Typed A-calculus

CS 4301/6371: Advanced Programming Languages

Kevin W. Hamlen

April 4, 2024

Advanced Programming Languages

L Simply-typed A-calculus

Syntax additions

Let's add simple types to A-calculus...

Two syntactic changes from untyped A-calculus:
m Require function arguments to be explicitly typed.

m Add a primitive type and value (e.g., unit).

ex= 0 |v]| T.e| erea

Tu=unit | 71 — T2

Now we need a static semantics:

Fiv—r7 (typing contexts)
The:r (typing judgments)

Advanced Programming Languages

L Simply-typed A-calculus

Typing Rules

' O :unit

F'kov:T'(v)

Tv—mnlke:m

I'HXvme:m —

F|—61:7'1—>7'2 F|—6217'1

I'kees:m

Advanced Programming Languages

L Simply-typed A-calculus

Operational Semantics

Operational semantics are unchanged:

e1 — €}

erez — ehes

(B-reduction)

(AviT.e1)es = erfez/v]

Called simply-typed \-calculus (A—)

Advanced Programming Languages

L Simply-typed A-calculus

More simply-typed A-calculus

More simple types and operations commonly included in A_;:

ex=Q |v | vTe | eler
| n| el aop ez

| true | false | e1 bop ez

| ex cmp ez
| (e1,e2) | me | mae
| inT1T72¢ | in]tT72e

| (case e of ini(v1) — e1 | ina(v2) — e2)

Tu=wunit | it | bool | 71 = T2 | 1 X T2 | T1 + T2 | void

(as before)
integers
booleans

int comparisons
pairs

injections

case distinction

types

Advanced Programming Languages

L Simply-typed A-calculus

Pairs

Pairs are like in OCaml:
m (e1,e2) constructs a pair of values (any types)
m 7 extracts (“projects”) the first value of a pair (like £st in OCaml)
m 7 projects second value (like snd)

m Pairs have type 71 X 72 (like 71 * 72 in OCaml)

Ther:mm Thes:m Fke:mmxm i€{l,2}

't (e1,e2) : 71 X T2 I'Fme: T

Statics:

erdur ezl us el (u1,u2) i€{1,2}

(e1,e2) I (u1,u2) mie | u;

Large-step:

Advanced Programming Languages

L Simply-typed A-calculus

Injections

Injections are like OCaml variant types:

m in]' 172 (e) and inJt 772 (e) are like writing Constructori(e) and
Constructor2(e) in OCaml, with the following type definition:
type ti_plus_t2 = Constructorl of 7; | Constructor2 of 73
m Destruct injections with (case e of inj(vi)— e1 | inp(v2)— e2)
m Works like match—with in OCaml

m Injections have type 71 + 72

m Restriction to only two variants is not really a limitation; just nest them (e.g.,
1+ (2 + (134 -1))).

T'ke:7m 1€{1,2} 'kFe:m1 4+ 72

X Tlvi—=7m]ker:7 D m]kex:T
Statics:
TFin™ T 2¢ .7 + 7 I't (case e of iny(v1) — e1 | ing(ve) — e2) : T
i
elu i€{1,2} el inju eifu/vi] I i€ {1,2}
Large-step: - - - 7
in] " 2e |} inju (case e of inj(v1) — e1 | ina(v2) — e2) Y u

Advanced Programming Languages

L Simply-typed A-calculus

Void type

T u=wunit | int | bool | 1 = T2 | 7L X T2 | 71 + T2 | woid
Catalog of simple types:
m () is the only value of type unit
integers have type int
booleans have type bool
functions have type 71 — T

pairs have type 71 X T2

injections have type 71 + T2
m nothing has type void

Why would we want a valueless type like void?
One reason: Create opaque (uncallable) functions for encoding purposes.
Example: Az:void.z is uncallable

Can encode Church numerals without risking expansion (e.g., Az:void.z = Oy,
(false,On) = 1y, etc.)

Advanced Programming Languages

L X_, with Fixpoints

Strong Normalization

Challenge: Can you write an infinite loop in A7
First attempt: (Az:7.xx)(Az:7.27)
But we need to fill in the types in order to have a legal term for A_,.

(And the term must be well-typed according to the static semantics!)
So we need types 7 and 7’ for which we can complete the following derivation:

lFXerze T — 1

Advanced Programming Languages

L X_, with Fixpoints

Strong Normalization

Challenge: Can you write an infinite loop in A7
First attempt: (Az:7.xx)(Az:7.27)
But we need to fill in the types in order to have a legal term for A_,.

(And the term must be well-typed according to the static semantics!)
So we need types 7 and 7’ for which we can complete the following derivation:

{(z,")} Faz: 7
lFXerze T — 1

Advanced Programming Languages

L X_, with Fixpoints

Strong Normalization

Challenge: Can you write an infinite loop in A7
First attempt: (Az:7.xx)(Az:7.27)

But we need to fill in the types in order to have a legal term for A_,.
(And the term must be well-typed according to the static semantics!)
So we need types 7 and 7’ for which we can complete the following derivation:

{(z, ")} a7 — 7 {(z,")}Fa:T
{(z,")} Faz: 7
lFXerze T — 1

Advanced Programming Languages

L X_, with Fixpoints

Strong Normalization

Challenge: Can you write an infinite loop in A7
First attempt: (Az:7.xx)(Az:7.27)

But we need to fill in the types in order to have a legal term for A_,.
(And the term must be well-typed according to the static semantics!)
So we need types 7 and 7’ for which we can complete the following derivation:

{(z, ")} a7 — 7 {(z,")}Fa:T
{(z,")} Faz: 7
lFXerze T — 1

Conclusion: 7 =1 — 7’ for some 7'.

Advanced Programming Languages

L X_, with Fixpoints

Strong Normalization

Challenge: Can you write an infinite loop in A7
First attempt: (Az:7.xx)(Az:7.27)

But we need to fill in the types in order to have a legal term for A_,.
(And the term must be well-typed according to the static semantics!)
So we need types 7 and 7’ for which we can complete the following derivation:

{(z, ")} a7 — 7 {(z,")}Fa:T
{(z,")} Faz: 7
lFXerze T — 1

Conclusion: 7 =7 — 7’ for some 7'.
Impossible! (7 can’t be bigger than itself!)

Advanced Programming Languages

L X_, with Fixpoints

Strong Normalization

Weird facts:
m It's impossible to write a non-terminating loop in A_;.

m Full proof involves finding a normal form to which every term (eventually)
reduces.
m Languages with this property are called strongly normalizing.

m)\, is not Turing-complete.
m How did merely adding some types lose so much power...?

How to fix?

One solution: Add a primitive fix operator...

Advanced Programming Languages

L X_, with Fixpoints

Fixpoint Operator

Fixpoint operator fix acts like the Y-combinator:

Trte:(r—=7)=(1—7)

Statics: ;
It fix(e):7— 7

e | it eolfix(e)/v] Y u
fix(e) J u

Large-step:
(Basis for let rec in OCaml)

Convention: From now on when we refer to “simply-typed A-calculus (A-)", we
will assume it includes all of the aforementioned operators but not fix. To add
fix, we will say “simply-typed A-calculus with fixpoints.”

Advanced Programming Languages

L Extensions to A

Non-simple types

Extending A_, to non-simple types:
parametric polymorphism ()2, also called System F)

m OCaml includes parametric polymorphism but not full System F.
m Supported by Haskell and OCaml with recursive types extension

parametrically polymorphic datatypes ()
m OCaml example: type ’a tree = Empty | Node of (’a * ’a tree * ’a tree)
dependent types (Am)

m not available in OCaml or Haskell
m Recommended language: Gallina (Coq)

In this class we will only study formalisms for System F.

Advanced Programming Languages

L Extensions to A

The A-cube

Aw %)\c

gud

A%%)\n

Advanced Programming Languages
LSystem F

Intro to System F

ex=--- | Aa.e polymorphic abstraction

| e[7] polymorphic instantiation
Ti=- | type variables

| V. universal types

Polymorphic abstractions are functions from types to terms:

(Aa.e)[r] =1 e[T/a]

Advanced Programming Languages
LSystem F

Polymorphic Function Examples

Example #1: Polymorphic identity function Aa.\z:a.x
(AaAz:a.x)[int](3) =1 (Az:int.z)(3) =1 3
(AaAz:a.x)[bool](false) —1 (Az:bool.x)(false) —; false
Example #2: Polymorphic application function Aa.AB.Af:a—B. \x:a. fx
(Aa. ABAf:a— B \x:a. fz)[int][bool] ((>)1)(3)
—1 (ABAfrint— B \xzint. f2)[bool]((>)1)(3)
—1 (Afrint—bool Az:int. fz)((>)1)(3)
—1 (Azzint.((>) 1x))(3)

—, false

Advanced Programming Languages
LSystem F

Static Semantics of System F

Fke:r I'ke:Va.r’
'+ Aae : Va.r Tkelr]:7'[r/q]
Example #1: Polymorphic identity function

(AaAz:a.x) :Va.(a — a)
(A Az:aex)[int] :int — int
(Ao Az:aex)[int]3 : int

Example #2: Polymorphic application function

VaVB.((a—= B) = a— pB)
:VB.((int — B) — int — B)
bool] : (int — bool) — int — bool
bool]((>)1) :int — bool
bool]((>)1)(3) : bool

(Aa.ABAf:a—=p Az f)
(Aa.ABAf:a—B. . fx)[int]
(Aa.ABAf:a—B v fx)[int][
(Aa.ABAf:a— B x:a. fz)[int][
(Aa.ABAf:a— B x:a. fz)[int][

Advanced Programming Languages

L Curry-Howard Isomorphism

Type Inhabitation

Definition (type inhabitation): A type 7 is said to be inhabited if there exists a
term e having type 7.

Q: Which System F types are not inhabited?

Advanced Programming Languages

L Curry-Howard Isomorphism

Type Inhabitation

Definition (type inhabitation): A type 7 is said to be inhabited if there exists a
term e having type 7.

Q: Which System F types are not inhabited?

Are there any besides void?

Advanced Programming Languages

L Curry-Howard Isomorphism

Type Inhabitation

Definition (type inhabitation): A type 7 is said to be inhabited if there exists a
term e having type 7.

Q: Which System F types are not inhabited?
Are there any besides void?

Are there any that don’t have void in them at all?

Advanced Programming Languages

L Curry-Howard Isomorphism

Void Type

Convention: Since we don't need void in System F to get an uninhabited type,
from now on in System F, void is just an alias for V.o

void = Va.a

Advanced Programming Languages

L Curry-Howard Isomorphism

Type Inhabitation

Exercise: Define an algorithm Z : 7 — {7, F'} that decides whether any System
F type 7 is inhabited.

Advanced Programming Languages

L Curry-Howard Isomorphism

Type Inhabitation

Exercise: Define an algorithm Z : 7 — {7, F'} that decides whether any System
F type 7 is inhabited.

Z(int) =T
Z(bool) =T
Z(unit) =T
(1 X 12) =I(11) NI(72)
Z(m + 1) =Z(m1) VI(12)
(= 12) =Z(11) = Z(72)
Z(Va.1) = VYa:bool, Z(T)

*Implication = here refers to intuitionistic implication, not classical implication from classical
propositional logic. But in this class | will not give any problems for which the difference matters.

Advanced Programming Languages

L Curry-Howard Isomorphism

Curry-Howard Isomorphism

Curry-Howard Isomorphism: The observation that there is a direct
correspondence between the logic of computation (programs, types, etc.) and
the logic of mathematics (proofs, propositions, etc.).
m Discovered by William Howard (U. Chicago, 1969) building upon work by
Haskell Curry (Penn State, 1934)
m propositions-as-types: The operators of intuitionistic propositional logic
correspond to the operators of typed A-calculus.
m proofs-as-programs: A program is actually a proof of the theorem
described by its type signature.

m Became the foundation for modern program-proof co-development and
formal methods-based verification of computer programs

Advanced Programming Languages

L Curry-Howard Isomorphism

Type-inhabitation Problem Walkthrough

Exercise: Is the following type inhabited? If so, write a System F term having
that type.
T = bool — (int — void) — Vo.(o X)

Turn 7 into a proposition using Z.

Z(r)=7

If Z(7) = F then 7 is uninhabited, so we're done; otherwise we must
construct a term having type ...

Advanced Programming Languages

L Curry-Howard Isomorphism

Type-inhabitation Problem Walkthrough

Exercise: Is the following type inhabited? If so, write a System F term having
that type.
T = bool — (int — void) — Vo.(o X)

Turn 7 into a proposition using Z.

I(r) =T = (T'= F) = Ya:bool.(a A &)
=T = (F = VYa.(aAa))
=T=T
=T (so it's inhabited)

If Z(7) = F then 7 is uninhabited, so we're done; otherwise we must
construct a term having type ...

Advanced Programming Languages

L Curry-Howard Isomorphism

Type-inhabitation Problem Walkthrough

T = bool — (int — void) — Vo.(a X)
Strategy for finding a System F term having type 7:

Each inhabited primitive type and each type operator has a primitive term or
term operator that constructs it:

Type \ Term Constructor

unit | O
int | ...,—1,0,1,2,3,...
bool true, false
X (617 62)
+ inIlJr'r2 (e) or inglJrTz (e)
— AviT.e
v Aa.e

Using this approach for this 7 yields:

Advanced Programming Languages

L Curry-Howard Isomorphism

Type-inhabitation Problem Walkthrough

T = bool — (int — void) — Vo.(a X)
Strategy for finding a System F term having type 7:

Each inhabited primitive type and each type operator has a primitive term or
term operator that constructs it:

Type \ Term Constructor

unit | O
int ...,—1,0,1,2,3,...
bool true, false
X (617 62)
+ inIlJr'r2 (e) or inglJrTz (e)
— AviT.e
v Aa.e

Using this approach for this 7 yields:
Az:bool. \y: (int — void).Aa.(a, @)

Why is this not a valid System F term?

Advanced Programming Languages

L Curry-Howard Isomorphism

Type-inhabitation Problem Walkthrough

T = bool — (int — void) — Vo.(a X)
Strategy for finding a System F term having type 7:
Each inhabited primitive type and each type operator has a primitive term or
term operator that constructs it:

Type | Term Constructor

unit | O

int | ...,—1,0,1,2,3,...
bool true, false

X (817 62)

+ in-1r1+'r2 (e) or in;1Jr72 (e)
— Av:iT.e

v Aa.e

Using this approach for this 7 yields:

Az:bool Ay:(int — void).Aa.(,)

How to fix?

Advanced Programming Languages

L Curry-Howard Isomorphism

Type-inhabitation Problem Walkthrough

T = bool — (int — void) — Vo.(o X)
Strategy for finding a System F term having type 7:
Each inhabited primitive type and each type operator has a primitive term or

term operator that constructs it, and each type operator has a term operator
to destruct it:

Type | Term Constructor | Term Destructor
unit O N/A
int | ...,—1,0,1,2,3,... N/A
bool | true, false N/A
X (e1,e2) Ti€e or mae
+ inIlJrT2 (e) or i1'1"2—1+ﬂ—2 (e) | caseeof ...
— Av:iT.e e1e2 (application)
v Aa.e e[7] (instantiation)

Using this approach for this 7 yields:
Az:bool \y: (int — void).Aa.(y3[e], y3[a])

Sanity check: Variable instances (y and « in this case) nowhere appear free.

Advanced Programming Languages

L Curry-Howard Isomorphism

Type-inhabitation Problem Walkthrough

7 = bool — (int — void) — Va.(a X «)

Each inhabited primitive type and each type operator has a primitive term or
term operator that constructs it, and each type operator has a term operator to

destruct it:
Type | Term Constructor | Term Destructor
unit | O N/A
int | ...,—1,0,1,2,3,... N/A
bool true, false N/A
X (e1,e2) Ti€e or mee
+ inIl_H—2 (e) or ingl_*—?2 (e) | caseeof ...
— AviT.e e1ea (application)
v Aae e[7] (instantiation)

A shorter solution:
Az:bool. \y: (int — void).y3[Va.(a x a)]

Take-away: Once you have an argument of uninhabited type, you have
something very powerful that can create other uninhabited terms.
(Curry-Howard: This corresponds to implicative explosion F' = F.)

Advanced Programming Languages

L Curry-Howard Isomorphism

Sample Type-inhabitation Problem

Exercise: Is the following type inhabited? If so, write a System F term having
that type.
T=Va.VB.((a+ B) — (B + «a))

Step 1: Decide whether Z(7) is tautological:

Advanced Programming Languages

L Curry-Howard Isomorphism

Sample Type-inhabitation Problem

Exercise: Is the following type inhabited? If so, write a System F term having
that type.
T=Va.VB.((a+ B) — (B + «a))

Step 1: Decide whether Z(7) is tautological:

Z(r) =VaVB.((aVp) = (BVa))

Advanced Programming Languages

L Curry-Howard Isomorphism

Sample Type-inhabitation Problem

Exercise: Is the following type inhabited? If so, write a System F term having

that type.
T =VYaB.(a+B) = (B +a))

Step 1: Decide whether Z(7) is tautological:
Z(r) =VaVB.((aVp) = (BVa))

Step 2: If Z(7) is tautological, build a term of type 7 using constructors and
destructors.

Advanced Programming Languages

L Curry-Howard Isomorphism

Sample Type-inhabitation Problem

Exercise: Is the following type inhabited? If so, write a System F term having

that type.
T=VaVh.((a+ B) — (B8 + «))

Step 1: Decide whether Z(7) is tautological:
I(r) =VaVB.((aV B) = (BVa))

Step 2: If Z(7) is tautological, build a term of type 7 using constructors and
destructors.

Aa.AB X x:a+ 5.7

Advanced Programming Languages

L Curry-Howard Isomorphism

Sample Type-inhabitation Problem

Exercise: Is the following type inhabited? If so, write a System F term having

that type.
T=VaVh.((a+ B) — (B8 + «))

Step 1: Decide whether Z(7) is tautological:
I(r) =VaVB.((aV B) = (BVa))

Step 2: If Z(7) is tautological, build a term of type 7 using constructors and
destructors.

Aa.ABAx:a+ B.case x of ini(y) — 7 | ina(2) — 7

Advanced Programming Languages

L Curry-Howard Isomorphism

Sample Type-inhabitation Problem

Exercise: Is the following type inhabited? If so, write a System F term having
that type.
T=VaVh.((a+ B) — (B8 + «))

Step 1: Decide whether Z(7) is tautological:
I(r) =VaVB.((aV B) = (BVa))

Step 2: If Z(7) is tautological, build a term of type 7 using constructors and
destructors.

SFey | ing(z) — inf 1z

Aa.ABAx:a+ B.case x of ini(y) — inj

Advanced Programming Languages

L Curry-Howard Isomorphism

Tautologicality and Operation Order

Exercise: Are the following types inhabited? If so, write terms having these
types.

71 = Va.(a — void) 72 = (Vo) — void
Z(m1) =Va.(a = F) Z(m2) = Va.a) = F
=7 ?

Advanced Programming Languages

L Curry-Howard Isomorphism

Tautologicality and Operation Order

Exercise: Are the following types inhabited? If so, write terms having these

types.
71 = Va.(a — void) 72 = (Vo) — void
Z(m1) =Va.(a = F) Z(m2) = Va.a) = F
= F (because T # F) =F=F

=T

Advanced Programming Languages

L Curry-Howard Isomorphism

Tautologicality and Operation Order

Exercise: Are the following types inhabited? If so, write terms having these

types.
71 = Va.(a — void) 72 = (Vo) — void
Z(m1) =Va.(a = F) Z(m2) = Va.a) = F
= F (because T # F) =F=F
=T

(Az:void.z) : (Va.a) — void

Advanced Programming Languages

L Curry-Howard Isomorphism

Brokenness of fix

The fix operator must not be added lest the isomorphism break down.

Recall the typing rule for fix:

Tke:(r—=7)= (=17
Ik fix(e): 7 — 7'

With it we can derive:

{(z, unit — void)} - x : unit — void

1 F Az:unit—void.z : (unit — void) — (unit — void)
1 F fix(Az:unit—void.x) : unit — void LF QO :unit
1 F fix(Az:unit—wvoid.x) () : void

Advanced Programming Languages

L Curry-Howard Isomorphism

C-H Isomorphism and Derivation Rule Soundness

Two ways to understand the problem:

m e : 7 is like saying “e promises to return a 7.
is an infinite loop.

But e breaks its promise if e

m e : 7 is like saying e is a proof of proposition 7. But the typing rule for fix
is unsound, so not a valid proof:

Ik fix(e):7 — 7'

Tke:(r—=7)=(r—>7) _(T:>T'):>(T:>T')
N T=>17

Big idea: Typing rules are actually the rules of deductive propositional logic.

See Coq and Calculus of Inductive Constructions for much more on this.

Advanced Programming Languages

L Type-inference

Type Annotations

Definition (type annotations): In the syntax of System F, all mentions of types
7 (e.g., Av:T.e), type variable binders (e.g., Aa.e), and type instantiations (e.g.,
e[7]) are called type annotations.

Type-inference: Given a System F term é without any annotations, infer an
annotated term e that is well-typed (if one exists).

Type-checking: Given a System F term e, decide whether there exists a type 7
such that L e : 7 is derivable.

Good news and bad news:
m Type-checking is decidable for both A_, and System F.
m Type-inference is decidable for A_,.

m Type-inference is undecidable for System F. ©

Advanced Programming Languages

L Type-inference

Shallow Types

Definition (shallow type): A type 7 is shallow if no quantifiers are children of
non-quantifiers in 7's AST.

Examples:
m int — unit is shallow (no quantifiers).
m Va.VB.(8 — «) is shallow (both quantifiers at top of AST).
m Va.(VB.8) — « is not shallow (V[is a child of —).
m (Va.a) x (Vf.5) is not shallow (Va and V3 are both children of x).

If we limit System F to shallow types only, type-inference becomes decidable. ©
Example: 1let apply f x = f x;;
apply = Aa.ABAfra—=p A x:a.(fx)

let y = apply ((>)1) 5;;
y = apply[int][bool]((>)1)5

Advanced Programming Languages

L Type-inference

Hindley-Milner Type-inference

A representative core fragment of unannotated System F:
é = () ‘ v |)\’U.é | é1é2

Four steps:
Change unannotated term ¢ into an annotated but non-closed System F
term e by adding unique, free type variables:

Av.€é ~ Av:a.e

v~ vlai] - - [an] when I'(v) = Vai ... Vay,.T

Infer a mapping 0 : a — 7 from the free type variables to their types
(details next slides).

Substitute any type variables aw € 6 appearing free in e with their types
().

B There may still be some free type variables « in e. If so, add Ac. to the
start of e for each one to bind them (yielding a term of shallow type).

Advanced Programming Languages

L Type-inference

Hindley-Milner Type-inference

The main algorithm (step 2) can be expressed as a derivation of a judgment:

0T Fe:T,0

m 0 :a — 7 maps type vars o whose types we've already inferred to their types 7.
m ' : v — 7 maps program variables v to their types 7.

m e is the expression on which we are performing type-inference.

m T is the type inferred for e.

m 0’ : a — 7 records any new types T we've inferred for free type variables o
appearing in e.

Notations:
m 7[0] is capture-avoiding substitution of type vars a in 7 with their types 0(«).

m I'[0] = {(v,7]0]) | T'(v) = 7} is the same subsitution in the image of T".

Advanced Programming Languages

L Type-inference

Hindley-Milner Type-inference

0,0 O : unit,0

F(U) =VB1...VBn.T
0,1 v[ar] - [an] : Tlar/B1] -+ - [an/Bn], 0

0,T[v—alke:T,0
0, F \:ae: o — 7,0

0,Tter 1,00 01,T[01]Fe2:72,02 03 =U(T1[02],72 >) 0 =020L03

0, F erea : 6/ (a), 0’

1

)

®3)

(4)

Advanced Programming Languages

L Type-inference

Type-inference for Function Application

0,TFer:71,00 01,T[01]F e2:m2,02 03 =U(T1[02],72 > a) 0 =020U03
0,T+erex: 0'(a), 0

Infer a type 71 for e;.
Infer a type 72 for ea.

Types 71 and 72 — o must be identical (for some «). Unify them:

Definition (type unification): The wunification of types 71 and 72 is an
instantiation 6 : @« — 7 of their type variables that causes them to be identical:
U, o
U (unit, unit
Ula,7) =U(T, o
U(T1 — T2, TL — T3

=1

=1

= {(a,7)} if o is not free in 7
=U(T1,) UU(T2, T3)

U is undefined otherwise (type-inference rejects)

N — ~— —

Advanced Programming Languages

L Type-inference

Non-shallow Types

H-M type-inference only works on shallow-typed terms.

Optional Exercise: Come up with an OCaml program whose type is non-shallow,
and try compiling it. What error does OCaml report?

Follow-up Optional Exercise: Use OCaml’s (experimental) --rectypes option to
add non-shallow typing support (sacrifices full type-inference) and fix your
program above.

Advanced Programming Languages

L Summary

Summary of A-cube

L

Ay ———————» An

m)\, : simply-typed A-calculus (no type quantifiers)

A2 (System F): parametric polymorphism

Aw: parametrically polymorphic datatypes

m OCaml is essentially (A, N shallow types) U fix
m Haskell is essentially A, U fix

Am: dependent types (correspond to 3 in propositional logic)
Ac: Calculus of Constructions (combines all)
m Coq/Gallina is essentially Ac

	Simply-typed λ-calculus
	λ→ with Fixpoints
	Extensions to λ→
	System F
	Curry-Howard Isomorphism
	Type-inference
	Summary

