
Type Safety
CS 4301/6371: Advanced Programming Languages

Kevin W. Hamlen

March 21, 2024

Advanced Programming Languages

Defining Type Safety

Objective

Recall: Important characteristics of a static semantics:

Catches all (or most) stuck states before runtime (type-safety)

Deterministic (otherwise can’t implement it!)

Try not to classify programmer-desired functionalities as type-errors

Today: Formally define and prove the first one (type-safety).

Advanced Programming Languages

Defining Type Safety

Type-safety

Definition (well-typed)

A command c is well-typed if there exists Γ′ such that ⊥ ` c : Γ′ is derivable.

Theorem (type-safety)

If c is well-typed and 〈c,⊥〉 →n 〈c′, σ′〉 (where n ≥ 0), then 〈c′, σ′〉 is not a
stuck state.

Recall that we previously defined two kinds of states:

Final states: 〈skip, σ〉, 〈n, σ〉, 〈true, σ〉, 〈false, σ〉
Stuck states: Non-final state from which no step is derivable

How to prove this? Recall that we have no judgments for →n so we’d like to
remove that with a trivial N-induction like we did in the proof of semantic
equivalence.

Advanced Programming Languages

Proof Approach

Attempt #1

Theorem (type-safety)

If c is well-typed and 〈c,⊥〉 →n 〈c′, σ′〉 (where n ≥ 0), then 〈c′, σ′〉 is not a
stuck state.

Proof

Assume c is well-typed. We will prove that either c = skip or
∃c2, σ2, 〈c,⊥〉 →1 〈c2, σ2〉. ...

Q: If we prove this, then does it prove the theorem?

Advanced Programming Languages

Proof Approach

Attempt #1

Theorem (type-safety)

If c is well-typed and 〈c,⊥〉 →n 〈c′, σ′〉 (where n ≥ 0), then 〈c′, σ′〉 is not a
stuck state.

Proof

Assume c is well-typed. We will prove that either c = skip or
∃c2, σ2, 〈c,⊥〉 →1 〈c2, σ2〉. ...

Q: If we prove this, then does it prove the theorem?
A: No! Fails to prove that 〈c2, σ2〉 is not a stuck state, since:

σ2 might not be ⊥, and

c2 might not be well-typed

How to fix?

Advanced Programming Languages

Proof Approach

Attempt #2

Theorem (type-safety)

If c is well-typed and 〈c,⊥〉 →n 〈c′, σ′〉 (where n ≥ 0), then 〈c′, σ′〉 is not a
stuck state.

Proof

Assume c is well-typed and let σ ∈ Σ be given. We will prove that either
c = skip or ∃c2, σ2, 〈c, σ〉 →1 〈c2, σ2〉 where c2 is well-typed. ...

Q: If we prove this, then does it prove the theorem?

Advanced Programming Languages

Proof Approach

Attempt #2

Theorem (type-safety)

If c is well-typed and 〈c,⊥〉 →n 〈c′, σ′〉 (where n ≥ 0), then 〈c′, σ′〉 is not a
stuck state.

Proof

Assume c is well-typed and let σ ∈ Σ be given. We will prove that either
c = skip or ∃c2, σ2, 〈c, σ〉 →1 〈c2, σ2〉 where c2 is well-typed. ...

Q: If we prove this, then does it prove the theorem?
A: Yes, but there’s a bigger problem: It’s not true!

Advanced Programming Languages

Proof Approach

Attempt #2

Theorem (type-safety)

If c is well-typed and 〈c,⊥〉 →n 〈c′, σ′〉 (where n ≥ 0), then 〈c′, σ′〉 is not a
stuck state.

Proof

Assume c is well-typed and let σ ∈ Σ be given. We will prove that either
c = skip or ∃c2, σ2, 〈c, σ〉 →1 〈c2, σ2〉 where c2 is well-typed. ...

Q: If we prove this, then does it prove the theorem?
A: Yes, but there’s a bigger problem: It’s not true!
Example: 〈int x;x := 2,⊥〉 →1 ?

Advanced Programming Languages

Proof Approach

Attempt #2

Theorem (type-safety)

If c is well-typed and 〈c,⊥〉 →n 〈c′, σ′〉 (where n ≥ 0), then 〈c′, σ′〉 is not a
stuck state.

Proof

Assume c is well-typed and let σ ∈ Σ be given. We will prove that either
c = skip or ∃c2, σ2, 〈c, σ〉 →1 〈c2, σ2〉 where c2 is well-typed. ...

Q: If we prove this, then does it prove the theorem?
A: Yes, but there’s a bigger problem: It’s not true!
Example: 〈int x;x := 2,⊥〉 →1 〈skip;x := 2,⊥〉

Advanced Programming Languages

Proof Approach

Generalizing Well-typedness

Solution: Generalize the definition of well-typedness.

Definition (well-typed): Command c is well-typed in context Γ if there exists
Γ′ such that Γ ` c : Γ′ is derivable.

Advanced Programming Languages

Proof Approach

Attempt #3

Theorem (type-safety)

If c is well-typed and 〈c,⊥〉 →n 〈c′, σ′〉 (where n ≥ 0), then 〈c′, σ′〉 is not a
stuck state.

Proof

Assume c is well-typed in Γ, and let σ ∈ Σ be given. We will prove that either
c = skip or ∃c2, σ2,Γ2, 〈c, σ〉 →1 〈c2, σ2〉 where c2 is well-typed in Γ2. ...

Q: Is this one sufficient (and true)?

Advanced Programming Languages

Proof Approach

Attempt #3

Theorem (type-safety)

If c is well-typed and 〈c,⊥〉 →n 〈c′, σ′〉 (where n ≥ 0), then 〈c′, σ′〉 is not a
stuck state.

Proof

Assume c is well-typed in Γ, and let σ ∈ Σ be given. We will prove that either
c = skip or ∃c2, σ2,Γ2, 〈c, σ〉 →1 〈c2, σ2〉 where c2 is well-typed in Γ2. ...

Q: Is this one sufficient (and true)?
A: Still not true, but for a different reason. Can you spot the problem?

Advanced Programming Languages

Proof Approach

Attempt #3

Theorem (type-safety)

If c is well-typed and 〈c,⊥〉 →n 〈c′, σ′〉 (where n ≥ 0), then 〈c′, σ′〉 is not a
stuck state.

Proof

Assume c is well-typed in Γ, and let σ ∈ Σ be given. We will prove that either
c = skip or ∃c2, σ2,Γ2, 〈c, σ〉 →1 〈c2, σ2〉 where c2 is well-typed in Γ2. ...

Q: Is this one sufficient (and true)?
A: Still not true, but for a different reason. Can you spot the problem?

Example: Suppose c = (x := x + 2) and Γ = {(x, (int , T))} and σ = {(x, T)}.
Note that Γ ` c : Γ so it’s well-typed. But 〈c, σ〉 →1 ?

Advanced Programming Languages

Proof Approach

Attempt #3

Theorem (type-safety)

If c is well-typed and 〈c,⊥〉 →n 〈c′, σ′〉 (where n ≥ 0), then 〈c′, σ′〉 is not a
stuck state.

Proof

Assume c is well-typed in Γ, and let σ ∈ Σ be given. We will prove that either
c = skip or ∃c2, σ2,Γ2, 〈c, σ〉 →1 〈c2, σ2〉 where c2 is well-typed in Γ2. ...

Q: Is this one sufficient (and true)?
A: Still not true, but for a different reason. Can you spot the problem?

Example: Suppose c = (x := x + 2) and Γ = {(x, (int , T))} and σ = {(x, T)}.
Note that Γ ` c : Γ so it’s well-typed. But 〈c, σ〉 →1 〈x := true + 2, σ〉.

Solution: Need to somehow stipulate that Γ and σ “match”.

Advanced Programming Languages

Proof Approach

Modeling Relation

Definition (models): A typing context Γ models a store σ (written Γ |= σ) if
for all v ∈ Γ←,

if Γ(v) = (int , T) then σ(v) ∈ Z, and

if Γ(v) = (bool , T) then σ(v) ∈ {T, F}.

(Note that if Γ(v) = (τ, F) or v 6∈ Γ← then we impose no obligation on σ.)

Advanced Programming Languages

Proof Approach

Attempt #4

Theorem (type-safety)

If c is well-typed and 〈c,⊥〉 →n 〈c′, σ′〉 (where n ≥ 0), then 〈c′, σ′〉 is not a
stuck state.

Proof

Assume c is well-typed in Γ, and let σ ∈ Σ be given such that Γ |= σ. We will
prove that either c = skip or ∃c2, σ2,Γ2, 〈c, σ〉 →1 〈c2, σ2〉 where c2 is
well-typed in Γ2 and Γ2 |= σ2. ...

Q: Is this one sufficient (and true)? (please, please, please, ...)

Advanced Programming Languages

Proof Approach

Attempt #4

Theorem (type-safety)

If c is well-typed and 〈c,⊥〉 →n 〈c′, σ′〉 (where n ≥ 0), then 〈c′, σ′〉 is not a
stuck state.

Proof

Assume c is well-typed in Γ, and let σ ∈ Σ be given such that Γ |= σ. We will
prove that either c = skip or ∃c2, σ2,Γ2, 〈c, σ〉 →1 〈c2, σ2〉 where c2 is
well-typed in Γ2 and Γ2 |= σ2. ...

Q: Is this one sufficient (and true)? (please, please, please, ...)

A: For some languages this would be enough, but our language has one more
feature that makes this false: local scopes.

Example: 〈if true then int x else skip;bool x, σ〉 →1 ?

Advanced Programming Languages

Proof Approach

Attempt #4

Theorem (type-safety)

If c is well-typed and 〈c,⊥〉 →n 〈c′, σ′〉 (where n ≥ 0), then 〈c′, σ′〉 is not a
stuck state.

Proof

Assume c is well-typed in Γ, and let σ ∈ Σ be given such that Γ |= σ. We will
prove that either c = skip or ∃c2, σ2,Γ2, 〈c, σ〉 →1 〈c2, σ2〉 where c2 is
well-typed in Γ2 and Γ2 |= σ2. ...

Q: Is this one sufficient (and true)? (please, please, please, ...)

A: For some simple languages this would be enough, but our language has one
more feature that makes this false:

Example: 〈if true then int x else skip;bool x, σ〉 →1 〈int x;bool x, σ〉

Advanced Programming Languages

Well-typed Intermediate States

Intermediate States

General problem: Most real language have small-step semantics that pass
through intermediate states that are invalid at the original source level.

Example from Java: 〈obj .field , σ〉 →1 〈 value of obj .field , σ〉

In SIMPL, our intermediate states are local scopes introduced by if and while

commands.

Solution: Extend the static semantics to include extra rules that type-check
intermediate states. Since programmers are not allowed to write such states
(syntax error), the new rules have no effect on them.

Advanced Programming Languages

Well-typed Intermediate States

Adding Explicit Scoping

New syntax for these intermediate states:

c ::= · · · | {c1}

They do nothing at runtime:

〈c, σ〉 →1 〈c′, σ′〉
〈{c}, σ〉 →1 〈{c′}, σ′〉

〈{skip}, σ〉 →1 〈skip, σ〉

But we can introduce them when reducing conditionals and loops:

〈if true then c1 else c2, σ〉 →1 〈{c1}, σ〉

〈if false then c1 else c2, σ〉 →1 〈{c2}, σ〉

〈while e do c, σ〉 →1 〈if e then ({c};while e do c) else skip, σ〉

Advanced Programming Languages

Well-typed Intermediate States

Typing Stacks

Scopes can be nested, so we now need a stack of typing contexts:

Γ2, . . . ` c : Γ′

Γ1,Γ2, . . . ` {c} : Γ1

Definition (typing context stacks): A typing context stack
−⇀
Γ is a non-empty,

finite sequence Γ1, . . . ,Γn of typing contexts satisfying Γn � · · · � Γ1.

Definition (subtype): Context Γ1 is a subtype of context Γ2 (written Γ1 � Γ2)
if for all (v, (τ, p)) ∈ Γ2, there exists q ∈ {T, F} such that

Γ1(v) = (τ, q) and

p⇒ q.

Intuition: Γ1 is the outermost context, and outer contexts are “more restrictive”
(�) than inner ones (fewer declared/initialized variables).

See online notes for complete static semantics.

Advanced Programming Languages

Progress & Preservation

Attempt #5

Theorem (type-safety)

If c is well-typed and 〈c,⊥〉 →n 〈c′, σ′〉 (where n ≥ 0), then 〈c′, σ′〉 is not a
stuck state.

Proof

Assume c is well-typed in
−⇀
Γ , and let σ ∈ Σ be given such that

−⇀
Γ |= σ. We will

prove that either c = skip or ∃c2, σ2,
−⇀
Γ2, 〈c, σ〉 →1 〈c2, σ2〉 where c2 is

well-typed in
−⇀
Γ2 and

−⇀
Γ2 |= σ2. ...

This (finally!) works!

Advanced Programming Languages

Progress & Preservation

Progress & Preservation

Easier to break it up into four lemmas:

Lemma 1 (Progress of expressions)

If Γ ` e : τ and Γ |= σ then either 〈e, σ〉 is final or ∃e′, σ′, 〈e, σ〉 →1 〈e′, σ′〉.

Lemma 2 (Progress of commands)

If
−⇀
Γ ` e : Γ′ and

−⇀
Γ |= σ then either 〈c, σ〉 is final or ∃c′, σ′, 〈c, σ〉 →1 〈c′, σ′〉.

Lemma 3 (Preservation of expressions)

If Γ ` e : τ and Γ |= σ and 〈e, σ〉 →1 〈e′, σ′〉, then Γ ` e′ : τ and Γ |= σ′.

Lemma 4 (Preservation of commands)

If
−⇀
Γ ` c : Γ′ and

−⇀
Γ |= σ and 〈c, σ〉 →1 〈c2, σ2〉, then ∃−⇀Γ2,

−⇀
Γ2 ` c2 : Γ′ and

−⇀
Γ2 |= σ2 and Γ2 � Γ.

Preservation is also called subject reduction.

Advanced Programming Languages

Progress & Preservation

Proving Progress & Preservation

Practice Problem: See if you can prove any cases of these lemmas.

Suggested approaches:

Prove progress lemmas by structural induction on derivation D of
Γ ` e : τ (for expressions), or
−⇀
Γ ` c : Γ′ (for commands).

Prove preservation lemmas by structural induction on derivation D of
〈e, σ〉 →1 〈e′, σ′〉 (for expressions), or
〈c, σ〉 →1 〈c2, σ2〉 (for commands).

	Defining Type Safety
	Proof Approach
	Well-typed Intermediate States
	Progress & Preservation

