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Abstract—A computational methodology for reorienting, repo-
sitioning, and merging camera positions within a region under
surveillance is proposed, so as to optimally cover all features
of interest without overburdening human or machine analysts
with an overabundance of video information. This streamlines
many video monitoring applications, such as vehicular traffic and
security camera monitoring, which are often hampered by the
difficulty of manually identifying the few specific locations (for
tracks) or frames (for videos) relevant to a particular inquiry
from a vast sea of hundreds or thousands of hours of video.
VisualVital ameliorates this problem by considering geographic
information to select ideal locations and orientations of camera
positions to fully cover the span without losing key visual
details. Given a target quantity of cameras, it merges relatively
unimportant camera positions to reduce the quantity of video
information that must be collected, maintained, and presented.
Experiments apply the technique to paths chosen from maps
of different cities around the world with various target camera
quantities. The approach finds detail-optimizing positions with a
time complexity of O(n logn).

I. INTRODUCTION

“Dallas, Nov. 22—President John Fitzgerald Kennedy was
shot and killed by an Assassin today. . . . The killer fired
the rifle from a building just off the motorcade route.” [1]

The tragic events of November 22, 1963 are a grim
reminder of the importance of concise yet comprehensive visual
surveillance of security-critical events and venues. Despite
the presence of many well-trained human eye-witnesses (e.g.,
police officers and Secret Service members), as well as
television coverage, analysts continue to debate to this day
exactly who fired the fatal shot and from what position. Due
to humans’ limited range of attention and visual scope, it is
imperative to grasp parts and details that humans easily neglect.

This is especially important when graphic data processing is
involved. Humans more efficiently process visual than textual
information in many contexts [2]–[4], motivating the use of
visualization for data processing [5]. With advancement of
sensory technology enhancement (e.g., consumer VR headsets),
there is an elevated need to efficiently extract key points and
timings for delivery to human users, since our brains have
limited memory volume for long steaming visions or videos.
By selecting these crucial scenes and positions [6], [7] and
aggregating the total values of the importance of those pieces,
people can control or understand the whole contents with less
effort.

To this end, our research considers the specific problem of
how to position and orient a limited number of video monitoring
devices so as to maximize the information gain on the status of a
route in a map. We anticipate that both cameras and objects may
be dynamic (e.g., possibly moving observers of moving objects,
such as traffic, pedestrians, or weather). Relevant applications
include auto-generation of adaptable scenes for Oculus R© VR
with Google Maps R©, which entails finding key positions and
making a smooth line between them to shorten browsing time
and maximize visual information along the path, or performing
high-quality traffic monitoring with fewer cameras without
coverage loss. In addition, this problem can be simplified into
a 1-dimensional version, which is to search those key-frames
inside a streaming file and find its related information instantly,
such as for music and video fingerprinting [8], [9], copyright
protecting [10], [11], and specific scene detection [12], [13].

Unlike prior work on related problems (see Section II), our
goal is to retain and maximize overall information related to
world status, not to specialize for a particular, known detail
or event. For instance, prior work on traffic monitoring has
demonstrated the effectiveness of probe vehicles and smart-
phones for helping users avoid specific, known problem states
(e.g., traffic congestion) [14], [15]; and Virtual trip lines [16]
can help travelers choose effective routes. But such approaches
are not as applicable to identifying and analyzing arbitrary
event details in which the user’s interest cannot be predicted
in advance (e.g., details of a terrorist attack whose relevance
only become evident afterward). Our problem also generalizes
beyond traffic scenarios.

Specifically, we consider the problem of observing a route
(consisting of many segments, each with differing relevant
details labeled) with a limited number of camera positions,
so as to maximize the overall details observed by selecting
optimal positions for the cameras. Each camera must fit in
the model from the real world—the detail observed by camera
is inversely related to its geometric distance from the object.
To maximize the overall information, we invent a method to
first maximize local details with sufficient positions, and then
gradually merge the selected positions to decease the camera
count until it meets a desired target threshold.

The contribution of the work can be summarized as follows:

• By applying human visual characteristics, we create an
observing model to simulate the sight that a camera has.



• We implement a virtual camera’s functionality in Google
Maps R©. By tagging each object with a weight (or detail),
we can calculate the observed weight under different
angles and distance.

• For a limited object in 2D, we find the maximal observed
weight exists, and an observation position can be calcu-
lated from its minimal circumcircle.

• Our method finds optimal camera positions in O(n log n)
time, and keeps the overall observed details above the
baseline.

The remainder of this paper is arranged as follows. Section II
summarizes related work. Section III describes the three camera
observing models and formulates the problem. Section IV
shows the details of our methods and mechanism of the two-
phase algorithm. Experiments are implemented in Section V
to show the correctness of our proposed solutions. Finally,
Section VI concludes.

II. RELATED WORK

Many research works focusing on target tracking and obser-
vation have emerged in the past few years. These applications
and the popularization of Oculus R© Technologies motivate our
invention of approaches to observe paths and transportation
within the Google Maps R©. Recently, a method of tracking
motion objects more effectively has been devised [17]. It
creatively interlaces objects’ global and local features to observe
the object more accurately than former approaches.

The increasingly rapid evolution and improving affordability
of VR equipment over the past decade has made consumer VR
systems extremely popular in the current market. Early work on
this subject innovated Head mounted Displays to bring people
into virtual worlds [18]. Other work uses surround-screens to
present an immersive virtual world by projection [19]. Over
time, these implementations have been gradually miniaturized.
Wearable VR goggles with projection are now being used in
a variety of contexts. For instance, they are being used in
job training related to operating precision instruments [20].
In the medical field, they are employed to create imaginal
exposure or surgical proxies to cure patients psychologically
and physically [21], [22].

Digital mapping and Global Positioning Systems (GPSes)
have opened computer vision research to applications related
to transportation and localization. This is now a prolific area
of study, so only some contributions related to our work are
presented here.

Methods of localizing images with architectural features
have been invented and implemented for Google Maps R©

by leveraging the GPS and Google Maps Street View R©

information [23]. The approach accumulates vote counts based
on feature matching to find the GPS position of a query image
with the highest votes. Input images containing adequate details
(interest points) are crucial for successful queries. In contrast,
our work focuses on navigation-related scenarios.

Decision support systems have also been leveraged to
calculate vehicle routing in Google Maps R© [24]. The major
contribution of this work, which is unique to the research on

navigation systems, is that many criteria other than distance or
time are considered, and these principles influence the standards
of evaluation for routing. This affects the role of weight-tagging
for each path segment in our problem domain.

Cameras have been used for decades for security monitoring
and other situational awareness applications. By combining
the concurrent observations of many cameras, visual networks
can be built to act for surveillance. Inside this network, every
camera is treated as a sensor node and collaborates with the
other nodes to collect instant data (in form of video and
photos) synchronously [25]. In research involving camera
sensor networks, most of the work entails maximizing the
covered visual fields and minimizing the number or energy of
camera sensors for optimization. Advances include optimized
schedules and algorithms to apply camera networks to diverse
scenes.

The category of monitored targets is an important aspect
of this problem space that must be taken into consideration.
Targets are classified into different types, such as multi-
positions, regions and barriers (e.g., lines and bands). For
example, the Pan and Scan Problem entails covering as many
targets as possible by deploying specific numbers of cameras
in a plane with vast observed targets [26]. Prior work on this
problem has developed a 2-approximation algorithm that applies
Voronoi tessellation to regions, with the goal of lessening the
overlap of the cameras’ covering fields [27].

Extensive research has examined the problem of camera
coverage of region barriers. Selecting the least number of
cameras to cover specific barriers is one focus of this re-
search [28]. In most cases, the monitored objects are movable
and not fixed at positions. Prior work has innovated a system of
localization and tracking built atop mobile phone networks [29].
By implementing tracking mechanisms based on the virtual
data derived from content inside a camera network, this work
improves localization beyond what can be easily achieved with
a cellular network alone. Comparing and matching objects
inside the visual field facilitates the calculation of information
related to targets and their locations. In another work, a system
for tracking persons in a 3-dimensional area is proposed [30].
The cameras in this project detect specific human targets by
marking multiple points on objects and tracing them in different
cameras.

III. NOTIONS & MODELS

This section presents three models that we combine to
formulate the definition of the problem. The first model
introduces the type of observed objects. The second one defines
rules for observing and calculating details (or weight). The
third one models how the position and angle of the camera
affects the details, which extends the rules of the second model.

A. Observation Model

Figure 1(a) shows the basic notions used in this model,
assuming a camera c is deployed at a position p, and has a
fixed view scope φ, observing a segment `. A sector is formed
by the angle φ as c’s vision range, whose depth extends from
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Fig. 1. Complete presentation for an observation and related notions (a) Basic
observation (b) Simplified observation with projections

p to ∞. If this entire object ` falls in c’s vision range, we
say ` is fully-observed. Similarly, whenever part of ` stays in
c’s vision range, we say that ` is partially-observed by c. We
denote the distance between position p and the nearest point
of segment ` as the viewing distance dp` of `, and the covered
(or c-observed) part of ` as `′.

In this model, the detail of segment ` observed by camera
c is defined as `’s weight within a ratio of (0, 1], denoted as
w`. The observed weight of ` through c is defined as w. For a
single segment, w is a function of w`, dp`, and `′.

B. Weight Model

When the distance dp` between the camera c and the object
grows, the amount of observed detail reduces; inversely, when
the distance dp` is less than a specific value d0, we cannot see
more details than the original w` from a camera. So, d0 is the
critical distance for c’s observation of objects. Thus, when `
is fully observed, we define the relation between the observed
details w, d0, and dp` as follows: (1) When 0 < dp` ≤ d0, we
have w = w`. (2) When dp` > d0, we have w = d0

dp`
w`.

The critical distance d0 is defined before an arc c_ can be
drawn along all the critical positions of the camera c. Then,
a sector β consists of c_ and the open angle of camera c at p.
Inside the area β, we assume no detail is lost in the observation.
In the following, the fan-shaped lossless field is simplified into
a triangle to be introduced in the next subsection.

Therefore, combining with the observation model, the
observed weight (or details) w can be defined as follows:
Since d0 is a parameter of the camera, we can introduce a
constant ratio α to formulate a relation d0 = αw` to simplify
the formula

w =


`′

`
w` if 0 < dp` ≤ d0

`′

`
· d0
dp`

w` =
`′α

`dp`
w2
` if dp` > d0

C. Camera Projection Model

We see different lengths of a line when viewing a segment
from its side and from one of its ends. Obviously, if a line
object could project its entire side on the camera screen (without

x
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Fig. 2. Accumulation for the calculus step

losing any details), this object should be completely inside
the open fan-shaped vision sector β and perpendicular to the
viewing direction. Here, the angel between the line object and
the screen is denoted by γ. When γ grows to its maximum π

2 ,
the line object is vertical to the camera screen and projects a
dot on it, in which case we consider no detail can be observed.
Based on the two critical conditions, our angle-continuous
projection is modeled as follows.

Given a camera c with view scope φ at p, a line object `
with weight w`, and viewing distance dp` of `, the weight w
of `’s image can be approximated by w = w` |cos γ|. This is
due to two considerations: (1) Computation can be drastically
reduced from calculating values on an arc to calculating its
corresponding line segment. (2) The difference between the
length of an arc and its correspondent straight line in the
observation becomes insignificant when the viewing distance
is large. Also, ∆` is an increment when dp` increases from
dmin, shown in Figure 2. So a piecewise function with integral
is formulated. Taking the weight model into consideration, the
length on the camera is

w =



0 if γ = 1
2π

`′

`
w` |cos γ| if dp` ∈ (0, d0]

and γ ∈ [0, 12π) ∪ ( 1
2π, π]

`′|cos γ|∫
0

w`d0
`(dp` + x |tan γ|)

dx if dp` > d0 and γ 6= 1
2π

Substituting d0 = αw` and evaluating the integral, we obtain

w =



0 if γ = 1
2π

`′

`
w` |cos γ| if dp` ∈ (0, d0] and

γ ∈ [0, 12π) ∪ ( 1
2π, π]

αw2
`

` |tan γ|
ln

(
1 +

`′ sin γ

dp`

)
if dp` > d0 and

γ ∈ (0, 12π) ∪ ( 1
2π, π)

`′α

`dp`
w2
` if dp` > d0 and γ ∈ {0, π}

In typical application scenarios, the camera usually observes
segments from a long distance. Thus, the meaning of dp`
is also changed, which indicates the distance between the
nearest point in object `′ and position p. This significantly
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simplifies the computation for the weight-lossless area. The
similar relation d0 = αw` can still be easily proved and holds
after the transformation.

D. Problem Formulation

Given a series of continuous segments, a poly-line L =
{`0, `1, `2, . . . , `n}, with each segment `i assigned a weight
w`i (to denote the quantity of details of this segment), and
a camera c whose viewing angle is φ, the total amount of
observed detail is w =

∑n
i=0 wi.

Having built the model, we formulate the problem as finding
a set of positions that satisfies the following three requirements:
• fully covering each segment of a poly-line object,
• having a bounded number of spots (positions),
• maximizing weight under the spot limits.
Given a set of positions, we further investigate whether there

exists a shortest path for the camera to pass all the positions.

IV. ALGORITHM DESIGN

For the two problems above, we need to build the position
set first and then the orbits can be searched in the set. To
find the set, we perform two major steps. First, we compute a
lossless weight set (LWS) that deploys the fewest number of
points to cover the target line without losing any details. That
is, the weight to be observed at these positions should be equal
to the original weight of the object. Second, we compute a
points constricted set (PCS) by revising and deleting positions
to retain the maximized total observed weight and reduce the
number to meet the boundary on the number of positions.
The weight obtained from the positions in PCS is apparently
smaller than or equal to that from those in LWS, and reaches
its maximum under the number limit (threshold).

A. Lossless Weight Set

To find the LWS for a poly-line, an efficient method is used
to sequentially record positions. The way of collecting the
positions for LWS starts along a poly-line that is parallel to
the object. Each time, we choose a position where the vision

Algorithm 1: Algorithm for building LWS (ABLWS) on
one side1

Input :L = {`1, `2, . . . , `n}; {w`1 , w`2 , . . . , w`n}; d0; φ
Output :LWS

1 LWS = ∅;
2 Choose an endpoint e (either from `1 or `n) along L;
3 for i = 1 to n do
4 Construct a poly-line `ip perpendicular to `i at e;
5 Place c at a position p on `ip at distance d0 from e

(where d0 is c’s critical distance). Position p could
be at either side of `i. Without loss of generality, we
assume it is on one specific side for all;

6 Adjust the bisector b of c’s view scope so b is per-
pendicular to poly-line `i and view scope open to `i;

7 while len(`i) > 0 do
8 Begin with one end of `ip and move c along the

poly-line `1p. Record the position p, direction of
camera’s view scope b, and observed weight w
when the total weight inside the view scope
reaches its maximum;

9 Delete the part of `1 whose weight has been
recorded in the last step;

10 LWS ← (p, w);
11 end
12 end

lossless range of the camera can cover the most weight on the
line `i with the best viewing angle (γ = 0). This procedure of
selecting positions continues until the length of `i is equal to
0. Algorithm 1 sketches the procedure for computing the LWS
for a single side of the poly-line.

Algorithm 1 states that the camera at each position p in
LWS always observes the maximal weight when a line object
is larger than the range c with viewing angle φ. Thus, all
the positions are consecutively selected into LWS along the
moving trace of the camera. If a line or the remaining part of
a line is smaller than the range c, its position is revised and
combined to decrease the number of positions in the following
algorithms.

If it still does not meet the limit, some positions are combined
and adjusted to cover the part covered by the camera at more
than one previous position. Since the LWS elements are chosen
sequentially along poly-line Lp = `1p, `2p, . . . , `np, the better
options are always to replace the two nearby elements in the
order of LWS by one best candidate to reduce the count of
the set. In particular, two non-consecutive positions cannot
be selected as a replaced pair because the new cover range
overlaps the part between positions.

Consequently, this motivates a procedure to find which pair
of consecutive positions should be replaced by a new position

1Positions can also be chosen from both sides, but doing so requires the
camera to cross the object under observation, which is undesirable and should
be avoided. If all the selected positions are kept on the same side, the orbit
never intersects the polyline.
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with the sum coverage of both former positions and the least
loss of observed weight in the current LWS. Our approach
attempts all pairs of neighboring positions in LWS and identifies
candidate positions.

B. Points Constricted Set

The first step is to find positions and directions of the cameras
to cover the range at 2 consecutive positions. Our model shows
that the total observed weight is related to the angle formed
by the two neighboring line segments. We begin with the
easiest case—the three endpoints are collinear. The camera
must move away in the same direction until covering exactly
the 2 segments. If the three endpoints are not collinear, however,
a series of positions can be found based on the circumcircle
of the three endpoints. Assume that `i = AB and `i+1 = BC
are covered by a camera c at positions p′ and p′′ of LWS. If
the area of the circumcircle of A, B, and C can be covered by
c with open angle φ at a single position pi, then `i and `i+1

are included, too. From the formula of our camera projection
model, it is known that w is a monotonic decreasing function
of dp`. So the nearest position to observe this circumcircle
with any directions of c is the farthest vertex of the isosceles
triangle formed by angle φ and the line through radius r, in
which a half part of the circumcircle is inscribed. The candidate
positions also compose a circle p and are shown in Figure 4.
Observe that points inside p may not fully cover `i and `i+1,
and points outside p must get smaller weight than points on
p due to the inverse relation between w and dp`.
The second step is to select the best position on circle p

from candidate positions. This situation can occur when one
object is blocked by another at some positions on the circle.
Therefore, these positions are excluded from comparison. In
Figure 4, conditions (2a) and (2b) are the excluded ones. For
the left two conditions, we choose the best position based on
the formula from our model

w =
αw2

`

` |tan γ|
ln

(
1 +

`′ sin γ

dp`

)
when dp` > d0 and γ ∈ (0, 12π) ∪ ( 1

2π, π)

In this function, w is related to dp` and closely related to γ.
This is because the two left situations, (2c) and (2d), restrict
dp` to a range, and can only be changed less than the radius
of the circumcircle. Consequently, finding the right γ is the
key point in this search. Furthermore, we know the value of
the angle formed by the two line objects, and can easily derive
the relation between γ1 and γ2, which are the angles formed
by the objects and the screen of the camera, respectively. In
addition, the total weight is the sum of these two observed
weights. As a result, the following steps of calculation find
the critical point of γ1 (or γ2) which maximizes w within its
interval.

After computing the best location on the circle, the final task
is to adjust the distance between the camera and the two line
objects. Usually the camera remains stationary or is relocated
a bit towards the objects. When entering the circle, the camera
at some spots can get more weight without losing any coverage
for the objects; on other spots, it cannot keep the objects fully
covered if it moves inside.

We design the following two algorithms based on the analysis
above. Algorithm 2 calculates the best position between any
two consecutive positions of LWS, and Algorithm 3 deletes and
replaces the positions for the camera to get the total maximal
weight subject to the number restriction. In the algorithms,
pmax denotes the position where c can fully cover `i, `i+1 and
maximize the observed weight; wmax denotes the observed
maximal weight.

Assume that we select all the positions on one side of poly-
line L; the side should be designated in advance. Also, the
camera is always positioned over the critical distance from
the poly-line, ensuring a near-maximal total weight observed
without losing details in each calculation.

In the last step, pmax is inclined to be chosen in the later
side of the record. That is because if the candidate positions
are continuous, the poly-line is more likly to be divided into
small segments at the beginning. Since the positions are chosen
greedily, the poly-line can be broken into two discontinuous
parts. Thus, we have another algorithm based on algorithm 2



Algorithm 2: Algorithm for Finding the Candidate Position
(AFCP)

Input : `i = AB , `i+1 = BC ; pj , pj+1 ∈ LWS ; d0; φ
Output : pmax , wmax

1 Calculate the angle α = ]ABC ;
2 if α = 0 or α = π then
3 Locate the position Pmax to exactly cover `i and `i+1

and use the same view direction as c did at pj (or
pj+1);

4 Calculate wmax with c at pmax ;
5 else
6 Draw the circumcircle P of A, B, and C to get its

center P and radius rP = PA [31];
7 Draw a circle P ′ with P as its center and

r = rP / sin φ
2 as its radius;

8 Get the equation of wt = wi + wi+1 for `i and `i+1

based on the formula of w and γ, by using
γi+1 = f(γi, α) to replace γi;

9 Insert the (2c) and (2d) conditions in Figure 4 to
calculate maximal values, denoted by wt1 and wt2;

10 Compare the two values and choose the position p′ of
the larger wt;

11 Relocate towards P to exactly cover `i and `i+1 and
use the same view direction as c did at p′;

12 Calculate wmax and pmax with the current dp`;
13 end
14 Return wmax and pmax ;

to justify the best positions in those sub-polylines. Again, we
always stay on one side.

V. SIMULATION

To verify the correctness and evaluate the performance of
our algorithms, we conducted experiments on geographic data
obtained from Google Maps R©. Streets of 4 different cities
around world are chosen for the simulation. Some cities and
districts have neat planning such that all their streets follow
a specific pattern. For example, Ginza in Tokyo follows a
rectangular pattern. In other cities, such as the districts in
Cairo, Egypt, most of the streets evolved historically without
any regular pattern. Our simulation results show that all the
calculated camera spots can cover all the streets when the
number of spots is decreasing. Also, it retains over 90% of
observed details when removing 20% camera spots.

A. Experiment Setup

The experiment setting receives two inputs: a camera with
fixed parameters and selected routes (i.e. streets in the cities). It
outputs the observed details with the boundaries of all camera
spots. A real-world 24mm wide-angle camera is simulated,
with view scope φ = 84◦, viewing distance dis ∈ (0,∞), and
maximal lossless distance d0 =

√
2. All the routes are listed in

Table I, which are approximated as poly-lines, and each line
segment is set with weight (or detail) according to its traffic

Algorithm 3: Algorithm for Creating the PCS (ACPCS)
Input :L; d0; φ; LWS = {p1, p2, . . . , p|LWS |, }; limit
Output :PCS

1 PCS = LWS ;
2 Initialize an ordered set TMP = {t1, t2, . . . , t|LWS |−1}

and and ti = {p, w};
3 if |LWS | ≤ limit then
4 Return PCS ;
5 else
6 for i = 1 to |LWS | − 1 do
7 ti = AFCP(pi, pi+1);
8 end
9 while |LWS | > limit do

10 Find ti satisfying pi.w + next(pi).w − ti.w =
min{p1.w + next(p1).w − t1.w, p2.w +
next(p2).w − t2.w, . . .};

11 PCS = PCS − next(pi) ;
12 pi = ti;
13 if prev(ti) exists then
14 prev(ti) = AFCP(prev(pi), pi);
15 end
16 if next(ti) exists then
17 next(ti) = AFCP(pi,next(pi));
18 end
19 TMP = TMP − ti;
20 end
21 Return PCS ;
22 end

TABLE I
ROUTES INFORMATION

No. City Segments Baseline Spots Total Weight

1 Dallas 19 155 148
2 Paris 18 216 146
3 Tokyo 25 153 362
4 Cairo 42 226 426

volume (or importance). For example, a path from the Great
Pyramid at Giza to the Egyptian Museum is weighted and
transformed to a poly-line based on its relative coordinates.

For each poly-line, a set of baseline spots are first computed
by finding the minimum sum of camera spots to fully cover the
line without losing any detail. We then collect the total weights
with different boundaries of different spots. The performance
of the algorithm is evaluated by examining how slowly (or
quickly) the observed details are lost when reducing the number
of spots.

B. Performance

The performance of our experiment can be evaluated by
comparing the baseline and results from our algorithm, as
shown in Figure 5. The first step is to draw a line with the
maximal weights without covering the entire poly-line within
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Fig. 5. Detail-preservation when decreasing the number of spots on sampled path data from four different cities (Dallas, Paris, Tokyo, Cairo)

the limits of camera spots. In the second step, we compute the
sum of the weights when decreasing the number of spots.

Figure 5 shows that at the beginning of decreasing spots
(among the first 20% of span), our method can keep more
than 90% of the original weight. For all the four cities, the
results show that our algorithms maintain more weights than
the baseline set 98% of the time in the collected samples.
The only scenario in which the total weight is lower than the
baseline weight happens when the limit of spots is under 8%.
When the limit is below 8%, one must set the camera spots
far away from the observed lines in order to cover the full
range. Moreover, our experiment shows that with an increasing
number of segments, our method generates better results, as
compared for (2) and (4) in Figure 5.

Our experiment reveals that with a series of weighted objects,
the segments of the highest weights are selected first. The
system always attempts to merge the objects of lower weights,
and is inclined to cover those of higher weights with better
angles when weights must be reduced. These features are
exactly our objectives when designing the algorithms.

C. Time Complexity

By analyzing the pseudo-codes, the average run time of our
algorithms is O(n log n). The first phase takes O(n) to segment
a poly-line. In the second phase, a shadow list recording the

difference of elements is generated and sorted. Then, a while-
loop inserts elements into the list and decreases the count
toward the limit, obtained from input as parameter a. So Phase
2 is O(n) + O(n log n) + O(an + c) = O(n log n). Since a
is an input constant less than n, the overall time complexity
of our algorithm is O(n log n). The efficiency has also been
demonstrated by running the experiment.

VI. CONCLUSIONS

This paper has explored the problem of how to determine
a minimal number of spots for a camera to cover an entire
range of scenes in a geographical region with minimal loss
of details. We have proposed a visual model, which consists
of projection, measurement of weights, and observation range,
given a set of geometrical and geographical constraints.

Having defined the problem, we propose a 2-phase algorithm
to gradually remove and/or merge camera positions and even-
tually meet the requirements. Most importantly, the algorithm
finds the maximal observed weight for a single spot. For
situations of multiple spots, the solution is NP-hard; thus,
we propose a heuristic yet efficient approach and an algorithm
with time complexity of O(n log n).

We have also experimentally verified our method with several
realistic geographical scenarios. Our results greatly outperform
the baseline where the weights are evenly distributed.



As the future work, more experiments will be conducted for
the scenes with single dimensions or objects with multiples fea-
tures. We will apply our approach to geographical visualization
systems and evaluate its effectiveness in such applications.
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