
Structural Induction
CS 6371: Advanced Programming Languages

Kevin W. Hamlen

February 1, 2024



Advanced Programming Languages

Induction

Derivational Proofs

Formal (rule-based) definitions of programming languages create a
foundation for mathematical proofs of correctness for real programs.

essential for assuring real-world, mission-critical systems
superior to unit testing (which has low coverage for most real systems)
basis for machine-checked formal methods verification

In this class when I ask you to “prove” a property of a SIMPL program:
You may assume (without proof) basic facts about math (e.g., n+ 1 > n).
But you may not assume basic facts about how SIMPL programs behave
(e.g., you must prove using a derivation that 3 + 1 returns the integer 4).

(13)
〈3, σ〉 ⇓ 3

(13)
〈1, σ〉 ⇓ 1

(15)
〈3 + 1, σ〉 ⇓ 4



Advanced Programming Languages

Induction

Induction over N

To prove that a property P holds for all natural numbers n ∈ N, you
typically use induction:

Weak induction (over N):
1 Prove that P (0) holds (called the base case).
2 For arbitrary n ≥ 1, prove P (n− 1)⇒ P (n). (Assumption P (n− 1) called the

(weak) inductive hypothesis (IH).)

Strong induction (over N):

For arbitrary n ∈ N, prove (∀n0 < n,P (n0)) ⇒ P (n). (Assumption
∀n0 < n,P (n0) called the (strong) IH).

Usually this divides into two cases:
1 n = 0 (prove P (0) without IH)
2 n ≥ 1 (prove P (n) using IH)

These inductive principles are actually just special cases of a much more
general inductive principle called structural induction.



Advanced Programming Languages

Induction

Structural Induction

Goal: Prove that a property P holds for all derivations D.

Proof by structural induction uses two steps:

1 Base case(s): Prove that P (D) holds for “minimal” derivation(s) D.

2 Inductive case(s): Assume (IH) that P (D0) holds for all derivations D0

“smaller than” D, and prove P (D).

What do “minimal” and “smaller than” mean for derivations?

Any sensible definition will do, but we will use tree height as our metric.

D is “minimal” if it has only one rule application.

D1 < D2 if D1 has height strictly less than D2.

Note: Size of judgments within the rules is irrelevant; only tree height
matters.



Advanced Programming Languages

Induction

Generalizing Strong Induction

Why is structural induction a generalization of inductions over N?

Natural numbers are actually primitive linear structures.
Zero is primitive (base case).
One is the successor of zero S(0).
Two is the successor of one S(S(0)).
Three is the successor of two S(S(S(0))).
n is the nth-successor of zero Sn(0).

The inductions you learned in discrete class work for linear structures, but
derivations are trees so we generalize to arbitrary-arity structures.

(This isn’t the end of the story. We’ll be learning even more powerful
induction principles later in the course!)



Advanced Programming Languages

Structural Induction Example

Example Proof by Structural Induction

To illustrate, let’s prove the following example theorem by structural induction:

Theorem:

If σ(x) = n and 〈c, σ〉 ⇓ σ′ and x does not appear in c, then σ′(x) = n.

May seem like a trivial theorem, but this theorem is not true of some
programming languages. Can you think of an example of a language for which
it’s not true?



Advanced Programming Languages

Structural Induction Example

Setting up the Induction

Theorem:

If σ(x) = n and 〈c, σ〉 ⇓ σ′ and x does not appear in c, then σ′(x) = n.

Proof:

Let D be a derivation of judgment 〈c, σ〉 ⇓ σ′. We will prove the theorem by
structural induction over D. ...

Always tell me which kind of induction you’re doing!
We will learn many, and all are on the table.
Sometimes you’ll use more than one kind in the same proof.
If your proof falls apart, at least telling me up front which kind you’re
attempting will save you many points!

Always tell me what your induction is over!
If it’s a structural induction, what’s the structure?
There will often be many choices, only one of which works!

How do we know D exists?
The definition of 〈c, σ〉 ⇓ σ′ being “true” (assumed) is that it is derivable.
May not assume the derivation is unique! (But at least one exists.)



Advanced Programming Languages

Structural Induction Example

Base Case

Theorem:

If σ(x) = n and 〈c, σ〉 ⇓ σ′ and x does not appear in c, then σ′(x) = n.

Proof:

...
Base Case: Suppose D consists of only one rule. Then it must be Rule 1, so D
must look like this:

D = (1)
〈skip, σ〉 ⇓ σ

Extremely important: Each case is defined by the final rule number in
derivation D (in this case Rule 1).

Do not write “Suppose c = skip. ...” That is not a case of a structural
induction over D. It is instead a case of a structural induction over c!
c is also a structure. You could do a structural induction over it. It will not
work. (Will show you why later.)
If you make this mistake, 83% of your proof will work and then you’ll get
stuck at the end.



Advanced Programming Languages

Structural Induction Example

Base Case

Theorem:

If σ(x) = n and 〈c, σ〉 ⇓ σ′ and x does not appear in c, then σ′(x) = n.

Proof:

...
Base Case: Suppose D consists of only one rule. Then it must be Rule 1, so D
must look like this:

D = (1)
〈skip, σ〉 ⇓ σ

We infer that σ′ = σ. Since σ(x) = n (by assumption), we conclude that
σ′(x) = n.

Extremely important: Each case is defined by the final rule number in
derivation D (in this case Rule 1).

Conclusions like c = skip and σ′ = σ follow from the assumption that D
ends in Rule 1, not the other way around.



Advanced Programming Languages

Structural Induction Example

Inductive Hypothesis

Theorem:

If σ(x) = n and 〈c, σ〉 ⇓ σ′ and x does not appear in c, then σ′(x) = n.

Proof:

Inductive Hypothesis: Assume that if σ0(x0) = n0, and 〈c0, σ0〉 ⇓ σ′
0 has a

derivation D0 < D, and x0 does not appear in c0, then σ
′
0(x0) = n0.

Always write out the IH in full before proving any inductive cases.

The IH must be exactly the following:
the original theorem statement (verbatim) with all variables renamed (I add a
subscript zero)
an extra assumption that the structure being inducted over is “smaller”
(D0 < D)

Resist the urge to skip this seemingly boring step! Resist the urge to
rephrase the theorem! It will get you into trouble!



Advanced Programming Languages

Structural Induction Example

Inductive Case

Theorem:

If σ(x) = n and 〈c, σ〉 ⇓ σ′ and x does not appear in c, then σ′(x) = n.

Proof:

Inductive Hypothesis: Assume that if σ0(x0) = n0, and 〈c0, σ0〉 ⇓ σ′
0 has a

derivation D0 < D, and x0 does not appear in c0, then σ
′
0(x0) = n0.

Case 2: Suppose D ends in Rule 2. Then D looks like this:

D =

D1

〈c1, σ〉 ⇓ σ2

D2

〈c2, σ2〉 ⇓ σ′
(2)

〈c1;c2, σ〉 ⇓ σ′



Advanced Programming Languages

Structural Induction Example

Inductive Case

Theorem:

If σ(x) = n and 〈c, σ〉 ⇓ σ′ and x does not appear in c, then σ′(x) = n.

Proof:

Inductive Hypothesis: Assume that if σ0(x0) = n0, and 〈c0, σ0〉 ⇓ σ′
0 has a

derivation D0 < D, and x0 does not appear in c0, then σ
′
0(x0) = n0.

Case 2: Suppose D ends in Rule 2. Then D looks like this:

D =

D1

〈c1, σ〉 ⇓ σ2

D2

〈c2, σ2〉 ⇓ σ′
(2)

〈c1;c2, σ〉 ⇓ σ′

So c = c1;c2.

Now what?



Advanced Programming Languages

Structural Induction Example

Inductive Case

Theorem:

If σ(x) = n and 〈c, σ〉 ⇓ σ′ and x does not appear in c, then σ′(x) = n.

Proof:
Inductive Hypothesis: Assume that if σ0(x0) = n0, and 〈c0, σ0〉 ⇓ σ′

0 has a derivation D0 < D,
and x0 does not appear in c0, then σ′

0(x0) = n0.

Case 2: Suppose D ends in Rule 2. Then D looks like this:

D =

D1

〈c1, σ〉 ⇓ σ2

D2

〈c2, σ2〉 ⇓ σ′
(2)

〈c1;c2, σ〉 ⇓ σ′

So c = c1;c2. Apply IH with D0 = D1, c0 = c1, σ0 = σ, σ′
0 = σ2, x0 = x, and n0 = n.

σ0(x0) = n0 because σ(x) = n (assumption)

D0 < D because D1 is inside D

x0 not in c0 because c1 is part of c and x not in c (assumption)

From IH, we conclude that σ2(x) = n.

Give explicit instantiations of IH variables.

Explicitly prove all IH assumptions.



Advanced Programming Languages

Structural Induction Example

Inductive Case

Theorem:

If σ(x) = n and 〈c, σ〉 ⇓ σ′ and x does not appear in c, then σ′(x) = n.

Proof:
Inductive Hypothesis: Assume that if σ0(x0) = n0, and 〈c0, σ0〉 ⇓ σ′

0 has a derivation D0 < D,
and x0 does not appear in c0, then σ′

0(x0) = n0.

Case 2: Suppose D ends in Rule 2. Then D looks like this:

D =

D1

〈c1, σ〉 ⇓ σ2

D2

〈c2, σ2〉 ⇓ σ′
(2)

〈c1;c2, σ〉 ⇓ σ′

So c = c1;c2. Apply IH with D0 = D1 ... concluding that σ2(x) = n.

Apply IH with D0 = D2, c0 = c2, σ0 = σ2, σ′
0 = σ′, x0 = x, and n0 = n.

σ0(x0) = n0 because σ2(x) = n (proved above)

D0 < D because D2 is inside D

x0 not in c0 because c2 is part of c and x not in c (assumption)

From IH, we conclude that σ′(x) = n.



Advanced Programming Languages

Structural Induction Example

Assignment Case

Theorem:

If σ(x) = n and 〈c, σ〉 ⇓ σ′ and x does not appear in c, then σ′(x) = n.

Proof:
Inductive Hypothesis: Assume that if σ0(x0) = n0, and 〈c0, σ0〉 ⇓ σ′

0 has a derivation D0 < D,
and x0 does not appear in c0, then σ′

0(x0) = n0.

Case 3: Suppose D ends in Rule 3. Then D looks like this:

D =

D1

〈a, σ〉 ⇓ i
(3)

〈v := a, σ〉 ⇓ σ[v 7→ i]

So c = (v := a) and σ′ = σ[v 7→ i].

What now?



Advanced Programming Languages

Structural Induction Example

Assignment Case

Theorem:

If σ(x) = n and 〈c, σ〉 ⇓ σ′ and x does not appear in c, then σ′(x) = n.

Proof:
Inductive Hypothesis: Assume that if σ0(x0) = n0, and 〈c0, σ0〉 ⇓ σ′

0 has a derivation D0 < D,
and x0 does not appear in c0, then σ′

0(x0) = n0.

Case 3: Suppose D ends in Rule 3. Then D looks like this:

D =

D1

〈a, σ〉 ⇓ i
(3)

〈v := a, σ〉 ⇓ σ[v 7→ i]

So c = (v := a) and σ′ = σ[v 7→ i]. Apply IH with D0 = D1, c0 = a, σ0 = σ, σ′
0 = i, x0 = x,

and n0 = n.



Advanced Programming Languages

Structural Induction Example

Assignment Case

Theorem:

If σ(x) = n and 〈c, σ〉 ⇓ σ′ and x does not appear in c, then σ′(x) = n.

Proof:
Inductive Hypothesis: Assume that if σ0(x0) = n0, and 〈c0, σ0〉 ⇓ σ′

0 has a derivation D0 < D,
and x0 does not appear in c0, then σ′

0(x0) = n0.

Case 3: Suppose D ends in Rule 3. Then D looks like this:

D =

D1

〈a, σ〉 ⇓ i
(3)

〈v := a, σ〉 ⇓ σ[v 7→ i]

So c = (v := a) and σ′ = σ[v 7→ i]. Apply IH with D0 = D1, c0 = a, σ0 = σ, σ′
0 = i, x0 = x,

and n0 = n.

What? A command equals an arithmetic expression? A store equals an integer?
This makes no sense!

Don’t blindly copy a template. Need to understand why each step makes
mathematical sense and is needed.



Advanced Programming Languages

Structural Induction Example

Assignment Case

Theorem:

If σ(x) = n and 〈c, σ〉 ⇓ σ′ and x does not appear in c, then σ′(x) = n.

Proof:
Inductive Hypothesis: Assume that if σ0(x0) = n0, and 〈c0, σ0〉 ⇓ σ′

0 has a derivation D0 < D,
and x0 does not appear in c0, then σ′

0(x0) = n0.

Case 3: Suppose D ends in Rule 3. Then D looks like this:

D =

D1

〈a, σ〉 ⇓ i
(3)

〈v := a, σ〉 ⇓ σ[v 7→ i]

So c = (v := a) and σ′ = σ[v 7→ i].

Let’s try this again...



Advanced Programming Languages

Structural Induction Example

Assignment Case

Theorem:

If σ(x) = n and 〈c, σ〉 ⇓ σ′ and x does not appear in c, then σ′(x) = n.

Proof:
Inductive Hypothesis: Assume that if σ0(x0) = n0, and 〈c0, σ0〉 ⇓ σ′

0 has a derivation D0 < D,
and x0 does not appear in c0, then σ′

0(x0) = n0.

Case 3: Suppose D ends in Rule 3. Then D looks like this:

D =

D1

〈a, σ〉 ⇓ i
(3)

〈v := a, σ〉 ⇓ σ[v 7→ i]

So c = (v := a) and σ′ = σ[v 7→ i]. Since x not in c (by assumption), v is not x. Therefore
σ[v 7→ i](x) = σ(x). Since σ(x) = n (by assumption), we conclude that σ′(x) = n.



Advanced Programming Languages

Structural Induction Example

Assignment Case

Theorem:

If σ(x) = n and 〈c, σ〉 ⇓ σ′ and x does not appear in c, then σ′(x) = n.

Proof:
Inductive Hypothesis: Assume that if σ0(x0) = n0, and 〈c0, σ0〉 ⇓ σ′

0 has a derivation D0 < D,
and x0 does not appear in c0, then σ′

0(x0) = n0.

Case 3: Suppose D ends in Rule 3. Then D looks like this:

D =

D1

〈a, σ〉 ⇓ i
(3)

〈v := a, σ〉 ⇓ σ[v 7→ i]

So c = (v := a) and σ′ = σ[v 7→ i]. Since x not in c (by assumption), v is not x. Therefore
σ[v 7→ i](x) = σ(x). Since σ(x) = n (by assumption), we conclude that σ′(x) = n.

Note: We never used the IH in this case. This case is actually a base case!

In general, don’t worry about which cases are base cases and which cases are
inductive. Just state the IH before proving any cases and use it as needed.



Advanced Programming Languages

Structural Induction Example

Cases for Conditionals

Theorem:

If σ(x) = n and 〈c, σ〉 ⇓ σ′ and x does not appear in c, then σ′(x) = n.

Proof:
Case 4: Suppose D ends in Rule 4. Then D looks like this:

D =

D1

〈b, σ〉 ⇓ T
D2

〈c1, σ〉 ⇓ σ′
(4)

〈if b then c1 else c2, σ〉 ⇓ σ′

...

Case 5: Suppose D ends in Rule 5. Then D looks like this:

D =

D1

〈b, σ〉 ⇓ F
D2

〈c2, σ〉 ⇓ σ′
(5)

〈if b then c1 else c2, σ〉 ⇓ σ′

...

Exercise: See if you can solve these cases on your own. (Online lecture notes
give solutions.)



Advanced Programming Languages

Structural Induction Example

Case for While-loop

Theorem:

If σ(x) = n and 〈c, σ〉 ⇓ σ′ and x does not appear in c, then σ′(x) = n.

Proof:
Inductive Hypothesis: Assume that if σ0(x0) = n0, and 〈c0, σ0〉 ⇓ σ′

0 has a derivation D0 < D,
and x0 does not appear in c0, then σ′

0(x0) = n0.

Case 6: Suppose D ends in Rule 6. Then D looks like this:

D =

D1

〈if b then (c1; while b do c1) else skip, σ〉 ⇓ σ′
(6)

〈while b do c1, σ〉 ⇓ σ′

So c = while b do c1.



Advanced Programming Languages

Structural Induction Example

Case for While-loop

Theorem:

If σ(x) = n and 〈c, σ〉 ⇓ σ′ and x does not appear in c, then σ′(x) = n.

Proof:
Inductive Hypothesis: Assume that if σ0(x0) = n0, and 〈c0, σ0〉 ⇓ σ′

0 has a derivation D0 < D,
and x0 does not appear in c0, then σ′

0(x0) = n0.

Case 6: Suppose D ends in Rule 6. Then D looks like this:

D =

D1

〈if b then (c1;while b do c1) else skip, σ〉 ⇓ σ′
(6)

〈while b do c1, σ〉 ⇓ σ′

So c = while b do c1. Apply IH with D0 = D1, c0 = if b then (c1;while b do c1) else skip,
σ0 = σ, σ′

0 = σ′, x0 = x, and n0 = n.

σ0(x0) = n0 because σ(x) = n (by assumption)

D0 < D because D1 is inside D

x0 not in c0 because the only variables in c0 are in b and c1, which are parts of c, and x not
in c by assumption



Advanced Programming Languages

Structural Induction Example

Case for While-loop

Theorem:

If σ(x) = n and 〈c, σ〉 ⇓ σ′ and x does not appear in c, then σ′(x) = n.

Proof:
Inductive Hypothesis: Assume that if σ0(x0) = n0, and 〈c0, σ0〉 ⇓ σ′

0 has a derivation D0 < D,
and x0 does not appear in c0, then σ′

0(x0) = n0.

Case 6: Suppose D ends in Rule 6. Then D looks like this:

D =

D1

〈if b then (c1;while b do c1) else skip, σ〉 ⇓ σ′
(6)

〈while b do c1, σ〉 ⇓ σ′

So c = while b do c1. Apply IH with D0 = D1, c0 = if b then (c1;while b do c1) else skip,
σ0 = σ, σ′

0 = σ′, x0 = x, and n0 = n.

σ0(x0) = n0 because σ(x) = n (by assumption)

D0 < D because D1 is inside D

x0 not in c0 because the only variables in c0 are in b and c1, which are parts of c, and x not
in c by assumption

From IH, we conclude that σ′(x) = n.



Advanced Programming Languages

Structural Induction Example

Case for While-loop

Theorem:

If σ(x) = n and 〈c, σ〉 ⇓ σ′ and x does not appear in c, then σ′(x) = n.

Proof:
Inductive Hypothesis: Assume that if σ0(x0) = n0, and 〈c0, σ0〉 ⇓ σ′

0 has a derivation D0 < D,
and x0 does not appear in c0, then σ′

0(x0) = n0.

Case 6: Suppose D ends in Rule 6. Then D looks like this:

D =

D1

〈if b then (c1;while b do c1) else skip, σ〉 ⇓ σ′
(6)

〈while b do c1, σ〉 ⇓ σ′

So c = while b do c1. Apply IH with D0 = D1, c0 = if b then (c1;while b do c1) else skip,
σ0 = σ, σ′

0 = σ′, x0 = x, and n0 = n.

σ0(x0) = n0 because σ(x) = n (by assumption)

D0 < D because D1 is inside D

x0 not in c0 because the only variables in c0 are in b and c1, which are parts of c, and x not
in c by assumption

From IH, we conclude that σ′(x) = n.

What would have failed if we’d done a structural induction on c instead of D?



Advanced Programming Languages

Generalizing Inductions

Induction Failures

Induction is a principled way to perform loop-like reasoning without
accidentally making a circular argument.

Inductive case argues
(
∀D0 < D . P (D0)

)
⇒ D

Never argues P (D) ⇒ P (D) !

Signs that your induction is incorrect:
You find yourself arguing that some computation “keeps going until...” or
“eventually” does something.
The proof doesn’t use the inductive hypothesis literally.
A case is argued correct because some other case is proved. (Invalid
reasoning since all cases start with mutually exclusive assumptions!)

Proof failures are better than invalid proof successes!
If your approach to getting stuck is to force the proof to succeed through
hand-waving, then your “proofs” are not supplying additional assurance.
Inability to prove something is not a disaster. “Proving” something that’s
false is a disaster!



Advanced Programming Languages

Generalizing Inductions

Generalizing the Theorem

Inductive proofs sometimes fail when the IH cannot be applied.
Simple example: Theorem has the form P1(D) ⇒ P2(D), but assumption
P1(D) is unnecessary.
IH will look like: ∀D0 < D . P1(D0) ⇒ P2(D0)
At some point you need to apply the IH, but P1(D0) is false. Proof fails.

Solution is often to “generalize” the theorem:
Prove a different theorem P ′ that generalizes (i.e., implies) the original
theorem P .
Example: Drop assumption P1 from the theorem above.
Even though P ′ seems harder to prove (e.g., fewer assumptions), you get a
stronger IH (e.g., fewer prerequisites).
After proving P ′ by induction, separately prove that P ′ ⇒ P .

Mathematicians colloquially refer to this as “turning the crank of the
induction.”

Finding the right generalization of the theorem is often the central challenge
for formal verification of real-world software in practice.



Advanced Programming Languages

Avoiding Structural Induction

Proof Without Induction

Sometimes it’s possible to avoid structural induction entirely by doing some
creative derivation “copy and pasting”. Here’s an example:

Theorem:

The judgment 〈if !b then c1 else c2, σ〉 ⇓ σ′ holds if and only if the judgment
〈if b then c2 else c1, σ〉 ⇓ σ′ holds.

(This is the sort of theorem one must prove in order to implement safe compiler
optimizations for a language.)



Advanced Programming Languages

Avoiding Structural Induction

Proof Without Induction

Theorem:

The judgment 〈if !b then c1 else c2, σ〉 ⇓ σ′ holds if and only if the judgment
〈if b then c2 else c1, σ〉 ⇓ σ′ holds.

Proof:
We first prove the forward implication. Assume judgment 〈if !b then c1 else c2, σ〉 ⇓ σ′ holds.
Then there exists some derivation D of this judgment. Derivation D can only end in Rule 4 or 5.

Case 1: Suppose D ends in Rule 4:

D =

?

〈!b, σ〉 ⇓ T
D2

〈c1, σ〉 ⇓ σ′
(4)

〈if !b then c1 else c2, σ〉 ⇓ σ′



Advanced Programming Languages

Avoiding Structural Induction

Proof Without Induction

Theorem:

The judgment 〈if !b then c1 else c2, σ〉 ⇓ σ′ holds if and only if the judgment
〈if b then c2 else c1, σ〉 ⇓ σ′ holds.

Proof:
We first prove the forward implication. Assume judgment 〈if !b then c1 else c2, σ〉 ⇓ σ′ holds.
Then there exists some derivation D of this judgment. Derivation D can only end in Rule 4 or 5.

Case 1: Suppose D ends in Rule 4:

D =

D1

〈b, σ〉 ⇓ F
(12)

〈!b, σ〉 ⇓ T
D2

〈c1, σ〉 ⇓ σ′
(4)

〈if !b then c1 else c2, σ〉 ⇓ σ′



Advanced Programming Languages

Avoiding Structural Induction

Proof Without Induction

Theorem:

The judgment 〈if !b then c1 else c2, σ〉 ⇓ σ′ holds if and only if the judgment
〈if b then c2 else c1, σ〉 ⇓ σ′ holds.

Proof:
We first prove the forward implication. Assume judgment 〈if !b then c1 else c2, σ〉 ⇓ σ′ holds.
Then there exists some derivation D of this judgment. Derivation D can only end in Rule 4 or 5.

Case 1: Suppose D ends in Rule 4:

D =

D1

〈b, σ〉 ⇓ F
(12)

〈!b, σ〉 ⇓ T
D2

〈c1, σ〉 ⇓ σ′
(4)

〈if !b then c1 else c2, σ〉 ⇓ σ′

Using subderivations D1 and D2 we can derive:

D1

〈b, σ〉 ⇓ F
D2

〈c1, σ〉 ⇓ σ′
(5)

〈if b then c2 else c1, σ〉 ⇓ σ′



Advanced Programming Languages

Avoiding Structural Induction

Proof Without Induction

Theorem:

The judgment 〈if !b then c1 else c2, σ〉 ⇓ σ′ holds if and only if the judgment
〈if b then c2 else c1, σ〉 ⇓ σ′ holds.

Proof:
We first prove the forward implication. Assume judgment 〈if !b then c1 else c2, σ〉 ⇓ σ′ holds.
Then there exists some derivation D of this judgment. Derivation D can only end in Rule 4 or 5.

Case 1: Suppose D ends in Rule 4:

D =

D1

〈b, σ〉 ⇓ F
(12)

〈!b, σ〉 ⇓ T
D2

〈c1, σ〉 ⇓ σ′
(4)

〈if !b then c1 else c2, σ〉 ⇓ σ′

Using subderivations D1 and D2 we can derive:

D1

〈b, σ〉 ⇓ F
D2

〈c1, σ〉 ⇓ σ′
(5)

〈if b then c2 else c1, σ〉 ⇓ σ′

Exercise: Complete Case 2 and the proof of the reverse implication (same basic
idea). Answers given in online notes.


	Induction
	Structural Induction Example
	Generalizing Inductions
	Avoiding Structural Induction

