

\[
\langle \text{if true then } c_1 \text{ else } c_2, \sigma \rangle \rightarrow_1 \langle c_1, \sigma \rangle \quad (S6)
\]

\[
\langle \text{if false then } c_1 \text{ else } c_2, \sigma \rangle \rightarrow_1 \langle c_2, \sigma \rangle \quad (S7)
\]
For while-loop we’ll use the same trick from large-step semantics:

\[
\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow_1 \langle \text{if } b \text{ then } (c; \text{while } b \text{ do } c) \text{ else } \text{skip}, \sigma \rangle^{(S8)}
\]
This completes the small-step rules for commands.

Also need rules for arithmetic and boolean judgments.
- Nothing particularly surprising, but requires lots of rules (26 total)
- See online lecture notes for full list.
- Exercise: See if you can figure them out on your own, then check the notes.
Definition (total relation): A relation R is total if every domain element x is related to a range element y (i.e., $\forall x, \exists y, x \, R \, y$).

Question: Is \downarrow a total relation?

In other words, is there any program c and store σ for which there is no σ' satisfying $\langle c, \sigma \rangle \, \downarrow \, \sigma'$?
Totality

Definition (total relation): A relation \mathcal{R} is total if every domain element x is related to a range element y (i.e., $\forall x, \exists y, x \mathcal{R} y$).

Question: Is \downarrow a total relation?

In other words, is there any program c and store σ for which there is no σ' satisfying $\langle c, \sigma \rangle \downarrow \sigma'$?

Answer: \downarrow is not total. For example, if we choose $c = \text{while true do skip}$ (and any σ), there is no σ' satisfying $\langle c, \sigma \rangle \downarrow \sigma'$.

Follow-up question: What about aside from infinite loops?
Definition (total relation): A relation \mathcal{R} is total if every domain element x is related to a range element y (i.e., $\forall x, \exists y, x \mathcal{R} y$).

Question: Is \downarrow a total relation?

Answer: \downarrow is not total. For example, if we choose $c = \text{while true do skip}$ (and any σ), there is no σ' satisfying $\langle c, \sigma \rangle \downarrow \sigma'$.

Follow-up question: What about aside from infinite loops?

Answer: We could also choose $c = (x := y)$ and any σ such that $y \notin \sigma^{-}$.

Two cases of non-totality:

1. infinite loops (limitation of large-step semantics)
2. uninitialized reads (intentionally implementation-defined)
Definition (ambiguity): A derivation system is said to be **ambiguous** if there exists a judgment having multiple distinct derivations.

Question: Are our large-step semantics ambiguous?

In other words, is there some judgment $\langle c, \sigma \rangle \Downarrow \sigma'$ that is derivable in two different ways?
Definition (ambiguity): A derivation system is said to be **ambiguous** if there exists a judgment having multiple distinct derivations.

Question: Are our large-step semantics ambiguous?

In other words, is there some judgment $\langle c, \sigma \rangle \Downarrow \sigma'$ that is derivable in two different ways?

Answer: No. For every judgment that’s derivable, there’s only one way to derive it.
Ambiguity

Derivation systems for real languages usually have ambiguity (and that’s okay because it gives implementors choices).

Example: Adding these rules makes our system ambiguous.

\[
\begin{align*}
\langle b_1, \sigma \rangle & \Downarrow F \\
\langle b_1 \&\& b_2, \sigma \rangle & \Downarrow F \\
\langle b_2, \sigma \rangle & \Downarrow F \\
\langle b_1 \&\& b_2, \sigma \rangle & \Downarrow F
\end{align*}
\]
Definition (deterministic): A relation \(R \) is deterministic (also called a function) if every domain element \(x \) is related to at most one range element \(y \) (i.e., \(\forall x, \forall y_1, y_2, (x \ R \ y_1) \land (x \ R \ y_2) \Rightarrow y_1 = y_2 \)).

Question: Is \(\downarrow \) deterministic?
Determinism

Definition (deterministic): A relation \mathcal{R} is deterministic (also called a function) if every domain element x is related to at most one range element y (i.e., $\forall x, \forall y_1, y_2, (x \mathcal{R} y_1) \land (x \mathcal{R} y_2) \Rightarrow y_1 = y_2$).

Question: Is \downarrow deterministic?

Answer: Yes.
Determinism

Our system would become non-deterministic if we added something like this:

\[a ::= \cdots | \text{rand} \]

\[
\begin{align*}
 n \in \mathbb{Z} \\
 \langle \text{rand}, \sigma \rangle \Downarrow n
\end{align*}
\]