
CS 6371/4301: Advanced
Programming Languages

Dr. Kevin Hamlen
Spring 2024

Today’s Agenda

• Course overview and logistics
• Course philosophy and motivation

– What is an “advanced” programming language?
– Type-safe vs. Unsafe languages
– Functional vs. Imperative programming

• Introduction to OCaml
– The OCaml interpreter and compiler
– An OCaml demo

Course Overview

• How to design a new programming language
– specifying language formal semantics
– bad language design and the “software crisis”
– “new” programming paradigms: functional & logic
– how to formally prove program correctness

• Related courses
– CS 4337: Organization of Programming Languages
– CS 5349: Automata Theory
– CS 6301: Language-based Security
– CS 6353: Compiler Construction
– CS 6367: Software Verification & Testing

Course Logistics
• Class Resources:

– Course homepage: www.utdallas.edu/~hamlen/cs6371sp23.html
– My homepage: www.utdallas.edu/~hamlen
– Tentative office hours: 1 hr immediately after each class
– Email: hamlen AT utdallas DOT edu

• Grading
– Homework: 25%
– In-class quizzes: 15%
– Midterm exam: 25%
– Final exam: 35%

• Homework
– 9 assignments: 6 programming + 3 written
– Homework must be turned in by 1:05pm on the due date.

Programming assignments submitted through eLearning; written
assignments submitted in hardcopy at start of class.

– Late homeworks NOT accepted!
• Modality: in-person (lectures recorded for later review)

http://www.utdallas.edu/%7Ehamlen/cs6371sp23.html
http://www.utdallas.edu/%7Ehamlen

Homework Policy
• Students MAY work together with other current students on homework
• You MAY NOT consult homework solution sets from prior semesters (or

collaborate with students who are consulting them).
• CITE ALL SOURCES

– includes web pages, books, other people, etc.
– citation is required even if you don’t copy the source word-for-word
– there is nothing wrong with using someone else’s ideas as long as you cite it
– you will not lose any marks or credit as long as you cite

• Violating the above policies is PLAGIARISM (cheating).
• Cheating will typically result in automatic failure of this course and

possible expulsion from the CS program.
• It is much better to leave a problem blank than to cheat!

– Usually ~60% is a B and ~80% is an A.
– However, cheating earns you an F. It’s not worth it!

Quizzes
• in-class on specified homework due dates
• about 15-20 min. each
• approximately 1 quiz per unit, so about 8 total

– lowest one dropped, so you can miss one without penalty
– other misses only permitted in accordance with university

policy (e.g., illness with doctor’s note, etc.)
• closed-book, closed-notes
• think of them as extensions to the homework

– length/difficulty similar to one or two homework problems
– To prepare, be sure you can solve problems like those seen

on the most recent homework in about 15-20 minutes
each and without group help!

Difficulty Level
• Warning: This is a tough course for some

– “strange” math, brain-bending programming style, some PhD-level material
– difficulty ranked high by past students

• No required text book
– few approachable texts cover this advanced material
– no large pools of sample problems exist to my knowledge
– useful texts:

• book by Glynn Winskel available from UTD library
• online text and several online manuals linked from webpage

– Warning: Some online web resources devoted to this material that you may randomly
find are INCORRECT (e.g., certain Wikipedia pages). Rely only on authoritative sources.

• What you’ll get out of taking this course
– excellent preparation for PhD APL qualifier exam
– solid understanding of language design & semantics
– modern issues in declarative vs. imperative languages
– deep connections between abstract logic and programming

About me…
• PhD & Masters from Cornell University, B.S. in CS & Math from

Carnegie Mellon University
• Research: Computer Security, PL, Compilers
• Industry/Government Experience: Microsoft Research; PI for Navy,

Air Force, Army, DARPA, NSF, NSA, …
• Personal

– Christian
– married, three sons (one 11-year-old, and twin 8-year-olds)

• Programming habits
– C/C++ (for low-level work)
– assembly (malware reverse-engineering)
– C#, Java (toy programs)
– Prolog (search-based programs)
– Gallina/Coq (high-assurance algorithm development)
– OCaml, F#, Haskell (everything else)

Course Plan
• Running case-study: We will design and implement a new programming

language
• Code an interpreter in OCaml

– OCaml (“Objective Categorical Abstract Meta- Language”) is an open-source
variant of ML

– Microsoft F# is OCaml for .NET (but not fully compatible with OCaml, so don’t
use it for homework)

– Coq/Gallina is better (and harder) than OCaml (see me if you want to use it for
homework)

– Warning: OCaml has a STEEP learning curve!
– Pre-homework: Install OCaml

• Go to the course website and follow the instructions entitled “To Prepare for the Course…” by
next time

What is an “Advanced”
Programming Language?

C/C++: Find the bug
int __nss_hostname_digits_dots(…) {
 …
 size_needed = sizeof(*host_addr) + sizeof(*h_addr_ptrs) + strlen(name) + 1;
 buffer = (char)malloc(size_needed);
 … 35 lines of code …
 host_addr = (host_addr_t*)*buffer;
 h_addr_ptrs = (host_addr_list_t*) ((char*)host_addr + sizeof(*host_addr));
 h_alias_ptr = (char**)((char*)h_addr_ptrs + sizeof(*h_addr_ptrs));
 name = (char*)h_alias_ptr + sizeof(*h_alias_ptr);
 …
 if (isdigit(name[0])) {
 for (cp=name; ; ++cp) {
 if (*cp == '\0') {
 if (*--cp == '.') break;
 if ((af == AF_INET) ? inet_aton(name, host_addr) : inet_pton(af, name, host_addr))
 result_buf->h_name = strcpy(hostname, name);
 goto done;
 }
 if (!isdigit(*cp) && *cp != '.') break;
 }
 }

1

2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19

C/C++: Find the bug
int __nss_hostname_digits_dots(…) {
 …

size_needed = sizeof(*host_addr) + sizeof(*h_addr_ptrs) + strlen(name) + 1;
 buffer = (char)malloc(size_needed);
 … 35 lines of code …
 host_addr = (host_addr_t*)*buffer;
 h_addr_ptrs = (host_addr_list_t*) ((char*)host_addr + sizeof(*host_addr));

h_alias_ptr = (char**)((char*)h_addr_ptrs + sizeof(*h_addr_ptrs));
 name = (char*)h_alias_ptr + sizeof(*h_alias_ptr);
 …
 if (isdigit(name[0])) {
 for (cp=name; ; ++cp) {
 if (*cp == '\0') {
 if (*--cp == '.') break;
 if ((af == AF_INET) ? inet_aton(name, host_addr) : inet_pton(af, name, host_addr))
 result_buf->h_name = strcpy(hostname, name);
 goto done;
 }
 if (!isdigit(*cp) && *cp != '.') break;
 }
 }

1

2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19

Impact of this C bug

• Discovered by Qualys researchers in 2015 during a routine
code audit of the Gnu standard C libraries
– affects nearly all Linux code that performs host lookups

• Initially classified as low-severity (rare crash)
• Qualys then demonstrated that they could use it gain complete

remote control over nearly any Linux networking application.
• Eventual conclusion: Nearly all Linux systems were vulnerable

to complete remote compromise for over a decade.

High-level Take-aways
• C/C++ code contains many “unsafe” features that invite disaster:

– unconstrained pointer arithmetic
– unstructured control-flows
– unchecked datatype casting (programmer casts are blindly trusted)
– in-lined assembly code

• About 25% of all highest severity bugs in history have been “buffer errors”.
• The world’s most mission-critical software (e.g., operating systems) consist

of hundreds of millions lines of C code.
– No human can comprehend, much less comprehensively debug/audit that.

• Most of the software crashes you experience are a direct result of the
unsafe design of C/C++.

Java: A Type-safe, Imperative Language

• Find two bugs:
import java.io.*;
import java.util.*;

class Summation {
 public static void main(String[] args) {
 List list = new LinkedList();

 for (int i=0; i<args.length; ++i)
 list.add(args[i]);

 int sum = 0;
 while (!list.isEmpty())
 sum += ((Integer)list.remove(1)).intValue();

 System.out.println(sum);
 }
}

Java: A Type-safe, Imperative Language

• Find two bugs:
import java.io.*;
import java.util.*;

class Summation {
 public static void main(String[] args) {
 List list = new LinkedList();

 for (int i=0; i<args.length; ++i)
 list.add(args[i]);

 int sum = 0;
 while (!list.isEmpty())
 sum += ((Integer)list.remove(1)).intValue();

 System.out.println(sum);
 }
}

Cast
Exception!

OutOfBounds
Exception!

A Real-world Java Bug
/**
 * Handles XML content
 */
public class XStreamHandler implements ContentTypeHandler {

 public String fromObject(Object obj, String resultCode, Writer out) throws IOException {
 if (obj != null) {
 XStream xstream = createXStream();
 xtream.toXML(obj, out);
 }
 return null;
 }

 public void toObject(Reader in, Object target) {
 XStream xstream = createXStream();
 xstream.fromXML(in, target);
 }

 protected XStream createXStream() {
 return new XStream();
 }

 …

1

2
3
4
5
6
7
8

9
10
11
12

13
14
15

A Real-world Java Bug
/**
 * Handles XML content
 */
public class XStreamHandler implements ContentTypeHandler {

 public String fromObject(Object obj, String resultCode, Writer out) throws IOException {
 if (obj != null) {
 XStream xstream = createXStream();
 xtream.toXML(obj, out);
 }
 return null;
 }

 public void toObject(Reader in, Object target) {
 XStream xstream = createXStream();

xstream.fromXML(in, target);
 }

 protected XStream createXStream() {
 return new XStream();
 }

 …

1

2
3
4
5
6
7
8

9
10
11
12

13
14
15

This is like
a cast

“in” is
untrusted!

Impact of this bug

• Discovered in Apache Struts library in 2017
– Representational State Transfer (REST) plug-in

• Eventually identified as the root cause of the famous Equifax
breach
– Private financial data of over 150 million people stolen
– One of the largest cybercrimes in history
– Cost Equifax at least $650 million in fines (plus reputation loss,

private settlements, etc.)

Problems with Java

• Every Java cast operation is potentially unsafe
– Some casts are non-obvious (example: deserialization)
– Even the obvious casts are so pervasive that they form a huge attack

surface
• Some typecasting issues can be solved with Generics, but not all

(e.g., list emptiness check)
• Problems:

– Many forms of unsafe dynamic code-loading
– Massive runtime library, whose foundations are mostly written in C
– Inexpressive type system code duplication inconsistencies bugs

Goals of Functional Languages

• In an “Advanced” Programming Language:
– The compiler should tell you about typing errors in advance (not at

runtime!)
– The language structure should make it difficult to write programs that

might crash (no unsafe casts!)
– 80% of your time should be spent getting the program to compile,

and only 20% on debugging
– should be tractable to create a formal, machine-checkable proof of

correctness for mission-critical core routines, or even full production-
level apps

In OCaml…
• You almost never need to cast anything

– The compiler figures out all the types for you
– If there’s a type-mismatch, the compiler warns you

• OCaml is fast
– Somewhere between C (fastest) and Java (slow)
– Hard to measure precisely. (So-called “language benchmarks” typically call underlying

math libraries that aren’t even implemented in the languages being tested!)
• Functions are “first-class”:

– you can pass them around as values, assign them to variables, …
– you can SAFELY build them at runtime

• But: The syntax and coding style is very weird if you’ve only ever programmed in
imperative languages!

OCaml: Getting Started
• OCaml programs are text files (*.ml)

– Write them using any text editor (e.g., Notepad)
– Unix: Emacs has syntax highlighting for ML/OCaml
– Windows: I use Vim (www.vim.org)

• Installing OCaml (see course website)
– Unix: pre-installed on the department Unix machines
– Windows: Self-installers for native x86 and for Cygwin

• Two ways to use OCaml:
– The OCaml compiler: ocamlc (compile *.ml to binary)
– OCaml in interactive mode (use OCaml like a calculator)
– Demo…

http://www.vim.org/

	CS 6371/4301: Advanced Programming Languages
	Today’s Agenda
	Course Overview
	Course Logistics
	Homework Policy
	Quizzes
	Difficulty Level
	About me…
	Course Plan
	What is an “Advanced” Programming Language?
	C/C++: Find the bug
	C/C++: Find the bug
	Impact of this C bug
	High-level Take-aways
	Java: A Type-safe, Imperative Language
	Java: A Type-safe, Imperative Language
	A Real-world Java Bug
	A Real-world Java Bug
	Impact of this bug
	Problems with Java
	Goals of Functional Languages
	In OCaml…
	OCaml: Getting Started

