Static Semantics

CS 4301/6371: Advanced Programming Languages

Kevin W. Hamlen

Febrary 29, 2024

Advanced Programming Languages

L Introduction

Introduction

Steps for designing a new programming language:
Formally define the syntax using BNF
Formally define operational or denotational semantics (or both)
Prove semantic equivalence if you have multiple semantics

Today: Formally define a static semantics (type theory)

Advanced Programming Languages
L SiMPL With Bools

Extending the Syntax

Let's add support for boolean variables to SIMPL:

arithmetic expressions a x=n |v | ai1+az | a1 -az | a1 *az

boolean expressions b = true | false | v | a1 <=az | b1 && b2 | b1 |1 b2 | b

commands cu=skip | c1;¢c2 |vi=a | v:=b| if b then ¢y else co | while bdo ¢
variable names v

integer constants n

Q: Unfortunately there's a problem with this new grammar. What?

Advanced Programming Languages
L SiMPL With Bools

Extending the Syntax

Let's add support for boolean variables to SIMPL:

arithmetic expressions a x=n|v | a1+az | a1 -az2 | a1 *az

boolean expressions b = true | false | v | a1 <=az | by &&ba | b1 |1ba | b

commands cu=skip | c1;¢c2 |vi=a | v:=b| if b then ¢y else co | while bdo ¢
variable names v

integer constants n

Q: Unfortunately there's a problem with this new grammar. What?

A: It's ambiguous (recall definition of ambiguity).

Example: x:=y (Is y a b or an a?)
Or even worse: y :=true;x :=y+1

Advanced Programming Languages
L SiMPL With Bools

Disambiguating the Syntax

How to fix? Three typical options:
Add extra syntax (e.g., Arith(v) and Bool(v) instead of v)
m really annoying; programmers hate it!
Find an interpretation for everything (e.g., true +1 = 2)
m results in a chaotic language
m bad for debugging, readability, maintainability, security, ...

The right solution: Coalesce the syntax and introduce a static semantics!

Advanced Programming Languages

L SiMPL With Bools

Coalesce the S

expressions ex=mn|v|e+ex|er-ex|er*en
| true | false | e1 <=e2 | e1 &&e2 | e1llea | le

skip | ¢1;¢2 | v:i=e | if e then c; else ¢z | while e do ¢

commands
variable names v

integer constants n

Advanced Programming Languages
L SiMPL With Bools

Add Type Declarations

expressions en=mn|v|e tes | e1-ex]er*er
| true | false | e;<=e3 | e1 &&ex | e llea | le

c1;c2 | vi=e | if e then ¢y else ¢ | while e do ¢ | int v | bool v

commands c = skip
variable names v

integer constants n

Declarations have no effect at runtime:

(int v,0) —: (skip, o) (bool v,0) — (skip, o)

Advanced Programming Languages
L SiMPL With Bools

Many Stuck States

expressions ex=mn|v|eites | e1-e2]er*er
| true | false | e;<=ex | e1 &&ex | e1 llex | le
commands ¢ u=skip | c1;¢2 | v:i=e | if e then ¢y else ¢y | while e do ¢ | int v | bool v

variable names

<

integer constants n

Declarations have no effect at runtime:

(int v,0) —: (skip, o) (bool v,0) — (skip, o)

We disambiguated the grammar, but now there are many stuck states!
Example: (true+3,0) (and of course we still have (x, 1))

Advanced Programming Languages
L—Static Semantics of SIMPL

Intro to Static Semantics

Static Semantics: Deductive rules that, when combined with syntax
restrictions, define the set of legal programs by precluding stuck states.

types 7 u=1int | bool
typing contexts Fiv—r

typing judgments I'kFe:r “T" proves that e has type 7"

Advanced Programming Languages
L—Static Semantics of SIMPL

Intro to Static Semantics

Static Semantics: Deductive rules that, when combined with syntax
restrictions, define the set of legal programs by precluding stuck states.

types T u=1int | bool
typing contexts IF:iv—(rx{T,F})

typing judgments I'ke: 7 “T" proves that e has type 7'

Intuition: I'(v) = (int, T) means v is an integer and is definitely initialized.

Advanced Programming Languages
L—Static Semantics of SIMPL

Primitive Typing Judgments

Define derivation rules that prove typing judgments. Easy ones:

——(28)
I'kn:int

—(29)
I'F true : bool

—(30)
I' - false : bool

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Arithmetic Operations

?

I'Fei+ex:?

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Arithmetic Operations

I'eq:int I'Fes:int

I'key+es:int

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Arithmetic Operations

I'key+es:int

Advanced Programming Languages

L—Static Semantics of SIMPL

Typing Arithmetic Operations

I'kep:int I'kes:int

I'kei+es:int

We need these premises!

Remember: The goal of a static semantics is to preclude stuck states, not infer a
type for as many expressions as possible!

Rejecting bad programs helps the programmer!

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Boolean Operations

?
I'kei&&kes : 7

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Boolean Operations

I'F ey : bool '+ es : bool
'k e &&es : bool

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Comparisons

I'kei<=ey:?

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Comparisons

I'eq:int I'Fes:int
T'Fei<=es : bool

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Variable Reads

'Fov:?

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Variable Reads

I'(v) = (7,p)
'Fo:r

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Variable Reads

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Commands

Other rules for expressions are similar (see assignment).

Q: How do we type-check commands?

I'ke:?

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Commands

Other rules for expressions are similar (see assignment).

Q: How do we type-check commands?

I'ke: T

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Skip

(1)
I'Fskip: T

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Sequence

I'kFerjen i ?

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Sequence

F|—61:F2 FQ"CQZF/Q

4)
TFerzen: T

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Declarations

I'Fintov:?

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Declarations

I'kint v: v (int, F)]

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Declarations

veg '
I'Fint v: v~ (int, F)]

(22)

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Declarations

vg '™
I'Fint v: v~ (int, F)]

(22)

vg '
'+ bool v : I'[v + (bool, F')]

(23)

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Assignments

F'Fov:i=e:?

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Assignments

I'kFe:r
F'Fov:i=e:?

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Assignments

F'kFe:r I(v) = (r,T)
I'Fwv:

]
[
—

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Assignments

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Conditionals

?

I'Fif e thency elsecy : 7

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Conditionals

T'Fe: bool ke :? ?kFey:?

I'Fif e thency elsecy : 7

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Conditionals

'+ e: bool I'te: Iy I'Feo:Ts
I'Fif e thency elsecy : 7

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Conditionals

'+ e: bool I'te: Iy I'Feo:Ts
I'Fif ethency elsecy: I’

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Conditionals

I'+ e : bool I'ker: T FFCQ:I‘Q(%)
I'if e then ¢1 else o : I

Optional Exercise: See if you can come up with a better choice than T.
® Your choice must not permit stuck states!
m But it should admit as many non-stuck programs as possible.

(But for the assignment, just implement the given rule.)

Advanced Programming Languages
L—Static Semantics of SIMPL

Typing Loops

Same strategy for loops:

T'ke: bool FF01:F1(27)
I'+whileedoci : T

(Not many better choices this time. Why?)

Advanced Programming Languages
L—Static Semantics of SIMPL

Devising Static Semantics

Definition (well-typed): A command c is well-typed if | I c: T is derivable
for some I".

Definition (type-checker): A decision procedure for L - c: T" is called a
type-checker.

Recall two possible interpretations of derivation rules:
m The rules form an implementation recipe for a type-checker.

m The rules extend propositional logic, allowing us to prove things about code
(e.g., assuming a program is well-typed gives us extra reasoning power).

A good static semantics:

m Catches all (or most) stuck states before runtime (type-safety)
m s deterministic!

m Don't put operational/denotational semantics inside static semantics!
m “In order to find out whether the program is safe, first run the program ..."”

m Isn't so restrictive that it rules out important functionalities.

	Introduction
	SIMPL With Bools
	Static Semantics of SIMPL

