
Typed λ-calculus
CS 4301/6371: Advanced Programming Languages

Kevin W. Hamlen

April 4, 2024

Advanced Programming Languages

Simply-typed λ-calculus

Syntax additions

Let’s add simple types to λ-calculus...

Two syntactic changes from untyped λ-calculus:

Require function arguments to be explicitly typed.

Add a primitive type and value (e.g., unit).

e ::= () | v | λv:τ .e | e1e2
τ ::= unit | τ1 → τ2

Now we need a static semantics:

Γ : v ⇀ τ (typing contexts)

Γ ⊢ e : τ (typing judgments)

Advanced Programming Languages

Simply-typed λ-calculus

Typing Rules

Γ ⊢ () : unit

Γ ⊢ v : Γ(v)

Γ[v 7→ τ1] ⊢ e : τ2

Γ ⊢ λv:τ1.e : τ1 → τ2

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1e2 : τ2

Advanced Programming Languages

Simply-typed λ-calculus

Operational Semantics

Operational semantics are unchanged:

e1 →1 e
′
1

e1e2 →1 e
′
1e2

(β-reduction)
(λv:τ.e1)e2 →1 e1[e2/v]

Called simply-typed λ-calculus (λ→)

Advanced Programming Languages

Simply-typed λ-calculus

More simply-typed λ-calculus

More simple types and operations commonly included in λ→:

e ::= () | v | λv:τ.e | e1e2 (as before)

| n | e1 aop e2 integers

| true | false | e1 bop e2 booleans

| e1 cmp e2 int comparisons

| (e1, e2) | π1e | π2e pairs

| inτ1+τ2
1 e | inτ1+τ2

2 e injections

| (case e of in1(v1) → e1 | in2(v2) → e2) case distinction

τ ::= unit | int | bool | τ1 → τ2 | τ1 × τ2 | τ1 + τ2 | void types

Advanced Programming Languages

Simply-typed λ-calculus

Pairs

Pairs are like in OCaml:

(e1, e2) constructs a pair of values (any types)

π1 extracts (“projects”) the first value of a pair (like fst in OCaml)

π2 projects second value (like snd)

Pairs have type τ1 × τ2 (like τ1 ∗ τ2 in OCaml)

Statics:
Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 × τ2

Γ ⊢ e : τ1 × τ2 i ∈ {1, 2}
Γ ⊢ πie : τi

Large-step:
e1 ⇓ u1 e2 ⇓ u2

(e1, e2) ⇓ (u1, u2)

e ⇓ (u1, u2) i ∈ {1, 2}
πie ⇓ ui

Advanced Programming Languages

Simply-typed λ-calculus

Injections

Injections are like OCaml variant types:

in
τ1+τ2
1 (e) and in

τ1+τ2
2 (e) are like writing Constructor1(e) and

Constructor2(e) in OCaml, with the following type definition:

type t1 plus t2 = Constructor1 of τ1 | Constructor2 of τ2

Destruct injections with (case e of in1(v1)→ e1 | in2(v2)→ e2)

Works like match–with in OCaml

Injections have type τ1 + τ2

Restriction to only two variants is not really a limitation; just nest them (e.g.,
τ1 + (τ2 + (τ3 + · · ·))).

Statics:
Γ ⊢ e : τi i ∈ {1, 2}

Γ ⊢ in
τ1+τ2
i e : τ1 + τ2

Γ ⊢ e : τ1 + τ2 Γ[v1 7→ τ1] ⊢ e1 : τ Γ[v2 7→ τ2] ⊢ e2 : τ

Γ ⊢ (case e of in1(v1) → e1 | in2(v2) → e2) : τ

Large-step:
e ⇓ u i ∈ {1, 2}

in
τ1+τ2
i e ⇓ iniu

e ⇓ iniu ei[u/vi] ⇓ u′ i ∈ {1, 2}
(case e of in1(v1) → e1 | in2(v2) → e2) ⇓ u′

Advanced Programming Languages

Simply-typed λ-calculus

Void type

τ ::= unit | int | bool | τ1 → τ2 | τ1 × τ2 | τ1 + τ2 | void

Catalog of simple types:

() is the only value of type unit

integers have type int

booleans have type bool

functions have type τ1 → τ2

pairs have type τ1 × τ2

injections have type τ1 + τ2

nothing has type void

Why would we want a valueless type like void?

One reason: Create opaque (uncallable) functions for encoding purposes.

Example: λx:void .x is uncallable
Can encode Church numerals without risking expansion (e.g., λx:void .x = 0N,
(false, 0N) = 1N, etc.)

Advanced Programming Languages

λ→ with Fixpoints

Strong Normalization

Challenge: Can you write an infinite loop in λ→?

First attempt: (λx:?.xx)(λx:?.xx)

But we need to fill in the types in order to have a legal term for λ→.
(And the term must be well-typed according to the static semantics!)
So we need types τ and τ ′ for which we can complete the following derivation:

X

{(x, τ)} ⊢ xx : τ ′

⊥ ⊢ λx:τ.xx : τ → τ ′

Conclusion: τ = τ → τ ′ for some τ ′.
Impossible! (τ can’t be bigger than itself!)

Advanced Programming Languages

λ→ with Fixpoints

Strong Normalization

Challenge: Can you write an infinite loop in λ→?

First attempt: (λx:?.xx)(λx:?.xx)

But we need to fill in the types in order to have a legal term for λ→.
(And the term must be well-typed according to the static semantics!)
So we need types τ and τ ′ for which we can complete the following derivation:

X

{(x, τ)} ⊢ xx : τ ′

⊥ ⊢ λx:τ.xx : τ → τ ′

Conclusion: τ = τ → τ ′ for some τ ′.
Impossible! (τ can’t be bigger than itself!)

Advanced Programming Languages

λ→ with Fixpoints

Strong Normalization

Challenge: Can you write an infinite loop in λ→?

First attempt: (λx:?.xx)(λx:?.xx)

But we need to fill in the types in order to have a legal term for λ→.
(And the term must be well-typed according to the static semantics!)
So we need types τ and τ ′ for which we can complete the following derivation:

{(x, τ)} ⊢ x : τ → τ ′ {(x, τ)} ⊢ x : τ

{(x, τ)} ⊢ xx : τ ′

⊥ ⊢ λx:τ.xx : τ → τ ′

Conclusion: τ = τ → τ ′ for some τ ′.
Impossible! (τ can’t be bigger than itself!)

Advanced Programming Languages

λ→ with Fixpoints

Strong Normalization

Challenge: Can you write an infinite loop in λ→?

First attempt: (λx:?.xx)(λx:?.xx)

But we need to fill in the types in order to have a legal term for λ→.
(And the term must be well-typed according to the static semantics!)
So we need types τ and τ ′ for which we can complete the following derivation:

{(x, τ)} ⊢ x : τ → τ ′ {(x, τ)} ⊢ x : τ

{(x, τ)} ⊢ xx : τ ′

⊥ ⊢ λx:τ.xx : τ → τ ′

Conclusion: τ = τ → τ ′ for some τ ′.
Impossible! (τ can’t be bigger than itself!)

Advanced Programming Languages

λ→ with Fixpoints

Strong Normalization

Challenge: Can you write an infinite loop in λ→?

First attempt: (λx:?.xx)(λx:?.xx)

But we need to fill in the types in order to have a legal term for λ→.
(And the term must be well-typed according to the static semantics!)
So we need types τ and τ ′ for which we can complete the following derivation:

{(x, τ)} ⊢ x : τ → τ ′ {(x, τ)} ⊢ x : τ

{(x, τ)} ⊢ xx : τ ′

⊥ ⊢ λx:τ.xx : τ → τ ′

Conclusion: τ = τ → τ ′ for some τ ′.
Impossible! (τ can’t be bigger than itself!)

Advanced Programming Languages

λ→ with Fixpoints

Strong Normalization

Weird facts:

It’s impossible to write a non-terminating loop in λ→.
Full proof involves finding a normal form to which every term (eventually)
reduces.
Languages with this property are called strongly normalizing.

λ→ is not Turing-complete.
How did merely adding some types lose so much power...?

How to fix?

One solution: Add a primitive fix operator...

Advanced Programming Languages

λ→ with Fixpoints

Fixpoint Operator

Fixpoint operator fix acts like the Y-combinator:

Statics:
Γ ⊢ e : (τ → τ ′) → (τ → τ ′)

Γ ⊢ fix(e) : τ → τ ′

Large-step:
e ⇓ λv:τ.e0 e0[fix(e)/v] ⇓ u

fix(e) ⇓ u

(Basis for let rec in OCaml)

Convention: From now on when we refer to “simply-typed λ-calculus (λ→)”, we
will assume it includes all of the aforementioned operators but not fix. To add
fix, we will say “simply-typed λ-calculus with fixpoints.”

Advanced Programming Languages

Extensions to λ→

Non-simple types

Extending λ→ to non-simple types:

1 parametric polymorphism (λ2, also called System F)
OCaml includes parametric polymorphism but not full System F.
Supported by Haskell and OCaml with recursive types extension

2 parametrically polymorphic datatypes (λ
¯
ω)

OCaml example: type ’a tree = Empty | Node of (’a * ’a tree * ’a tree)

3 dependent types (λΠ)
not available in OCaml or Haskell
Recommended language: Gallina (Coq)

In this class we will only study formalisms for System F.

Advanced Programming Languages

Extensions to λ→

The λ-cube

λω λC

λ2 λΠ2

λ
¯
ω λΠ

¯
ω

λ→ λΠ

Advanced Programming Languages

System F

Intro to System F

e ::= · · · | Λα.e polymorphic abstraction

| e[τ] polymorphic instantiation

τ ::= · · · | α type variables

| ∀α.τ universal types

Polymorphic abstractions are functions from types to terms:

(Λα.e)[τ] →1 e[τ/α]

Advanced Programming Languages

System F

Polymorphic Function Examples

Example #1: Polymorphic identity function Λα.λx:α.x

(Λα.λx:α.x)[int](3) →1 (λx:int .x)(3) →1 3

(Λα.λx:α.x)[bool](false) →1 (λx:bool .x)(false) →1 false

Example #2: Polymorphic application function Λα.Λβ.λf :α→β.λx:α.fx

(Λα.Λβ.λf :α→β.λx:α.fx)[int][bool]((>)1)(3)

→1 (Λβ.λf :int→β.λx:int .fx)[bool]((>)1)(3)

→1 (λf :int→bool .λx:int .fx)((>)1)(3)

→1 (λx:int .((>) 1x))(3)

→1 (>) 1 3

→1 false

Advanced Programming Languages

System F

Static Semantics of System F

Γ ⊢ e : τ

Γ ⊢ Λα.e : ∀α.τ
Γ ⊢ e : ∀α.τ ′

Γ ⊢ e[τ] : τ ′[τ/α]

Example #1: Polymorphic identity function

(Λα.λx:α.x) : ∀α.(α → α)

(Λα.λx:α.x)[int] : int → int

(Λα.λx:α.x)[int]3 : int

Example #2: Polymorphic application function

(Λα.Λβ.λf :α→β.λx:α.fx) : ∀α.∀β.((α → β) → α → β)

(Λα.Λβ.λf :α→β.λx:α.fx)[int] : ∀β.((int → β) → int → β)

(Λα.Λβ.λf :α→β.λx:α.fx)[int][bool] : (int → bool) → int → bool

(Λα.Λβ.λf :α→β.λx:α.fx)[int][bool]((>)1) : int → bool

(Λα.Λβ.λf :α→β.λx:α.fx)[int][bool]((>)1)(3) : bool

Advanced Programming Languages

Curry-Howard Isomorphism

Type Inhabitation

Definition (type inhabitation): A type τ is said to be inhabited if there exists a
term e having type τ .

Q: Which System F types are not inhabited?

Are there any besides void?

Are there any that don’t have void in them at all?

Advanced Programming Languages

Curry-Howard Isomorphism

Type Inhabitation

Definition (type inhabitation): A type τ is said to be inhabited if there exists a
term e having type τ .

Q: Which System F types are not inhabited?

Are there any besides void?

Are there any that don’t have void in them at all?

Advanced Programming Languages

Curry-Howard Isomorphism

Type Inhabitation

Definition (type inhabitation): A type τ is said to be inhabited if there exists a
term e having type τ .

Q: Which System F types are not inhabited?

Are there any besides void?

Are there any that don’t have void in them at all?

Advanced Programming Languages

Curry-Howard Isomorphism

Void Type

Convention: Since we don’t need void in System F to get an uninhabited type,
from now on in System F, void is just an alias for ∀α.α:

void = ∀α.α

Advanced Programming Languages

Curry-Howard Isomorphism

Type Inhabitation

Exercise: Define an algorithm I : τ → {T, F} that decides whether any System
F type τ is inhabited.

I(int) = T

I(bool) = T

I(unit) = ?

I(τ1 × τ2) = ?

I(τ1 + τ2) = ?

I(τ1 → τ2) = ?

I(∀α.τ) = ?

∗Implication ⇒ here refers to intuitionistic implication, not classical implication from classical
propositional logic. But in this class I will not give any problems for which the difference matters.

Advanced Programming Languages

Curry-Howard Isomorphism

Type Inhabitation

Exercise: Define an algorithm I : τ → {T, F} that decides whether any System
F type τ is inhabited.

I(int) = T

I(bool) = T

I(unit) = T

I(τ1 × τ2) = I(τ1) ∧ I(τ2)
I(τ1 + τ2) = I(τ1) ∨ I(τ2)
I(τ1 → τ2) = I(τ1) ⇒ I(τ2)

I(∀α.τ) = ∀α:bool , I(τ)

∗Implication ⇒ here refers to intuitionistic implication, not classical implication from classical
propositional logic. But in this class I will not give any problems for which the difference matters.

Advanced Programming Languages

Curry-Howard Isomorphism

Curry-Howard Isomorphism

Curry-Howard Isomorphism: The observation that there is a direct
correspondence between the logic of computation (programs, types, etc.) and
the logic of mathematics (proofs, propositions, etc.).

Discovered by William Howard (U. Chicago, 1969) building upon work by
Haskell Curry (Penn State, 1934)

propositions-as-types: The operators of intuitionistic propositional logic
correspond to the operators of typed λ-calculus.

proofs-as-programs: A program is actually a proof of the theorem
described by its type signature.

Became the foundation for modern program-proof co-development and
formal methods-based verification of computer programs

Advanced Programming Languages

Curry-Howard Isomorphism

Type-inhabitation Problem Walkthrough

Exercise: Is the following type inhabited? If so, write a System F term having
that type.

τ = bool → (int → void) → ∀α.(α× α)

1 Turn τ into a proposition using I.

I(τ) = ?

= T ⇒ (F ⇒ ∀α.(α ∧ α))

= T ⇒ T

= T (so it’s inhabited)

2 If I(τ) = F then τ is uninhabited, so we’re done; otherwise we must
construct a term having type τ ...

Advanced Programming Languages

Curry-Howard Isomorphism

Type-inhabitation Problem Walkthrough

Exercise: Is the following type inhabited? If so, write a System F term having
that type.

τ = bool → (int → void) → ∀α.(α× α)

1 Turn τ into a proposition using I.

I(τ) = T ⇒ (T ⇒ F) ⇒ ∀α:bool .(α ∧ α)

= T ⇒ (F ⇒ ∀α.(α ∧ α))

= T ⇒ T

= T (so it’s inhabited)

2 If I(τ) = F then τ is uninhabited, so we’re done; otherwise we must
construct a term having type τ ...

Advanced Programming Languages

Curry-Howard Isomorphism

Type-inhabitation Problem Walkthrough

τ = bool → (int → void) → ∀α.(α× α)

Strategy for finding a System F term having type τ :

Each inhabited primitive type and each type operator has a primitive term or
term operator that constructs it:

Type Term Constructor
unit ()
int . . . ,−1, 0, 1, 2, 3, . . .
bool true, false
× (e1, e2)

+ in
τ1+τ2
1 (e) or in

τ1+τ2
2 (e)

→ λv:τ.e
∀ Λα.e

Using this approach for this τ yields:

λx:bool .λy:(int → void).Λα.(α, α)

Why is this not a valid System F term?

Advanced Programming Languages

Curry-Howard Isomorphism

Type-inhabitation Problem Walkthrough

τ = bool → (int → void) → ∀α.(α× α)

Strategy for finding a System F term having type τ :

Each inhabited primitive type and each type operator has a primitive term or
term operator that constructs it:

Type Term Constructor
unit ()
int . . . ,−1, 0, 1, 2, 3, . . .
bool true, false
× (e1, e2)

+ in
τ1+τ2
1 (e) or in

τ1+τ2
2 (e)

→ λv:τ.e
∀ Λα.e

Using this approach for this τ yields:

λx:bool .λy:(int → void).Λα.(α, α)

Why is this not a valid System F term?

Advanced Programming Languages

Curry-Howard Isomorphism

Type-inhabitation Problem Walkthrough

τ = bool → (int → void) → ∀α.(α× α)

Strategy for finding a System F term having type τ :

Each inhabited primitive type and each type operator has a primitive term or
term operator that constructs it:

Type Term Constructor
unit ()
int . . . ,−1, 0, 1, 2, 3, . . .
bool true, false
× (e1, e2)

+ in
τ1+τ2
1 (e) or in

τ1+τ2
2 (e)

→ λv:τ.e
∀ Λα.e

Using this approach for this τ yields:

λx:bool .λy:(int → void).Λα.(,)

How to fix?

Advanced Programming Languages

Curry-Howard Isomorphism

Type-inhabitation Problem Walkthrough

τ = bool → (int → void) → ∀α.(α× α)

Strategy for finding a System F term having type τ :

Each inhabited primitive type and each type operator has a primitive term or
term operator that constructs it, and each type operator has a term operator
to destruct it:

Type Term Constructor Term Destructor
unit () N/A
int . . . ,−1, 0, 1, 2, 3, . . . N/A
bool true, false N/A
× (e1, e2) π1e or π2e

+ in
τ1+τ2
1 (e) or in

τ1+τ2
2 (e) case e of . . .

→ λv:τ.e e1e2 (application)
∀ Λα.e e[τ] (instantiation)

Using this approach for this τ yields:

λx:bool .λy:(int → void).Λα.(y3[α], y3[α])

Sanity check: Variable instances (y and α in this case) nowhere appear free.

Advanced Programming Languages

Curry-Howard Isomorphism

Type-inhabitation Problem Walkthrough

τ = bool → (int → void) → ∀α.(α× α)

Each inhabited primitive type and each type operator has a primitive term or
term operator that constructs it, and each type operator has a term operator to
destruct it:

Type Term Constructor Term Destructor
unit () N/A
int . . . ,−1, 0, 1, 2, 3, . . . N/A
bool true, false N/A
× (e1, e2) π1e or π2e

+ in
τ1+τ2
1 (e) or in

τ1+τ2
2 (e) case e of . . .

→ λv:τ.e e1e2 (application)
∀ Λα.e e[τ] (instantiation)

A shorter solution:

λx:bool .λy:(int → void).y3[∀α.(α× α)]

Take-away: Once you have an argument of uninhabited type, you have
something very powerful that can create other uninhabited terms.
(Curry-Howard: This corresponds to implicative explosion F ⇒ F .)

Advanced Programming Languages

Curry-Howard Isomorphism

Sample Type-inhabitation Problem

Exercise: Is the following type inhabited? If so, write a System F term having
that type.

τ = ∀α.∀β.((α+ β) → (β + α))

Step 1: Decide whether I(τ) is tautological:

I(τ) = ∀α.∀β.((α ∨ β) ⇒ (β ∨ α))

Step 2: If I(τ) is tautological, build a term of type τ using constructors and
destructors.

Λα.Λβ.λx:α+ β.?

Advanced Programming Languages

Curry-Howard Isomorphism

Sample Type-inhabitation Problem

Exercise: Is the following type inhabited? If so, write a System F term having
that type.

τ = ∀α.∀β.((α+ β) → (β + α))

Step 1: Decide whether I(τ) is tautological:

I(τ) = ∀α.∀β.((α ∨ β) ⇒ (β ∨ α))

Step 2: If I(τ) is tautological, build a term of type τ using constructors and
destructors.

Λα.Λβ.λx:α+ β.?

Advanced Programming Languages

Curry-Howard Isomorphism

Sample Type-inhabitation Problem

Exercise: Is the following type inhabited? If so, write a System F term having
that type.

τ = ∀α.∀β.((α+ β) → (β + α))

Step 1: Decide whether I(τ) is tautological:

I(τ) = ∀α.∀β.((α ∨ β) ⇒ (β ∨ α))

Step 2: If I(τ) is tautological, build a term of type τ using constructors and
destructors.

Λα.Λβ.λx:α+ β.?

Advanced Programming Languages

Curry-Howard Isomorphism

Sample Type-inhabitation Problem

Exercise: Is the following type inhabited? If so, write a System F term having
that type.

τ = ∀α.∀β.((α+ β) → (β + α))

Step 1: Decide whether I(τ) is tautological:

I(τ) = ∀α.∀β.((α ∨ β) ⇒ (β ∨ α))

Step 2: If I(τ) is tautological, build a term of type τ using constructors and
destructors.

Λα.Λβ.λx:α+ β.?

Advanced Programming Languages

Curry-Howard Isomorphism

Sample Type-inhabitation Problem

Exercise: Is the following type inhabited? If so, write a System F term having
that type.

τ = ∀α.∀β.((α+ β) → (β + α))

Step 1: Decide whether I(τ) is tautological:

I(τ) = ∀α.∀β.((α ∨ β) ⇒ (β ∨ α))

Step 2: If I(τ) is tautological, build a term of type τ using constructors and
destructors.

Λα.Λβ.λx:α+ β.case x of in1(y) → ? | in2(z) → ?

Advanced Programming Languages

Curry-Howard Isomorphism

Sample Type-inhabitation Problem

Exercise: Is the following type inhabited? If so, write a System F term having
that type.

τ = ∀α.∀β.((α+ β) → (β + α))

Step 1: Decide whether I(τ) is tautological:

I(τ) = ∀α.∀β.((α ∨ β) ⇒ (β ∨ α))

Step 2: If I(τ) is tautological, build a term of type τ using constructors and
destructors.

Λα.Λβ.λx:α+ β.case x of in1(y) → in
β+α
2 y | in2(z) → in

β+α
1 z

Advanced Programming Languages

Curry-Howard Isomorphism

Tautologicality and Operation Order

Exercise: Are the following types inhabited? If so, write terms having these
types.

τ1 = ∀α.(α → void) τ2 = (∀α.α) → void

I(τ1) = ∀α.(α ⇒ F) I(τ2) = (∀α.α) ⇒ F

= ? = ?

= T

(λx:void .x) : (∀α.α) → void

Advanced Programming Languages

Curry-Howard Isomorphism

Tautologicality and Operation Order

Exercise: Are the following types inhabited? If so, write terms having these
types.

τ1 = ∀α.(α → void) τ2 = (∀α.α) → void

I(τ1) = ∀α.(α ⇒ F) I(τ2) = (∀α.α) ⇒ F

= F (because T ̸⇒ F) = F ⇒ F

= T

(λx:void .x) : (∀α.α) → void

Advanced Programming Languages

Curry-Howard Isomorphism

Tautologicality and Operation Order

Exercise: Are the following types inhabited? If so, write terms having these
types.

τ1 = ∀α.(α → void) τ2 = (∀α.α) → void

I(τ1) = ∀α.(α ⇒ F) I(τ2) = (∀α.α) ⇒ F

= F (because T ̸⇒ F) = F ⇒ F

= T

(λx:void .x) : (∀α.α) → void

Advanced Programming Languages

Curry-Howard Isomorphism

Brokenness of fix

The fix operator must not be added lest the isomorphism break down.

Recall the typing rule for fix:

Γ ⊢ e : (τ → τ ′) → (τ → τ ′)

Γ ⊢ fix(e) : τ → τ ′

With it we can derive:

{(x, unit → void)} ⊢ x : unit → void

⊥ ⊢ λx:unit→void .x : (unit → void) → (unit → void)

⊥ ⊢ fix(λx:unit→void .x) : unit → void ⊥ ⊢ () : unit

⊥ ⊢ fix(λx:unit→void .x)() : void

Advanced Programming Languages

Curry-Howard Isomorphism

C-H Isomorphism and Derivation Rule Soundness

Two ways to understand the problem:

e : τ is like saying “e promises to return a τ .” But e breaks its promise if e
is an infinite loop.

e : τ is like saying e is a proof of proposition τ . But the typing rule for fix
is unsound, so not a valid proof:

I

(
Γ ⊢ e : (τ → τ ′) → (τ → τ ′)

Γ ⊢ fix(e) : τ → τ ′

)
=

(τ ⇒ τ ′) ⇒ (τ ⇒ τ ′)

τ ⇒ τ ′

Big idea: Typing rules are actually the rules of deductive propositional logic.

See Coq and Calculus of Inductive Constructions for much more on this.

Advanced Programming Languages

Type-inference

Type Annotations

Definition (type annotations): In the syntax of System F, all mentions of types
τ (e.g., λv:τ .e), type variable binders (e.g., Λα.e), and type instantiations (e.g.,
e[τ]) are called type annotations.

Type-inference: Given a System F term ê without any annotations, infer an
annotated term e that is well-typed (if one exists).

Type-checking: Given a System F term e, decide whether there exists a type τ
such that ⊥ ⊢ e : τ is derivable.

Good news and bad news:

Type-checking is decidable for both λ→ and System F.

Type-inference is decidable for λ→.

Type-inference is undecidable for System F.

Advanced Programming Languages

Type-inference

Shallow Types

Definition (shallow type): A type τ is shallow if no quantifiers are children of
non-quantifiers in τ ’s AST.

Examples:

int → unit is shallow (no quantifiers).

∀α.∀β.(β → α) is shallow (both quantifiers at top of AST).

∀α.(∀β.β) → α is not shallow (∀β is a child of →).

(∀α.α)× (∀β.β) is not shallow (∀α and ∀β are both children of ×).

If we limit System F to shallow types only, type-inference becomes decidable.

Example: let apply f x = f x;;

apply = Λα.Λβ.λf :α→β.λx:α.(fx)

let y = apply ((>)1) 5;;

y = apply[int][bool]((>)1)5

Advanced Programming Languages

Type-inference

Hindley-Milner Type-inference

A representative core fragment of unannotated System F:

ê ::= () | v | λv.ê | ê1ê2

Four steps:

1 Change unannotated term ê into an annotated but non-closed System F
term e by adding unique, free type variables:

λv.ê⇝ λv:α.e

v ⇝ v[α1] · · · [αn] when Γ(v) = ∀α1 . . .∀αn.τ

2 Infer a mapping θ : α ⇀ τ from the free type variables to their types
(details next slides).

3 Substitute any type variables α ∈ θ← appearing free in e with their types
θ(α).

4 There may still be some free type variables α in e. If so, add Λα. to the
start of e for each one to bind them (yielding a term of shallow type).

Advanced Programming Languages

Type-inference

Hindley-Milner Type-inference

The main algorithm (step 2) can be expressed as a derivation of a judgment:

θ,Γ ⊢ e : τ, θ′

θ : α ⇀ τ maps type vars α whose types we’ve already inferred to their types τ .

Γ : v ⇀ τ maps program variables v to their types τ .

e is the expression on which we are performing type-inference.

τ is the type inferred for e.

θ′ : α ⇀ τ records any new types τ we’ve inferred for free type variables α
appearing in e.

Notations:

τ [θ] is capture-avoiding substitution of type vars α in τ with their types θ(α).

Γ[θ] = {(v, τ [θ]) | Γ(v) = τ} is the same subsitution in the image of Γ.

Advanced Programming Languages

Type-inference

Hindley-Milner Type-inference

θ,Γ ⊢ () : unit , θ
(1)

Γ(v) = ∀β1 . . . ∀βn.τ

θ,Γ ⊢ v[α1] · · · [αn] : τ [α1/β1] · · · [αn/βn], θ
(2)

θ,Γ[v 7→ α] ⊢ e : τ, θ′

θ,Γ ⊢ λv:α.e : α → τ, θ′
(3)

θ,Γ ⊢ e1 : τ1, θ1 θ1,Γ[θ1] ⊢ e2 : τ2, θ2 θ3 = U(τ1[θ2], τ2 → α) θ′ = θ2 ⊔ θ3

θ,Γ ⊢ e1e2 : θ′(α), θ′
(4)

Advanced Programming Languages

Type-inference

Type-inference for Function Application

θ,Γ ⊢ e1 : τ1, θ1 θ1,Γ[θ1] ⊢ e2 : τ2, θ2 θ3 = U(τ1[θ2], τ2 → α) θ′ = θ2 ⊔ θ3

θ,Γ ⊢ e1e2 : θ′(α), θ′

1 Infer a type τ1 for e1.

2 Infer a type τ2 for e2.

3 Types τ1 and τ2 → α must be identical (for some α). Unify them:

Definition (type unification): The unification of types τ1 and τ2 is an
instantiation θ : α ⇀ τ of their type variables that causes them to be identical:

U(α, α) = ⊥
U(unit , unit) = ⊥

U(α, τ) = U(τ, α) = {(α, τ)} if α is not free in τ

U(τ1 → τ2, τ
′
1 → τ ′2) = U(τ1, τ ′1) ⊔ U(τ2, τ ′2)

U is undefined otherwise (type-inference rejects)

Advanced Programming Languages

Type-inference

Non-shallow Types

H-M type-inference only works on shallow-typed terms.

Optional Exercise: Come up with an OCaml program whose type is non-shallow,
and try compiling it. What error does OCaml report?

Follow-up Optional Exercise: Use OCaml’s (experimental) --rectypes option to
add non-shallow typing support (sacrifices full type-inference) and fix your
program above.

Advanced Programming Languages

Summary

Summary of λ-cube

λω λC

λ2 λΠ2

λ
¯
ω λΠ

¯
ω

λ→ λΠ

λ→: simply-typed λ-calculus (no type quantifiers)

λ2 (System F): parametric polymorphism

λ
¯
ω: parametrically polymorphic datatypes

OCaml is essentially (λω ∩ shallow types) ∪ fix
Haskell is essentially λω ∪ fix

λΠ: dependent types (correspond to ∃ in propositional logic)

λC : Calculus of Constructions (combines all)
Coq/Gallina is essentially λC

	Simply-typed λ-calculus
	λ→ with Fixpoints
	Extensions to λ→
	System F
	Curry-Howard Isomorphism
	Type-inference
	Summary

