
Lecture #21: Hindley-Milner Type-inference

CS 4301/6371: Advanced Programming Languages

April 11, 2024

System F requires the programmer to write typing annotations for all functions (λx:τ.e), all
polymorphic abstractions (Λα.e), and all polymorphic applications (e[τ]). It would be nice to relieve
the programmer of this burden by inferring suitable types τ automatically if they exist. This is
called type-inference. Unfortunately, general type-inference for System F is provably undecidable [1].
Thus, there is no algorithm by which suitable types can be inferred automatically for all System F
programs.

As a compromise, OCaml supports a restricted version of System F for which type-inference is
decidable. The restriction is that in OCaml all functions must have shallow types:

Definition 1. A System F type is shallow if it has the form ∀α1 . . . ∀αn.τ where n ≥ 0 and τ is
simply typed (i.e., it contains no ∀ quantifiers).

Informally, this definition says that all quantifiers in types must appear at the outermost level. For
example, ∀α.(α→ int) is a shallow type, but (∀α.α)→ int is not because the ∀ in this latter type
appears inside an arrow type. This restriction is why when OCaml writes a type, it does not need
to print ∀ symbols; all typing variables are implicitly universally quantified at the outermost level.

The type-inference algorithm for OCaml is based on Hindley-Milner type-inference (cf., [2]).
What follows is a simplified version of the H-M algorithm that does not support recursive functions.
(Polymorphic recursive functions are not difficult to add, but will not be covered in this class for
the sake of time.) We will consider a language that includes integers, variables, abstractions, and
applications:

ê ::= n | v | λv.ê | ê1ê2
The type-inference algorithm can be organized into four steps:

Step 1: Annotate all abstractions and polymorphic applications in ê with fresh type variables α as
follows, forming a new annotated expression e:

e ::= n | v[α1] · · · [αi] | λv:α.e | e1e2

Here, i is the number of universally quantified type variables in the type Γ(v) of v (which has
shallow type by assumption).

Step 2: Infer a type τ and mapping θ : α ⇀ τ that satisfies the judgment ⊥,Γ ` e : τ, θ whose
semantics are given on the next page.

Step 3: Take expression e from Step 1 and substitute all typing variables α ∈ θ← with the types
θ(α) inferred in Step 2. (For any typing variable α 6∈ θ←, leave it alone in e.)

1

Step 4: In general there may be some typing variables α 6∈ θ← that are still in the expression after
Step 3. These type variables correspond to types for which no constraints were found during
Step 2. They can therefore be universally quantified, so add a polymorphic binding (Λα. . . .)
for each one to the beginning of the expression.

The core of the above algorithm is Step 2, which we formally define below. In what follows,
notation τ [θ] denotes substituting all free type variables α ∈ θ← in τ with the types θ(α) assigned
to them by θ, and notation Γ[θ] = {(v, τ) | Γ(v) = τ} denotes performing the same substitution
throughout the image of Γ.

θ,Γ ` n : int , θ (1)

Γ(v) = ∀β1 . . . ∀βi.τ
θ,Γ ` v[α1] · · · [αi] : τ [α1/β1] · · · [αi/βi], θ

(2)

θ,Γ[v 7→ α] ` e : τ, θ′

θ,Γ ` λv:α.e : α→ τ, θ′
(3)

θ,Γ ` e1 : τ1, θ1 θ1,Γ[θ1] ` e2 : τ2, θ2 θ3 = U(τ1[θ2], τ2 → α) θ′ = θ2 t θ3
θ,Γ ` e1e2 : θ′(α), θ′

(4)

In Rule 4, α is a freshly chosen typing variable that appears nowhere in e or θ2. The function
U : (τ × τ) ⇀ θ performs type unification, and is defined as follows:

Definition 2. The unification θ of two types τ1 and τ2 is an instantiation of free typing variables
in τ1 and τ2 such that τ1[θ] = τ2[θ]. (Note that the range of θ may contain free type variables.)

Here is a recursive algorithm that performs type unification:

U(α, α) = ⊥ (5)

U(int , int) = ⊥ (6)

U(α, τ) = U(τ, α) = {(α, τ)} if α is not free in τ (7)

U(τ1 → τ2, τ
′
1 → τ ′2) = U(τ1, τ

′
1) t U(τ2, τ

′
2) (8)

U is undefined otherwise (type-inference rejects) (9)

Note that not all pairs of types can be unified since cases 8 or 9 may fail. (Case 8 may fail because
not every pair of functions has an upper bound.) When unification fails, Rule 4 is unprovable, and
therefore the type-inferrer rejects the program as having no shallow type.

References

[1] J. B. Wells. Typability and type checking in the second-order lambda-calculus are equivalent and
undecidable. In Proceedings of the 9th Annual IEEE Symposium on Logic in Computer Science (LICS),
pp. 176–185, 1994.

[2] L. Damas and R. Milner. Principal type-schemes for functional programs. In Proceedings of the 9th ACM
Symposium on Principles of Programming Languages (POPL), pp. 207–212, 1982.

2

