CS 6371/4301: Advanced
Programming Languages

Dr. Kevin Hamlen
Spring 2024

Today’s Agenda

* Course overview and logistics

* Course philosophy and motivation
— What is an “advanced” programming language?
— Type-safe vs. Unsafe languages
— Functional vs. Imperative programming

* Introduction to OCaml

— The OCaml interpreter and compiler
— An OCaml demo

Course Overview

 How to design a new programming language
— specifying language formal semantics
— bad language design and the “software crisis”
— “new” programming paradigms: functional & logic
— how to formally prove program correctness

* Related courses
— CS 4337: Organization of Programming Languages
— CS 5349: Automata Theory
— CS 6301: Language-based Security
— CS 6353: Compiler Construction
— CS 6367: Software Verification & Testing

Course Logistics

Class Resources:
— Course homepage: www.utdallas.edu/~hamlen/cs6371sp23.html
— My homepage: www.utdallas.edu/~hamlen
— Tentative office hours: 1 hr immediately after each class
— Email: hamlen AT utdallas DOT edu
Grading
— Homework: 25%
— In-class quizzes: 15%
— Midterm exam: 25%
— Final exam: 35%
Homework
— 9 assignments: 6 programming + 3 written

— Homework must be turned in by 1:05pm on the due date.
Programming assignments submitted through eLearning; written
assignments submitted in hardcopy at start of class.

— Late homeworks NOT accepted!
Modality: in-person (lectures recorded for later review)

http://www.utdallas.edu/%7Ehamlen/cs6371sp23.html
http://www.utdallas.edu/%7Ehamlen

Homework Policy

Students MAY work together with other current students on homework

You MAY NOT consult homework solution sets from prior semesters (or
collaborate with students who are consulting them).

CITE ALL SOURCES

— includes web pages, books, other people, etc.
— citation is required even if you don’t copy the source word-for-word
— there is nothing wrong with using someone else’s ideas as long as you cite it
— you will not lose any marks or credit as long as you cite
Violating the above policies is PLAGIARISM (cheating).

Cheating will typically result in automatic failure of this course and
possible expulsion from the CS program.

It is much better to leave a problem blank than to cheat!
— Usually ¥60% is a B and ~80% is an A.
— However, cheating earns you an F. It’s not worth it!

Quizzes

in-class on specified homework due dates
about 15-20 min. each

approximately 1 quiz per unit, so about 8 total
— lowest one dropped, so you can miss one without penalty

— other misses only permitted in accordance with university
policy (e.g., illness with doctor’s note, etc.)

closed-book, closed-notes

think of them as extensions to the homework
— length/difficulty similar to one or two homework problems

— To prepare, be sure you can solve problems like those seen
on the most recent homework in about 15-20 minutes
each and without group help!

Difficulty Level

 Warning: This is a tough course for some
— “strange” math, brain-bending programming style, some PhD-level material
— difficulty ranked high by past students
* No required text book
— few approachable texts cover this advanced material
— no large pools of sample problems exist to my knowledge
— useful texts:

* book by Glynn Winskel available from UTD library
e online text and several online manuals linked from webpage

— Warning: Some online web resources devoted to this material that you may randomly
find are INCORRECT (e.g., certain Wikipedia pages). Rely only on authoritative sources.

 What you’ll get out of taking this course
— excellent preparation for PhD APL qualifier exam
— solid understanding of language design & semantics
— modern issues in declarative vs. imperative languages
— deep connections between abstract logic and programming

About me...

PhD & Masters from Cornell University, B.S. in CS & Math from
Carnegie Mellon University

Research: Computer Security, PL, Compilers

Industry/Government Experience: Microsoft Research; Pl for Navy,
Air Force, Army, DARPA, NSF, NSA, ...

Personal

— Christian

— married, three sons (one 11-year-old, and twin 8-year-olds)

Programming habits

— C/C++ (for low-level work)

— assembly (malware reverse-engineering)

— C#, Java (toy programs)

— Prolog (search-based programs)

— Gallina/Coq (high-assurance algorithm development)
— OCaml, F#, Haskell (everything else)

Course Plan

* Running case-study: We will design and implement a new programming
language

 Code aninterpreter in OCaml|

— OCaml (“Objective Categorical Abstract Meta- Language”) is an open-source
variant of ML

— Microsoft F# is OCaml for .NET (but not fully compatible with OCaml, so don’t
use it for homework)

— Coq/Gallina is better (and harder) than OCaml (see me if you want to use it for
homework)

— Warning: OCaml has a STEEP learning curve!

— Pre-homework: Install OCaml

* Go to the course website and follow the instructions entitled “To Prepare for the Course...” by
next time

What is an “Advanced”
Programming Language?

C/C++: Find the bug

int _ nss _hostname digits dots(..) {

size needed = sizeof(*host addr) + sizeof(*h_addr_ptrs) + strlen(name) + 1;
pbuffer = (char)malloc(size needed);

... 35 lines of code ...

host_addr = (host_addr_ t*)*buffer;

h_addr_ptrs = (host _addr_list t*) ((char*)host addr + sizeof(*host addr));
h_alias ptr = (char**)((char*)h_addr_ptrs + sizeof(*h_addr ptrs));

name = (char*)h _alias ptr + sizeof(*h_alias ptr);

if (isdigit(name[0])) {
for (cp=name; ; ++cp) {
if (*cp == '"\@") {
if (*--cp == '.') break;
if ((af == AF_INET) ? inet _aton(name, host addr) : inet pton(af, name, host _addr))
result buf->h_name = strcpy(hostname, name);
goto done;

}
if (!isdigit(*cp) && *cp != '.') break;

C/C++: Find the bug

int _ nss _hostname digits dots(..) {

pbuffer = (char)malloc(size needed);

... 35 lines of code ...

host_addr = (host_addr_ t*)*buffer;

h_addr_ptrs = (host _addr_list t*) ((char*)host addr + sizeof(*host addr));

name = (char*)h _alias ptr + sizeof(*h_alias_ptr);

if (isdigit(name[0])) {
for (cp=name; ; ++cp) {
if (*cp == '"\@") {
if (*--cp == '.') break;
if ((af == AF_INET) ? inet _aton(name, host addr) : inet pton(af, name, host _addr))
result buf->h_name = strcpy(hostname, name);
goto done;

}
if (!isdigit(*cp) && *cp != '.') break;

Critical Linux Security hale

Impact of this C bug

Discovered by Qualys researchers in 2015 during a routine
code audit of the Gnu standard C libraries

— affects nearly all Linux code that performs host lookups
Initially classified as low-severity (rare crash)

Qualys then demonstrated that they could use it gain complete
remote control over nearly any Linux networking application.

Eventual conclusion: Nearly all Linux systems were vulnerable
to complete remote compromise for over a decade.

High-level Take-aways

C/C++ code contains many “unsafe” features that invite disaster:
— unconstrained pointer arithmetic
— unstructured control-flows
— unchecked datatype casting (programmer casts are blindly trusted)
— in-lined assembly code
About 25% of all highest severity bugs in history have been “buffer errors”.

The world’s most mission-critical software (e.g., operating systems) consist
of hundreds of millions lines of C code.

— No human can comprehend, much less comprehensively debug/audit that.

Most of the software crashes you experience are a direct result of the
unsafe design of C/C++.

Java: A Type-safe, Imperative Language

* Find two bugs:

import java.io.*;
import java.util.¥*;

class Summation ({
public static void main(String[] args) {
List list = new LinkedList();

for (int i=0; i<args.length; ++i)
list.add (args[i]);

int sum = 0;
while ('list.isEmpty())
sum += ((Integer)list.remove(l)) .intValue()

System.out.println (sum) ;

}
}

Java: A Type-safe, Imperative Language

* Find two bugs:

OutOfBounds
Exception!

import java.io.*;
import java.util.*;

class Summation {
public static void main(String[] args
List list = new LinkedList();

for (int i=0; i<args.length; ++i)
list.add(args[i])

int sum = 0;
Nst .isEmpty())
sum +=B% (Integer)list.remove(l)) .intValue() ;

System.out.println (sum) ;

}
}

13
14
15

A Real-world Java Bug

/>I<>l<
* Handles XML content
*/
public class XStreamHandler implements ContentTypeHandler {

public String fromObject(Object obj, String resultCode, Writer out) throws IOException {
if (obj != null) {
XStream xstream = createXStream();
xtream.toXML(obj, out);
}

return null;

}

public void toObject(Reader in, Object target) {
XStream xstream = createXStream();
xstream.fromXML(in, target);

}

protected XStream createXStream() {
return new XStream();

}

13
14
15

A Real-world Java Bug

/>I<>l<
* Handles XML content
*/
public class XStreamHandler implements ContentTypeHandler {

public String fromObject(Object obj, String resultCode, Writer out) throws IOException {
if (obj != null) {
XStream xstream = createXStream();
xtream.toXML(obj, out);
}

return null;

¥
This is like
public void toObject(Reader in, Object target) { a cast

XStream xstream = createXStream();

protected XStream createXStream() {
return new XStream();

}

Impact of this bug

L ERUIFAX

* Discovered in Apache Struts library in 2017
— Representational State Transfer (REST) plug-in
* Eventually identified as the root cause of the famous Equifax
breach
— Private financial data of over 150 million people stolen
— One of the largest cybercrimes in history

— Cost Equifax at least $650 million in fines (plus reputation loss,
private settlements, etc.)

Problems with Java

* Every Java cast operation is potentially unsafe
— Some casts are non-obvious (example: deserialization)

— Even the obvious casts are so pervasive that they form a huge attack
surface

 Some typecasting issues can be solved with Generics, but not all
(e.g., list emptiness check)

* Problems:
— Many forms of unsafe dynamic code-loading

— Massive runtime library, whose foundations are mostly written in C
— Inexpressive type system = code duplication = inconsistencies =2 bugs

Goals of Functional Languages

* |n an “Advanced” Programming Language:

— The compiler should tell you about typing errors in advance (not at
runtime!)

— The language structure should make it difficult to write programs that
might crash (no unsafe casts!)

— 80% of your time should be spent getting the program to compile,
and only 20% on debugging

— should be tractable to create a formal, machine-checkable proof of
correctness for mission-critical core routines, or even full production-
level apps

In OCaml...

You almost never need to cast anything

— The compiler figures out all the types for you

— If there’s a type-mismatch, the compiler warns you
OCaml is fast

— Somewhere between C (fastest) and Java (slow)

— Hard to measure precisely. (So-called “language benchmarks” typically call underlying
math libraries that aren’t even implemented in the languages being tested!)

Functions are “first-class”:
— you can pass them around as values, assign them to variables, ...
— you can SAFELY build them at runtime

But: The syntax and coding style is very weird if you’ve only ever programmed in
imperative languages!

OCaml: Getting Started

e OCaml programs are text files (*.ml)
— Write them using any text editor (e.g., Notepad)
— Unix: Emacs has syntax highlighting for ML/OCam!|
— Windows: | use Vim (www.vim.org)
* |nstalling OCaml (see course website)
— Unix: pre-installed on the department Unix machines
— Windows: Self-installers for native x86 and for Cygwin
 Two ways to use OCaml:
— The OCaml compiler: ocamlc (compile *.ml to binary)
— OCaml in interactive mode (use OCaml like a calculator)
— Demo...

http://www.vim.org/

	CS 6371/4301: Advanced Programming Languages
	Today’s Agenda
	Course Overview
	Course Logistics
	Homework Policy
	Quizzes
	Difficulty Level
	About me…
	Course Plan
	What is an “Advanced” Programming Language?
	C/C++: Find the bug
	C/C++: Find the bug
	Impact of this C bug
	High-level Take-aways
	Java: A Type-safe, Imperative Language
	Java: A Type-safe, Imperative Language
	A Real-world Java Bug
	A Real-world Java Bug
	Impact of this bug
	Problems with Java
	Goals of Functional Languages
	In OCaml…
	OCaml: Getting Started

