Type Safety

CS 4301/6371: Advanced Programming Languages

Kevin W. Hamlen

March 21, 2024



Advanced Programming Languages

L Defining Type Safety

Objective

Recall: Important characteristics of a static semantics:
m Catches all (or most) stuck states before runtime (type-safety)
m Deterministic (otherwise can't implement it!)

m Try not to classify programmer-desired functionalities as type-errors

Today: Formally define and prove the first one (type-safety).



Advanced Programming Languages

L Defining Type Safety

Type-safety

Definition (well-typed)

A command c is well-typed if there exists I'' such that L I c: I is derivable.

Theorem (type-safety)

If ¢ is well-typed and (¢, L) —, (¢, o) (where n > 0), then (¢/,o’) is not a
stuck state.
Recall that we previously defined two kinds of states:

m Final states: (skip,o), (n,o), (true,o), (false,o)

m Stuck states: Non-final state from which no step is derivable

How to prove this? Recall that we have no judgments for —,, so we'd like to
remove that with a trivial N-induction like we did in the proof of semantic
equivalence.



Advanced Programming Languages

L Proof Approach

Attempt #1

Theorem (type-safety)

If ¢ is well-typed and (¢, L) —, (,0’) (where n > 0), then {c’,c’) is not a
stuck state.

Proof

Assume c is well-typed. We will prove that either ¢ = skip or
ez, 02, (¢, L) =1 (c2,02). ...

Q: If we prove this, then does it prove the theorem?



Advanced Programming Languages
L Proof Approach

Attempt #1

Theorem (type-safety)

If ¢ is well-typed and {(c, L) —, (¢, 0’) (where n > 0), then {¢’,c’) is not a
stuck state.

Proof
Assume c is well-typed. We will prove that either ¢ = skip or
362, g2, (C, J_> —1 <CQ,0‘2>.

Q: If we prove this, then does it prove the theorem?
A: No! Fails to prove that (c2,02) is not a stuck state, since:

® o2 might not be 1, and
® c2 might not be well-typed
How to fix?



Advanced Programming Languages

L Proof Approach

Attempt #2

Theorem (type-safety)

If ¢ is well-typed and (¢, L) —, (,0’) (where n > 0), then {c’,c’) is not a
stuck state.

Proof

Assume c is well-typed and let o € ¥ be given. We will prove that either
¢ = skip or Jez, 02, (¢, 0) —1 {c2,02) Where ¢ is well-typed. ...

Q: If we prove this, then does it prove the theorem?



Advanced Programming Languages
L Proof Approach

Attempt #2

Theorem (type-safety)

If c is well-typed and (c, L) —, (c,o’) (where n > 0), then (¢, o’) is not a
stuck state.

Proof
Assume c is well-typed and let o € ¥ be given. We will prove that either
¢ = skip or eg, 02, (¢, 0) =1 {ca2,02) where cs is well-typed. ...

Q: If we prove this, then does it prove the theorem?
A: Yes, but there's a bigger problem: It's not true!



Advanced Programming Languages
L Proof Approach

Attempt #2

Theorem (type-safety)
If ¢ is well-typed and (c, L) —, (c,o’) (where n > 0), then (¢, o’) is not a
stuck state.

Proof

Assume c is well-typed and let o € ¥ be given. We will prove that either
¢ = skip or ez, 02, (¢, 0) =1 {ca2,02) where cs is well-typed. ...

Q: If we prove this, then does it prove the theorem?
A: Yes, but there's a bigger problem: It's not true!
Example: (int x;x:=2, 1) —; 7



Advanced Programming Languages
L Proof Approach

Attempt #2

Theorem (type-safety)
If ¢ is well-typed and (c, L) —, (c,o’) (where n > 0), then (¢, o’) is not a
stuck state.

Proof

Assume c is well-typed and let o € ¥ be given. We will prove that either
¢ = skip or ez, 02, (¢, 0) =1 {ca2,02) where cs is well-typed. ...

Q: If we prove this, then does it prove the theorem?
A: Yes, but there's a bigger problem: It's not true!
Example: (int x;x:=2, 1) —; (skip;x:=2, 1)



Advanced Programming Languages
L Proof Approach

Generalizing Well-typedness

Solution: Generalize the definition of well-typedness.

Definition (well-typed): Command c is well-typed in context I' if there exists
I’ such that I' F ¢ : T is derivable.



Advanced Programming Languages

L Proof Approach

Attempt #3

Theorem (type-safety)

If ¢ is well-typed and (¢, L) —, (¢, 0’} (where n > 0), then {c¢’,c’) is not a
stuck state.

Proof

Assume c is well-typed in I', and let o € 3 be given. We will prove that either
¢ = skip or Jea, 02,2, (¢, 0) —1 (c2,02) where ¢ is well-typed in T's. ...

Q: Is this one sufficient (and true)?



Advanced Programming Languages
L Proof Approach

Attempt #3

Theorem (type-safety)

If c is well-typed and (c, L) —, (c,o’) (where n > 0), then (¢, o’) is not a
stuck state.

Proof
Assume c is well-typed in I', and let o € ¥ be given. We will prove that either
¢ = skip or Jea, 02,12, (¢, 0) —1 (c2,02) where ¢ is well-typed in I's. ...

Q: Is this one sufficient (and true)?
A: Still not true, but for a different reason. Can you spot the problem?



Advanced Programming Languages
L Proof Approach

Attempt #3

Theorem (type-safety)

If ¢ is well-typed and {(c, L) —, (¢, 0’) (where n > 0), then {c’,c’) is not a
stuck state.

Proof

Assume c is well-typed in I', and let o € ¥ be given. We will prove that either
¢ = skip or Jeg, 02,19, (¢, 0) —1 (c2,02) where ¢z is well-typed in I's. ...

Q: Is this one sufficient (and true)?
A: Still not true, but for a different reason. Can you spot the problem?

Example: Suppose ¢ = (x:=x+2) and I" = {(x, (in¢t,T))} and 0 = {(x,T)}.
Note that I' - ¢ : " so it's well-typed. But {¢,0) —1 7



Advanced Programming Languages
L Proof Approach

Attempt #3

Theorem (type-safety)

If ¢ is well-typed and {(c, L) —, (¢, 0’) (where n > 0), then {c¢’,c’) is not a
stuck state.

Proof

Assume c is well-typed in I', and let o € ¥ be given. We will prove that either
¢ = skip or Jea, 02,2, (¢, ) —1 (c2,02) where ¢z is well-typed in T's. ...

Q: Is this one sufficient (and true)?
A: Still not true, but for a different reason. Can you spot the problem?

Example: Suppose ¢ = (x :=x+2) and I' = {(x, (4n¢t,T))} and o = {(x,T)}.
Note that I' - ¢ : I' so it's well-typed. But {(¢,0) —1 (x :=true+2,0).

Solution: Need to somehow stipulate that I and o “match”.



Advanced Programming Languages
L Proof Approach

Modeling Relation

Definition (models): A typing context I" models a store o (written I' = o) if
for all v € I'",

m if I'(v) = (int,T') then o(v) € Z, and
m if I'(v) = (bool,T) then o(v) € {T, F'}.

(Note that if I'(v) = (7, F') or v € T'" then we impose no obligation on o.)



Advanced Programming Languages
L Proof Approach

Attempt #4

Theorem (type-safety)

If ¢ is well-typed and (¢, L) —, (,0’) (where n > 0), then {c’,c’) is not a
stuck state.

Proof

Assume c is well-typed in T', and let o € 3 be given such that T = 0. We will
prove that either ¢ = skip or Jcg, 02,2, (¢, 0) —1 (c2,02) where ¢ is
well-typed in I’z and 'y = o3, ...

Q: Is this one sufficient (and true)? (please, please, please, ...)



Advanced Programming Languages
L Proof Approach

Attempt #4

Theorem (type-safety)

If ¢ is well-typed and {(c, L) —, (¢, 0’) (where n > 0), then {c/,c’) is not a
stuck state.

Assume c is well-typed in T', and let o € X be given such that I" = 0. We will
prove that either ¢ = skip or ez, 02,2, (¢, 0) —1 {c2,02) where ¢z is
well-typed in 'z and 'y = 02, ...

Q: Is this one sufficient (and true)? (please, please, please, ...)
A: For some languages this would be enough, but our language has one more
feature that makes this false: local scopes.

Example: (if true then int x else skip;bool x,0) —; ?



Advanced Programming Languages
L Proof Approach

Attempt #4

Theorem (type-safety)

If ¢ is well-typed and {(c, L) —, (¢, 0’) (where n > 0), then {c/,c’) is not a
stuck state.

Assume c is well-typed in T', and let o € X be given such that I" = 0. We will
prove that either ¢ = skip or ez, 02,2, (¢, 0) —1 {c2,02) where ¢z is
well-typed in 'z and 'y = 02, ...

Q: Is this one sufficient (and true)? (please, please, please, ...)
A: For some simple languages this would be enough, but our language has one
more feature that makes this false:

Example: (if true then int x else skip;bool x,0) —; (int x;bool x,0)



Advanced Programming Languages

L Well-typed Intermediate States

Intermediate States

General problem: Most real language have small-step semantics that pass
through intermediate states that are invalid at the original source level.

Example from Java: (obj.field, o) —1 (value of ob; . field, o)

In SIMPL, our intermediate states are local scopes introduced by if and while
commands.

Solution: Extend the static semantics to include extra rules that type-check
intermediate states. Since programmers are not allowed to write such states
(syntax error), the new rules have no effect on them.



Advanced Programming Languages

L Well-typed Intermediate States

Adding Explicit Scoping

New syntax for these intermediate states:

cui=-- | {aa}

They do nothing at runtime:

{c,0) =1 (', 0")

<{C}7 U> —1 <{cl}7 Ul)

({skip}, o) — (skip, o)

But we can introduce them when reducing conditionals and loops:

(if true then c; else c2,0) —1 ({c1},0)

(if false then c; else ca2,0) —1 ({2}, 0)

(while e do ¢,0) — (if e then ({c};while e do ¢) else skip, o)



Advanced Programming Languages

L Well-typed Intermediate States

Typing Stacks

Scopes can be nested, so we now need a stack of typing contexts:

To,...kc: T
Fl,rg,...l—{c}lr1

Definition (typing context stacks): A typing context stack Tisa non-empty,
finite sequence I'y,..., I, of typing contexts satisfying I'y, < --- < T'y.

Definition (subtype): Context I'y is a subtype of context I'y (written I'y < T'5)
if for all (v, (7,p)) € I'2, there exists ¢ € {T', F'} such that

m ['i(v) =(1,q) and
mp=q.

Intuition: I'; is the outermost context, and outer contexts are “more restrictive”
(>) than inner ones (fewer declared/initialized variables).

See online notes for complete static semantics.



Advanced Programming Languages

L Progress & Preservation

Attempt #5

Theorem (type-safety)

If ¢ is well-typed and (¢, L) —, (¢, 0’) (where n > 0), then {c¢’,c’) is not a
stuck state.

Proof

Assume c is well-typed in ﬁ and let 0 € X be given such that T = o. We will
prove that either ¢ = skip or Jca, 02, Fj, (c,0) =1 (c2,02) where ¢ is
well-typed in Fj and Fj Eoa. ..

This (finally!) works!



Advanced Programming Languages

L Progress & Preservation

Progress & Preservation

Easier to break it up into four lemmas:

Lemma 1 (Progress of expressions)

If T e: 7 and T |= o then either (e, o) is final or 3e’,0”, (e, 0) —1 (€', 0").

Lemma 2 (Progress of commands)

fTrHe:T and T = o then either (c, o) is final or 3¢, o', (c,0) —1 (¢, a’).

Lemma 3 (Preservation of expressions)

fTe:7and T =0 and (e,0) —: (€/,0'), thenT ke’ :7and T =o',

Lemma 4 (Preservation of commands)
fThFe:T and T E o and (c,0) —1 (c2,02), then I, T ez : TV and
I Eosand Ty <T.

Preservation is also called subject reduction.



Advanced Programming Languages

L Progress & Preservation

Proving Progress & Preservation

Practice Problem: See if you can prove any cases of these lemmas.

Suggested approaches:
m Prove progress lemmas by structural induction on derivation D of
m ' e: 7 (for expressions), or
s Thre:IY (for commands).
m Prove preservation lemmas by structural induction on derivation D of

m (e,0) —1 (e’,0’) (for expressions), or
m (c,0) —1 {c2,02) (for commands).



	Defining Type Safety
	Proof Approach
	Well-typed Intermediate States
	Progress & Preservation

