
SECURING COMPUTATIONS WITH GPUS

by

Jun Duan

APPROVED BY SUPERVISORY COMMITTEE:

Kevin W. Hamlen, Chair

Gopal Gupta

Murat Kantarcioglu

Shuang Hao

Copyright © 2021

Jun Duan

All rights reserved

The dissertation is dedicated to

everybody who has ever inspired and supported me through this journey.

SECURING COMPUTATIONS WITH GPUS

by

JUN DUAN, BS, MS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Ful�llment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

May 2021

ACKNOWLEDGMENTS

First, the author feels forever grateful to his advisor, Dr. Kevin W. Hamlen, for all the guid-

ance, inspiration and support through the whole program. The professor's wisdom enlightens

the author in so many ways. He detangles situations and o�ers him perspicuous explanations

no matter how ba�ing they are. His logical thinking inspires the author to reason on facts

elegantly when he approaches problems. His persistence and passion for his work encourages

the author to do the same in the future. His light sense of humour makes every meeting

with him relaxing and pleasant. The author is really blessed to have been working with him.

Without any of those, he would not achieve this academic accomplishment.

The author is very thankful to the other two co-authors of the past publications in the PhD

degree program. His teammate Benjamin Ferrell is a sincere friend of the author's and always

treats projects in earnest. The professor Dr. Kang Zhang is thoughtful and warm-hearted.

He gives insightfull opinions and patiently discusses every detail with the author in the work.

The author also thanks the members of the supervising committee of his dissertation:

Dr. Gopal Gupta, Dr. Murat Kantarcioglu, and Dr. Shuang Hao for their time to review

his dissertation and attend his exams. He is also grateful to Dr. Bhavani Thuraisingham,

Ms. Rhonda Walls, and Mr. Douglas Hyde for all the assistance on administrative a�airs in

the program.

He thanks all the great friends and colleagues whom he knows through the program: Wen-

hao Wang, Huseyin Ulusoy, Xiaoyang Xu, Erman Pattuk, Shamila Wickramasuriya, Masoud

Gha�arinia, Gilmore Lundquist, Erick Bauman, Imrul Anindya, Yasmeen Alufaisan, Fred-

erico Araujo, Meera Sridhar, Harichandan Roy, and Dakota James Fisher. This journey

would not be this wonderful without them.

v

The author, foremost, expresses his deep gratitude to his family. They share every predica-

ment which they endure and every moment of joy which they celebrate. Without their

support, the author could not reach the goals of his life.

The research work herein is supported in part by ONR award N00014-17-1-2995, NSF award

#1513704, #1054629, AFOSR award FA9550-14-1-0173, an NSF I/UCRC award from Lock-

heed Martin, and an endowment from the Eugene McDermott Foundation. The author

thanks all the above-mentioned funders for their support through the program. Any opin-

ions or recommendations expressed are those of the author and not necessarily of the above

supporters.

Last but not least, the author thanks The University of Texas at Dallas and Department

of Computer Science very much for o�ering him this invaluable opportunity and perfect

environment to study and live here and make him an amazing experience at the last stop of

his student life.

April 2021

vi

SECURING COMPUTATIONS WITH GPUS

Jun Duan, PhD
The University of Texas at Dallas, 2021

Supervising Professor: Kevin W. Hamlen, Chair

Many modern computers have two diverse computing models baked-in: CPUs and GPUs.

The diversity of these computing models arises from their historically disparate purposes:

Early CPU designs focused on rapidly executing sequences of scalar operations, whereas

GPU designs have focused on computing matrices (e.g., of pixels) through highly parallel

computation. This dissertation proposes that this natural computational diversity has a

secondary bene�t that has gone underutilized: the potential to harden computations on both

CPUs and GPUs against cyberattacks, and to elevate assurance of computational correctness,

safety, and security through simultaneous CPU-GPU computation.

To explore this thesis, the dissertation �rst addresses the challenge of bringing machine-

checked formal methods assurances and tools to the domain of GPU architectures and

computations. A prototype framework for formal, machine-checked validation of GPU

pseudo-assembly code algorithms using the Coq proof assistant is therefore presented and

discussed. The framework is the �rst to a�ord GPU programmers a reliable means of formally

machine-validating high-assurance GPU computations without trusting any speci�c source-

to-assembly compilation toolchain. A formal operational semantics for the PTX pseudo-

assembly language is expressed as inductive, dependent Coq types, facilitating development

of proofs and proof tactics that refer directly to compiled PTX object code.

vii

Secondly, a method of detecting malicious intrusions and runtime faults in software is pro-

posed, which replicates untrusted computations onto the diverse but often co-located instruc-

tion architectures implemented by CPUs and GPUs. Divergence between the replicated

computations signals an intrusion or fault. A prototype implementation for Java demon-

strates that the approach is realizable in practice, and can successfully detect exploitation of

Java VM and runtime system vulnerabilities even when the vulnerabilities are not known in

advance to defenders. It is shown that GPU parallelism can be leveraged to rapidly validate

CPU computations that would otherwise exhibit unacceptable performance if executed on

GPU alone.

Finally, GPU-based security is explored at the application level through the introduction of

a computational methodology for reorienting, repositioning, and merging camera positions

within a region under surveillance, so as to optimally cover all features of interest without

overburdening human or machine analysts with an overabundance of video information. This

streamlines many video monitoring applications, which are often hampered by the di�culty

of manually identifying the few speci�c locations or frames relevant to a particular inquiry

from a vast sea of scenes or recorded video clips. The approach ameliorates this problem

by considering geographic information to select ideal locations and orientations of camera

positions to fully cover the span without losing key visual details.

viii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . v

ABSTRACT . vii

LIST OF FIGURES . xiii

LIST OF TABLES . xiv

CHAPTER 1 INTRODUCTION . 1

1.1 Formal Validation & GPUs . 1

1.2 Pros & Cons of Machine-validating GPU Assemblies 3

1.3 N -variant Systems . 4

1.4 Execution Divergence between CPUs and GPUs 5

1.5 Surveillance & Camera Positioning . 6

1.6 Insight into our work . 7

1.6.1 CUDA au Coq . 7

1.6.2 J-Gang . 7

1.6.3 VisualVital . 8

1.6.4 Roadmap . 9

CHAPTER 2 CUDA AU COQ . 10

2.1 Overview . 10

2.2 Background . 12

2.3 Technical Approach . 13

2.3.1 Data Types . 13

2.3.2 Memory . 13

2.3.3 Registers . 15

2.3.4 Special Registers . 16

2.3.5 Operands . 16

2.3.6 Instructions . 17

2.3.7 Threads . 17

2.3.8 Warps . 18

2.3.9 Blocks . 19

ix

2.3.10 Grids . 21

2.4 Example Validation Results . 21

2.4.1 Context Lifting . 22

2.4.2 Proof Procedure . 24

2.4.3 Non-deterministic Execution . 30

2.5 Summary . 33

CHAPTER 3 J-GANG . 34

3.1 Overview . 34

3.2 System Design . 35

3.2.1 Divergence Between Executions . 35

3.2.2 Model & TCB . 38

3.2.3 GPU Feature Limitations . 40

3.2.4 Validation Modes . 41

3.2.5 Checkpointing . 41

3.2.6 Translation . 43

3.2.7 Veri�cation Time Complexity . 44

3.3 Implementation . 46

3.3.1 Source Language Limitations . 48

3.3.2 Bytecode Analysis . 49

3.3.3 Primitives & References . 50

3.3.4 State Consistency . 50

3.3.5 GPU-based Veri�cation . 51

3.3.6 Code Pruning . 52

3.4 Evaluation . 55

3.4.1 Running E�ciency . 55

3.4.2 Veri�cation and Correctness . 58

3.5 Summary . 61

CHAPTER 4 VISUALVITAL . 63

4.1 Overview . 63

x

4.2 Introduction . 63

4.3 Notions & Models . 65

4.3.1 Observation Model . 65

4.3.2 Weight Model . 66

4.3.3 Camera Projection Model . 67

4.3.4 Problem Formulation . 69

4.4 Algorithm Design . 70

4.4.1 Lossless Weight Set . 70

4.4.2 Points Constricted Set . 72

4.5 Simulation . 76

4.5.1 Experiment Setup . 76

4.5.2 Performance . 77

4.5.3 Analysis . 79

4.5.4 Time Complexity . 80

4.6 Summary . 80

CHAPTER 5 RELATED WORK . 82

5.1 Execution Variance . 82

5.2 Heterogeneous Computing . 83

5.3 Veri�cation . 84

5.4 Data�ow Analysis . 85

5.5 Correctness in GPGPU . 85

5.6 Data Race & Divergence . 87

5.7 Visual Models . 88

5.8 Virtual Reality . 89

5.9 Algorithms on Tracking & Coverage . 90

5.10 Mapping Services . 91

CHAPTER 6 CONCLUSION . 93

APPENDIX MODELS AND PROOFS . 95

A.1 PTX Model in Chapter 2 . 95

xi

A.2 SDV Rules for lock steps in Chapter 2 . 102

A.3 Proof of Theorem 1 in Chapter 4 . 106

A.4 The optimal position for a single camera in Chapter 4 107

BIBLIOGRAPHY . 110

BIOGRAPHICAL SKETCH . 122

CURRICULUM VITAE

xii

LIST OF FIGURES

2.1 Warp Small-Step Semantics . 20

2.2 Warp Sync Function . 21

2.3 Thread Block Small-Step Semantics . 21

2.4 Grid Small-Step Semantics . 22

3.1 J-Gang Architecture . 38

3.2 Semantic transparency . 39

3.3 Translation of Java source to CPU×GPU code 43

3.4 J-Gang computations for CPU (left) vs. GPU (right) 45

3.5 Procedure of variants generation and execution 46

3.6 Code and checkpoints generation procedure . 47

3.7 Bytecode injection to dynamically visit a variable 49

3.8 Experimental results with utility applications as input 53

3.8 Experimental results with utility applications as input (cont.) 54

4.1 Complete presentation for an observation and related notions (a) Basic observa-
tion (b) Simpli�ed observation with projections 66

4.2 Accumulation for the calculus step . 68

4.3 Camera c observes poly-line L at di�erent positions P1, P2, P3 69

4.4 (1) All possible situations of camera view, and (2) four di�erent angle relations
between γ1 and γ2 . 71

4.5 Detail-preservation when decreasing the number of spots on sampled path data
from four di�erent cities (Dallas, Paris, Tokyo, Cairo) 78

A.1 The orbit boundaries of camera c when c moving along the circle p′. It is for
calculating the local extramum of the observed weight. 107

xiii

LIST OF TABLES

3.1 Performance evaluation of Java algorithms using J-Gang. Partial granularity
omits verifying trusted API methods. 53

3.2 Tested bugs . 59

4.1 Routes Information . 77

xiv

CHAPTER 1

INTRODUCTION

This chapter introduces the prevalent viewpoints and current problems in the related research

�elds, and positions this dissertation within that landscape. It �rst considers the status of

formal Veri�cation & Validation (V&V) research with respect to GPUs, arguing that there

is a paucity of such work for formal GPU computation veri�cation. It then introduces

the classic concept of n-variant systems for computer security, and posits that CPU-GPU

computational diversity o�er exceptional promise as a practical foundation for realizing n-

variant assurances in modern computing systems. Finally, research problems around camera

surveillance are shown as possible applications in CPU and GPU hybrid scenes. The chapter

concludes with some insights of the author's work and an overview of the remainder of the

dissertation.

1.1 Formal Validation & GPUs

Machine-checked formal veri�cation of software has become the gold standard for developing

high-assurance algorithms and implementations. In contrast to unit testing or fuzzing, which

can only verify that software in a particular operating environment behaves correctly on a

particular (usually �nite) set of inputs, formal methods approaches build formal mathemat-

ical proofs that establish that the software obeys speci�ed correctness, safety, and security

properties for every possible environment and input within the (usually in�nite) domain

admitted by the speci�cation. Unlike manual code reviews, these proofs are checked fully

automatically within a mechanized proof environment whose soundness has been veri�ed

down to the foundations of mathematics. And unlike model-based veri�cation, the proofs

concern the actual software implementation rather than an idealized model of it.

These contrasts are particularly salient when verifying security properties, since cyber

criminals have a well established record of success at identifying dangerous inputs that testing

1

missed, di�erences between the testing environment and the deployment environment that

can be exploited to compromise software, obscure code vulnerabilities that human reviewers

overlooked, and inconsistencies between actual software implementations and the models that

attempt to approximate them. As a result, formal methods approaches o�er signi�cantly

higher assurance than these alternatives.

The price of formal methods is typically the much greater e�ort and expertise required

relative to less rigorous approaches. However, the rise of program-proof co-development envi-

ronments, such as the Coq proof assistant (Bertot and Castéran, 2004), has made machine-

validation of larger software systems much more feasible than in previous decades. For

instance, in recent years Coq has been used to verify correctness of a full C compiler (Boldo

et al., 2013), prove update consistency of software-de�ned networks (Reitblatt et al., 2012),

model signi�cant subsets of both the Intel x86 and the ARMv8 architectures (Flur et al.,

2016; Kennedy et al., 2013), validate a machine language certi�er for Google's Native Client

architecture (Morrisett et al., 2012), and develop the F? language for secure distributed

programming (Swamy et al., 2011), among many other successful applications.

The rise of GPU architectures as general-purpose computing platforms has made it

increasingly desirable to make such validation approaches available for GPU algorithms

and their implementations, toward developing high-assurance, GPU-based software. Many

general-purpose GPU (GPGPU) programming tasks can bene�t from such assurance; for

example, GPUs are already being leveraged to more e�ciently realize cryptography (Ya-

manouchi, 2007), scan for viruses (Seamans and Alexander, 2007), perform �nancial compu-

tations (Grauer-Gray et al., 2013), spot network intrusions (Alshawabkeh et al., 2010), and

even detect underwater seismic faults (Deschizeaux and Blanc, 2007). Unforeseen �aws in

these computations could have severe rami�cations for users and the general public. Since

highly parallelized architectures are notoriously di�cult for humans to reason about, it is

especially important to develop machine-validation approaches for analyzing the correctness

of such software.

2

1.2 Pros & Cons of Machine-validating GPU Assemblies

prosandcons

Motivated by this need, we have developed the �rst encoding of a GPU pseudo-assembly

language operational semantics in Coq, and used it to machine-validate some correctness

properties of small GPU programs. Our prototype framework targets Nvidia's CUDA plat-

form (though we anticipate that our general approach is extensible to other GPU architec-

tures). In particular, our semantics model a Single Instruction, Multiple Threads (SIMT)

architecture with warps, thread blocks, and grids.

In order to minimize the trusted computing base (TCB) of our validation framework, and

to o�er developers maximum �exibility, theorems and proofs in our framework operate at

the level of Parallel Thread eXecution (PTX) pseudo-assembly language computations rather

than source code programs. This frees software developers to implement their high-assurance

algorithms in any available source language, and use any compilation tools, provided that

the tools ultimately yield PTX programs as output.

The downside of this choice, of course, is that proofs must reason at a signi�cantly lower

level than source code, and can therefore require extra e�ort to formulate. We believe this is

nevertheless a wise design decision in the long term, because foundational support for PTX

can eventually be scaled up to higher levels of abstraction via future development of Coq

theories and tactics that modularize and automate much of the proof work for common source

idioms. Similar trade-o�s have motivated prior work on modeling ISAs of other low-level

architectures in Coq (e.g., (Atkey, 2007; Flur et al., 2016; Kennedy et al., 2013)).

As an example of this sort of scaling, a major success of our work is the formulation and

validation of the �rst mechanized proof that CUDA's memory synchronization model ensures

transparency of the thread scheduler. In particular, correctness of a computation under the

assumption of a deterministic scheduler always implies correctness under a non-deterministic

scheduler. This result greatly simpli�es proofs of PTX code correctness by eliminating and

3

abstracting away the non-deterministic scheduler from the sources of parallelism that proofs

must consider.

1.3 N-variant Systems

While formal methods o�ers the highest possible assurance that a given software implemen-

tation satis�es a given formal speci�cation, many software systems lack any formal (i.e.,

machine-readable) speci�cation. Their intended functionalities are expressed informally as

natural language descriptions, whose imprecision is regularly exploited by adversaries to

carry out cyberattacks. Securing this signi�cant body of software therefore necessarily en-

tails less rigorous protections. However, even without a formal speci�cation of correctness,

it is often possible to formally specify inconsistency of arbitrary software systems, which is

a root of many vulnerabilities and critical failures.

N -variant systems (Cox et al., 2006) detect intrusions and other runtime anomalies in

software by deploying diverse replicas of the software and monitoring their parallel execution

for inconsistencies, which manifest as computational divergences. Divergence between the

computations indicates that one or more replicas have exercised functionalities that were

unintended by the program's developers, and that were therefore not replicated consistently

across all the copies. The n-variant approach has been used for detecting memory cor-

ruption vulnerabilities in C/C++ programs (Volckaert et al., 2017), monitoring user-space

processes (Salamat et al., 2009), defending data corruption attacks (Nguyen-Tuong et al.,

2008), and securing embedded systems (Alkabani and Koushanfar, 2008).

Unfortunately, one major barrier to the realization of e�ective n-variant systems in prac-

tice has been the high di�culty and cost associated with creating and maintaining software

copies that are appropriately diverse (not replicating bugs or vulnerabilities), yet consistent

(preserving all desired program features). Achieving this can entail employing multiple in-

4

dependent software development teams, which can potentially multiply the cost and time

associated with the project by a factor of n (Avi�zienis, 1985).

This high cost of independent, manual cultivation of diversity has led to a search for au-

tomated software diversity. For example, compilers have been proposed as natural diversity-

introduction vehicles (Jackson et al., 2011), since they enjoy a range of options when trans-

lating source programs to distributable object code, including various possible object code

and process memory layouts. However, many large classes of software attacks exploit low-

level details that are fundamental to the target hardware architecture, and that are therefore

di�cult for compilers to meaningfully diversify. For example, Address Space Layout Ran-

domization (ASLR) defenses, which randomize section base addresses in process memory at

load-time, have proven vulnerable to derandomization attacks (Shacham et al., 2004) that

exploit the prevalence of relative-address instruction operands in CISC instruction sets to

learn the randomized addresses. Similarly, return-oriented programming (Shacham, 2007)

and counterfeit object-oriented programming attacks (Schuster et al., 2015) abuse the seman-

tics of return and call instructions, which is di�cult to avoid when compiling to architectures

with those instruction semantics.

1.4 Execution Divergence between CPUs and GPUs

The research in this dissertation is inspired by the observation that modern computing sys-

tems increasingly have two very di�erent yet powerful instruction architectures available to

them: CPU and GPU. This potential source of computational diversity has gone relatively

unutilized as an opportunity to detect malicious software intrusions through n-variant com-

putation. To explore this opportunity, we introduce Java Gpu-Assisted N -variant Guardian

(J-Gang), a system that replicates Java computations onto CPU-GPU hybrid architectures

and runs them concurrently in order to detect divergence-causing intrusions.

5

GPU computing models di�er substantially from typical CPU computing models. This

diversity o�ers many attractive opportunities for robust intrusion detection, but is also a

source of signi�cant technical challenges. For example, GPU architectures often su�er poor

performance on computations with few threads; their advantages are only seen on computa-

tions with hundreds or thousands of simple but independent workloads. However, most CPU

computations o�er only limited parallelism on the order of a few threads. This makes run-

ning CPU computations in a brute-force fashion on GPUs impractical; it risks bottlenecking

the system by lagging the GPU variant hopelessly behind the CPU variant, reducing both

to a crawl.

To address these challenges, our research proposes a novel �trust but verify� n-variant

architecture wherein GPU computations enjoy increasing parallelism opportunities the far-

ther they lag behind CPU computations. This o�ers the former a means to keep pace with

even the most serial workloads, allowing the framework to secure a broad domain of realistic

computations without introducing unacceptable performance overhead.

1.5 Surveillance & Camera Positioning

Visual surveillance and camera positioning is a prime example of security-sensitive GPU

computation in practice. This dissertation considers GPU computational security within

the context of physical security by presenting a secure algorithm for positioning and orient-

ing a limited number of video monitoring devices so as to maximize the information gain

on the status of a pre-mapped route. The approach accommodates contexts in which both

cameras and objects are mobile, and considers several applications, including VR scene gen-

eration, optimizing tra�c monitoring to minimize coverage loss, audiovisual �ngerprinting,

and automatic scene detection.

6

1.6 Insight into our work

1.6.1 CUDA au Coq

Our work, CUDA au Coq (Ferrell et al., 2019), complements related works on GPU software

debugging through unit testing (Holey et al., 2013; Zheng et al., 2011) or heuristic static

analysis of source code (Coutinho et al., 2011) by o�ering a higher level of assurance than

these traditional approaches can provide, but at the cost of (possibly signi�cant) extra vali-

dation e�ort. That is, we anticipate that a typical development work�ow for high-assurance

GPU software should �rst employ these heuristic debugging techniques to identify and �x

any demonstrable �aws, and then proceed to apply formal methods machine-validation to

obtain complete proofs of correctness. Our work is an alternative to any runtime or hybrid

fault detection approaches (Li et al., 2014; Zheng et al., 2011), since it imposes no run-

time overhead (all validation is strictly static), and yields a priori guarantees that span the

universe of all possible execution traces for veri�ed code.

1.6.2 J-Gang

Our approach, J-Gang (Duan et al., 2019), therefore instead adopts an asynchronized model

in which the CPU variant runs at full speed, logging its results at selected program check-

points in the form of JVM state snapshots. A sequence (σ0, . . . , σk) of such snapshots can

be replicated and validated by a GPU using k concurrent workers, each of which validates

the (σi, σi+1) portion of the computation by starting at state σi as a pre-condition and con-

�rming that it reaches state σi+1 as a post-condition (∀i ∈ 0..k − 1). The computation is

correct only if all these fragments pass validation. This allows the GPU to catch up to the

CPU computation in spurts�the more it lags behind, the more opportunity for parallelism

arises, since it can greedily consume more snapshots and validate them concurrently.

The high dissimilarity between GPU and CPU models of Java computation state allow

J-Gang to detect many important vulnerability classes. For example, attacks that exploit

7

memory corruption vulnerabilities to hijack return addresses on the stack have a di�erent ef-

fect upon GPU computations, since the GPU model has no explicit call stack with in-memory

return addresses to corrupt. Moreover, our detection approach conservatively assumes that

all exploited vulnerabilities are unknown to defenders (zero-days). No explicit knowledge of

vulnerabilities is used to avoid preserving them in the GPU replica; divergences arise purely

from the natural dissimilarity between the two instruction architectures.

1.6.3 VisualVital

Unlike prior work on related problems (see Chapter 5), our goal in the VisualVital (Duan

et al., 2017) project is to retain and maximize overall information related to world status,

not to specialize for a particular, known detail or event. For instance, prior work on tra�c

monitoring has demonstrated the e�ectiveness of probe vehicles and smart-phones for helping

users avoid speci�c, known problem states (e.g., tra�c congestion) (Astarita et al., 2014;

Hoh et al., 2012); and Virtual trip lines (Hoh et al., 2008) can help travelers choose e�ective

routes. But such approaches are not as applicable to identifying and analyzing arbitrary

event details in which the user's interest cannot be predicted in advance (e.g., terrorist

attack details whose relevance only become evident afterward). Our problem also generalizes

beyond tra�c scenarios.

Speci�cally, we consider the problem of observing a route (consisting of many segments,

each with di�ering relevant details labeled) with a limited number of camera positions, so

as to maximize the overall details observed by selecting optimal positions for the cameras.

Each camera must �t in the model from the real world�the level of detail observed by each

camera is inversely related to its geometric distance from the object. To maximize the overall

information, we invent a method to �rst maximize local details with su�cient positions, and

then gradually merge the selected positions to decease the camera count until it meets a

desired target threshold.

8

1.6.4 Roadmap

The reminder of this dissertation is arranged as follows. Chapter 2 presents CUDA au

Coq, the framework for machine-validating GPU assembly programs. Chapter 3 presents J-

Gang, the n-variant framework of veri�cation for Java source code on CPU and GPU hybrid

platform. Chapter 4 presents VisualVital, the observation model for multiple sections of

scenes. Chapter 5 lists all the related work. Chapter 6 concludes. At last, Appendix shows

in details about the source code of Coq for the CUDA au Coq project, including the code

and proofs of the PTX model, and explanation and proofs of the observation model for the

VisualVital project.

9

CHAPTER 2

CUDA AU COQ1

2.1 Overview

Motivated by the importance of the correctness of software with parallel features and the

extreme di�culties it poses for human reasoning without automated assistance, this chapter

presents the GPU computation model encoded in Coq proof system and the procedures of

validating parallel programs by machine. Nvidia's CUDA platform is selected as the target

architecture, and we here limit our attention to the SIMT architecture, including SIMD.

Architectures with mixed parallel features, such as Multiple Instruction, Multiple DATA

(MIMD) or (Simultaneous Multithreading) SMT, are reserved for future work.

To build the model in Coq, the layer structures of CUDA's parallel computation, such

as warps, thread blocks, and grids, are de�ned and rules of computation are dependently

created and proved. The correctness of the model is listed in the contributions and shown in

following sections. CUDA'S Intermediate Representation (IR), PTX, o�ers a uni�cation of

high-level languages running above it, so performing veri�cation at the PTX level minimizes

the Trusted Computing Base (TCB) of the system. The framework hence accommodates

any high-level language that CUDA supports; code developers need only supply the low-

level (compiled) code to check the correctness through this model. Our goal in this project

is to o�er a semi-automated framework whereby a human expert can write machine-checked

proofs of PTX code properties. Automation of the proof search e�ort is the subject of related

research.

Our prototype implementation in Coq includes 350 SLOC for the PTX model, 300 SLOC

for theorems, and 140 SLOC of Ltacs. It is bene�cial for our model to be as small as

1The material in this chapter was originally published as: Benjamin Ferrell, Jun Duan, and Kevin

W. Hamlen, �CUDA au Coq: A Framework for Machine-validating GPU Assembly Programs,� In Proceedings
of the 26th Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 474�479, March

2019.

10

possible in order to minimize the TCB. However, there is no limit necessitated on the

number of theorems, as these only strengthen the implementation and shorten proofs without

contributing to the TCB.

In summary, our contributions are as follows:

� We present the �rst machine-checkable formal validation framework for a GPU archi-

tecture, using the Coq proof assistant.

� Our framework formalizes Nvidia's CUDA architecture and the PTX pseudo-assembly

instruction set as Coq inductive types and de�nitions, for formal deductive reasoning

in Coq's interactive proof environment.

� The formalization supports all major forms of CUDA parallelism, including threads,

warps, thread blocks, and grids. (Non-standardized, implementation-de�ned charac-

teristics of the architecture are intentionally not modeled, so that proofs must estab-

lish correctness independently from architectural idiosyncrasies that may be unreliable

across GPUs.)

� We proved and machine-validated a theorem establishing that CUDA's memory syn-

chronization model successfully makes thread scheduling details transparent to PTX

programs. Thus, correctness proofs can consider a simpli�ed architectural model in

which the scheduler is deterministic.

� Example theorems and proofs demonstrate how our prototype can be applied success-

fully to small but realistic GPU programs.

We proceed as follows: Section 2.2 begins with background material on the CUDA archi-

tecture that undergirds our approach to the formalization. Our formalized PTX semantics

are presented in Section 2.3. Example theorems and proofs that demonstrate the utility of

our formalization follow in Section 2.4. Section 2.5 summarize the chapter.

11

2.2 Background

Our semantics are based on PTX, which is an intermediate assembly language either pro-

duced from compiling CUDA C/C++ code or manual encoding. As a common instruction

set with well-documented semantics, PTX insulates developers from the constantly evolving

details of each new GPU hardware release. It is the lowest intermediate representation that

abstracts away from GPU-speci�c details that cannot be relied upon for forward compati-

bility.

At run-time, the intermediate assembly language is further compiled by the device driver

down to the appropriate machine code, which is then executed on the device. Since our focus

is on PTX, we are not concerned with the CUDA to PTX compilation process, but we do

trust the �nal PTX to machine code compilation process. PTX is well documented (nVIDIA,

2015) so our goal is to formalize its execution semantics in Coq in a clean, succinct fashion

conducive to writing tractable proofs.

At a high level, CUDA GPUs systematically execute millions of threads to accomplish

a task. The number of threads spawned is de�ned by two user-con�gurable parameters,

grid_size and block_size, which are 3-dimensional vectors. When a job is dispatched

to the GPU, a grid_size array of thread blocks are spawned with each thread block

containing a block_size array of threads.

Thread blocks are scheduled to execute on various streaming multiprocessors (SMs). A

GPU typically contains multiple SMs, which are each composed of one or more CUDA cores

(ALUs), Load/Store units, and special function units. When a block is scheduled on an SM,

threads are grouped into warps (sets of 32 threads) and scheduled for execution. Each time

a warp executes an instruction, all threads do so in lock-step.

GPU memory is also hierarchically structured. At the top level are global and constant

memory, to which all threads have access. SMs have a section of cache-like memory called

12

shared memory, to which all threads in the same thread block have quick access. At the

bottom level are local and register memory, which each thread has in a private section.

2.3 Technical Approach

To describe our formal PTX model, we start from the bottom and work upward. It in-

cludes data types, registers, special registers, operands, memory, instructions, threads, warps,

blocks, and grids. For this prototype, we currently support succinct PTX functions and try

to add more to make the concept more complete. First we introduce abstract de�nitions

with basic types of the Coq system. For a complete de�nition of our model in Coq, see the

appendix.

2.3.1 Data Types

As the most basic units for this model, we model PTX types dty within Coq as a sum type

consisting of unsigned integers (UI), signed integers (SI) and byte data (B), each parameter-

ized by a bit width w.

w : N

dty : {UI, SI, BD} × N

An ID id is a label to uniquely mark a storing unit or di�erentiate operational modules in

the system.

id : {Id} × N

2.3.2 Memory

In order to properly capture how GPU memory semantically operates, there are a couple of

elements to consider.

13

First, GPU memory is made up of di�erent sections, or state-spaces (ss), each of which

have a speci�c purpose. Due to its accessibility for threads and some restrictions, some

memory can be manipulated by only one speci�c thread, some can be shared by the threads

inside the same block, some can be only readable, and the others have well-de�ned features

for more purposes. We will focus on three types state-spaces for memory: global, const,

and shared.

global memory can be read or written by all threads, and there is no hardware synchro-

nization mechanism restricting accesses.

const memory is read-only and shared by all threads.

shared memory can be read or written by all threads in the same block, and hardware

synchronization is performed through memory barriers.

To match each type with an address, we model memory addresses addr as location-

accessability pairs.

bid : N× N× N

ss : {Global, Const, Shared} × bid

addr : ss × N

Second, many memory transactions are performed during execution without any explicit

order, possibly introducing memory synchronization errors.

Taking into consideration these two items, we de�ne memory µ to be a mapping from

state-space and address to byte and boolean. The boolean value speci�es whether a byte is

valid or could possibly still be in �ight�similar to a valid bit for cache memory.

µ : (ss × addr)→ (byte × B)

14

At the launch of a program, only global and constant memory may have data, and

their valid bits are set to true. During execution, global memory periodically updates as

values are stored. Its valid bits are always false, since the hardware does not guarantee

memory synchronization (excepting atomic instructions).

GPUs leverage data-independence to achieve high parallelism, so proper globalmemory

synchronization is often a prerequisite for code correctness. This is a perennial source of GPU

algorithm bugs, so our memory formalization is designed to support formal veri�cation of

such properties.

Thread intercommunication is possible only in thread blocks with the use of shared

memory, which can be synchronized by barriers. A thread block performs some computation

and threads begin to arrive at a barrier and wait. Once all threads have reached the barrier,

the values stored in shared memory during this time are guaranteed to be valid when

execution resumes. To model this, our semantics initially set a value's valid bit to false

and switch to true when the entire block has reached the barrier.

2.3.3 Registers

PTX code computes with four di�erent data types: unsigned integers, signed integers, �oats,

and untyped bytes. In this work we only consider unsigned (UI) and signed integers (SI),

but our approach can be extended to include all data types.

Threads are allocated a private register �le which contains a set PTX registers. A register

(reg) holds temporary values during execution, and is uniquely identi�ed by its data type,

bit width, and index. We de�ne the register �le ρ to be a mapping from registers to integers.

reg : {UI, SI} × N× N

ρ : reg → Z

During program execution, not all SIMT threads follow the same path. Threads maintain

a set of predicate registers, which optionally pre�x any instruction and indicate whether it

15

should be executed or skipped. The case where the predicate is false is semantically equiv-

alent to a Nop. In our implementation, we only consider branch instructions to optionally

have pre�xed predicates, so we introduce a pseudo-instruction to distinguish these from

non-predicated branches. Coupled with the register �le is a predicate state ϕ, which maps

predicate indexes to boolean values.

ϕ : N→ B

2.3.4 Special Registers

Special registers contain static information about the grid con�guration and a thread's lo-

cation (i.e., index). They are unique to GPUs, and are useful when delegating work to

each thread. There are four predominant special registers, each a 3-dimensional vector: the

thread-index (T), block-index (B), block-size (NT), and grid-size (NB). Every thread has a

unique combination of thread-index and block-index, but identical block-size and grid-size.

To model this, our state model includes the following auxiliary function for special reg-

isters:

dim : {Dx, Dy, Dz}

sreg : {T, B, NT, NB} × dim

sreg_aux : tid → sreg → N := get_sreg(tid)

2.3.5 Operands

The types of instruction operands are are inferred during PTX parsing. We de�ne 4 di�erent

types based on the origins of di�erent state spaces to support the compatibility for source

and destination operands in our model. Speci�cally, Reg, SReg, Imm and RegImm denote

register, special register, immediate, and register-immediate operand types, respectively.

16

Also, there are speci�c rules to restrict the conversion between di�erent types and source

and destination operands of di�erent length.

op : reg] sreg] Z] reg × Z

2.3.6 Instructions

We next model PTX instructions instr within Coq. Instruction parameter types must comply

with the syntactic grammar and typing constraints of PTX. Programs running in CUDA

can be decompiled into PTX code and translated to �t into our de�nition.

A program prg is modeled as a list of PTX instructions. Operand types within each

instruction are checked according to the PTX typing rules translated to Coq. Typing rules

for a core subset of instructions are listed in the following de�nition:

Induct ive i n s t r :=

| Bop (i : bop) (ty : dty) (d : reg) (a b : op)

| Top (i : top) (ty : dty) (d : reg) (a b c : op)

| Setp (c : cmp) (ty : dty) (p : id) (a b : op)

| Mov (ty : dty) (d : reg) (a : op)

| Ld (s t sp : i s s) (ty : dty) (d : reg) (a : op)

| St (s t sp : i s s) (ty : dty) (a : op) (d : reg)

| Bra (tg t : nat)

| PBra (p : id) (tg t : nat)

| Bar | Sync | Nop | Exit .

D e f i n i t i o n prg := l i s t i n s t r .

2.3.7 Threads

Potentially millions of threads execute on a GPU, so we assign each an enumerated value for

unique identi�cation. Proofs do not typically exhaustively enumerate this potentially large

17

identi�er space, of course; the identi�ers typically take the form of universally quanti�ed

variables in proofs. The identi�ers are passed to the auxiliary function in �2.3.4 to obtain

the appropriate special registers.

As mentioned in �2.3.3, threads maintain a set of private registers ρ and predicates ϕ.

Therefore, we de�ne a thread θ to be a tuple of these three components.

θ : N× ρ× ϕ

In the following semantics, vector ~t denotes a thread state, including its ID tid , memory

state ρ, and predicate state ϕ.

2.3.8 Warps

A warp is de�ned as a set of 32 threads, and is the smallest level of granularity to execute

on an SM. All threads in a common warp execute the same instruction at the same time

(i.e., in lock-step), which is e�cient for most instructions except for a predicated branch.

With a predicated branch, there is the potential for part of the warp to take the branch

and the rest stay behind to execute the next immediate instruction. A warp in this state is

called divergent, and must now execute the two (or more) paths serially, thereby increasing

run-time. At the formal level, we de�ne a warp to be in one of two states: uniform execution

of a set of threads or divergent execution of two warps.

Induct ive warp : Set :=

| Uni (pc : nat) (t s : l i s t thread)

| Div (w1 w2 : warp)

Hence, warps may form a tree of divergences.

Figure 2.1 lists the small-step semantic rules for warps. The semantics are distinguished

by instruction input, which transforms the given warp according to the operational seman-

tics of the instruction. The �rst 9 rules are fairly straightforward and only apply to uniform

18

warps. Instructions Bop and Top are arithmetic operations on two and three inputs, re-

spectively. If a warp is divergent and the instruction is not Sync, then the left-most warp

is executed.

The �nal case is the most complex due to the synchronization operation. When a warp

diverges, it should at some point converge back to a uniform warp through a sync opera-

tion (see Figure 2.2). Compilers enforce this because memory barriers can cause unde�ned

execution. In some executions, a warp could diverge with half of it, halting at a barrier

while the other half continues to execute and eventually exit. Since all threads must be at

the memory barrier in order for it to lift, this situation creates a deadlock and the program

hangs or (more likely) crashes. Careful analysis is required to establish that correct code

always avoids this situation. Our operational semantic encodings facilitate such reasoning

in Coq proofs.

2.3.9 Blocks

Thread blocks are typically de�ned as sets of threads, but because they are grouped into

warps, we formalize them as sets β of warps.

β : ~ω

Warps are selected by the scheduler to execute an instruction, but the details of the

scheduling can vary between GPUs and other contextual factors. Proofs in our framework

must therefore establish correctness independently of the scheduling algorithm. Our seman-

tics hence formalize the scheduler non-deterministically.

Looking at Figure 2.3, we have two possible scenarios. In the �rst scenario, there exists a

warp that is not at a memory barrier or has not �nished, so it executes its next instruction.

Notation β[ω′/ω] denotes the capture-avoiding substitution of ω with ω′, in order to update

the block state. The second scenario applies when all warps have reached a memory barrier.

19

(nop)
Nop ` 〈(pc,~t), µ〉 →1 〈(pc + 1,~t), µ〉

~t′ = {(tid , ρ[r 7→ op(a, b)], ϕ) | (tid , ρ, ϕ) ∈ ~t}
(bop)

Bop op r a b ` 〈(pc,~t), µ〉 →1 〈(pc + 1, ~t′), µ〉

~t′ = {(tid , ρ[r 7→ op(a, b, c)], ϕ) | (tid , ρ, ϕ) ∈ ~t}
(top)

Top op r a b c ` 〈(pc,~t), µ〉 →1 〈(pc + 1, ~t′), µ〉

~t′ = {(tid , ρ[r 7→ a], ϕ) | (tid , ρ, ϕ) ∈ ~t}
(mov)

Mov r a ` 〈(pc,~t), µ〉 →1 〈(pc + 1, ~t′), µ〉

~t′ = {(tid , ρ[r 7→ µ(ss , a)], ϕ) | (tid , ρ, ϕ) ∈ ~t}
(ld)

Ld ss r a ` 〈(pc,~t), µ〉 →1 〈(pc + 1, ~t′), µ〉

~v = {(ss , a, ρ(r)) | (tid , ρ, ϕ) ∈ ~t} µ′ = update(µ,~v)
(st)

St ss a r ` 〈(pc,~t), µ〉 →1 〈(pc + 1,~t), µ′〉

(bra)
Bra tgt ` 〈(pc,~t), µ〉 →1 〈(tgt ,~t), µ〉

~t′ = {(tid , ρ, ϕ[p 7→ cmp(a, b)]) | (tid , ρ, ϕ) ∈ ~t}
(setp)

Setp cmp p a b ` 〈(pc,~t), µ〉 →1 〈(pc + 1, ~t′), µ〉

~t1 = {(tid , ρ, ϕ) | (tid , ρ, ϕ) ∈ ~t ∧ ϕi(p)}
~t2 = {(tid , ρ, ϕ) | (tid , ρ, ϕ) ∈ ~t ∧ ¬ϕi(p)}

ω′ = sync((pc + 1, ~t2), (tgt , ~t1))
(pbra)

PBra p tgt ` 〈(pc,~t), µ〉 →1 〈ω′, µ〉

i 6= Sync i ` 〈ω1, µ〉 →1 〈ω′1, µ′〉(div)
i ` 〈(ω1, ω2), µ〉 →1 〈(ω′1, ω2), µ

′〉

(sync)
Sync ` 〈ω, µ〉 →1 〈sync(ω), µ〉

Figure 2.1: Warp Small-Step Semantics

At this time all shared memory is committed (i.e., all valid bits are set to true), and warp

program counters are incremented to continue execution.

20

sync(ω) =

(pc + 1,~t), if ω = (pc,~t)

sync(ω2), if ω = ((pc1, {}), ω2)

sync(ω1), if ω = (ω1, (pc2, {}))
(pc1 + 1, ~t1 ∪ ~t2), if ω = ((pc1, ~t1), (pc2, ~t2))

∧ pc1 = pc2
(ω2, (pc1, ~t1)), if ω = ((pc1, ~t1), ω2)

(sync(ω1), ω2), otherwise ω = (ω1, ω2)

Figure 2.2: Warp Sync Function

∃ω ∈ β . π(ωpc) 6∈ {Bar,Exit}
π(ωpc) ` 〈ω, µ〉 →1 〈ω′, µ′〉

(execb)
π ` 〈β, µ〉 →1 〈β[ω′/ω], µ′〉

∀ω ∈ β . π(ωpc) = Bar
(lift-bar)

π ` 〈β, µ〉 →1 〈incr_pc(β), commit(µ)〉

Figure 2.3: Thread Block Small-Step Semantics

2.3.10 Grids

Grid execution is similar to thread block execution in the sense that thread blocks are non-

deterministically chosen for execution. There is no hardware based memory synchronization

at this level, so Figure 2.4 includes only one derivation rule. The rule chooses an un�nished

thread block to execute and updates the grid with the new thread block state.

We de�ne a thread block to be complete when all warps are at an Exit instruction.

When a grid �nishes executing, all thread blocks should be complete.

2.4 Example Validation Results

To demonstrate how our framework facilitates machine-checked validation of GPU software,

we walk through the validation of a toy PTX program that sums two vectors. Listing 2.1 is

21

complete(π, β) ≡ (∀ω ∈ β . π(ωpc) = Exit)

∃β ∈ γ .¬complete(π, β)

π ` 〈β, µ〉 →1 〈β′, µ′〉
(execg)

π ` 〈γ, µ〉 →1 〈γ[β′/β], µ′〉

Figure 2.4: Grid Small-Step Semantics

the (almost) verbatim PTX code compiled from sources; our only modi�cation is to rename

the parameters in lines 10�13 to something more human-readable, for explanatory purposes.

2.4.1 Context Lifting

Listing 2.2 shows our translation of the PTX code to corresponding Coq de�nitions. At

the beginning of all PTX functions is a declaration of the types and quantities of needed

registers. We do not necessarily need to translate this to Coq, but for the sake of readability

we do so in lines 1�4. Since PTX instructions take operands (not just registers) as input,

we use a wrapper to turn all registers into operands (line 6), and pre�x the variable with

an underscore (e.g. _r1) to make the distinction. Lines 9�12 load the function arguments

into registers. Loads have semantics equivalent to Moves in our framework, so the Coq

translation uses Mov instructions.

All threads execute the same code concurrently, but each receives a distinct thread index,

which is computed in lines 14�17. Since each thread is tasked with adding elements from a

speci�c index in the vector, at least size threads are spawned, where size is the length

of the vector. It could be the case that more than size threads are spawned, so a bounds

check is implemented in lines 19�20. As mentioned in �2.3.8, warps can diverge when multiple

execution paths exist. In this example there are two paths with a divergence point at line 20.

The matching Sync instruction is inserted at line 35 (index 18 in the Coq instruction list).

22

Listing 2.1: PTX Assembly for Vector Sum
1 .reg .pred %p<2>;
2 .reg .u32 %r<9>;
3 .reg .u64 %rd<11>;
4

5

6

7

8

9 ld.param.u64 %rd1, [arr_A];
10 ld.param.u64 %rd2, [arr_B];
11 ld.param.u64 %rd3, [arr_C];
12 ld.param.u32 %r2, [size];
13

14 mov.u32 %r3, %ntid.x;
15 mov.u32 %r4, %ctaid.x;
16 mov.u32 %r5, %tid.x;
17 mad.lo.s32 %r1, %r4, %r3, %r5;
18

19 setp.ge.s32 %p1, %r1, %r2;
20 @%p1 bra BB0_2;
21

22 cvta.to.global.u64 %rd4, %rd1;
23 mul.wide.s32 %rd5, %r1, 4;
24 add.s64 %rd6, %rd4, %rd5;
25 cvta.to.global.u64 %rd7, %rd2;
26 add.s64 %rd8, %rd7, %rd5;
27 ld.global.u32 %r6, [%rd8];
28 ld.global.u32 %r7, [%rd6];
29

30 add.s32 %r8, %r6, %r7;
31 cvta.to.global.u64 %rd9, %rd3;
32 add.s64 %rd10, %rd9, %rd5;
33 st.global.u32 [%rd10], %r8;
34

35

36 BB0_2: ret;

Listing 2.2: Coq PTX Assembly
De�nition r1 : reg := (UI 32, 1).
De�nition r2 : reg := (UI 32, 2).
...
De�nition rd1 : reg := (UI 64, 1).
...
De�nition _r1 : op := Reg r1.
...
De�nition add_vector : prg := [
Mov rd1 arr_A;
Mov rd2 arr_B;
Mov rd3 arr_C;
Mov r2 size;

Mov r3 ntid_x;
Mov r4 ctaid_x;
Mov r5 tid_x;
Top MADLO r1 _r4 _r3 _r5;

Setp GE p1 _r1 _r2;
PBra p1 18;

Bop MULWD rd5 _r1 (Imm 4);
Bop ADD rd6 _rd1 _rd5;

Bop ADD rd8 _rd2 _rd5;
Ld Global r6 _rd8;
Ld Global r7 _rd6;

Bop ADD r8 _r6 _r7;

Bop ADD rd10 _rd3 _rd5;
St Global _rd10 r8;

Sync;
Exit].

The translation of lines 22�33 omits the cvta.to instructions because they are implicit

in our PTX formalization. Speci�cally, instruction cvta.to converts a generic address to a

speci�ed state-space, but our framework implicitly does this with the ld and st instructions,

23

which both require a state-space parameter. The �nal PTX instruction is ret, which we

translate to Exit for this example to end the validation at function completion.

2.4.2 Proof Procedure

In Coq we can formally prove and machine-check theorems about the program's behavior

on arbitrary inputs, such as termination and correctness of output. Even though this is

a simple example, Coq has a rich collection of supporting libraries and theory modules

that can be applied to reason about much more complex mathematical properties of larger

programs. For example, there is extensive prior work on leveraging Coq to prove properties

of cryptographic algorithms (Barthe et al., 2011, 2013; Petcher and Morrisett, 2015). For

expository simplicity, we here limit our presentation to proving total correctness of this very

simple algorithm.

Listing 2.3: Proving Termination of Vector Sum

1 De�nition warp_complete (pi : prg) (w : warp) : bool :=

2 match pi (get_pc w) with

3 | Some Exit => true

4 | _ => false

5 end.

6

7 De�nition block_complete (pi : prg) (b : block) : bool :=

8 forallb (warp_complete pi) b.

9

10 De�nition terminated (pi : prg) (g : grid) : Prop :=

11 forallb (block_complete pi) g = true.

12

13 (* sample parameter con�gs *)

24

14 De�nition kc : kconf := ((1,1,1),(32,1,1)).

15 De�nition g : grid := generate_grid kc.

16 De�nition mu : mem_f := ... (* initial memory state *)

17

18 Inductive grid_t

19 : prg → kconf → grid×mem_f → grid×mem_f → Prop :=

20 ...

21

22 Theorem add_vector_terminates :

23 ∀ (g' : grid) (mu' : mem_f),

24 n_apply 19 (grid_t add_vector kc) (g,mu) (g',mu') →

25 terminated add_vector g'.

26 Proof.

27 intros g' mu' Happ.

28 repeat (unroll_apply Happ).

29 compute. re�exivity.

30 Qed.

Listing 2.3 shows how termination is de�ned and proved for our toy program. A pro-

gram's execution is considered terminated (or completed) when all threads have reached

the Exit instruction. De�nition terminated in the listing checks whether all blocks are

complete, which entails con�rming whether all warps are complete. We then give a few,

but necessary, parameter con�gurations (kc, g, and mu) to initialize program execution.

Finally we de�ne our theorem add_vector_terminates by hypothesizing that after 19

small-steps of execution, the program terminates.

25

Proposition n_apply is inductively de�ned in Listing 2.5, which relates the number n of

applications of a proposition f:A→A→Prop to an input a:A with an output a’:A. At its

base case, the number of steps to take is zero, so this is essentially an identity proposition.

The inductive case performs one application of f and recursively applies it n−1 more times.

Proving a theorem in Coq typically begins with introducing universally quanti�ed vari-

ables (g’ and mu’) and hypotheses (Happ) into the proof context, as shown. Next, the

repeat tactic repeatedly applies a given proof tactic until it fails. The given tactic in this

case is unroll_apply, which is de�ned in Listing 2.5.

Our unroll_apply tactic can be thought of as a primitive symbolic execution engine

for PTX. It directly applies the operational semantics of PTX to a proof hypothesis through

inversion reasoning, which infers a derivation rule's prerequisites from its consequent.

In the case of derivation rules that encode operational semantics, this infers the set of new

program states that may result from each instruction's execution, thereby symbolically in-

terpreting the instruction within the proof environment.

In detail, unroll_apply considers the two possible cases of n_apply: either n = 0

(no more steps) or n > 0. In both cases we start o� with the same three tactics: (1)

inversion, (2) subst, and (3) clear. The inversion tactic reasons by the distinctness

of constructors and only considers cases that could have been used to form the hypothesis.

When n = 0, the only case that can be used is AppZero and proposes that the input a and

output a’ are equivalent. Otherwise, n is positive so AppNext is the only case that applies.

Inversion can produce many variable aliases, so we use subst to automatically substitute

away any redundant, fresh variable names from the proof context. Finally, we clear the

inverted hypothesis from the context once all its e�ects have been computed and it is no

longer needed. Tactic step_grid applies a similar strategy for symbolic execution of grids;

we here omit its de�nition for brevity.

Moving back to the theorem, our symbolic interpreter ultimately reveals the �nal states

of g’ and mu’ and encodes them as hypotheses in the proof environment. The compute

26

tactic reduces terminated add_vector g’ to true = true and we �nally apply

reflexivity to complete the proof.

Listing 2.4: Proving Correctness of Vector Sum

1 Fixpoint get_array (mu : mem_f) (a : addr) (len width : nat)

2 : list Z :=

3 match len with

4 | O => []

5 | S len' => let v := read_mem mu a width in

6 v :: get_array mu (incr_addr a) len' width

7 end.

8

9 De�nition add_array (a b : list Z) : list Z :=

10 let add_pair := fun p => match p with (x,y) => x+y end in

11 map add_pair (combine a b).

12

13 De�nition arrA : addr := ...

14 De�nition arrB : addr := ...

15 De�nition arrC : addr := ...

16 De�nition N : nat := numElements.

17

18 Theorem add_vector_correct :

19 ∀ (g' : grid) (mu' : mem_f) (A B C : list Z),

20 n_apply 19 (grid_t add_vector kc) (g,mu) (g',mu') →

21 A = get_array mu arrA N 32 →

22 B = get_array mu arrB N 32 →

27

23 C = get_array mu' arrC N 32 →

24 add_array A B = C.

25 Proof.

26 intros g' mu' A B C Happ HA HB HC.

27 repeat unroll_apply Happ.

28 subst. compute. re�exivity.

29 Qed.

Listing 2.4 proves partial correctness�i.e., that the result of the computation is the sum

of the two input vectors, if it terminates. Coupled with Listing 2.3, this establishes total

correctness of the computation. Vectors A and B come from the initial memory state mu and

vector C is from the �nal memory state mu’. The theorem therefore posits that A + B =

C.

The proof begins similarly to Listing 2.3, introducing the variables and hypotheses. Then

we can apply our unroll_apply tactic to obtain the �nal memory state mu’. After

some computation, the symbolic interpreter arrives at the desired symbolic expression for C,

proving the correctness property.

Listing 2.5: Proof Automation Tactics for Symbolic Execution of PTX Code

1 Inductive n_apply {A:Type}

2 : nat → (A→A→Prop) → A → A → Prop :=

3 | AppZero (f : A→A→Prop) (a : A) :

4 n_apply 0 f a a

5 | AppNext (n : nat) (a a1 a' : A) (f : A→A→Prop)

6 (Hf : f a a1)

7 (Happ : n_apply n f a1 a') :

8 n_apply (S n) f a a'.

28

9

10 Ltac step_grid H := ...

11

12 Ltac unroll_apply H :=

13 match type of H with

14 | n_apply ?n _ _ _ =>

15 match n with

16 | O => inversion H; subst; clear H

17 | _ => let Hgrid := fresh "Hgrid" in

18 let Happ := fresh "Happ" in

19 inversion H as [| ? ? ? ? ? Hgrid Happ]; subst; clear H;

20 step_grid Hgrid

21 end

22 | _ => fail

23 end.

Both of these proofs demonstrate the power of our automation tactics to reliably facilitate

formal reasoning about PTX operation. By expressing the symbolic interpreter as proof

tactics, we a�ord users the ability to quickly and easily reduce computations to symbolic

expressions within a Coq proof, and subsequently apply the full power of Coq's mathematical

theories to reason about the resulting symbolic expressions. This power comes without any

additions to the TCB of the framework, since the tactics merely automate the application

of the operational semantics rules; they do not introduce new rules that must be checked for

accuracy.

29

2.4.3 Non-deterministic Execution

One of the most di�cult aspects of parallel and concurrent programs to reason about is

the inter-thread order in which instructions are executed. Explicitly considering all possible

executions within proofs is infeasible and unmanageable even for small programs. To ease

this burden, we have successfully proved a general theorem showing that the result of a PTX

computation is always independent of the order in which the threads of a warp execute. It

therefore su�ces to only consider a sequential thread execution order within proofs. We here

outline this theorem and its proof.

Listing 2.6: Non-deterministic Map

1 Inductive nth_ri {A:Type}

2 : nat → list A → A → list A → Prop :=

3 | RI_O a t :

4 nth_ri 0 (a::t) a t

5 | RI_S n t t' x a

6 (Hn: nth_ri n t a t') :

7 nth_ri (S n) (x::t) a (x::t').

8

9 Inductive nd_map {A B : Type}

10 : (A→B) → list A → list B → Prop :=

11 | NDNil (f : A → B) :

12 nd_map f [] []

13 | NDCons (f : A → B) (l l1 : list A) (l2 l' : list B) (a : A) (n : nat)

14 (Hl: nth_ri n l a l1)

15 (Hmap: nd_map f l1 l2)

16 (Hl': nth_ri n l' (f a) l2) :

30

17 nd_map f l l'.

Listing 2.6 �rst de�nes proposition nth_ri, which removes an element a at position n

from a given given list l, and returns a new list l’. We use this de�nition to create a non-

deterministic map function nd_map. It is non-deterministic in the sense that the elements

are processed in an arbitrary order and not from front to back. This captures all possible

thread schedules for warps, which execute threads in lock-step but in an unspeci�ed order.

Some components on the SM, such as SFUs, are physically limited in quantity, making it

impossible for all threads in a warp to execute on the same clock cycle. Therefore, we seek

to prove that a non-deterministic execution is equivalent to a deterministic one.

Listing 2.7: Non-deterministic/Deterministic Equiv

1 Theorem nd_map_eq :

2 ∀ (A B : Type) (f : A→B) (l : list A) (l' : list B),

3 nd_map f l l' ←→ l' = map f l.

4 Proof.

5 intros A B f l l'.

6 split; intros H.

7

8 (* nd_map → map *)

9 induction H.

10 (* Case: NDNil *)

11 re�exivity.

12 (* Case: NDCons *)

13 inversion Hl'; subst; inversion Hl; subst; clear Hl Hl'.

14 (* SCase: n = 0 *)

15 re�exivity.

31

16 (* SCase: n is in the middle somewhere *)

17 inversion H3; subst; clear H3 H.

18 simpl. apply list_hd_eq.

19 generalize dependent t.

20 induction Hn0; intros.

21 inversion Hn; subst; clear Hn.

22 re�exivity.

23 inversion Hn; subst; clear Hn.

24 simpl. apply list_hd_eq. eapply IHHn0. exact Hn1.

25

26 (* map → nd_map *)

27 generalize dependent l'.

28 induction l; intros; subst; simpl.

29 (* Case l = [] *)

30 apply NDNil.

31 (* Case l = hd :: tl *)

32 eapply NDCons; try apply RI_O.

33 apply IHl. re�exivity.

34 Qed.

Listing 2.7 summarizes our equivalence proof. We start by inducting on the de�nition

of nd_map, which generates two cases: the base case NDNil and inductive case NDCons.

The base case is straightforward, so we here focus on the inductive case. It divides into two

sub-cases: an element is chosen from the head, or from within the tail. The bulk of the

proof focuses on the second sub-case. It leverages dependent inductive reasoning (Cornes

and Terrasse, 1995; McBride, 2002) to universally consider all possible thread orderings.

32

In future work, we plan to extend this result to the warp scheduling algorithm as well, to

also eliminate that source of non-determinism from proofs. This result is more challenging

because it requires reasoning about the order of memory operations. One reason nd_map

is equivalent to map is because computation does not a�ect an output at another index.

Moving up in the thread hierarchy to thread blocks, one must additionally consider the

order of memory operations, which could potentially a�ect the output of another thread.

2.5 Summary

Our work shows promise in providing a feasible means to machine-verify GPU programs

using a well-established, mature proof assistant�the Coq system. Coq's strong, dependent

typing system facilitates a natural encoding of GPU assembly code operational semantics

as inductive axioms, including modeling its traditionally challenging parallelism and thread

scheduling properties. To streamline proofs, Coq's tactic language was leveraged to build

a symbolic interpreter that automatically derives provably correct symbolic expressions for

assembly code fragments within the proof environment.

Using the resulting framework, we constructed the �rst machine-checked proof of CUDA

thread scheduling transparency, as well as validating correctness properties of some simple

programs.

As with any formal validation, our approach does not replace code testing, but can provide

stronger guarantees and assurances that do not rely upon comprehensiveness of test sets. By

targeting assembly code programs, our framework is applicable to GPU code produced from

arbitrary source languages and compilation toolchains. In future work we plan to further

ease the task of proof-writing by formulating more extensive theorem libraries and tactic

libraries that modularize and automate GPU code correctness proofs.

33

CHAPTER 3

J-GANG1

3.1 Overview

This chapter presents the design, implementation, and evaluation of a framework for trans-

lating Java source code to a CPU-GPU hybrid architecture suitable for secure, n-variant

computation. Translation entails semantic preservation of the source Java code to each tar-

get architecture (CPU and GPU), and veri�cation entails detection of semantic divergence

between these two target computations.

The open library for analysis of the Java language, Java Spoon by Inria (Pawlak et al.,

2015) and Javassist, is adopted to exact all the data and logic information from original code

(or bytecode) both statically and dynamically. Additionally, it is also applied to record local

variables for state logging operations. These are re-composed into new code satisfying the

grammar rules of the GPU kernel language. After the translation, our system executes the

code and the replica in parallel by using Java Aaprapi and OpenCL. Throughout this paral-

lel execution, two series of memory states are logged and compared to detect divergences. To

evaluate the prototype implementation, experiments on third-party Java programs demon-

strate performance and security e�ectiveness of the approach.

The contributions of J-Gang can be summarized as follows:

� We introduce the �rst n-variant system for Java computation veri�cation based on

architectural di�erences between GPU and CPU.

� To harmonize the dissimilar performance advantages of the two architectures, we in-

troduce an asynchronous trust-but-verify n-variant model, in which single- or few-

1The material in this chapter was originally published as: Jun Duan, Kevin W. Hamlen, and Ben-

jamin Ferrell, �Better Late Than Never: An N -variant Framework of Veri�cation for Java Source Code on

CPU×GPU Hybrid Platform,� In Proceedings of the 28th International Symposium on High-Performance
Parallel and Distributed Computing (HPDC), pp. 207�208, June 2019.

34

threaded CPU computations are validated by many-threaded GPU computations on

a short delay. This allows the GPU computation to quickly verify many iterations of

CPU-executed loops concurrently.

� A prototype implementation establishes rules of translation from Java source code

on the host side into GPU-executable kernel code, which o�ers a possible solution to

facilitate GPU execution of general Java source code in future work.

� Evaluation of J-Gang on exploits of eight real-world JVM vulnerabilities exhibits

reliable detection at reasonable overheads, even when the vulnerabilities are treated as

zero-days (no vulnerability-speci�c defenses introduced).

� Methods of tracing variables and local data analysis are extensively tested, and we

study the connection between overhead and state snapshot logs. Based on the relation,

we control overhead for suitable variable-tracking jobs.

The remainder of this chapter is arranged as follows. Section 3.2 describes the system de-

sign and de�nes correctness. Section 3.3 details our prototype implementation. Experimental

methodology and evaluation are discussed in Section 3.4. Finally, Section 3.5 summarizes

the chapter.

3.2 System Design

3.2.1 Divergence Between Executions

Listing 3.1 exhibits a JVM vulnerability related to around 30 bugs and numerous DoS attacks

against Java SE 1.6, and that was later identi�ed as a root cause of array over�ows, server

VM crashes, and a variety of other potential software compromises before it was patched.2

2https://bugs.java.com/view_bug.do?bug_id=5091921

35

https://bugs.java.com/view_bug.do?bug_id=5091921

Listing 3.1: Exploit of JDK-5091921 (JavaSE 1.6, x86/x64 Win7)
1 int i = 0;
2 int j = Integer.MAX_VALUE;
3 boolean test = false;
4 while (i >= 0) {
5 i++;
6 if(i > j) {
7 test = true;
8 break;
9 }

10 }
11 System.out.println("Value of i: " + i);
12 if(test) i = 1;
13 System.out.println("Value of i: " + i);

Listing 3.2: Exploit of JDK-8189172 (JavaSE 1.8, x86/x64 Win7)
1 double b = 1.0 / 3.0;
2 double e = 2.0;
3 double r = Math.pow(b, e);
4 double n = b * b;
5 while (r == n) {
6 b += 1.0 / 3.0;
7 n = Math.pow(b, e);
8 r = b * b; }
9 println("b=" + b + " n=" + n + " r=" + r);

It returns di�erent unstable values of i on each execution, and also prints the false result,

�Value of i: 1� in line 13 when it should report over�owed value −2147483648. The �aw

is an incorrect optimization in the (CPU-based) HotSpot compiler, which breaks integer

over�ow detection in certain loops. However, running this code in our J-Gang system as

a GPU computation yields correct results, because GPUs apply a very di�erent procedure

for optimizing the loop. This natural di�erence in behavior o�ers a potential opportunity to

detect the error without advance knowledge of the bug.

Listing 3.2 likewise demonstrates an exploit of JVM bug JDK-8189172,3 which embodies

an imprecision of �oating point computations that in this case causes expressions n× n and

3https://bugs.java.com/view_bug.do?bug_id=8189172

36

https://bugs.java.com/view_bug.do?bug_id=8189172

n2 to return unequal results. A correct JVM should loop in�nitely, but unpatched JVMs

halt with output b = 4.9, n = 24.9, r = 24.999999999999993. However, compiling the

same code to a GPU architecture results in correct behavior�self-product and square yield

equal results, and the program loops in�nitely. Detecting this divergence of behavior has

the potential to detect the exploit without the need to craft and deploy vulnerability-speci�c

mitigations whose formulation require advance knowledge of the bug.

J-Gang detects both exploits by compiling the Java source code to two binary executa-

bles: (1) logging-enhanced Java bytecode, and (2) veri�cation-enhanced OpenCL GPU code.

The Java bytecode variant logs local state (e.g., variables b, e, r, and n in Listing 3.2) at the

start of each loop iteration (line 5) and at loop exit (line 9). The GPU variant consumes

this log stream in a veri�cation loop. When consuming k available checkpoints, it spawns

k − 1 workers that each initialize their local variable states in accordance with di�erent

checkpoints σi (i < k − 1). They then all execute one iteration of the loop in parallel, and

con�rm that the resulting states matches the succeeding checkpoints σi+1. The divergence

is detected when the �nal worker obtains a di�erent state than the CPU (e.g., equal values

for r and n in Listing 3.2).

While both divergences could theoretically be detected by replicating programs to mul-

tiple, dissimilar CPU-based JVMs wherein at least one JVM emulates a GPGPU-style com-

putational model, in practice there are at least two signi�cant problems with this CPU-only

approach. First, CPU-based emulation of GPU-style parallelism is highly ine�cient. A CPU-

based JVM that emulates the computational diversity of a GPGPU computation therefore

cannot keep pace with the CPU computation it is seeking to verify, resulting in unacceptable

performance bottlenecks.

Second, building and maintaining a new, dissimilar, production-level JVM is di�cult and

expensive, as witnessed by the fairly small and homogeneous set of production JVMs cur-

rently available despite over 25 years of Java infrastructure development. These JVMs inten-

tionally o�er little diversity, since diversity introduces maintainability and cross-compatibility

37

bytecode rewriting for kernel & executing in GPU

inject code
for logging

non-data info for code simplification

bytecode rewriting

Polygrapher
input

source code

Translator CPU
translated code
for kernel/GPU

Executor II GPU
kernel output

(variant 1)

Verifier GPU

source code with
logging options

log
(variant 0)

Extractor I CPU

output

Figure 3.1: J-Gang Architecture

issues. For example, the �aw demonstrated by Listing 3.2 has been reported across several

JVMs by many users, probably because it is rooted in runtime library code shared by many

CPU-based JVM implementations. Leveraging a CPU×CPU hybrid model potentially of-

fers greater diversity by extending dissimilarities down to the hardware level, yet avoiding

overheads su�ered by network communications between machines.

3.2.2 Model & TCB

Figure 3.1 shows the system architecture of J-Gang. The hardware di�erences between the

two execution paths forms an ideal polygrapher, which is de�ned as a distributer to feed

the executors with input. To generate the acceptable parallel equivalent states for CPU

and GPU respectively, there are two working paths in the polygrapher. Since the input is

Java source code, one path processes the original CPU execution. The other consists of an

translation action and several processing behaviors of corresponding states expressed in the

GPU. The two state streams are compared for semantic equality in an on-demand fashion.

The correctness of a compiler that transforms a source program (e.g., Java) into an

object code program (e.g., Java bytecode or GPU bytecode) is de�ned in the literature

in terms of semantic transparency (cf., (Leroy, 2009)), which asserts that the source code

semantics and the compiled object code semantics yield equivalent program states. In the

38

j · · · j′

g · · · g′

J

∼

J

∼

G G

Figure 3.2: Semantic transparency

case of two compilers (source-to-JVM and source-to-GPU), we therefore transitively de�ne

relation ∼ ∈ J × G to be the equivalence relation between the two object languages�

JVM states j ∈ J and GPU states g ∈ G�that is preserved by the two compilers' semantic

transparencies. Speci�cally, we de�ne JVM ∈ (J,→J) to be a transition system that encodes

the operational semantics of the Java bytecode virtual machine, such as ClassicJava (Flatt

et al., 2002) or Featherweight Java (Igarashi et al., 2001). Similarly, de�ne GPU ∈ (G,→G)

to be a transition system that encodes the operational semantics of GPU bytecode programs,

such as PTX (Habermaier, 2011).

Figure 3.2 shows a commutative diagram illustrating how non-malicious executions that

stay within the intended semantics of the two transition systems preserve relation ∼. As

indicated by the diagram, this semantic equivalence is not necessarily step-wise; state equiva-

lence is only checked periodically at checkpoints. This is important not only for performance,

but also for re�ecting di�erences in granularity between the two architectures. For example,

certain computational steps by the CPU execution engine might correspond to a series of

multiple computational steps on a GPU.

All non-determinism sources (e.g., random number generation, scheduling, user input,

clock checks) are treated as inputs by J-Gang and logged by the CPU variant as local state.

In general, this leaves three scenarios that can potentially falsify transparency:

1. one or both transition systems reach stuck states,

2. one system reaches a �nal state before the other, or

3. relation ∼ is falsi�ed.

39

Condition 1 corresponds to a failure of J-Gang's implementation (the compilers, runtime

systems, or validator). For example, Java language features unsupported by the prototype

implementation (see �3.3) yield stuck states. Condition 2 corresponds to premature termi-

nation, as exhibited by the example in Listing 3.2. The most signi�cant form of falsi�cation

arises from condition 3, which corresponds to developer-unintended behaviors that di�er be-

tween the two transition systems. These include memory corruption, arithmetic errors, and

type confusions indicative of many Java exploits.

3.2.3 GPU Feature Limitations

Current GPU instruction architectures support only a small subset of operations available

on CPUs. For example, reference types (objects) and methods are not directly expressible

in the kernel part of programs parsed in either the CUDA or OpenCL platforms. Likewise,

GPU kernel code cannot directly access main memory during computations, since to access

the main memory by shared virtual memory (SVM) is an optional feature of OpenCL and

still not perfectly supported by AMD in Windows. J-Gang therefore does not rely upon it.

While these limitations may initially seem prohibitive to our goal of replicating general

JVM computations to GPUs, they actually serve to enhance J-Gang's ability to detect

attacks within our asynchronized validation model. Any CPU operation that cannot be

supported on GPU is idealized during source-to-GPU compilation as an opaque input-output

relation de�ned by the CPU variant's computation. For example, objects are reduced to their

integer hash codes on the GPU side, and calls to their methods become checkpoints whose

local states include numeric indexes of the called method and the return site. This allows

the GPU variant to verify that the same object and method is called. A separate worker

then validates the callee's computation and its return, avoiding an explicit method call or

call stack on the GPU side. Usually these caller and callee computations are validated

concurrently by the GPU.

40

The idealization and opacity of these operations on the GPU side is a source of many

opportunities for detection of malicious computations. For example, exploits that corrupt

the JVM's call stack or method tables to hijack code control-�ows almost never have the

same e�ect on J-Gang's GPU computations, which have no explicit call stack or method

tables, and that exercise independent, parallel workers instead of performing serial method

calls.

3.2.4 Validation Modes

J-Gang can be con�gured to execute in two possible modes:

Static Mode. The CPU variant can be con�gured to execute to completion before

delivering its checkpoint log, whereupon the GPU variant validates the entire computation.

This mode can be useful for terminating computations that demand high realtime e�ciency,

and that do not require immediate validation.

Dynamic Mode. In this mode, the CPU variant streams its checkpoint log to the

GPU variant as the computation progresses. The GPU variant consumes the stream op-

portunistically, discarding the consumed checkpoints. This is the preferred mode, since it

reduces space overheads for checkpointing, accommodates non-terminating computations,

and detects intrusions live.

3.2.5 Checkpointing

Local State

Checkpoints produced by the CPU variant consist of local variable values, heap values (e.g.,

object hash codes and �elds), and a numeric token that uniquely identi�es the current code

point. To control overhead, only the subset of local variable and heap values that are accessed

by the CPU variant between this checkpoint and the next are included in each checkpoint.

While purely static liveness analysis of Java code can be challenging (Nilsson-Nyman et al.,

41

2008), we avoid many of these complexities by simply logging the variable values that are

actually read and written by the CPU variant as it runs, and by placing checkpoints at

signi�cant meets and joins in the control-�ow graph (e.g., function and loop entry and exit

points). In this way we avoid the need to accurately compute heap liveness or reachability,

and all static analyses are intraprocedural. Liveness and reachability approximations are

only used as optimizations to avoid unnecessary checkpoints.

If the GPU variant attempts to access a state element that was not included in its source

checkpoint, or modi�es a state element not included in its destination checkpoint, it signals

a divergence. Thus, checkpoints and any analyses used to generate them remain untrusted

by the veri�er.

Frame State

The GPU variant also maintains a frame state comprising portions of the heap that were

introduced by previous (now discarded) checkpoints, and that remain reachable, but that do

not appear in the current checkpoints undergoing validation. This reduces checkpoint sizes

by providing a means to validate the values of variables that are not read or modi�ed for

large portions of the program, but that remain live. It is maintained outside the GPU kernel

code, and consists of an idealized JVM state representation in which objects are expressed

as hash codes and their �elds are expressed as hash tables.

For example, variable e in Listing 3.2 remains live throughout the loop, but is only

accessed in line 7. By including e in the frame state, we can omit e from checkpoints

for computation fragments that do not concern e. Checkpoints that assume e = 2.0 as

a precondition can nevertheless be validated by consulting the frame state. Like other

variables, modi�cations of frame elements are reported in checkpoints, and are therefore

validated by the GPU, resulting in changes to its frame state.

42

s ::= v←e | v←o.m(~e) | s1; s2 | loop(e) s (statements)

| branch(e) s1 · · · sn | try s1 with e⇒ s2

e (expressions)

v (variables)

�X (checkpoints)

T (v←o.m(~e)) = (~vtmp←~e; �X; v←call(o.m,~vtmp); �X)

T (s1; s2) = T (s1); T (s2)

T (loop(e) s) = vtmp←e; �X; loop(vtmp) (T (s); vtmp←e; �X)

T (branch(e) s1 · · · sn) = vtmp←e; �X; branch(vtmp) T (s1) · · ·T (sn)

T (try s1 with e⇒ s2) = try T (s1) with e⇒ (�X; T (s2))

Figure 3.3: Translation of Java source to CPU×GPU code

3.2.6 Translation

Translation of Java source code to J-Gang's hybrid architecture is summarized in Figure 3.3.

For simplicity of presentation, we here represent Java source code as a core language con-

sisting of variable assignments v←e, method calls v←o.m(~e) (which have been factored out

of expressions into separate statements), sequences, loops, n-way branches, and exception-

handlers. Translation function T maps these programs to instrumented source code programs

that can be compiled to native CPU/GPU architectures.

The translation process adds checkpoint operations �X, which have a di�erent operational

semantics depending on the target architecture. In the CPU variant, checkpoints log the

local state to the veri�cation log. In the GPU variant, checkpoints read the log to initialize

the local state at the start of a worker computation, and to validate the local state at the end

of each worker computation. Translation of loops, branches, and exception handlers entails

adding checkpoints to meets and joins in the program's control-�ow graph. To check loop

and branch conditions, they are assigned to translator-introduced temporary variables vtmp,

which contribute to the local state and hence undergo checkpointing.

43

Translation of method calls invokes a call veri�cation handler call(o.m,~v) whose semantics

likewise di�er between the two architectures. On CPUs, object o's hashcode is logged to the

checkpoint, method m of object o is called with arguments ~v, and its return value is logged

on return. On GPUs, where explicit calls do not exist, the logged hashcode is veri�ed to

equal the GPU state's object argument, and the return value is simply retrieved from the log

�le and used as the result. This works because the checkpointing placement ensures that a

separate GPU worker always veri�es the correctness of this return value when validating the

callee's computation. (If the callee is not Java code, as in the case of JVM runtime system

calls, this treatment simulates the GPU calling the external library with the same arguments

and receiving the same result value.)

Each checkpoint also logs a program label that uniquely identi�es the location of the

checkpoint in the code. Thus, the GPU code consists entirely of a single function beginning

with a branch that consults this label to conditionally jump to the code fragment being

checked. Each GPU worker thereby executes a code fragment that begins at one checkpoint

and ends at the next, and that consists entirely of side e�ect-free computational expressions

suitable for GPU kernel code.

Figure 3.4 depicts the resulting execution streams for a simple loop. The CPU variant

(left) executes the loop body iteratively in a serial stream, outputting one checkpoint for

each iteration (and one additional one at start). A GPU variant (right) with n workers

consumes all available checkpoint-pairs simultaneously, simulatig all iterations of the loop in

parallel to validate the computation.

3.2.7 Veri�cation Time Complexity

Modern GPGPU architectures are most e�cient when threads execute homogeneously�i.e.,

each group of k threads executes the same code in lock-step (on possibly di�erent data), and

there is no signi�cant communication between threads in the group. For example, Nvidia's

44

 11 <- a + 1;

 60 <- b × a;

 a --;

...

while(a>5)

{

 x <- a+1;

 y <- b×a;

 a--;

}

...

 10 <- a + 1;

 54 <- b × a;

 a --;

 7 <- a + 1;

 36 <- b × a;

 a --;

...

60

54

48

42

36

6 × 10

6 × 9

6 × 8

6 × 7

6 × 6

11

10

9

8

7

10

9

8

7

6

9

8

7

6

5

ß

(aij) 5×1

(1) 5×1

ß

ß

a = 10 b = 6 a = 10 b = 6

+

LOG :

STEP 1 :

STEP 2 :

STEP n :

STEP 1 :

...

Figure 3.4: J-Gang computations for CPU (left) vs. GPU (right)

CUDA GPGPU architecture supports a Same Instruction Multiple Data (SIMD) model

(as well as less e�cient but more �exible MIMD models) (Maitre, 2013). On a GPGPU

architecture with a single thread group of size k, J-Gang's GPU variant can obey this

homogeneity constraint to achieve high e�ciency, and thus keep pace with the CPU variant

even after lagging behind the CPU by a factor of k, as shown by the following theorem.

Theorem. If the time complexity of the CPU code is O(f(n)), then the time complexity of

the GPU-translated code on an architecture with k homogenous threads is O(f(n)/k).

Proof Sketch. Code size c is constant relative to the input size n. By pigeon-hole principle,

a checkpoint sequence of length O(f(n)) must therefore contain Ω(f(n)/c) = Ω(f(n)) check-

point pairs that span identical code fragments. Translation function T (see �3.2.6) executes

these homogeneous fragments in blocks of k for a total runtime of O(f(n)/k).

In practice this means that even though each GPU thread's serial computing speed is

less than that of a typical CPU, with reasonably large k the GPU variant nevertheless keeps

pace with the CPU. This allows J-Gang to scale to long computations.

45

���

�����	
��

���
���

���

���

������������	
��

�����������

������

�������

�

�������

�

��
�
����

�������

����

������

����

���
	!

����

"���	
����

��
�
����

�������

����

���
"
��

�������

�����

�����
	!�

�!��#$

��
�	� �	

��	��	���
	!��%	!������
�	�

���

����������

������������

�������
��&�

'�(��	
���)���
	
��

����������*

������
�	

������+,%	������

�������
��&

'�(��	
��

������������

���#���

-����	�

���"���#�����������

�����	
��

Figure 3.5: Procedure of variants generation and execution

3.3 Implementation

To test and evaluate J-Gang, we implemented an extensive translation infrastructure from

Java source to GPU kernel code. This includes a new Java package handler implementation,

a CPU-GPU communication library for live data logging and retrieving, translation from

host code to kernel code, and procedural automation.

Figure 3.5 depicts the procedure and interaction between source code and processing

units in static mode. (Dynamic mode omits python scripts and reloads modi�ed classes

with class-loaders.) It shows how the GPU Kernel code of veri�cation for Java Aparapi is

generated from source code and how we record the status of variables and create checkpoints

in the kernel in basic mode.

Figure 3.6 lists four sample code fragments representing the elements of Figure 3.5. All

code shown in the �gure is generated automatically by J-Gang, including source code with

46

i
n
t

a

=

1

+

1
;

.
.
.

S
t
r
i
n
g

s
t
r

=

"
H
e
l
l
o
"
;

s
t
r

=

s
t
r

+

"

W
o
r
l
d
!
"
;

c
h
a
r

c

=

'
h
'
;

c

=

(
c
h
a
r
)

(
c
+
3
)
;

.
.
.

f
o
r

(
i
n
t

i

=

0
;

i

<

5
;

i
+
+
)

{

a

=

a

+

i
;

a

=

a

*

i
;

}

p
u
b
l
i
c

c
l
a
s
s

p
r
o
d
u
c
t

{

p
u
b
l
i
c

s
t
a
t
i
c

v
o
i
d

m
a
i
n
(
j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g
[
]

a
r
g
s
)

{

i
n
t

i
_
2
2
[
]

=

{

0
,

1
,

2
,

3
,

4

}
;

i
n
t

a
_
2
3
_
p
r
e
[
]

=

{

3
,

0
,

1
,

6
,

2
7

}
;

i
n
t

a
_
2
3
_
p
o
s
t
[
]

=

{

3
,

1
,

3
,

9
,

3
1

}
;

i
n
t
[
]

a
_
2
3
_
l
e
n
g
t
h

=

{

a
_
2
3
_
p
o
s
t
.
l
e
n
g
t
h

}
;

i
n
t

a
_
2
4
_
p
r
e
[
]

=

{

3
,

1
,

3
,

9
,

3
1

}
;

i
n
t

a
_
2
4
_
p
o
s
t
[
]

=

{

0
,

1
,

6
,

2
7
,

1
2
4

}
;

i
n
t
[
]

a
_
2
4
_
l
e
n
g
t
h

=

{

a
_
2
4
_
p
o
s
t
.
l
e
n
g
t
h

}
;

i
n
t
[
]

E
r
r
o
r
_
p
r
e

=

n
e
w

i
n
t
[
]

{

0

}
;

i
n
t
[
]

E
r
r
o
r
_
p
o
s
t

=

n
e
w

i
n
t
[
]

{

0

}
;

c
o
m
.
a
m
d
.
a
p
a
r
a
p
i
.
K
e
r
n
e
l

k
e
r
n
e
l

=

n
e
w

c
o
m
.
a
m
d
.
a
p
a
r
a
p
i
.
K
e
r
n
e
l
(
)

{

p
u
b
l
i
c

v
o
i
d

r
u
n
(
)

{

i
n
t

g
i
d

=

g
e
t
G
l
o
b
a
l
I
d
(
)
;

i
n
t

a

=

1

+

1
;

i
n
t

s
t
r

=

6
9
6
0
9
6
5
0
;

{

i
f

(
s
t
r

!
=

6
9
6
0
9
6
5
0

&
&

(
E
r
r
o
r
_
p
r
e
[
0
]

=
=

0
)
)

E
r
r
o
r
_
p
r
e
[
0
]

=

1
0
;

e
l
s
e

s
t
r

=

-
9
6
9
0
9
9
7
4
7
;

}

.
.
.

c
h
a
r

c

=

'
h
'
;

{

c

=

(
(
c
h
a
r
)

(
c

+

3
)
)
;

i
f

(
c

!
=

'
k
'

&
&

(
E
r
r
o
r
_
p
o
s
t
[
0
]

=
=

0
)
)

E
r
r
o
r
_
p
o
s
t
[
0
]

=

1
4
;

}

.
.
.

{

a
_
2
3
_
p
r
e
[
g
i
d
]

=

a
_
2
3
_
p
r
e
[
g
i
d
]

+

i
_
2
2
[
g
i
d
]
;

a
_
2
3
_
p
r
e
[
g
i
d
]

=

a
_
2
3
_
p
r
e
[
g
i
d
]

*

i
_
2
2
[
g
i
d
]
;

i
f

(
(
E
r
r
o
r
_
p
o
s
t
[
0
]

=
=

0
)

&
&

(
f
a
l
s
e

|
|

a
_
2
4
_
p
o
s
t
[
g
i
d
]

!
=

a
_
2
3
_
p
r
e
[
g
i
d
]
)
)

E
r
r
o
r
_
p
o
s
t
[
0
]

=

2
2
;

e
l
s
e

{

a

=

a
_
2
4
_
p
o
s
t
[
a
_
2
4
_
l
e
n
g
t
h
[
0
]

-

1
]
;

}

}

}

}
;

k
e
r
n
e
l
.
e
x
e
c
u
t
e
(
c
o
m
.
a
m
d
.
a
p
a
r
a
p
i
.
R
a
n
g
e
.
c
r
e
a
t
e
(
5
)
)
;

j
a
v
a
.
l
a
n
g
.
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
(
(
(
"
E
r
r
o
r
_
p
r
e

=

"

+

(
E
r
r
o
r
_
p
r
e
[
0
]
)
)

+

"
;

E
r
r
o
r
_
p
o
s
t

=

"
)

+

(
E
r
r
o
r
_
p
o
s
t
[
0
]
)
)
)
;

k
e
r
n
e
l
.
d
i
s
p
o
s
e
(
)
;

}

}

i
n
t

a

2

7

0

_

l
o
n
g

l

1
2
8
4
3
7
1
1
1

8

0

_

j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g

s
t
r

6
9
6
0
9
6
5
0

9

0

_

j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g

s
t
r

-
9
6
9
0
9
9
7
4
7

1
0

1

6
9
6
0
9
6
5
0

l
o
n
g

l

1
2
8
4
3
7
1
1
3

1
1

1

1
2
8
4
3
7
1
1
1

l
o
n
g

l

1
2
8
4
3
7
1
1
4

1
2

2

1
2
8
4
3
7
1
1
3

c
h
a
r

c

'
h
'

1
3

0

_

c
h
a
r

c

'
k
'

1
4

1

'
h
'

i
n
t

a

3

1
9

1

2

l
o
n
g

l

1
2
8
4
3
7
1
1
7

2
0

3

1
2
8
4
3
7
1
1
4

i
n
t

i

0

2
2

0

_

i
n
t

a

3

2
3

2

3

i
n
t

a

0

2
4

3

3

i
n
t

i

1

2
2

1

0

i
n
t

a

1

2
3

4

0

i
n
t

a

1

2
4

5

1

i
n
t

i

2

2
2

2

1

i
n
t

a

3

2
3

6

1

i
n
t

a

6

2
4

7

3

i
n
t

i

3

2
2

3

2

i
n
t

a

9

2
3

8

6

i
n
t

a

2
7

2
4

9

9

i
n
t

i

4

2
2

4

3

i
n
t

a

3
1

2
3

1
0

2
7

i
n
t

a

1
2
4

2
4

1
1

3
1

i
n
t

a

5

2
7

1
2

1
2
4

i
n
t

a

=

1

+

1
;

l
o
g
n
e
w
.
a
d
d
(
"
i
n
t
"
,

"
a
"
,

S
t
r
i
n
g
.
v
a
l
u
e
O
f
(
a
)
,

7
)
;

.
.
.

j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g

s
t
r

=

"
H
e
l
l
o
"
;

l
o
g
n
e
w
.
a
d
d
(
"
j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g
"
,

"
s
t
r
"
,

S
t
r
i
n
g
.
v
a
l
u
e
O
f
(
s
t
r

!
=

n
u
l
l

?

s
t
r
.
h
a
s
h
C
o
d
e
(
)

:

0
)
,

9
)
;

s
t
r

=

s
t
r

+

"

W
o
r
l
d
!
"
;

l
o
g
n
e
w
.
a
d
d
(
"
j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g
"
,

"
s
t
r
"
,

S
t
r
i
n
g
.
v
a
l
u
e
O
f
(
s
t
r

!
=

n
u
l
l

?

s
t
r
.
h
a
s
h
C
o
d
e
(
)

:

0
)
,

1
0
)
;

c
h
a
r

c

=

'
h
'
;

l
o
g
n
e
w
.
a
d
d
(
"
c
h
a
r
"
,

"
c
"
,

"
'
"

+

S
t
r
i
n
g
.
v
a
l
u
e
O
f
(
c
)

+

"
'
"
,

1
3
)
;

c

=

(
(
c
h
a
r
)

(
c

+

3
)
)
;

l
o
g
n
e
w
.
a
d
d
(
"
c
h
a
r
"
,

"
c
"
,

"
'
"

+

S
t
r
i
n
g
.
v
a
l
u
e
O
f
(
c
)

+

"
'
"
,

1
4
)
;

.
.
.

f
o
r

(
i
n
t

i

=

0
;

i

<

5
;

i
+
+
)

{

l
o
g
n
e
w
.
a
d
d
(
"
i
n
t
"
,

"
i
"
,

S
t
r
i
n
g
.
v
a
l
u
e
O
f
(
i
)
,

2
2
)
;

a

=

a

+

i
;

l
o
g
n
e
w
.
a
d
d
(
"
i
n
t
"
,

"
a
"
,

S
t
r
i
n
g
.
v
a
l
u
e
O
f
(
a
)
,

2
3
)
;

a

=

a

*

i
;

l
o
g
n
e
w
.
a
d
d
(
"
i
n
t
"
,

"
a
"
,

S
t
r
i
n
g
.
v
a
l
u
e
O
f
(
a
)
,

2
4
)
;

}

��
��
��
��
�
	

�
��
��

��
��

��
�
��
��
�
��
�
�
��
��
�
�

��
��

��
��
��
�
�
�
�
��
�
�
�

��
��

��
�
��
�
�
�

��
��

��
��
�
�
�

��
��

��

��
�
��
�
�

��
�

�
�
�
��
��
��
��
�

�
�
�

�
�
��
��
��
��
��
�
��
�
�
��
��
�
�

�
�
�
��
��
��
��
��
�
��
�
�
��
��
�
�

�
�
�
��
��
��
�
�
��
�
��
��
�
��
�
�
��
��
�
�

�!
"
��
�
�
��
��
�
�#

�
��
��
��
�
�
�
�
�
�

��
�

��
�

��
�
�$
��
��
�
�
��
�
�
��
��
�
�

��
�
��
�
�
�
��
�
��
�
�
��
��
�
�

�!
"
��
�
�
��
��
�
�

��
�
��
�
�
��

��
�
�
��
��
�
�

%
&
�
�
��
�
�
'
�
��
��
�
�

�
��
��
��
�
�
�
�
�
�

��
�

(
�
��

�
�
�
��
�
�
�
��
��
�

)
�
��
�
��
��
�
�
��
��
�

*
��
��
��
�
�
��
�
�
�
��
��
�

��
�

��
��
��
��
�
	

�
��
�

��
��

��
�
��
��
�
��
�
�
��
��
�
�

��
��

��
��
��
�
�
�
�
��
�
�
�

��
��

��
�
��
�
�
�

��
��

��
��
�
�
�

��
��

��

��
�
��
�
�

��
��

��
�
'
�
��
��
�
�
��
�
�

��
��

�+
�
��
��
��
�
�

��
�

i
n
t

a

=

1

+

1
;

.
.
.

S
t
r
i
n
g

s
t
r

=

"
H
e
l
l
o
"
;

s
t
r

=

s
t
r

+

"

W
o
r
l
d
!
"
;

c
h
a
r

c

=

'
h
'
;

c

=

(
c
h
a
r
)

(
c
+
3
)
;

.
.
.

f
o
r

(
i
n
t

i

=

0
;

i

<

5
;

i
+
+
)

{

a

=

a

+

i
;

a

=

a

*

i
;

}

��

�
��
�

��

�
��
�

"
��
�
��
�
��
��
�
��
�
��
�
�
�

"
��
�
��
�
��
��
�
��
�
��
�
�
�

,
�
�
��
�
��
�
�
�
�$
��

��
�
�
��
�
�
��
��
�
�

��
�

�
�
�
��
��
�
��
�
�
�
�$
��

��

�
�-
.�
�
��
��

F
ig
ur
e
3.
6:

C
od
e
an
d
ch
ec
kp
oi
nt
s
ge
ne
ra
ti
on

pr
oc
ed
ur
e

47

log functions, and code instrumented with checkpoints. Reading and writing of log tables

to align the data of loops for parallel veri�cation (see Fig. 3.4) is also automated. This is

shown in Log and Modi�ed code elements of the �gure. In addition, the code with check-

points in the rightmost side represents the initial GPU kernel code from Java Spoon (before

optimizations based on dynamic analysis are applied, such as granularity adjustment).

The project is implemented in Java and Python on a machine with Intel Xeon CPU

@3.4GHz, 64GB memory, and an AMD FirePro W5100 Graphic Card. Supporting infras-

tructure includes Java Aparapi, Java Spoon (Pawlak et al., 2015), and Javassist (Chiba,

2000). Aparapi by AMD provides Java bindings to enable the host to call APIs from OpenCL;

it is the portal for Java code execution on GPU, and masks OpenCL's more detailed opera-

tions and memory management in the devices. For example, it automatically switches from

Java's multi-threading and GPU task scheduling, making its style of kernel code more accor-

dant with Java code. Java Spoon by Inria is used as a language-parsing and code-injecting

tool to log variable information and transform the input source. Javassist o�ers the ability

to rewrite code from input at the bytecode level.

3.3.1 Source Language Limitations

Since our prototype is implemented atop Java Spoon and Java Aparapi, it is presently

limited to Java code that can be parsed by those tools. Aparapi o�ers a Java-style grammar

wrapper on the kernel code of OpenCL, which is based on the C99 standard and does

not support Java-level multi-threading or certain higher-order OOP constructs (e.g., �rst-

class lambdas). For exact limitations, please see the documentation of the aforementioned

tools. Our prototype follows the basic Java SE standard, and therefore does not yet support

language features new to subsequent Java versions. In addition, some language optimization

will also be limited due to the current GPU and CPU's architecture of communication. For

example, the optimization mentioned in Figure 3.4 for nested loops or recursive function will

be impossible.

48

xload_a

xload a

xstore_a

xstore a

iinc a b

aload_0;

xload_a/[xload a];

invokevirtual #n;

pop;

Bytecode

i :...

i+1:Opcode for

 variable access;

i+2:...

Extract type x

and index a

Inject visiting

code back

Figure 3.7: Bytecode injection to dynamically visit a variable

3.3.2 Bytecode Analysis

J-Gang uses bytecode analysis to log executions and dynamically rewrite GPU kernels (the

dashed lines in Figure 3.1). In dynamic mode, the variables in the system are visited while

executing the original source code. We wrote a toolkit package on Javassist for this task,

since no convenient tool in the market currently provides functions for the Java language

to visit local variables of methods in JVM at runtime. Java language extentions, such as

AspectJ, o�er indirect ways to achieve this, such as refactoring source code to expose local

variables at compile time. Javassist and ASM o�er manipulation in bytecode.

Figure 3.7 illustrates our procedure for logging local variable state. To locate the lo-

cal variables in a Java bytecode method, the indices of local variables are �rst tracked by

inspecting the opcode iinc and opcode family of xload(_a) and xstore(_a) of the

method. From this we create the bytecode of the log statement with acquired line num-

bers and variables' indices of these opcodes, and in-line it into the method. Executing the

instrumented method streams the log of variables to the veri�er.

To dynamically rewrite the GPU kernel code, the source code is �rst translated to ex-

ecutable statements for the kernel and converted to its bytecode. This creates the code

49

block that will be executed on the GPU. To make it executable, we compile an empty kernel

template to bytecode and inject the bytecode of the code block. The newly generated ker-

nel must be compiled and dynamically loaded before the compiling procedure for the whole

source code starts. This is because the template kernel has already registered in the JVM

before the generation of the new kernel. This one-time reloading initializes a nonstop pro-

cedure from input source code directly to execution in the GPU, achieving live, streaming

computation validation.

3.3.3 Primitives & References

In the static mode, Java Spoon is used to parse the input source code. All the statements

about initialization and assignment of variables are �rst located with their line numbers.

In this stage, the update sites of variables are analyzed for liveness, and duplicately-named

variables are assigned unique indexes in the log.

Java's primitive types are all recorded directly into logs, since the OpenCL kernel uses

the same data types during veri�cation. For example, values of type char are logged as

unsigned short. To log reference types, a method of lightweight recording is chosen:

The system tracks references' hashcodes to monitor their changes, since the GPU kernel

lacks �rst-class references. All non-primitive objects or attributes can be disassembled or

converted into primitives (Goetz, 2014), a�ording veri�cation of all references by the GPU.

3.3.4 State Consistency

Before veri�cation starts, an initial memory state must be prepared so that both variants

can begin computation in equivalent states. This pre-state corresponds to the precondition

of a Hoare Triple. To keep the state size tractable, it is desirable to restrict each pre-state

to only those variables that are referenced by the computation fragment being veri�ed. To

compose the pre-state, the code block to be veri�ed and its line numbers are analyzed with

50

Java Spoon so that relevant variables can be selected out. Each selected variable's pre-state

value is determined by identifying its last update in the checkpoint log, or its value in the

frame state if the checkpoint log contains no updates.

To take advantage of parallel computing, J-Gang represents pre-state variables in dif-

ferent ways depending on the control-�ow structures that contextualize each computational

fragment being veri�ed. Sequential and conditional control-�ows o�er only small opportuni-

ties for parallelism, so their variable values are stored separately in local memory. However,

variables in (non-nested) loops are arranged into arrays and loaded into global memory for

parallel veri�cation. Our prototype does not yet perform this optimization for inner loops

of nested loops, since doing so introduces complexities related to dynamically generating

kernel code that anticipates how the various nesting levels interleave at runtime. This is an

optimization we intend to pursue in future work.

3.3.5 GPU-based Veri�cation

Executor II in Figure 3.1 is implemented as GPU kernel code analogous to the code that

executes on the CPU. It �rst loads the initial computation state (pre-state) reported by the

CPU version, and then compares the generated result state with the logged post-state. To

leverage the performance strengths of GPGPU computing, J-Gang implements GPU code

that enjoys two forms of parallelism: (1) Loops are parallelized into concurrent veri�cation

of their iterations, as shown in Figure 3.4. (2) Comparison of the post-state derived by the

GPU to the one reported by the CPU is parallelized into concurrent comparisons of state

partitions.

In the �rst part, when the system veri�es the iterations of a loop in parallel, the values

in each iteration for a variable in both the pre-state and post-state are aligned into an array,

which a�ords e�cient concurrent access by GPU kernel code. This asymptotically decreases

the veri�cation time by one layer of the loop, as proved in Section 3.2.7. With k parallel

51

processing units in the GPU, the number of iterations is reduced from n to n/k, where n is

the number of CPU loop iterations.

In the second part, we e�ciently compare the two post-states from the executors by con-

verting them into two byte arrays. Bitwise XOR computation can be performed on the arrays

to e�ciently compare them for equality. On the GPU, this XOR computation is parallelized

among all available workers. This method signi�cantly accelerates state comparisons, which

are otherwise slow on serial architectures since the states can be large.

3.3.6 Code Pruning

When some part of the source code is never executed by Executor I (CPU) or has no e�ect

upon the computation state (e.g., non-executed branches or e�ect-free code), this part can

be trimmed from original code before the translation for Executor II (GPU). For example,

it is not necessary to keep the discordant branches in the second execution since these are

unreachable. This optimization is safe because divergent computations that include such

code blocks are guaranteed to still exhibit divergence when omitting the e�ect-free blocks.

To implement this optimization, line numbers of variables are inspected in the log to

determine the direction of �ow before the translation. We record line numbers of variables

with their updated values together during the checkpointing step. All statements, including

those in branches, are tagged by the line numbers. During the �rst execution, the values

of variables in statements visited by program �ow are logged. These recorded lines indicate

which branch updated the variables. By checking the number, we deduce which branches

can be omitted from veri�cation. If there is no variable recorded in the branch, the segment

of code can be trimmed since it is e�ect-free.

52

Table 3.1: Performance evaluation of Java algorithms using J-Gang. Partial granularity
omits verifying trusted API methods.

Original Granu- Static Dynamic Delay Log

Program (ms) larity (ms) (ms) (ns/B) (KB) Time

binary & sequential search (n = 100000) 200.101 partial 211.172 247.248 289.245 163 O(n log n)
matrix multiplication (n = 100) 16.741 all 603.304 4098.165 2293.258 17799 O(n3)

2-color algorithm for bipartite (V = 500, E = random(V
2

4
)) 2.561 all 68.917 2835.420 1098.829 25709 O(V + E)

mode of a set (n = 1000) 2.136 all 91.002 1318.665 251.448 52246 O(n2)
all subsets in lexicographic order (n = 15) 4.155 all 249.721 4284.198 859.592 49656 O(2n log n)
nearest neighbor by linear search (n = 1000, D = 2) 0.078 all 0.463 29.476 1223.429 240 O(nD)

�

���

���

���

���

�

���

���

�
	

�
�
�
�
�
��
�
�
�

���
����

(a) Java IO/unzip

�

���

���

���

���

�

���

���

�
	

��
�
�
�
��
�
�
�

���
����

������	
�������������� ���������	
������������

(b) Java networking/download

Figure 3.8: Experimental results with utility applications as input

53

�

���

���

���

���

�

���

���

���

�
	

�
�
�
	

�
�
�
	

�
�
�
	

�
�

	

�
�
�
	

�
�
�
	

�
�
�
	

�
�
�
	

�
�

	

�

�
	

�
�
�
	

�

�
	

�
�
�
	

�
�
�
	

�
�
�
	

�
�
�
	

�
�
�
	

�
�
�
	

�
�
�
	

�
�
�
	

�
�
�
	

�
�
�
	

�
�
�
	

�
�
	

�
�
�
�
	

�
�
�
�
	

�
�
�
�
	

��
��
��
�
�
��
�
��
�

���������

������������������������� !"��#������������������

(c) Java graphics/resize JPGs

�

�

�

�

�

��

��

��

��	
��� �������	����� �������	�������� ������������������ !
"�
��
�
�
�#
$�
�

�
�
�
�%
�
�
�

&����� �

�������$����������
���� �'�� ���$��
����������

(d) Execution Comparison

�

���

�

���

�

���

� � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

	
�

	
�

	
�

�
�

�
�

�

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
��
�
��
��
�
�
�
��
�
�
�

������������

��������������������� !����"�#��������������������� $

(e) Control overhead for O(n log n) binary search

Figure 3.8: Experimental results with utility applications as input (cont.)

54

3.4 Evaluation

Our experimental evaluation of J-Gang is grouped into vulnerability detection accuracy and

runtime performance. The evaluation architecture is the same as the development framework

reported in Section 3.3, and publicly available, independently authored Java input programs

are selected from diverse sources for correctness and performance tests. Programs with

di�erent time complexity and utility are chosen to test running performance. Also, a group

of relatively new Java bugs are selected from Oracle Java Bug Database to test the accuracy

and utility of the framework for real-world scenarios. All bugs are treated as zero-days�no

vulnerability-speci�c mitigations or controls are deployed for any of the experiments.

In the experiments, checkpointing is closely related to overhead. To control this trade-

o�, the granularity of checking can be �exibly tuned from the �nest-grained level (checking

every variable update immediately) to coarser-grained levels (checking variable updates after

code blocks or function returns). For example, checkpoints can be inserted after each line of

code within a loop, or only before and after the loop for greater e�ciency. Coarser checking

requires fewer checkpoints but potentially larger states to check at each checkpoint.

3.4.1 Running E�ciency

Performance evaluation of J-Gang can be characterized in terms of two metrics: (1) overall

runtime overhead of the instrumented CPU computation, and (2) the delay between time-of-

exploit and exploit-detection by the GPU veri�er. Overheads measured by the �rst metric

are primarily due to the extra time needed to log checkpoints for veri�cation. Checkpointing

is partly asynchronous, but there is still overhead incurred by initializing and spawning the

asynchronous I/O. Overheads measured by the second metric are primarily driven by the

size of the checkpoint stream, and are therefore measured in reciprocal-bandwidth (ns/B).

Our evaluations consider two categories of test application: classic algorithms (which

a�ord investigation of time/space complexity e�ects, memory update frequency, and highly

55

optimized code loops), and practical utilities (which examine applicability of J-Gang to real-

world software products). The latter include website-downloaders, compression tools, and

image editors. They are randomly chosen for the testing, and demonstrate our approach's

generality and versatility. Selected programs are all from independent authors and were

tested for correctness before evaluation. Each test data point reported is an average over

hundreds of trials.

Performance is reported for both the static and the dynamic veri�cation mode. In static

mode, the CPU computation runs at full speed and produces a complete log of checkpoints,

which is veri�ed by the GPU after the computation completes. In dynamic mode, the

checkpoint log is consumed opportunistically by the GPU veri�er as the CPU computation

progresses, a�ording live, parallel validation of the computation. The static mode therefore

incurs lower I/O overheads, but has the disadvantage of building a larger checkpoint log and

o�ering only retroactive detection of exploits. The dynamic mode incurs higher I/O costs

but does not need to retain the full checkpoint log in memory or on disk, and detects exploits

on a short delay.

Table 3.1 and Figure 3.8e report runtime overheads for the �rst category of tests (classic

algorithms). Figures 3.8(a�d) report overheads for the second category (practical applca-

tions). The results indicate that tight, numerically intensive computations incur high over-

heads (due to the high cost of frequent checkpointing relative to streamlined mathematical

computations), but most of the practical applications perform well under J-Gang. For ex-

ample, utility programs running in static mode show overhead ratios of less than ≤ 1.008%,

and average overheads of less than 7% in dynamic mode. All overheads are under 10% except

for the outlier in Figure 3.8d for unzip �les, which is investigated in more detail below.

The experiments reported here do not include any manual granularity tuning; we allowed

J-Gang to select checkpoint locations, frame state update frequency, and loop veri�cation

parallelizations purely automatically. To better support the short, computationally intensive

56

algorithms in Table 3.1, we conjecture that a less frequent, time interval-based checkpointing

regimen would perform better for such algorithms. Figure 3.8e investigates this conjecture

by adjusting the checkpointing granularity for the binary search experiment, resulting in a

more acceptable overhead of about 20%. Tuning the granularity in this way does not sacri�ce

assurance, since it preserves computational divergences somewhere within the checkpoint

stream. It merely o�ers less parallelism opportunities to the veri�er by clustering more

veri�cation data into fewer checkpoints. A more detailed investigation of the performance

trade-o�s of this tuning approach is reserved for future work.

Our experimental data also indicates that input �le sizes a�ect the stability of perfor-

mance measurements. When �le sizes are too big or too small, the performance timers yield

unstable outputs. This e�ect can be seen in Figures 3.8a and 3.8b, where the values on

the right and left, respectively, �uctuate more widely than in the center. Values at the

centers of the plots should therefore be considered more reliable and indicative of real-world

observations.

Figure 3.8d contains an outlier for unzip �les, which we investigated in detail to ascertain

the cause. It occurs because the test program allocates a large bu�er as one of its local

variables and access it in an innermost loop, causing J-Gang to include it in many of its

checkpoints. The performance could be greatly improved by introducing heuristics whereby

J-Gang removes unmodi�ed portions of arrays to its frame state (see �3.2.5) rather than

including them in every checkpoint just becomes some elements were modi�ed. This is

another optimization that should be considered by future work.

There is a signi�cant time di�erence between the dynamic and static modes, especially on

experiments with mathematical algorithms. After investigating this, we determined that the

higher runtimes reported for dynamic mode are almost entirely due to log access I/O costs

that could be signi�cantly improved in a production version of the system. In particular,

our prototype stores logs by piping the output of I/O into System.out when in-lining the

57

methods in bytecode. All the dynamic test results are therefore bounded with the delay

caused by the console output. In the related testing in the industry, this delay has been

shown to be much more expensive than other forms of I/O (e.g., 100× higher than directing

I/O to �les).45 Although we cannot isolate this portion of the overhead precisely, we can

estimate it by arti�cially in�ating the sizes of the log �les and observing the relation between

runtime overhead and log �le size. The results of this analysis indicate that more than 90%

of the dynamic mode overhead is due to console I/O. In the independent unit testing on I/O,

the average result of delay on I/O for stream to console is around 454ns, which is within the

range of the results for the Delay column of Table 3.1. An obvious next step to improving our

prototype implementation is therefore to replace console logging with a high performance

�lesystem or other storage medium.

In addition, I/O overheads can be further minimized by performing I/O more asyn-

chronously. Doing so avoids delaying the main computation at the cost of slightly increasing

the delay between the full-speed CPU computation and the GPU veri�er's detection of faults

and intrusions. The delay due to I/O latency is only around 0.001 second/KB on average

for our prototype.

The in�uence of memory overhead is minor relative to the I/O overhead, and its scale is

determined by the size of input of a program. To avoid a predictable overhead to an uncertain

input, it is best to adjust the logging granularity or optimize the tracking by in-lining some

trusted methods.

3.4.2 Veri�cation and Correctness

To verify the correctness, we tested whether our system can detect vulnerabilities of the

JVM exploited by �awed or malicious input programs. For accuracy, we only chose the bugs

4https://stackoverflow.com/questions/4437715

5https://stackoverflow.com/questions/18584809

58

https://stackoverflow.com/questions/4437715
https://stackoverflow.com/questions/18584809

Table 3.2: Tested bugs

No. Bug ID Description

1 JDK-5091921 Sign �ip issues in loop optimizer
2 JDK-8029302 Performance regression in Math.pow intr-

insic
3 JDK-8063086 Math.pow yields di�erent results upon re-

peated calls
4 JDK-8166742 SIGFPE in C2 Loop IV elimination
5 JDK-8184271 Time related C1 intrinsics produce incon-

sistent results when �oating around
6 JDK-7063674 Wrong results from basic comparisons af-

ter calls to Long.bitCount(long)
7 JDK-8046516 Segmentation fault in JVM
8 JDK-8066103 Compiler C2's range check smearing allo-

ws out of bound array accesses

veri�ed by Oracle Java Bug Database. Reproducing the vulnerabilities in Table 3.2 requires

di�erent versions of Jave SE. No simulated program is used in the testing for correctness.

The 8 selected bugs are non-duplicated and 7 of them are not related except the second and

third.

The vulnerabilities we tested span all o�cially released subversion of Java SE 6�8. Java

SE 9 and 10 are not included because Java 9 non-critical bugs will not be �xed and added in

the subversions, and Java 10 was released concurrently with our research. All JVM bugs and

test code for them were drawn from Oracle's o�cial bug database. There are usually several

bugs (sometimes none) in each subversion that are related to Java o�cial compiler Hotspot

based on Windows x86/x64. Among them, we selected bugs that are testable and o�er

related source code. While our approach is applicable to vulnerabilities reported elsewhere,

such as in malware threat reports, JVM bugs that have not yet been documented in Oracle's

o�cial database are extremely di�cult to reproduce reliably, and are therefore not tested in

this work.

Generally, the eight vulnerabilities listed in Table 3.2 arise from inaccurate calculations of

CPUs in comparison with GPUs. Half of them cause CPUs to perform incorrect �oating point

59

computations. Inaccuracies of this form undermine numerous secure computations, such as

encryption, related to �oating point. Other bugs in the list invite software compromises.

For example, testers reported that the false access to arrays caused by JDK-8066103 can be

abused to corrupt the heap in ways that victims are unlikely to notice for signi�cant lengths

of time. The sign �ip problem JDK-5091921 is related to about 30 bug reports and is major

facilitator of denial-of-service attacks against Java-based servers.

J-Gang detects all the exploits in Table 3.2 as a divergence of the CPU and GPU

computations. Our testing methodology for con�rming this is detailed below.

In each exploit of the 8 vulnerabilities, we �rst reproduce the exploit to con�rm that

we have vulnerable execution environment with a proper version of the Java SE and run-

ning �ags. We then run the code on J-Gang and perform GPU-based validation of the

computation. In some cases, we needed to make minor manual adjustments to the proof-of-

exploit code to get it to execute, or to keep it compatible with our evaluation infrastructure.

None of these manual adjustments a�ect the exploit itself, or introduce any vulnerability- or

exploit-speci�c mitigations. Manual adjustments needed include the following:

� Some code with new or lesser used Java language features cannot be processed by some

of the tool packages underlying our prototype implementation. Such code was adjusted

to exclude the unsupported features when the features are not part of the exploit.

� Some exploits become inadvertently corrected merely by the introduction of J-Gang's

logging code. For example, the logging code may deactivate a buggy JVM loop opti-

mization. In a real deployment, this is an advantage to defenders since the instrumented

code is no longer exploitable. However, to force the exploit to work and test its e�ect,

we manually omitted or moved any checkpoint sites that had the side-e�ect of �xing

the exploit being tested.

60

� Certain atypical forms of variable assignment, such as re�ective updates, are not yet

supported by our prototype. We converted such operations to supported equivalents

when doing so did not a�ect the exploit being tested.

� Some proof-of-concept exploit code causes the JVM to freeze instead of hijacking or

crashing the victim application. This is typically an artifact of the proof-of-exploit

implementation (since real attacks tend to abuse the vulnerability to greater e�ect).

Freezes yield no more checkpoints, so are detectable by timeout rather than by com-

putation divergence. To change freezes into divergences, we arti�cially force a �nal

checkpoint for such computations.

3.5 Summary

This work proposed and implemented J-Gang, an n-variant system framework for veri�ca-

tion of Java code by which vulnerabilities can be detected and exposed as the divergence of

the execution between CPU and GPU computations. Our solution translates general source

code and introduces it into kernels, which yields a solution for executing general Java code

in GPUs. To overcome performance disadvantages related to executing mostly serial compu-

tations on GPUs, J-Gang leverages GPU parallelism to validate many CPU loop iterations

concurrently, a�ording the GPU variant a means to keep pace with the CPU variant even

on computations that are not automatically parallelizable outside of an n-variant setting.

We evaluate our system based on the source code of utility applications, known public

vulnerabilities, and classic algorithms in Java. A clear security bene�t of our work is to detect

possible unknown vulnerabilities, including zero-day attacks, while vulnerable programs are

executing. Intrusions are detected by the GPU variant on a small delay, whereupon the

defense can potentially intervene by raising an alert, aborting the computation, and/or

rolling the system back to a safe state.

61

Prototype implementation of the approach demonstrates signi�cant promise, but exhibits

some high overheads for certain operations, such as intensive mathematical computations

and high-volume I/O. These observations motivate future work on optimizations that better

parallelize nested loops and replace synchronous I/O with asynchronous I/O to improve

runtimes.

62

CHAPTER 4

VISUALVITAL1

4.1 Overview

In this chapter, an observation model about computer vision is proposed and studied. This

research is a sub-topic of joint work with Dr. Kang Zhang's team. The motivation is to

e�ciently observe with limited number of cameras (or positions) to a given area in map.

First, the problem is formally de�ned and it is transformed into mathematical situations

for optimally dividing weighted poly-lines into segments and selecting positions for cameras

in order to maximize the overall weights of the observed objects. After the formulation of

the model and problem, a series of algorithms with a total time complexity of O(n log n)

are invented and proved to compute the optimal result as the solution, which is to �rst

maximize the local weights with oversized number of positions and then shrink the number

by merging the positions with receiving lower weights until the number descends to the limit.

A implementation on Google Maps demonstrates this e�cient method.

4.2 Introduction

�Dallas, Nov. 22�President John Fitzgerald Kennedy was shot and killed by an As-

sassin today. . . . The killer �red the ri�e from a building just o� the motorcade

route.� (Wicker, 1963)

The tragic events of November 22, 1963 are a grim reminder of the importance of concise

yet comprehensive visual surveillance of security-critical events and venues. Despite the

presence of many well-trained human eye-witnesses (e.g., police o�cers and Secret Service

1The material in this chapter was originally published as: Jun Duan, Kang Zhang, and Kevin W. Hamlen,

�VisualVital: An Observation Model for Multiple Sections of Scenes,� In Proceedings of the 14th IEEE
International Conference on Ubiquitous Intelligence and Computing (UIC), August 2017.

63

members), as well as television coverage, analysts continue to debate to this day exactly who

�red the fatal shot and from what position. Due to humans' limited range of attention and

visual scope, it is imperative to grasp parts and details that humans easily neglect.

This is especially important when graphic data processing is involved. Humans more

e�ciently process visual than textual information in many contexts (Cybulski et al., 2014;

Heukelman and Obono, 2009; Pandey et al., 2014), motivating the use of visualization for

data processing (Heer and Shneiderman, 2012). With advancement of sensory technology

(e.g., consumer VR headsets), there is an elevated need to e�ciently extract key points and

timings for delivery to human users, since our brains have limited memory volume for long

steaming visions or videos. By selecting these crucial scenes and positions (Lam et al., 2017;

Nievas et al., 2011) and aggregating the total values of the importance of those pieces, people

can control or understand the whole contents with less e�ort.

To this end, our research considers the speci�c problem of how to position and orient a

limited number of video monitoring devices so as to maximize the information gain on the

status of a route in a map. We anticipate that both cameras and objects may be dynamic

(e.g., possibly moving observers of moving objects, such as tra�c, pedestrians, or weather).

Relevant applications include auto-generation of adaptable scenes for Oculus® VR with

Google Maps®, which entails �nding key positions and making a smooth line between them

to shorten browsing time and maximize visual information along the path, or performing

high-quality tra�c monitoring with fewer cameras without coverage loss. In addition, this

problem can be simpli�ed into a 1-dimensional version, which is to search those key-frames

inside a streaming �le and �nd its related information instantly, such as for music and video

�ngerprinting (Lee and Yoo, 2008; Milano, 2012), copyright protecting (Hampapur et al.,

2002; Yuan et al., 2004), and speci�c scene detection (Datta et al., 2002; Jansohn et al.,

2009).

The contribution of the work can be summarized as follows:

64

� By applying human visual characteristics, we create an observing model to simulate

the sight that a camera has.

� We implement a virtual camera's functionality in Google Maps®. By tagging each

object with a weight (or detail), we can calculate the observed weight under di�erent

angles and distances.

� For a limited object in 2D, we �nd the maximal observed weight exists, and an obser-

vation position can be calculated from its minimal circumcircle.

� Our method �nds optimal camera positions in O(n log n) time, and keeps the overall

observed details above the baseline.

The remainder of this chapter is arranged as follows. Section 4.3 describes the three

camera observing models and formulates the problem. Section 4.4 shows the details of

our methods and mechanism of the two-phase algorithm. Experiments are implemented in

Section 4.5 to show the correctness of our proposed solutions. Finally, Section 4.6 summarizes

the chapter.

4.3 Notions & Models

This section presents three models that we combine to formulate the de�nition of the prob-

lem. The �rst model introduces the type of observed objects. The second one de�nes rules

for observing and calculating details (or weight). The third one models how the position

and angle of the camera a�ects the details, which extends the rules of the second model.

4.3.1 Observation Model

Figure 4.1(a) shows the basic notions used in this model, assuming a camera c is deployed at

a position p, and has a �xed viewing scope φ, observing a segment `. A sector is formed by

65

dp`1
dp`2

`1

`′1

`2

P

φ

(a)

f

P

φ

`′1

`1

γ1

d1

`2
`21

`22
γ2

d2

`3
γ3

d3

(b)

Figure 4.1: Complete presentation for an observation and related notions (a) Basic observa-
tion (b) Simpli�ed observation with projections

the angle φ as c's vision range, whose depth extends from p to∞. If this entire object ` falls

in c's vision range, we say ` is fully-observed. Similarly, whenever part of ` stays in c's vision

range, we say that ` is partially-observed by c. We denote the distance between position

p and the nearest point of segment ` as the viewing distance dp` of `, and the covered (or

c-observed) part of ` as `′.

In this model, the detail of the segment ` observed by camera c is de�ned as `'s weight

within a ratio of (0, 1], denoted as w`. The observed weight of ` through c is de�ned as w.

For a single segment, w is a function of w`, dp`, and `′.

4.3.2 Weight Model

When the distance dp` between the camera c and the object grows, the amount of observed

detail reduces; inversely, when the distance dp` is less than a speci�c value d0, we cannot

see more details than the original w` from a camera. So, d0 is the critical distance for c's

observation of objects. Thus, when ` is fully observed, we de�ne the relation between the

observed details w, d0, and dp` as follows: (1) When 0 < dp` ≤ d0, we have w = w`. (2)

When dp` > d0, we have w = d0
dp`
w`.

66

The critical distance d0 is de�ned before an arc c_ can be drawn along all the critical

positions of the camera c. Then, a sector β consists of c_ and the open angle of camera c at

p. Inside the area β, we assume no detail is lost in the observation. In the following, the

fan-shaped lossless �eld is simpli�ed into a triangle to be introduced in the next subsection.

Therefore, combining with the observation model, the observed weight (or details) w can

be de�ned as follows: Since d0 is a parameter of the camera, we can introduce a constant

ratio α to formulate a relation d0 = αw` to simplify the formula

w =

`′

`
w` if 0 < dp` ≤ d0

`′

`
· d0
dp`

w` =
`′α

`dp`
w2
` if dp` > d0

4.3.3 Camera Projection Model

We see di�erent lengths of a line when viewing the line from its side and from one of its

ends. Obviously, if a line object could project its entire side on the camera screen (without

losing any details), this object should be completely inside the open fan-shaped vision sector

β and perpendicular to the viewing direction. Here, the angle between the line object and

the screen is denoted by γ. When γ grows to its maximum π
2
, the line object is vertical

to the camera screen and projects a dot on it, in which case we consider no detail can be

observed. Based on the two critical conditions, our angle-continuous projection is modeled

as follows.

Given a camera c with viewing scope φ at p, a line object ` with weight w`, and viewing

distance dp` of `, the weight w of `'s image can be approximated by w = w` |cos γ|. This

is due to two considerations: (1) Computation can be drastically reduced from calculating

values on an arc to calculating its corresponding line segment. (2) The di�erence between the

length of an arc and its correspondent straight line in the observation becomes insigni�cant

when the viewing distance is large. Also, ∆` is an increment when dp` increases from dmin,

67

x

`

∆x

dmin

γ

Figure 4.2: Accumulation for the calculus step

shown in Figure 4.2. So a piecewise function with integral is formulated. Taking the weight

model into consideration, the length on the camera is

w =

0 if γ = 1
2
π

`′

`
w` |cos γ| if dp` ∈ (0, d0]

and γ ∈ [0, 1
2
π) ∪ (1

2
π, π]

`′|cos γ|∫
0

w`d0
`(dp` + x |tan γ|)

dx if dp` > d0 and γ 6= 1
2
π

Substituting d0 = αw` and evaluating the integral, we obtain

w =

0 if γ = 1
2
π

`′

`
w` |cos γ| if dp` ∈ (0, d0] and

γ ∈ [0, 1
2
π) ∪ (1

2
π, π]

αw2
`

` |tan γ|
ln

(
1 +

`′ sin γ

dp`

)
if dp` > d0 and

γ ∈ (0, 1
2
π) ∪ (1

2
π, π)

`′α

`dp`
w2
` if dp` > d0 and γ ∈ {0, π}

In typical application scenarios, the camera usually observes segments from a long dis-

tance. Thus, the meaning of dp` is also changed, which indicates the distance between the

68

`1
`2

`3

`4 `5

`6

`7

`8
`9

`10
`11

`12

`13

`14
`15

`16

φ

P1

φ

P2

φ

P3

Figure 4.3: Camera c observes poly-line L at di�erent positions P1, P2, P3

nearest point in object `′ and position p. This signi�cantly simpli�es the computation for

the weight-lossless area. The similar relation d0 = αw` can still be easily proved and holds

after the transformation.

4.3.4 Problem Formulation

Given a series of continuous segments, a poly-line L = {`0, `1, `2, . . . , `n}, with each segment

`i assigned a weight w`i (to denote the quantity of details of this segment), and a camera c

whose viewing angle is φ, the total amount of observed detail is w =
∑n

i=0wi.

Having built the model, we formulate the problem as �nding a set of positions that

satis�es the following three requirements:

� fully covering each segment of a poly-line object,

� having a bounded number of spots (positions), and

69

� maximizing weight under the spot limits.

Given a set of positions, we will investigate whether there exists a shortest path for the

camera to pass all the positions in the future.

4.4 Algorithm Design

For the two problems above, we need to build the position set �rst and then the orbits can be

searched in the set. To �nd the set, we perform two major steps. First, we compute a lossless

weight set (LWS) that deploys the fewest number of points to cover the target line without

losing any details. That is, the weight to be observed at these positions should be equal to the

original weight of the object. Second, we compute a points constricted set (PCS) by revising

and deleting positions to retain the maximized total observed weight while minimizing the

number of positions. The weight obtained from the positions in PCS is apparently smaller

than or equal to that from those in LWS, and reaches its maximum under the number limit

(threshold).

4.4.1 Lossless Weight Set

To �nd the LWS for a poly-line, we use an e�cient method to sequentially record positions.

The way of collecting the positions for LWS starts along a poly-line that is parallel to the

object. Each time, we choose a position where the vision lossless range of the camera can

cover the most weight on the line `i with the best viewing angle (γ = 0). This procedure

of selecting positions continues until the length of `i is equal to 0. Algorithm 1 sketches the

procedure for computing the LWS for a single side of the poly-line.

1Positions can also be chosen from both sides, but doing so requires the camera to cross the object under

observation, which is undesirable and should be avoided. If all the selected positions are kept on the same

side, the orbit never intersects the polyline.

70

Algorithm 1: Algorithm for building LWS on one side1

Input : L = {`1, `2, . . . , `n}; {w`1 , w`2 , . . . , w`n}; d0; φ
Output: LWS

1 LWS = ∅;
2 Choose an endpoint e (either from `1 or `n) along L;
3 for i = 1 to n do
4 Construct a poly-line `ip perpendicular to `i at e;
5 Place c at a position p on `ip at distance d0 from e (where d0 is c's critical

distance). Position p could be at either side of `i. Without loss of generality, we
assume it is on one speci�c side for all;

6 Adjust the bisector b of c's viewing scope so b is perpendicular to poly-line `i and
viewing scope open to `i;

7 while len(`i) > 0 do
8 Begin with one end of `ip and move c along the poly-line `1p. Record the

position p, direction of camera's viewing scope b, and observed weight w
when the total weight inside the viewing scope reaches its max;

9 Delete the part of `1 whose weight has been recorded in the last step;
10 LWS ← (p, w);
11 end

12 end

dp`i

dp`i+1

r

γ1

γ2

p

φ

A

B

C

`i

`i+1

(1)

A

B

C

γ1

γ2

(2a)

C

B

A

γ1

γ2

(2b)

A

B

C

γ1

γ2

(2c)

A

B

C

γ1

γ2

(2d)

Figure 4.4: (1) All possible situations of camera view, and (2) four di�erent angle relations
between γ1 and γ2

Algorithm 1 states that the camera at each position p in LWS always observes the max-

imal weight when a line object is larger than the range c with viewing angle φ. Thus, all

71

the positions are consecutively selected into LWS along the moving trace of the camera. If

a line or the remaining part of a line is smaller than the range c, its position is revised and

combined to decrease the number of positions in the following algorithms.

If it still does not meet the limit, some positions are combined and adjusted to cover the

part covered by the camera at more than one previous position. Since the LWS elements

are chosen sequentially along poly-line Lp = `1p, `2p, . . . , `np, better options are always to

replace the two nearby elements in the order of LWS by one best candidate to reduce the

set size. In particular, two non-consecutive positions cannot be selected as a replaced pair

because the new cover range overlaps the part between the two positions.

Consequently, this motivates a procedure to �nd which pair of consecutive positions

should be replaced by a new position with the combined coverage of both former positions

and the least loss of observed weight in the current LWS. Our approach attempts all pairs

of neighboring positions in LWS and identi�es candidate positions.

4.4.2 Points Constricted Set

The �rst step is to �nd positions and directions of the cameras to cover the range at 2

consecutive positions. Our model shows that the total observed weight is related to the

angle formed by the two neighboring line segments.

We begin with the easiest case�the three endpoints are collinear. The camera simply

moves away in the same direction until covering exactly the 2 segments. If the three endpoints

are not collinear, however, a series of positions can be found based on the circumcircle of the

three endpoints.

Theorem 1. In 2D, given a single camera c with AOV (angle of view) = φ and limited

objects (or poly-line) ` arranged not in a line segment, a circle p with center p and radius

r as the circumcircle of `, the maximal observed weight of c exists and can be found when c

is at one speci�c position on/in the circle with center p and radius R = r

sin φ
2

.

72

Proof. See Appendix.

Assume that `i = AB and `i+1 = BC are covered by a camera c at positions p′ and p′′

of LWS. If the area of the circumcircle of A, B, and C can be covered by c with AOV φ

at a single position pi, then `i and `i+1 are included, too. From the formula of our camera

projection model, it is known that w is a monotonic decreasing function of dp`. So the

nearest position to observe this circumcircle with any directions of c is the farthest vertex of

the isosceles triangle formed by angle φ and the line through radius r, in which a half of the

circumcircle is inscribed. The candidate positions also compose a circle p and are shown

in Figure 4.4. Observe that points inside p may not fully cover `i and `i+1, and points

outside p must get smaller weight than points on p due to the inverse relation between

w and dp`.

The second step is to select the best position on circle p from candidate positions. This

situation can occur when one object is blocked by another at some positions on the circle.

Therefore, these positions are excluded from comparison. In Figure 4.4, conditions (2a) and

(2b) are excluded. For the left two conditions, we choose the best position based on the

formula from our model

w =
αw2

`

` |tan γ|
ln

(
1 +

`′ sin γ

dp`

)
when dp` > d0 and γ ∈ (0, 1

2
π) ∪ (1

2
π, π)

In this function, w is related to dp` and γ. This is because the two left situations, (2c) and

(2d), restrict dp` to a range, and can only be changed less than the radius of the circumcircle.

Consequently, �nding the right γ is the key in this search. Furthermore, we know the value

of the angle formed by the two line objects, and can easily derive the relation between γ1

and γ2, which are the angles formed by the objects and the camera screen, respectively. In

addition, the total weight is the sum of these two observed weights. As a result, the following

steps of calculation �nd the critical point of γ1 (or γ2) which maximizes w within its interval.

73

Algorithm 2: Algorithm for Finding the Candidate Position
Input : `i = AB , `i+1 = BC ; pj, pj+1 ∈ LWS ; d0; φ
Output: pmax , wmax

1 Calculate the angle α =]ABC ;
2 if α = 0 or α = π then
3 Locate the position Pmax to exactly cover `i and `i+1 and use the same viewing

direction as c did at pj (or pj+1);
4 Calculate wmax with c at pmax ;
5 else

6 Draw the circumcircle P of A, B, and C to obtain its center P and radius
rP = PA (Pedoe, 1957);

7 Draw a circle P ′ with P as its center and r = rP/ sin φ
2
as its radius;

8 Get the equation of wt = wi +wi+1 for `i and `i+1 based on the formula of w and
γ, by using γi+1 = f(γi, α) to replace γi;

9 Insert the (2c) and (2d) conditions in Figure 4.4 to calculate maximal values wt1
and wt2;

10 Compare the two values and choose the position p′ of the larger wt;
11 Relocate towards P to exactly cover `i and `i+1 and use the same view direction

as c did at p′;
12 Calculate wmax and pmax with the current dp`;
13 end

14 Return wmax and pmax ;

After computing the best location on the circle, the �nal task is to adjust the distance

between the camera and the two line objects. Usually the camera remains stationary or is

relocated a bit towards the objects. When entering the circle, the camera at some spots can

get more weight without losing any coverage for the objects; on other spots, it cannot keep

the objects fully covered if it moves inside.

We design the following two algorithms based on the analysis above. Algorithm 2 cal-

culates the best position between any two consecutive positions of LWS, and Algorithm 3

deletes and replaces the positions for the camera to get the total maximal weight subject to

the number restriction. In the algorithms, pmax denotes the position where c can fully cover

`i, `i+1 and maximize the observed weight; wmax denotes the observed maximal weight.

74

Algorithm 3: Algorithm for Creating the PCS
Input : L; d0; φ; LWS = {p1, p2, . . . , p|LWS |, }; limit
Output: PCS

1 PCS = LWS ;
2 Initialize an ordered set TMP = {t1, t2, . . . , t|LWS |−1} and and ti = {p, w};
3 if |LWS | ≤ limit then
4 Return PCS ;
5 else

6 for i = 1 to |LWS | − 1 do
7 ti = AFCP(pi, pi+1);
8 end

9 while |LWS | > limit do
10 Find ti satisfying pi.w + next(pi).w − ti.w =

min{p1.w + next(p1).w − t1.w, p2.w + next(p2).w − t2.w, . . .};
11 PCS = PCS − next(pi) ;
12 pi = ti;
13 if prev(ti) exists then
14 prev(ti) = AFCP(prev(pi), pi);
15 end

16 if next(ti) exists then
17 next(ti) = AFCP(pi, next(pi));
18 end

19 TMP = TMP − ti;
20 end

21 Return PCS ;
22 end

Assume that we select all the positions on one side of poly-line L; the side should be

designated in advance. Also, the camera is always positioned over the critical distance from

the poly-line, ensuring a near-maximal total weight observed without losing details in each

calculation.

In the last step, pmax is inclined to be chosen in the later side of the record. That is

because if the candidate positions are continuous, the poly-line is more likly to be divided

into small segments at the beginning. Since the positions are chosen greedily, the poly-line

can be broken into two discontinuous parts. Thus, we have another algorithm based on

75

Algorithm 2 to justify the best positions in those sub-polylines. Again, we always stay on

one side.

4.5 Simulation

To verify the correctness and evaluate the performance of our algorithms, we conducted

experiments on geographic data obtained from Google Maps®. Streets of 4 di�erent cities

around world are chosen for the simulation. Some cities and districts have neat planning

such that all of their streets follow a speci�c pattern. For example, Ginza in Tokyo follows a

rectangular pattern. In other cities, such as the districts in Cairo, Egypt, most of the streets

evolved historically without any regular pattern. So, the reason we choose di�erent cities

across the world is that these speci�c city planings of density would a�ect how much weight

to be arranged on the di�erent scenes of these cities. Our simulation results show that all

the calculated camera spots can cover all the streets when the number of spots is decreasing.

Also, it retains over 90% of observed details when removing 20% camera spots.

4.5.1 Experiment Setup

The experiment settings receive two inputs: a camera with �xed parameters and selected

routes (i.e. streets in the cities). It outputs the observed details with the boundaries of

all camera spots. A real-world 24mm wide-angle camera is simulated, with viewing scope

φ = 84°, viewing distance dis ∈ (0,∞), and maximal lossless distance d0 =
√

2. All the

routes are listed in Table 4.1, which are approximated as poly-lines, and each line segment

is set with weight (or detail) according to its tra�c volume (or importance). For example, a

path from the Great Pyramid at Giza to the Egyptian Museum is weighted and transformed

to a poly-line based on its relative coordinates. The original path in Google Maps®, an

open simple curve, is to be extracted and input into Microsoft Visio® so that a poly-line

approximating the curve can be created and coordinates of the joints and endpoints will be

76

Table 4.1: Routes Information

No. City Segments Baseline Spots Total Weight

1 Dallas 19 155 148
2 Paris 18 216 146
3 Tokyo 25 153 362
4 Cairo 42 226 426

collected. Adding a weight to each segment of this poly-line, a weighted poly-line is ready

as input.

For each poly-line, a set of baseline spots are �rst computed by �nding the minimum sum

of camera spots to fully cover the line without losing any detail. We then collect the total

weights with di�erent boundaries of di�erent spots. The performance of the algorithm is

evaluated by examining how slowly (or quickly) the observed details are lost when reducing

the number of spots.

4.5.2 Performance

The performance of our experiment can be evaluated by comparing the baseline and results

from our algorithm, as shown in Figure 4.5. The �rst step is to draw a line with the maximal

weights without covering the entire poly-line within the limits of camera spots. In the second

step, we compute the sum of the weights when decreasing the number of spots. Normally, we

can implement a random algorithm to get the data as the result of the control(unoptimized)

group. For this experiment, the results from random-deployed cameras along the polyline

will be much worse than the results from the baseline. Because the observed weight from each

camera is not only a�ected by the position but also the direction of its viewing scope. Either

the observing distance may be too great or the camera may not face towards the object.

Obviously, the results from an unthoughtful situation will not exceed the outcome from

a simply optimized one�the baseline above, which is a situation that camera are ideally

77

020406080100120140
0

20
40
60
80

100
120
140

Sum of Camera Spots
(1) Dallas

O
bs
er
ve
d
W
ei
gh
t ACPCS

Baseline

020406080100120140160180200
0

20
40
60
80

100
120
140

Sum of Camera Spots
(2) Paris

O
bs
er
ve
d
W
ei
gh
t ACPCS

Baseline

020406080100120140
0

40
80

120
160
200
240
280
320
360

Sum of Camera Spots
(3) Tokyo

O
bs
er
ve
d
W
ei
gh
t ACPCS

Baseline

020406080100120140160180200220
0

40
80

120
160
200
240
280
320
360
400

Sum of Camera Spots
(4) Cairo

O
bs
er
ve
d
W
ei
gh
t ACPCS

Baseline

Figure 4.5: Detail-preservation when decreasing the number of spots on sampled path data
from four di�erent cities (Dallas, Paris, Tokyo, Cairo)

deployed at the critical distance away from the segments, towards the segment, without

considering whether the object is fully covered or not.

Figure 4.5 shows that at the beginning of decreasing spots (among the �rst 20% of span),

our method can keep more than 90% of the original weight. For all the four cities, the

results show that our algorithms maintain more weights than the baseline set 98% of the

time in the collected samples. The only scenario in which the total weight is lower than the

baseline weight happens when the limit of spots is under 8%. When the limit is below 8%,

one must set the camera spots far away from the observed lines in order to cover the full

range. Moreover, our experiment shows that with an increasing number of segments, our

method generates better results, as compared for (2) and (4) in Figure 4.5.

78

Our experiment reveals that with a series of weighted objects, the segments of the highest

weights are selected �rst. The system always attempts to merge the objects of lower weights,

and is inclined to cover those of higher weights with better angles when weights must be

reduced. These features are exactly our objectives when designing the algorithms.

4.5.3 Analysis

Since the geographic information and details are crucial in the project, we now explain

how our method can compute the best current positions to keep the parts with crucial

details (higher weight) being preferentially observed. There are two ways in the algorithms

to downgrade those insigni�cant parts when a decision on decreasing the count of camera

positions must be made.

By applying Algorithm 3, all the segments are sorted by weights; then the two adjacent

ones with the least total weight are picked. For the pair, a new best camera position is

recalculated by Algorithm 2 to substitute the former two positions and still fully cover

the two segments with minimal sacri�ce to observable details. The procedure decreases

only the relatively less important segments�the pair with the least total weight. So, the

parts with key visual details tend to remain untouched when the threshold is small. Our

experiment shows that the processing of the shadow list entails a sorting procedure. We

choose merge sort in the simulation because it has the best average time e�ciency, which

also crucially determines the performance of our method. The related explanation can be

found in Section 4.5.4.

When Algorithm 2 recalculates a new position for a pair of adjacent segments, our method

attempts to preserve the part with more details. The preference of position selection in the

algorithm can be illustrated with its reactions under two typical conditions. If the two

segments have di�erent lengths and weights, our camera leans toward the segment with

higher weight to reduce the weight loss due to the angle. In other words, the segment with

79

higher weight gets better angles than the one with lower weight. The other condition is that

the two chosen segments have the same length and weight. Our experimental results show

that a camera position having the same angle with the two segments is generated. In other

words, both segments lose the same amount of weight to keep the total weight maximal.

From these facts, we conclude that the search for local weight maximum is not based on any

sorting algorithm, but rather based on the Extreme Value Theorem. This also means that

the time e�ciency of Algorithm 2 is O(1), because the extremum can be found directly via

the �rst derivative of our piecewise function by the Extreme Value Theorem.

4.5.4 Time Complexity

By analyzing the pseudo-code of our algorithm, we derive the average run time to be

O(n log n). The �rst phase takes O(n) time to segment a poly-line. In the second phase,

a shadow list recording the di�erence of elements is generated and merge-sorted. Then, a

while-loop inserts elements into the list and decreases the count toward the limit, obtained

from input as parameter a. So, Phase 2 is O(n) +O(n log n) +O(an+ c) = O(n log n). Since

a is an input constant less than n, the overall time complexity of our algorithm is O(n log n).

The e�ciency has also been demonstrated experimentally.

There are many choices for the sorting procedure. Merge sort is selected because it has

a stable performance since its worst time complexity equals its average time complexity.

Furthermore, the performance of our method relates critically to the choice of the sorting

algorithm, since other parts of our method have a time complexity of O(n). The best or

worst run time e�ciency obviously also depends on which sorting algorithm is chosen.

4.6 Summary

This work has explored the problem of how to determine a minimal number of spots for

a camera to cover an entire range of scenes in a geographical region with minimal loss of

80

details. We have proposed a visual model, which consists of projection, measurement of

weights, and observation range, given a set of geometrical and geographical constraints.

Having de�ned the problem, we propose a 2-phase algorithm to gradually remove and/or

merge camera positions and eventually meet the requirements. Most importantly, the algo-

rithm �nds the maximal observed weight for a single spot. For situations of multiple spots,

the solution is at least NP-hard; thus, we propose a heuristic yet e�cient approach and an

algorithm with the time complexity of O(n log n).

We have also experimentally veri�ed our method with several realistic geographical sce-

narios. Our results greatly outperform the baseline where the weights are evenly distributed.

As the future work, more experiments will be conducted on the scenes with single di-

mensions or objects with multiples features. We will apply our approach to geographical

visualization systems and evaluate its e�ectiveness in such applications.

81

CHAPTER 5

RELATED WORK

5.1 Execution Variance

When n-version programming was �rst introduced in 1978, it opened the �eld to further im-

provements in the reliability of software execution, including advantages for fault-avoidance

and fault-tolerance (Avi�zienis, 1985; Chen and Avi�zienis, 1978). Subsequent experiments

identi�ed independence and diversity of software variants as a critical challenge for the ap-

proach (Knight and Leveson, 1986). In particular, software ecosystems created by indepen-

dent humans from a common speci�cation exhibit surprisingly low diversity, since humans

are prone to making similar mistakes.

In addition, progress in n-version programming was severely hindered by the cost of

its implementation. Multiple teams of developers were required to build their own version

of each piece of software, which was then collected into a single system moderated via a

voting strategy to produce results and maintain consistency. This highly manual approach

potentially multiplied software development and maintenance costs by a factor of n, deterring

many practical deployments.

These obstacles motivated automated diversity as a potential amelioration of these dilem-

mas (Cohen, 1993). Instead of requiring multiple teams, execution diversity can be created

by automatically generating variants. Proposed sources of diversity include transformation

of nonfunctional code, changing memory layout, and code reordering (Forrest et al., 1997).

For example, prior e�orts have maintained and monitored software properties throughout

its maintenance lifecycle to help detect when core behaviors could potentially change (Yang

and Evans, 2004), or have leveraged address space randomization (Shacham et al., 2004) to

probabilistically defend against memory errors (Bhatkar et al., 2005).

The introduction of automation also raised the opportunity to apply n-variant program-

ming to address another major rising software problem: cybersecurity. For example, diverse

82

replication was applied to frustrate attempts to hijack operating systems (Cox et al., 2006).

Within the past decade, this strategy has seen signi�cant progress as software-producing

tools, such as compilers, have reached a level of maturity suitable for large-scale, automated

n-variant deployment (cf., (Larsen et al., 2014)). Recent works have inferred semantics from

source code to locate semantic bugs based on multiple di�erent implementations (Min et al.,

2015), and to build multi-variant execution environments with multi-threading to detect

memory corruption vulnerabilities in C/C++ programs (Volckaert et al., 2017).

5.2 Heterogeneous Computing

Modern computer programs take advantage of both CPU and GPU components when needed.

A survey (Mittal and Vetter, 2015) published in 2015 gives a thorough introduction on this

topic. It mentions that one of the motivations for heterogeneous computing is leveraging

the unique architectural strength of each processing unit, which corresponds to our idea of

utilizing the ability of a GPU to process loops in the program �ow. It also introduces hybrid

applications and programming languages that span CPUs and GPUs, such as Map-Reduce

framework (Chen et al., 2012; Dean and Ghemawat, 2008; Shirahata et al., 2010; Tsoi and

Luk, 2010) and programming frameworks that eliminate the boundary between CPU and

GPU (Hong et al., 2010; Jiang and Agrawal, 2012; Pai et al., 2010; Veldema et al., 2011).

Map-reduce-like frameworks (Hong et al., 2010; Jiang and Agrawal, 2012) describe methods

for executing source code on both CPUs and GPUs without any modi�cation.

Another way to bridge the di�erences among hardware is to adopt an intermediate repre-

sentation. Through this, a program can be automatically dispatched into suitable processing

units (Pai et al., 2010). For-loop optimizations partition loop iterations across multiple con-

current workers to form a parallel-for loop in Java (Veldema et al., 2011). In our work, the

purpose of optimization on the loop is only for veri�cation; so we can evaluate iterations of

for-loops in parallel regardless of whether they are computationally parallelizable. This is

83

due to the fact that the CPU replica reveals the (untrusted) input and output states of each

iteration in advance.

There are ways to seamlessly develop on GPUs with Java (Pratt-Szeliga et al., 2012). For

example, prior work has applied this technique to translate Java bytecode to OpenCL and

implement e�cient sample pixel rendering (Aciu and Ciocarlie, 2016). There are also ways

to compile languages into a hybrid environment (Garg and Amaral, 2010). Our work does

not utilize these approaches since many modi�cations, including simpli�cation for GPU and

optimization, would be required to realize them for the general-purpose computations that

we envision as potential subjects of validation.

5.3 Veri�cation

In our work, we consider shrinking the possible state space in the redundant execution

since the processing ability of a single processing unit in GPUs is a subset of the CPU

computation. Some states must be simpli�ed or canceled, and the veri�cation in our work

is used to describe the assurance of execution results. Through the implementation, we still

found some methods to guarantee the quality and scalability for formal veri�cation (D'Silva

et al., 2008).

To avoid the problem of state space explosion in the procedure of precise veri�cation,

multiple strategies can be adopted. One approach is to compress the information of states

and still o�er explicit checking (Holzmann, 1997). Partial order reduction can be used to

prune the possible increased space of states (Godefroid, 1996).

Veri�cation of Java computations is a subject of many prior works (cf., (Stärk et al.,

2012)). Java Path�nder (Visser et al., 2004) implements model-checking based on an inter-

mediate language (Havelund and Pressburger, 2000) to analyze Java bytecode. Primitive

types and references are bound to the JVM instructions and incorporated into searches.

Type-based abstract interpretation can validate JVM executions (Leroy, 2003). Horn solvers

84

have also been developed for Java veri�cation based on logic programming (Kahsai et al.,

2016). Ahead-of-time compilation is another proposed approach (Baxter, 2017). Machine-

checked proofs have been constructed to obtain highest possible assurance for Java compu-

tations (Hubert and Marché, 2005), although these approaches currently require signi�cant

manual e�ort.

5.4 Data�ow Analysis

To track inner local variables of methods, our work leverages static data�ow analysis. Such

analysis is a staple of program analysis surveyed by numerous prior studies (e.g., (Su et al.,

2017)). Related works have studied the collection of pro�ling information in statements via

data�ow tracking (Agrawal, 1999; Ball and Larus, 1996; Rapps and Weyuker, 1985), detec-

tion of con�dentiality leaks in Java (Mongiovì et al., 2015), and troubleshooting software

errors caused by miscon�guration by tracking data�ows embodying interprocess communi-

cations (Attariyan and Flinn, 2010).

5.5 Correctness in GPGPU

Since the advent of general purpose GPU programming, an increasing number of programs

are taking advantage of hardware acceleration to improve run-time e�ciency. Examples

of GPU computing that provide substantial commercial value and cost savings relative to

CPU-only computing include integer programming (Soner and Özturan, 2012), application

acceleration (Messmer et al., 2008), motion tracking (Huang et al., 2008), and data processing

on large data sets (Bakkum and Skadron, 2010).

Reasoning about concurrency is well recognized as being especially challenging for hu-

man programmers, making GPGPU programs exceptionally di�cult to get right. Since the

GPUs in the modern computers are not merely focusing on the graph-related accelerating

and manufacturers opened these resources of parallel computing to all the programmers,

85

more and more codes based on this high-performance structure have been keeping created.

When these programs are used to generate formal business projects like one related to integer

programing(Soner and Özturan, 2012), application accelerating(Messmer et al., 2008), mo-

tion tracking(Huang et al., 2008), GPU computing is showing its huge commercial value and

saving a mount of time comparing with the old-school way(only CPU-computing related) to

deal with the drastically increased data(Bakkum and Skadron, 2010). But every coin has two

sides. By introducing general-purpose computing on GPU(GPGPU) into those commercial

projects, It does not only bring economic bene�ts, but also injects platform-embedded code

bugs and security risks into this new territory, like data race, state discordance. Obviously,

these problems rarely even unlikely happen in the code processing of single-core or multi-core

CPUs and methods of discovering problems in CPU-related applications will hardly work

in this �eld. Thus, ways of verifying and rules of rewriting GPU-related programs were

invented to eliminate these possible problems.

Common GPGPU programming errors include inadvertent reliance upon platform-dependent

hardware features or idiosyncrasies, as well as data races and barrier divergence (Kirner et al.,

2010; Li et al., 2014).

Initially, detecting multi-threaded errors in GPU programs was challenging as limited

crossover from multi-threaded CPU veri�cation techniques existed due to di�ering hardware

architectures. Signi�cant characteristics that distinguish GPUs from CPUs include massive

parallelism, limited sequential consistency enforcement, and potentially higher competition

for shared resources.

Since then, the �eld has expanded to include methods of verifying and implementing rules

for rewriting GPU programs to eliminate many bugs (Collingbourne et al., 2013; Diamos

et al., 2010). Ocelot (Diamos et al., 2010), a well-known emulator for GPU code, translates

PTX kernels to equivalent CPU code (x86 multi-core, IBM CELL Processor), which can

then be used for veri�cation purposes. Panoptes (Kennelly, 2012) is an on-the-�y binary

86

translation framework for CUDA, which avoids emulation performance overhead while still

performing code analysis and validity checks.

5.6 Data Race & Divergence

Our static, formal validation approach complements these related works by drawing upon

well-established methodologies for formalizing parallel computing architectures as derivation

rules of an operational semantics.

These include the seminal work of Kahn (Kahn, 1974), who de�ned semantics for parallel

programming and surveyed the principles of parallel computing. More recently, the advent

of skeleton-based parallel programming (Aldinucci and Danelutto, 2007) has simpli�ed many

of the traditional idioms by incorporating unique behavior to decompose cumbersome op-

erations into primitive operations. This is useful when analyzing complex parallel code in

order to reduce the occurrence of logic mistakes.

One prominent logic error is the barrier divergence problem, which occurs when barrier

code is in a loop or block and is not executed by all threads in the system. This causes

threads to hang while others (possibly erroneously) continue. Prior work has developed

semantic encodings that formally de�ne this class of bugs, and that are therefore potentially

useful in formal analyses (Bardsley et al., 2014; Betts et al., 2012). Some methods attempt

to reduce the barrier divergence problem through optimization techniques that reduce the

number of branches in a program. With less branching, it is more likely for threads to

remain synchronized and executing the same code. Other useful optimization techniques

include iteration delaying (Han and Abdelrahman, 2011) and branch fusion (Coutinho et al.,

2011).

Data races are another traditionally hard-to-detect �aw in GPU code. These typically

occur when multiple threads have write capability to the same memory location. Reliably

detecting such bugs requires testing sets expansive enough to cover the universe of all value

87

sets that could possibly be written to the shared memory location under any run of the

program. This can quickly exceed the search space that unit testers can feasibly explore.

Recent work has therefore combined static analysis of CUDA code with dynamic checking

to use a two-step method to detect and tag possible data races (Zheng et al., 2014, 2011).

While this reduces the number of false positives, the dynamic checking still adds substantial

overhead (roughly 20%). Subsequent work (Holey et al., 2013) implements a new race

condition detection mechanism via a new hardware component, the Race Detection Unit

(RDU). The RDU lowers run-time overhead to a negligible 1%, but increases in memory

overhead by about 27%. By developing strictly static machine-validation tools for GPU

code, our work seeks to o�er an alternative solution to such problems that trades greater

software development e�ort for complete assurance with no runtime overhead.

5.7 Visual Models

Many research works focusing on target tracking and observation have emerged in the past

few years. These applications and the popularization of computer vision technologies, like

Oculus®, motivate the invention of approaches to observe paths and transportation based

on the web mapping service.

Visual models based on human eyesight criteria have been proposed and applied in many

relevant researches on computer vision and image processing. In the early stage of this

topic, quantitative work are done by the researchers to build models for human visions.

The book (Cornsweet, 1970) establishes the basis of this genre on the physical data. Based

on the connection between images and human vision, the author of the work (Stockham,

1972) �rstly proposes a visual model to predict some visual processing features. Later,

a human visual model in paper (Nill, 1985) is incorporated into the procedure of image

compression to improve the performance. In paper (Karunasekera and Kingsbury, 1995),

the authors propose a more re�ned visual model to give distortion measure for the blocking

88

artifacts in images and extra parameters for visual sensitivity are taken into consideration.

A recent study (Frome et al., 2013) about machine learning leverages annotations of images

to train visual models and improves the performance of visual recognition. And the most

popular application about visual models is the virtual reality (VR). The paper (Alvarez-

Morales et al., 2017) investigates the similarity and correlation between the visual models

and acoustic models of objects, which can serve a better purpose of the immersion in VR.

5.8 Virtual Reality

The increasingly rapid evolution and improving a�ordability of VR equipment over the past

decade has made consumer VR systems extremely popular in the current market. Early work

on this subject innovated Head Mounted Displays to bring people into virtual worlds (Chung

et al., 1989). Other work uses surround-screens to present an immersive virtual world by

projection (Cruz-Neira et al., 1993). Over time, these implementations have been gradually

miniaturized. The VR technology of current generation is not limited to merely project the

screens into those immersive displays. The researches expand to generate the focuses based

on the eyeball movement and pictures and it brings eyes the impression of near-true reality.

Many studies support focus cues and several works are listed as follows (Favalora, 2005; Hua

and Javidi, 2014; Huang et al., 2015; Lanman and Luebke, 2013). In the frontier research, this

article (Bastug et al., 2017) elaborates the opportunities and challenges of Virtual Reality

hinged on wireless connection, such as 5G, fog/edge computing, and examines several case

studies focusing on AR/VR. At the end, The authors propose questions about the envision

that AR/VR will blur the boundary between computer simulation and reality.

Wearable VR goggles with projection are now being used in a variety of contexts. For in-

stance, they are being used in job training related to operating precision instruments (Grantcharov

et al., 2004). In the medical �eld, they are employed to create imaginal exposure or surgical

proxies to cure patients psychologically and physically (Rothbaum et al., 2001; Satava, 1995).

89

Also, simulations related to VR have been extensively explored. In (Menzies et al., 2016)

and (Chiarovano et al., 2015), the stability and balance of human in the virtual immersive

world are systematically studied.

5.9 Algorithms on Tracking & Coverage

Inside our work, we need study the positioning and coverage of the cameras. So, works

related to tracking and coverage are investigated.

The category of monitored targets is an important aspect of this problem space that must

be taken into consideration. Targets are classi�ed into di�erent types, such as multi-positions,

regions and barriers (e.g., lines and bands). For example, the Pan and Scan Problem entails

covering as many targets as possible by deploying speci�c numbers of cameras in a plane

with vast observed targets (Johnson and Bar-Noy, 2011). Prior work on this problem has

developed a 2-approximation algorithm that applies Voronoi tessellation to regions, with the

goal of lessening the overlap of the cameras' covering �elds (Kulkarni et al., 2007). Extensive

research has examined the problem of camera coverage of region barriers. Selecting the least

number of cameras to cover speci�c barriers is one focus of this research (Ma et al., 2012).

In most cases, the monitored objects are movable and not �xed at positions. Prior work

has innovated a system of localization and tracking built atop mobile phone networks (Kansal

and Zhao, 2007). By implementing tracking mechanisms based on the virtual data derived

from content inside a camera network, this work improves localization beyond what can be

easily achieved with a cellular network alone. Comparing and matching objects inside the

visual �eld facilitates the calculation of information related to targets and their locations.

In another work, a system for tracking persons in a 3-dimensional area is proposed (Heath

and Guibas, 2008). The cameras in this project detect speci�c human targets by marking

multiple points on objects and tracing them in di�erent cameras. Recently, a method of

tracking motion objects more e�ectively has been devised (Cehovin et al., 2013). It creatively

90

interlaces objects' global and local features to observe the object more accurately than former

approaches.

5.10 Mapping Services

Digital mapping and Global Positioning Systems (GPSes) have opened computer vision

research to applications related to transportation and localization. This is now a proli�c

area of study, so only some contributions related to our work are presented here.

Methods of localizing images with architectural features have been invented and imple-

mented for Google Maps® by leveraging the GPS and Google Maps Street View® infor-

mation (Zamir and Shah, 2010). The approach accumulates vote counts based on feature

matching to �nd the GPS position of a query image with the highest votes. Input images

containing adequate details (interest points) are crucial for successful queries. Most recent

research is already investigating the possible information of localization inside cameras�

images, and analyzing the location, authenticity and so on. In (Bunk et al., 2017), the

authors show two e�ective methods to detect the genuineness of the location information

for image forgeries with the aid of neutral networks. A solid method of estimating the cam-

era position is presented based on the visual information of 2D images in (Sattler et al.,

2017) and the authors propose a searching mechanism with low computational complexity

to help to locate the position of camera from query images. In contrast, our work focuses on

navigation-related scenarios.

Decision support systems have also been leveraged to calculate vehicle routing in Google

Maps® (Santos et al., 2011). The major contribution of this work, which is unique to

the research on navigation systems, is that many criteria other than distance or time are

considered, and these principles in�uence the standards of evaluation for routing. This a�ects

the role of weight-tagging for each path segment in our problem domain.

91

Cameras have been used for decades for security monitoring and other situational aware-

ness applications. By combining the concurrent observations of many cameras, visual net-

works can be built to act for surveillance. Inside this network, every camera is treated as a

sensor node and collaborates with the other nodes to collect instant data (in form of video

and photos) synchronously (Soro and Heinzelman, 2009). In research involving camera sensor

networks, most of the work entails maximizing the covered visual �elds and minimizing the

number or energy of camera sensors for optimization. Advances include optimized schedules

and algorithms to apply camera networks to diverse scenes.

92

CHAPTER 6

CONCLUSION

The series of original research works presented in this dissertation explore security challenges

and opportunities at the boundary between CPU and GPU computations. Veri�cation &

Validation plays an irreplaceable role in the current software industry, so a feasible strategy is

proposed to bring the heterogeneous computations into the software development life cycle.

One of the most prominent mainstream parallel computation architectures�Nvidia CUDA

platform�is selected as our research target, and the computational logic of its intermediate

representation is formally described with operational semantics in Coq. Challenges model-

ing PTX's complex and highly parallelized computation model in Coq, with su�cient clarity

and generality to tractably prove useful properties of realistic GPU programs, are discussed.

Coq's strict mathematical model with dependent types o�ers a trustworthy foundation for

analysts to inspect parallel programs running on the platform. With evaluation, the cor-

rectness, safety, and security of the programs can be machine-validated with mathematical

proofs.

To address the associated problem of trustworthy computation of programs that lack

formal speci�cations, an n-variant approach to dynamically detecting faults and intrusions

in CPU/GPU software was next presented. Speci�cally, untrusted Java source code is �rst

translated into GPU compatible code with static analysis techniques. The translated code is

packed into GPU kernels and executed by the GPU while the original code runs in the CPU.

With this double-lane execution, the divergence of program states at two sides is monitored

by the GPU, which signals the CPU to halt the execution with positive detection. Signi�cant

di�erences between the CPU and GPU computational models lead to high natural diversity

between the replicas, a�ording detection of large exploit classes without laborious manual

diversi�cation of the code. The implementation shows that the prototype is able to detect

publicly recorded exploits without any noti�cation in advance.

93

Finally, a computational methodology for optimizing physical camera security using CPU

and GPU platforms is introduced. The range of camera vision is mathematically modelized

and united, so positions of cameras can be calculated and located in a map to o�er maximal

�eld of surveillance with least number of cameras. Given a target quantity of cameras, it

merges relatively unimportant camera positions to reduce the quantity of video information

that must be collected, maintained, and presented. Experiments apply the technique to paths

chosen from maps of di�erent cities around the world with various target camera quantities.

The approach �nds detail-optimizing positions with a time complexity of O(n log n).

94

APPENDIX

MODELS AND PROOFS

A.1 PTX Model in Chapter 2

Listing A.1: PTX Model in Coq

(* Data Types *)

Inductive dty := UI (w:N) | SI (w:N) | BD (w:N) | Pred.

(* Registers *)

De�nition reg : Type := (dty*N*N)%type.

De�nition reg_f : Type := reg → Z.

(* Special Registers *)

Inductive dim := Dx | Dy | Dz.

Inductive sreg :=

| T (d : dim)

| NT (d : dim)

| B (d : dim)

| NB (d : dim).

De�nition sreg_f : Type := sreg → N.

(* Kernel/Grid Con�guration *)

De�nition kconf : Type := ((N*N*N)*(N*N*N))%type.

95

(* Operands *)

Inductive op :=

| Reg (r:reg)

| SReg (s:sreg)

| Imm (i:Z)

| RegImm (r:reg) (i:Z).

De�nition op_f : Type := op → Z.

(* Memory *)

Inductive stsp :=

| Global

| Const

| Shared (bid : N*N*N).

De�nition mem_f : Type := (stsp*N) → (Z*bool).

Inductive hl := HI | LO | WIDE.

Inductive bop := ADD | SUB | MUL (v:hl).

Inductive top := MAD (v:hl).

Inductive cmp := EQ | NEQ | LT | GT.

Inductive mss := GSS | CSS | SSS.

(* list of PTX instructions *)

Inductive instr :=

96

| Bop (i:bop) (w:N) (d:reg) (a b:op)

| Top (i: top) (w:N) (d:reg) (a b c: op)

| Setp (c: cmp) (w:N) (p:reg) (a b:op)

| Mov (w:N) (d:reg) (a:op)

| Ld (ss:mss) (w:N) (d:reg) (a:op)

| St (ss :mss) (w:N) (a:op) (d:reg)

| Bra (tgt: nat)

| PBra (p:reg) (tgt: nat)

| Bar | Sync | Nop | Exit.

De�nition prg : Type := list instr .

De�nition prg_f : Type := nat → option instr.

Inductive thread := (N*reg_f)%type.

(* Thread Small Step Transition *)

Inductive thread_step (kc:kconf) (mu:mem_f) : instr → thread → thread → Prop

:=

| TBop : forall o w d a b tid rho f n

(Hf: f = op_exec kc (tid,rho))

(Hn: bop_eval f w o a b n),

thread_step kc mu (Bop o w d a b) (tid,rho) (tid,rho r[d 7→ n]])

| TTop : forall o w d a b c tid rho f n

(Hf: f = op_exec kc (tid,rho))

(Hn: top_eval f w o a b c n),

97

thread_step kc mu (Top o w d a b c) (tid,rho) (tid, rho r[d 7→ n]])

| TSetp : forall c w p a b tid rho f n

(Hf: f = op_exec kc (tid,rho))

(Hn: setp_eval f w c a b n),

thread_step kc mu (Setp c w p a b) (tid,rho) (tid , rho r[p 7→ n]])

| TMov : forall w d a tid rho n f

(Hf: f = op_exec kc (tid,rho))

(Hn: n = f a),

thread_step kc mu (Mov w d a) (tid,rho) (tid,rho r[d 7→ n]])

| TLd : forall ss w d a tid rho n f s

(Hf: f = op_exec kc (tid,rho))

(Hs: s = get_stsp kc tid ss)

(Hn: n = Z.of_N (read_mem mu (s, Z.to_N (f a)) (N.to_nat (w/8)))),

thread_step kc mu (Ld ss w d a) (tid,rho) (tid , rho r[d 7→ n]]).

Inductive warp :=

| Uni (pc : nat) (ts : list thread)

| Div (w1 w2 : warp).

(* Warp Small Step Transition *)

Inductive warp_t (kc:kconf) (mu:mem_f) : instr → warp → warp * mem_f →

Prop :=

(* Noncon�ict instructions *)

| WNop : forall pc ts ,

warp_t kc mu Nop (Uni pc ts) (Uni (pc+1) ts, mu)

98

| WBop : forall o w d a b ts ts ' pc

(Hts': ts ' = nd_map (thread_exec kc mu (Bop o w d a b)) ts),

warp_t kc mu (Bop o w d a b) (Uni pc ts) (Uni (pc+1) ts', mu)

| WTop : forall o w d a b c ts ts ' pc

(Hts': ts ' = nd_map (thread_exec kc mu (Top o w d a b c)) ts),

warp_t kc mu (Top o w d a b c) (Uni pc ts) (Uni (pc+1) ts', mu)

| WSetp : forall c w p a b ts ts ' pc

(Hts': ts ' = nd_map (thread_exec kc mu (Setp c w p a b)) ts),

warp_t kc mu (Setp c w p a b) (Uni pc ts) (Uni (pc+1) ts', mu)

| WMov : forall w d a ts ts ' pc

(Hts': ts ' = nd_map (thread_exec kc mu (Mov w d a)) ts),

warp_t kc mu (Mov w d a) (Uni pc ts) (Uni (pc+1) ts', mu)

| WLd : forall ss w d a ts ts ' pc

(Hts': ts ' = nd_map (thread_exec kc mu (Ld ss w d a)) ts),

warp_t kc mu (Ld ss w d a) (Uni pc ts) (Uni (pc+1) ts', mu)

| WBra : forall pc tgt ts ,

warp_t kc mu (Bra tgt) (Uni pc ts) (Uni tgt ts, mu)

| WPBra : forall p tgt pc ts ts1 ts2 w'

(Hsplit: (ts1, ts2) = partition (prd_bool p) ts)

(Hw': w' = match is_empty ts1, is_empty ts2 with

| true, _ ⇒ Uni (pc+1) ts2

| false , true ⇒ Uni tgt ts1

| false , false ⇒ Div (Uni tgt ts1) (Uni (pc+1) ts2) end),

warp_t kc mu (PBra p tgt) (Uni pc ts) (w', mu)

(* Potential con�ict instructions *)

99

| WStG : forall w a d pc ts mu' f l

(Hl: l = map (st_eval kc Global w a d) ts)

(Hf: f = fun m p ⇒ match p with (a,v) ⇒ m m[a 7→ (v,false)]] end)

(Hmu': mu' = fold_left f l mu),

warp_t kc mu (St GSS w a d) (Uni pc ts) (Uni (pc+1) ts, mu')

| WStS : forall w a d pc ts mu' f l

(Hl: l = map (st_eval kc (Shared (get_cta kc ts)) w a d) ts)

(Hf: f = fun m p ⇒ match p with (a,v) ⇒ m m[a 7→ (v,false)]] end)

(Hmu': mu' = fold_left f l mu),

warp_t kc mu (St SSS w a d) (Uni pc ts) (Uni (pc+1) ts, mu')

| WSync : forall w w'

(Hsync: sync w w'),

warp_t kc mu Sync w (w',mu)

(* Recursive call to get appropriate (leftmost) warp *)

| WDiv : forall i w1 w1' w2 mu'

(Hi: i <> Sync)

(Hw': warp_t kc mu i w1 (w1',mu')),

warp_t kc mu i (Div w1 w2) (Div w1' w2, mu').

(* Block Small Step Transition *)

De�nition block : Type := list warp.

Inductive block_t (kc:kconf) (pi:prg_f) (mu:mem_f) : block → block * mem_f →

Prop :=

| BStep : forall i b b1 b' w w' mu' n

100

(Hb: nth_ri n b w b1)

(Hi: pi (warp_pc w) = Some i)

(Hi1: i <> Bar /\ i <> Exit)

(Hstep: warp_t kc mu i w (w',mu'))

(Hb': nth_ri n b' w' b1),

block_t kc pi mu b (b',mu')

| BEndBar : forall b b'

(Hbar: block_barred pi b = true)

(Hlb: b' = lift_bar b),

block_t kc pi mu b (b',mu).

(* Grid Small Step Transition *)

De�nition grid : Type := list block.

Inductive grid_t (kc:kconf) (pi:prg_f) (mu:mem_f) : grid → grid * mem_f →

Prop :=

| GStep : forall n g g1 g' b b' mu'

(Hg: nth_ri n g b g1)

(Hbc: block_complete pi b = false)

(Hstep: block_t kc pi mu b (b',mu'))

(Hg': nth_ri n g' b' g1),

grid_t kc pi mu g (g',mu').

(* Kernel Con�guration *)

De�nition empty_reg : reg_f := fun _ ⇒ 0%Z.

101

Fixpoint enumerate_threads (n:nat) (tid:N) : list thread :=

match n with

| O ⇒ []

| S n' ⇒ (tid, empty_reg) :: enumerate_threads n' (tid+1)

end.

Fixpoint generate_grid (n bsize tid:nat) : grid :=

match n with

| O ⇒ []

| S n' ⇒ let bts := enumerate_threads bsize (N.of_nat tid) in

let ws := group bts 32 in

let b := map (fun ts ⇒ Uni 0 ts) ws in

b :: generate_grid n' bsize (tid+bsize)

end.

De�nition generate_kernel (kc:kconf) : grid :=

match kc with ((xg,yg,zg),(xb,yb,zb)) =>

let nb := (xg*yg*zg)%N in

let nt := (xb*yb*zb)%N in

generate_grid (N.to_nat nb) (N.to_nat nt) 0

end.

A.2 SDV Rules for lock steps in Chapter 2

Listing A.2: SDV Rules for lock steps in COQ

102

Inductive ruleSDV :

threadStates_n × list (stmt×pred_f) →

threadStates_n × list (stmt×pred_f) → Prop :=

| gBasic n ss bs p Sigma Sigma' def:

(forall (i : nat),

(i <n) → rulePRE ((nth i Sigma def), bs ,p) (nth i Sigma' def)

) →

ruleSDV (Sigma, (bcstt bs, p):: ss) (Sigma', ss)

| gDivergence Sigma p ss n def :

(exists (i j : nat), (i <>j /\ i<n /\ j<n) →

(((th1_prd (nth i Sigma def)) (th1_id (nth i Sigma def)) = true) /\

((th1_prd (nth j Sigma def)) (th1_id (nth j Sigma def)) = false)

)

) →

ruleSDV (Sigma, (barrier, p):: ss) errorSDV

| gNoOp Sigma p ss n def :

(forall (i : nat),

(i <n) → ((th1_prd (nth i Sigma def)) (th1_id (nth i Sigma def)) = false)

) →

ruleSDV (Sigma, (barrier, p):: ss) (Sigma, ss)

| gRace Sigma p ss n def :

(forall (i : nat),

103

(i <n) → ((th1_prd (nth i Sigma def)) (th1_id (nth i Sigma def)) = true)

/\ (races Sigma)

) →

ruleSDV (Sigma, (barrier, p):: ss) errorSDV

| gSync Sigma p ss n def Sigma' :

(forall (i : nat),

(i <n) → ((th1_prd (nth i Sigma def)) (th1_id (nth i Sigma def)) = true)

/\ ~(races Sigma)

/\ (forall (i : nat), (i <n) → (nth i Sigma' def) =

(th1_thrd (nth i Sigma def), merge Sigma, empty_set word, empty_set word))

) →

ruleSDV (Sigma, (barrier, p):: ss) (Sigma', ss)

| gSeq Sigma S1 S2 p ss:

ruleSDV (Sigma, (squ S1 S2, p)::ss) (Sigma, (S1, p)::(S2, p):: ss)

| gVar Sigma x S p ss v Vloc:

(set_In v Vloc

) →

ruleSDV (Sigma, (local x S, p):: ss) (Sigma,(sub_var S x v, p)::ss)

| gIf Sigma p ss e S1 S2 v Vloc :

(set_In v Vloc

) →

104

ruleSDV (Sigma, (sif e S1 S2,p):: ss)

(Sigma,

(bcstt (bsc v e), opra_and p v)::(S1, p)::(S2, opra_and p (opra_not v))::ss)

| gOpen Sigma p ss e S v Vloc:

(set_In v Vloc

) →

ruleSDV (Sigma, (swhile e S, p):: ss)

(Sigma, (swhile_ e (belim S v), opra_and p (opra_not v))::ss)

| gIter Sigma n p e v Vloc u q S ss def:

(exists (i : nat), (i <n) → evalue (opra_and p e) (nth i Sigma def)

/\ set_In v Vloc

/\ set_In u Vloc

/\ q = opra_and (opra_and p v) (opra_not v)

) →

ruleSDV (Sigma, (swhile_ e S, p)::ss)

(Sigma, (bcstt (bsc u e), p)::(celim S v, q)::(swhile_ e S, p):: ss)

| gDone n p e Sigma def S ss:

(exists (i : nat), (i <n) → ~ (evalue (opra_and p e) (nth i Sigma def))

) →

ruleSDV (Sigma, (swhile e S, p):: ss) (Sigma, ss)

| gCall v u Vloc S f Sigma p ss e:

105

(set_In v Vloc

/\ set_In u Vloc

/\ S = sub_var (Body f) (Param f) u

) →

ruleSDV (Sigma, (namefor (Param f) e, p)::ss)

(Sigma, (squ (bcstt (bsc u e)) (relim S v), opra_and p (opra_not v))::ss).

A.3 Proof of Theorem 1 in Chapter 4

Proof. Given the condition that all the objects are not in a line, ` is a polyline. For the

following calculations, the circumcircle p must be found �rst. Without loss of generality,

assume that circle p has p as its center and r as its radius, as is shown in Figure A.1. This

circumcircle is the minimal area that the view range of camera c must cover in order to fully

observe object ` with any angle toward it. Place camera c with AOV φ at a position where

its two boundary lines are tangent to p, and let d be the distance between c and p. All

the candidate positions for c comprise an orbit circle p′ with center p and radius d. This is

because the view scope is able to precisely cover the circumcircle irrespective of the position

on the orbit where the camera is placed. Also, circumcircle p is a demarcation:

� When camera c observes the objects ` at a position outside p, it gains no more

observed weight than it does on the boundary of the circle, since w is inverse to dp` in

the formula of the camera model. The further the camera moves away from the object

beyond critical distance d0, the less observed weight it collects.

� When camera x observes the objects ` at a position inside p, it may gain more

observed weight than it does on the boundary of the circle, but it may not cover the

objects fully. This is because p is the minimal area that the view range of camera c

must cover in order to fully observe object `.

106

P
A

B

C

c

φ

r

`0

`i

`j

b

c

`n

d

a

Figure A.1: The orbit boundaries of camera c when c moving along the circle p′. It is for
calculating the local extramum of the observed weight.

It is easy to calculate that d = r
sin(φ/2)

. With those two facts about the circumcircle

above, the theorem is proved.

A.4 The optimal position for a single camera in Chapter 4

This section introduces the method of �nding the speci�c position for one single camera c

to collect the maximal observed weight. For convenience, we here refer to this as its optimal

position.

As shown in Figure A.1, given a polyline ` = {`0, . . . , `i, `j, . . . , `n, . . .} and p the

circumcircle of `, p′ is the orbit circle of camera c. Since only one speci�c circle can pass

three non-colinear points, without loss of generality assume A, B, and C are three1 chosen

1Although a circumcircle may intersect more than 3 points of `, in this procedure it su�ces to pick

exactly 3 points; the existence of any extra points on the circumcircle will not a�ect the result.

107

points on the circumcircle of `, and they are also the endpoints of line segments a, b, c, and

d, respectively.

Because of Theorem 1, we know the optimal position exists on or in the circle. It helps

to eliminate all the area outside the circle p′, so the �rst step is to search for the optimal

position on the orbit circle for camera c. From the given condition, each segment of ` forms

a di�erent angle γ with the straight line cp between camera c and p. When c starts moving,

record every angle γ0i formed by each segment with the line cp at the starting position. All

angles γi must change by the same ∆γ while c is moving, given by γi = γ0i + ∆γ. Then,

a function can be created between observed weight w and ∆γ based on the formula of the

obeserving model:

w =
n∑
i=0

wi =
n∑
i=0

f(γ0i + ∆γ) where ∆γ ∈ [0, 2π)

Here, f is the formula in Section 4.3.3. By calculating the �rst derivative of this function of

summation with respect to ∆γ, the maximum can be found in the extrema. This yields the

optimal position on the orbit.

To check whether the optimal position on orbit is the �nal optimal one, we must check

whether camera c is able to move toward ` under the condition that the visual scope of c can

fully cover `. If the boundary lines of the visual scope of c already touch ` at some point on

`, then the optimal position on the orbit is the �nal optimal position. Otherwise, the camera

can be moved from the optimal position on the orbit circle toward center p, stopping at the

position where the boundary lines of the visual scope of c exactly touch ` at some point on

`. This position inside circle p′ is the �nal optimal position.

The procedure above infers the optimal position for a single camera relative to a contin-

uous polyline of any number of segments. This generalizes the problem considered in the

project of VisualVital. To specialize it to our problem, we divide the candidate area into

four parts to accommodate situations where segments could block each other. The division

108

procedure can be implemented as follows: As shown in Figure A.1, segments `0, `i, `j and `n

will be extended outwards to divide the candidate area into four parts: a, b, c, and d. Parts

b and d are eliminated due to the blocking situation. Therefore, the search for the optimal

position in this instance limits the candidate area to parts a and c. The optimal position

can be computed by comparing the four boundary values on a and c With the extrema by

calculating the �rst derivative of the function above along the two intervals a and c.

109

BIBLIOGRAPHY

Aciu, R.-M. and H. Ciocarlie (2016). Runtime translation of the Java bytecode to OpenCL
and GPU execution of the resulted code. Acta Polytechnica Hungarica 13 (3), 25�44.

Agrawal, H. (1999). E�cient coverage testing using global dominator graphs. In Proc.
ACM SIGPLAN-SIGSOFT Work. Program Analysis for Software Tools and Engineering
(PASTE), pp. 11�20.

Aldinucci, M. and M. Danelutto (2007, Oct.-Dec.). Skeleton-Based Parallel Programming:
Functional and Parallel Semantics in a Single Shot. Computer Languages, Systems &
Structures 33 (3-4), 179�192. Elsevier.

Alkabani, Y. and F. Koushanfar (2008). N-variant IC design: Methodology and applications.
In Proc. 45th ACM/IEEE Design Automation Conf. (DAC), pp. 546�551.

Alshawabkeh, M., B. Jang, and D. R. Kaeli (2010). Accelerating the local outlier factor
algorithm on a GPU for intrusion detection systems. In Proc. 3rd Work. General Purpose
Processing Using Graphics Processing Units (GPGPU), pp. 104�110.

Alvarez-Morales, L., J. F. Molina-Rozalem, S. GirÃ³n, A. Alonso, P. Bustamante, and
A. Alvarez-Corbacho (2017, July). Virtual reality in church acoustics: Visual and acous-
tic experience in the cathedral of seville, spain. In Proc. 2017 International Congress on
Sound and Vibration (ICSV).

Astarita, V., G. Guido, and V. P. Giofré (2014). Co-operative ITS: Smartphone based
measurement systems for road safety assessment. Procedia Computer Science 37, 404�
409.

Atkey, R. (2007). CoqJVM: An executable speci�cation of the Java virtual machine using
dependent types. In Proc. Int. Conf. Types for Proofs and Programs (TYPES), pp. 18�32.

Attariyan, M. and J. Flinn (2010). Automating con�guration troubleshooting with dynamic
information �ow analysis. In Proc. USENIX Sym. Operating Systems Design and Imple-
mentation (OSDI), pp. 237�250.

Avi�zienis, A. (1985). The n-version approach to fault-tolerant software. IEEE Trans. Software
Engineering (TSE) 11 (12), 1491�1501.

Bakkum, P. and K. Skadron (2010). Accelerating SQL database operations on a GPU
with CUDA. In Proc. 3rd Work. General-purpose Processing Graphics Processing Units
(GPGPU), pp. 94�103.

Ball, T. and J. R. Larus (1996). E�cient path pro�ling. In Proc. 29th Annual ACM/IEEE
Int. Sym. Microarchitecture (MICRO), pp. 46�57.

110

Bardsley, E., A. Betts, N. Chong, P. Collingbourne, P. Deligiannis, A. F. Donaldson,
J. Ketema, D. Liew, and S. Qadeer (2014). Engineering a static veri�cation tool for
GPU kernels. In Proc. 26th Int. Conf. Computer Aided Veri�cation (CAV), pp. 226�242.

Barthe, G., B. Grégoire, S. Heraud, and S. Zanella-Béguelin (2011). Computer-aided security
proofs for the working cryptographer. In Proc. 31st Annual Conf. Advances in Cryptology
(CRYPTO), pp. 71�90.

Barthe, G., B. Köpf, F. Olmedo, and S. Zanella-Béguelin (2013). Probabilistic relational
reasoning for di�erential privacy. ACM Trans. Programming Languages and Systems
(TOPLAS) 35 (3).

Bastug, E., M. Bennis, M. Medard, and M. Debbah (2017). Toward interconnected virtual
reality: Opportunities, challenges, and enablers. IEEE Communications Magazine 55 (6),
110�117.

Baxter, J. (2017). An approach to veri�cation of safety-critical Java virtual machines with
ahead-of-time compilation. Technical report, University of York.

Bertot, Y. and P. Castéran (2004). Interactive Theorem Proving and Program Development:
Coq'Art: The Calculus of Inductive Constructions. EATCS Texts in Theoretical Computer
Science. Springer-Verlag.

Betts, A., N. Chong, A. F. Donaldson, S. Qadeer, and P. Thomson (2012). GPUVerify: A
veri�er for GPU kernels. In Proc. ACM Int. Conf. Object Oriented Programming Systems
Languages and Applications (OOPSLA), pp. 113�132.

Bhatkar, S., R. Sekar, and D. C. DuVarney (2005). E�cient techniques for comprehensive
protection from memory error exploits. In Proc. 14th USENIX Security Sym.

Boldo, S., J.-H. Jourdan, X. Leroy, and G. Melquiond (2013). A formally-veri�ed C compiler
supporting �oating-point arithmetic. In Proc. 21st IEEE Int. Sym. Computer Arithmetic
(ARITH), pp. 107�115.

Bunk, J., J. H. Bappy, T. M. Mohammed, L. Nataraj, A. Flenner, B. Manjunath, S. Chan-
drasekaran, A. K. Roy-Chowdhury, and L. Peterson (2017). Detection and localization of
image forgeries using resampling features and deep learning. In Proc. 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1881�1889.

Cehovin, L., M. Kristan, and A. Leonardis (2013). Robust visual tracking using an adaptive
coupled-layer visual model. IEEE Trans. Pattern Analysis and Machine Intelligence 35 (4),
941�953.

Chen, L. and A. Avi�zienis (1978). N-version programming: A fault-tolerance approach
to reliability of software operation. In Proc. IEEE Int. Conf. Fault-tolerant Computing
(FTCS), pp. 3�9.

111

Chen, L., X. Huo, and G. Agrawal (2012). Accelerating MapReduce on a coupled CPU-GPU
architecture. In Proc. 24th Int. Conf. High Performance Computing, Networking, Storage
and Analysis (SC).

Chiarovano, E., C. de Waele, H. G. MacDougall, S. J. Rogers, A. M. Burgess, and I. S.
Curthoys2 (2015, Jul). Maintaining balance when looking at a virtual reality three-
dimensional display of a �eld of moving dots or at a virtual reality scene. Frontiers
in Neurology (6).

Chiba, S. (2000). Load-time structural re�ection in Java. In Proc. 14th European Conf.
Object-oriented Programming (ECOOP), pp. 313�336.

Chung, J. C., M. R. Harris, F. P. Brooks, H. Fuchs, M. T. Kelley, J. Hughes, M. Ouh-Young,
C. Cheung, R. L. Holloway, and M. Pique (1989). Exploring virtual worlds with head-
mounted displays. In Three-Dimensional Visualization and Display Technologies, SPIE
Proc. 1083, pp. 42�52.

Cohen, F. (1993). Operating system protection through program evolution. Computers and
Security 12 (6), 565�584.

Collingbourne, P., A. F. Donaldson, J. Ketema, and S. Qadeer (2013). Interleaving and
lock-step semantics for analysis and veri�cation of GPU kernels. In Proc. 22nd Int. Conf.
European Symposium on Programming (ESOP), pp. 270�289.

Cornes, C. and D. Terrasse (1995). Automating inversion of inductive predicates in Coq. In
Proc. Int. Conf. Types for Proofs and Programs (TYPES), pp. 85�104.

Cornsweet, T. N. (1970). Visual Perception. Academic Press.

Coutinho, B., D. Sampaio, F. M. Q. Pereira, and W. Meira, Jr. (2011). Divergence analysis
and optimizations. In Proc. Int. Conf. Parallel Architectures and Compilation Techniques
(PACT), pp. 320�329.

Cox, B., D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight, A. Nguyen-
Tuong, and J. Hiser (2006). N-variant systems: A secretless framework for security through
diversity. In Proc. 15th USENIX Security Sym.

Cruz-Neira, C., D. J. Sandin, and T. A. DeFanti (1993). Surround-screen projection-based
virtual reality: The design and implementation of the CAVE. In Proc. 20th Annual Conf.
Computer Graphics and Interactive Techniques (SIGGRAPH), pp. 135�142.

Cybulski, J. L., S. Keller, and D. Saundage (2014). Metaphors in interactive visual analytics.
In Proc. 7th Int. Sym. Visual Information Communication and Interaction (VINCI), pp.
212�215.

112

Datta, A., M. Shah, and N. D. V. Lobo (2002). Person-on-person violence detection in video
data. In Proc. 16th Int. Conf. Pattern Recognition (ICPR).

Dean, J. and S. Ghemawat (2008). MapReduce: Simpli�ed data processing on large clusters.
Communications ACM (CACM) 51 (1), 107�113.

Deschizeaux, B. and J.-Y. Blanc (2007). Imaging earth's subsurface using CUDA. In
H. Nguyen (Ed.), GPU Gems 3. NVidia Corporation.

Diamos, G., A. Kerr, and S. Yalamanchili (2010). Ocelot: An open source debugging and
compilation framework for CUDA. Technical report, GPU Technology Conference (GTC).

D'Silva, V., D. Kroening, and G. Weissenbacher (2008). A survey of automated techniques
for formal software veri�cation. IEEE Trans. Computer-aided Design Integrated Circuits
and Systems (TCAD) 27 (7), 1165�1178.

Duan, J., K. W. Hamlen, and B. Ferrell (2019). Better Late Than Never: An n-variant frame-
work of veri�cation for java source code on CPU x GPU hybrid platform. In Proceedings
of the 28th International Symposium on High-Performance Parallel and Distributed Com-
puting, HPDC '19, pp. 207�218.

Duan, J., K. Zhang, and K. W. Hamlen (2017, Aug). VisualVital: An observation model for
multiple sections of scenes. In 2017 IEEE SmartWorld, Ubiquitous Intelligence Com-
puting, Advanced Trusted Computed, Scalable Computing Communications, Cloud Big
Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCAL-
COM/UIC/ATC/CBDCom/IOP/SCI), pp. 1�8.

Favalora, G. E. (2005, Aug). Volumetric 3d displays and application infrastructure. Com-
pute 38 (8), 37�44.

Ferrell, B., J. Duan, and K. W. Hamlen (2019, March). CUDA au Coq: A framework for
machine-validating GPU assembly programs. In 2019 Design, Automation Test in Europe
Conference Exhibition (DATE), pp. 474�479.

Flatt, M., S. Krishnamurthi, and M. Felleisen (2002). A programmer's reduction semantics
for classes and mixins. In Formal Syntax and Semantics of Java, pp. 241�269. Springer.

Flur, S., K. E. Gray, C. Pulte, S. Sarkar, A. Sezgin, L. Maranget, W. Deacon, and P. Sewell
(2016). Modelling the ARMv8 architecture, operationally: Concurrency and ISA. In Proc.
43rd ACM SIGPLAN-SIGACT Sym. Principles of Programming Languages (POPL).

Forrest, S., A. Somayaji, and D. H. Ackley (1997). Building diverse computer systems. In
Proc. 6th Work. Hot Topics in Operating Systems (HotOS), pp. 67�72.

113

Frome, A., G. S. Corrado, J. Shlens, S. Bengio, J. Dean, M. Ranzato, and T. Mikolov
(2013). Devise: A deep visual-semantic embedding model. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger (Eds.), Advances in Neural Information
Processing Systems 26, pp. 2121�2129. Curran Associates, Inc.

Garg, R. and J. N. Amaral (2010). Compiling Python to a hybrid execution environment.
In Proc. 3rd Work. General-purpose Computation Graphics Processing Units (GPGPU),
pp. 19�30.

Godefroid, P. (1996). Partial-order Methods for the Veri�cation of Concurrent Systems: An
Approach to the State-explosion Problem. Berlin, Heidelberg: Springer-Verlag.

Goetz, B. (2014, December). State of the specialization. http://cr.openjdk.java.
net/~briangoetz/valhalla/specialization.html.

Grantcharov, T. P., V. B. Kristiansen, J. Bendix, L. Bardram, J. Rosenberg, and P. Funch-
Jensen (2004). Randomized clinical trial of virtual reality simulation for laparoscopic skills
training. British J. Surgery 91 (2), 146�150.

Grauer-Gray, S., W. Killian, R. Searles, and J. Cavazos (2013). Accelerating �nancial ap-
plications on the GPU. In Proc. 6th Work. General Purpose Processing Using Graphics
Processing Units (GPGPU), pp. 127�136.

Habermaier, A. (2011). The model of computation of CUDA and its formal semantics.
Technical Report 2011-14, Institut für Informatik, U. Augsburg.

Hampapur, A., K.-H. Hyun, and R. M. Bolle (2002). Comparison of sequence matching
techniques for video copy detection. In Storage and Retrieval for Media Databases, SPIE
Proc. 4676, pp. 194�201.

Han, T. D. and T. S. Abdelrahman (2011). Reducing branch divergence in GPU programs.
In Proc. 4th Work. General Purpose Processing Graphics Processing Units (GPGPU).

Havelund, K. and T. Pressburger (2000). Model checking JAVA programs using JAVA
PathFinder. Int. J. Software Tools for Technology Transfer (STTT) 2 (4), 366�381.

Heath, K. and L. Guibas (2008). Multi-person tracking from sparse 3D trajectories in a
camera sensor network. In Proc. 2nd ACM/IEEE Int. Conf. Distributed Smart Cameras
(ICDSC), pp. 1�9.

Heer, J. and B. Shneiderman (2012). Interactive dynamics for visual analysis. Communica-
tions ACM (CACM) 55 (4), 45�54.

Heukelman, D. and S. E. Obono (2009). Exploring the African village metaphor for computer
user interface icons. In Proc. Annual Research Conf. South African Institute of Computer
Scientists and Information Technologists (SAICSIT), pp. 132�140.

114

http://cr.openjdk.java.net/~briangoetz/valhalla/specialization.html
http://cr.openjdk.java.net/~briangoetz/valhalla/specialization.html

Hoh, B., M. Gruteser, R. Herring, J. Ban, D. Work, J.-C. Herrera, A. M. Bayen, M. An-
navaram, and Q. Jacobson (2008). Virtual trip lines for distributed privacy-preserving
tra�c monitoring. In Proc. 6th Int. Conf. Mobile Systems, Applications, and Services
(MobiSys), pp. 15�28.

Hoh, B., T. Iwuchukwu, Q. Jacobson, D. Work, A. M. Bayen, R. Herring, J.-C. Herrera,
M. Gruteser, M. Annavaram, and J. Ban (2012). Enhancing privacy and accuracy in
probe vehicle-based tra�c monitoring via virtual trip lines. IEEE Trans. Mobile Comput-
ing 11 (5), 849�864.

Holey, A., V. Mekkat, and A. Zhail (2013). HAccRG: Hardware-accelerated data race detec-
tion in GPUs. In Proc. 42nd Int. Conf. Parallel Processing (ICPP), pp. 60�69.

Holzmann, G. J. (1997). State compression in SPIN: Recursive indexing and compression
training runs. In Proc. 3rd Int. SPIN Work.

Hong, C., D. Chen, W. Chen, W. Zheng, and H. Lin (2010). MapCG: Writing parallel
program portable between CPU and GPU. In Proc. 19th Int. Conf. Parallel Architectures
and Compilation Techniques (PACT), pp. 217�226.

Hua, H. and B. Javidi (2014, Jun). A 3d integral imaging optical see-through head-mounted
display. Opt. Express 22 (11), 13484�13491.

Huang, F.-C., K. Chen, and G. Wetzstein (2015, jul). The light �eld stereoscope: Immersive
computer graphics via factored near-eye light �eld displays with focus cues. ACM Trans.
Graph. 34 (4), 60:1�60:12.

Huang, J., S. P. Ponce, S. I. Park, Y. Cao, and F. Quek (2008). GPU-accelerated computation
for robust motion tracking using the CUDA framework. In Proc. 5th Int. Conf. Visual
Information Engineering (VIE), pp. 437�442.

Hubert, T. and C. Marché (2005). A case study of C source code veri�cation: The Schorr-
Waite algorithm. In Proc. 3rd IEEE Int. Conf. Software Engineering and Formal Methods
(SEFM), pp. 190�199.

Igarashi, A., B. C. Pierce, and P. Wadler (2001). Featherweight Java: A minimal core calculus
for Java and GJ. ACM Trans. Programming Languages And Systems (TOPLAS) 23 (3),
396�450.

Jackson, T., B. Salamat, A. Homescu, K. Manivannan, G. Wagner, A. Gal, S. Brunthaler,
C. Wimmer, and M. Franz (2011). Compiler-generated software diversity. In Moving
Target Defense, pp. 77�98. Springer.

Jansohn, C., A. Ulges, and T. M. Breuel (2009). Detecting pornographic video content
by combining image features with motion information. In Proc. 17th ACM Int. Conf.
Multimedia (MM), pp. 601�604.

115

Jiang, W. and G. Agrawal (2012). MATE-CG: A map reduce-like framework for accelerating
data-intensive computations on heterogeneous clusters. In Proc. IEEE 26th Int. Parallel
and Distributed Processing Sym. (IPDPS), pp. 644�655.

Johnson, M. P. and A. Bar-Noy (2011). Pan and scan: Con�guring cameras for coverage. In
Proc. 30th IEEE Int. Conf. Computer Communications (INFOCOM), pp. 1071�1079.

Kahn, G. (1974). The semantics of a simple language for parallel programming. In Proc.
IFIP Congress, pp. 471�475.

Kahsai, T., P. Rümmer, H. Sanchez, and M. Schäf (2016). JayHorn: A framework for
verifying Java programs. In Proc. 28th Int. Conf. Computer Aided Veri�cation (CAV),
pp. 352�358.

Kansal, A. and F. Zhao (2007). Location and mobility in a sensor network of mobile phones.
In Proc. 17th ACM SIGMM Int. Work. Network and Operating Systems Support for Digital
Audio & Video (NOSSDAV).

Karunasekera, S. A. and N. G. Kingsbury (1995, June). A distortion measure for block-
ing artifacts in images based on human visual sensitivity. IEEE Transactions on Image
Processing 4 (6), 713�724.

Kennedy, A., N. Benton, J. B. Jensen, and P.-E. Dagand (2013). Coq: The world's best
macro assembler? In Proc. 15th Sym. Principles and Practice of Declarative Programming
(PPDP), pp. 13�24.

Kennelly, C. (2012). Panoptes: A binary translation framework for CUDA. Technical report,
GPU Technology Conference (GTC).

Kirner, R., S. Herhut, and S.-B. Scholz (2010). Compiler-support for robust multi-core
computing. In Proc. 4th Int. Conf. International Symposium on Leveraging Applications
(ISoLA), pp. 47�57.

Knight, J. C. and N. G. Leveson (1986). An experimental evaluation of the assump-
tion of independence in multiversion programming. IEEE Trans. Software Engineering
(TSE) 12 (1), 96�109.

Kulkarni, P., P. Shenoy, and D. Ganesan (2007). Approximate initialization of camera sensor
networks. In Proc. 4th European Conf. Wireless Sensor Networks (EWSN), pp. 67�82.

Lam, V., S. Phan, D.-D. Le, D. A. Duong, and S. Satoh (2017). Evaluation of multiple
features for violent scenes detection. Multimedia Tools and Applications 76 (5), 7041�
7065.

Lanman, D. and D. Luebke (2013, nov). Near-eye light �eld displays. ACM Trans.
Graph. 32 (6), 220:1�220:10.

116

Larsen, P., A. Homescu, S. Brunthaler, and M. Franz (2014). SoK: Automated software
diversity. In Proc. 35th IEEE Sym. Security & Privacy (S&P), pp. 276�291.

Lee, S. and C. D. Yoo (2008). Robust video �ngerprinting for content-based video identi�-
cation. IEEE Trans. Circuits and Systems for Video Technology 18 (7), 983�988.

Leroy, X. (2003). Java bytecode veri�cation: Algorithms and formalizations. J. Automated
Reasoning 30 (3), 235�269.

Leroy, X. (2009). Formal veri�cation of a realistic compiler. Communications ACM
(CACM) 52 (7), 107�115.

Li, P., C. Ding, X. Hu, and T. Soyata (2014). LDetector: A low overhead race detector for
GPU programs. In Proc. 5th Int. Conf. Workshop on Determinism and Correctness in
Parallel Programming (WoDet).

Ma, H., M. Yang, D. Li, Y. Hong, and W. Chen (2012). Minimum camera barrier coverage in
wireless camera sensor networks. In Proc. 31st IEEE Int. Conf. Computer Communications
(INFOCOM), pp. 217�225.

Maitre, O. (2013). Understanding NVIDIA GPGPU hardware. In S. Tsutsui and P. Collet
(Eds.), Massively Parallel Evolutionary Computation on GPGPUs, pp. 15�34. Springer.

McBride, C. (2002). Elimination with a motive. In Proc. Int. Conf. Types for Proofs and
Programs (TYPES), pp. 197�216.

Menzies, R. J., S. J. Rogers, A. M. Phillips, E. Chiarovano, C. de Waele, F. A. J. Verstraten,
and H. MacDougall (2016, Sep). An objective measure for the visual �delity of virtual
reality and the risks of falls in a virtual environment. Virtual Reality 20 (3).

Messmer, P., P. J. Mullowney, and B. E. Granger (2008). GPULib: GPU computing in
high-level languages. Computing in Science & Engineering 10 (5), 70�73.

Milano, D. (2012). Content control: Digital watermarking and �ngerprinting. White Paper,
Rhozet, Harmonic Inc.

Min, C., S. Kashyap, B. Lee, C. Song, and T. Kim (2015). Cross-checking semantic cor-
rectness: The case of �nding �le system bugs. In Proc. 25th Sym. Operating Systems
Principles (SOSP), pp. 361�377.

Mittal, S. and J. S. Vetter (2015). A survey of CPU-GPU heterogeneous computing tech-
niques. ACM Computing Surveys (CSUR) 47 (4).

Mongiovì, M., G. Giannone, A. Fornaia, G. Pappalardo, and E. Tramontana (2015). Com-
bining static and dynamic data �ow analysis: A hybrid approach for detecting data leaks
in Java applications. In Proc. 30th Annual ACM Sym. Applied Computing (SAC), pp.
1573�1579.

117

Morrisett, G., G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan (2012). RockSalt: Bet-
ter, faster, stronger SFI for the x86. In Proc. 33rd ACM SIGPLAN Conf. Programming
Language Design and Implementation (PLDI), pp. 395�404.

Nguyen-Tuong, A., D. Evans, J. C. Knight, B. Cox, and J. W. Davidson (2008). Security
through redundant data diversity. In Proc. IEEE Int. Conf. Dependable Systems and
Networks (DSN), pp. 187�196.

Nievas, E. B., O. D. Suarez, G. B. García, and R. Sukthankar (2011). Violence detection in
video using computer vision techniques. In Proc. 14th Int. Conf. Computer Analysis of
Images and Patterns (CAIP), pp. 332�339.

Nill, N. B. (1985, June). A visual model weighted cosine transform for image compression
and quality assessment. IEEE Transactions on Communications 33 (6), 551�557.

Nilsson-Nyman, E., G. Hedin, E. Magnusson, and T. Ekman (2008). Declarative intraproce-
dural �ow analysis of Java source code. In Proc. 8th Work. Language Descriptions, Tools
and Applications (LDTA), pp. 155�171.

nVIDIA (2015). Parallel thread execution ISA v4.3 application guide. http://docs.
nvidia.com/cuda/pdf/ptx_isa_4.3.pdf.

Pai, S., R. Govindarajan, and M. J. Thazhuthaveetil (2010). PLASMA: Portable program-
ming for SIMD heterogeneous accelerators. In Proc. Work. Language, Compiler, and
Architecture Support for GPGPU.

Pandey, A. V., A. Manivannan, O. Nov, M. Satterthwaite, and E. Bertini (2014). The
persuasive power of data visualization. IEEE Trans. Visualization and Computer Graph-
ics 20 (12), 2211�2220.

Pawlak, R., M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier (2015). SPOON:
A library for implementing analyses and transformations of Java source code. Software:
Practice and Experience 46 (9), 1155�1179.

Pedoe, D. (1957). Circles: A Mathematical View. International Series of Monographs on
Pure and Applied Mathematics. Dover Publications.

Petcher, A. and G. Morrisett (2015). The foundational cryptography framework. In Proc.
4th Int. Conf. Principles of Security and Trust (POST), pp. 11�18.

Pratt-Szeliga, P. C., J. W. Fawcett, and R. D. Welch (2012). Rootbeer: Seamlessly using
GPUs from Java. In Proc. IEEE 14th Int. Conf. High Performance Computing and Com-
munication (HPCC) & IEEE 9th Int. Conf. Embedded Software and Systems (ICESS), pp.
375�380.

118

http://docs.nvidia.com/cuda/pdf/ptx_isa_4.3.pdf
http://docs.nvidia.com/cuda/pdf/ptx_isa_4.3.pdf

Rapps, S. and E. J. Weyuker (1985). Selecting software test data using data �ow information.
IEEE Trans. Software Engineering (TSE) 11 (4), 367�375.

Reitblatt, M., N. Foster, J. Rexford, C. Schlesinger, and D. Walker (2012). Abstractions
for network update. In Proc. ACM Conf. Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM), pp. 323�334.

Rothbaum, B. O., L. F. Hodges, D. Ready, K. Graap, and R. D. Alarcon (2001). Virtual
reality exposure therapy for Vietnam veterans with posttraumatic stress disorder. J.
Clinical Psychiatry 62 (8), 617�622.

Salamat, B., T. Jackson, A. Gal, and M. Franz (2009). Orchestra: Intrusion detection using
parallel execution and monitoring of program variants in user-space. In Proc. 4th ACM
European Conf. Computer Systems (EuroSys).

Santos, L., J. Coutinho-Rodrigues, and C. H. Antunes (2011). A web spatial decision support
system for vehicle routing using Google Maps. Decision Support Systems 51 (1), 1�9.

Satava, R. M. (1995). Virtual reality, telesurgery, and the new world order of medicine. J.
Image Guided Surgery 1 (1), 12�16.

Sattler, T., B. Leibe, and L. Kobbelt (2017, Sept). E�cient e�ective prioritized matching for
large-scale image-based localization. IEEE Transactions on Pattern Analysis and Machine
Intelligence 39 (9), 1744�1756.

Schuster, F., T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz (2015). Coun-
terfeit object-oriented programming: On the di�culty of preventing code reuse attacks in
C++ applications. In Proc. 36th IEEE Sym. Security & Privacy (S&P), pp. 745�762.

Seamans, E. and T. Alexander (2007). Fast virus signature matching on the GPU. In
H. Nguyen (Ed.), GPU Gems 3. NVidia Corporation.

Shacham, H. (2007). The geometry of innocent �esh on the bone: Return-into-libc without
function calls (on the x86). In Proc. 14th ACM Conf. Computer and Communications
Security (CCS), pp. 552�561.

Shacham, H., M. Page, B. Pfa�, E.-J. Goh, N. Modadugu, and D. Boneh (2004). On the
e�ectiveness of address-space randomization. In Proc. 11th ACM Conf. Computer and
Communications Security (CCS), pp. 298�307.

Shirahata, K., H. Sato, and S. Matsuoka (2010). Hybrid map task scheduling for GPU-based
heterogeneous clusters. In Proc. IEEE 2nd Int. Conf. Cloud Computing Technology and
Science (CloudCom), pp. 733�740.

119

Soner, S. and C. Özturan (2012). Integer programming based heterogeneous CPU-GPU clus-
ter scheduler for SLURM resource manager. In Proc. 14th High Performance Computing
and Communication & 9th Int. Conf. Embedded Software and Systems (HPCC-ICESS),
pp. 418�424.

Soro, S. and W. Heinzelman (2009). A survey of visual sensor networks. Advances in
Multimedia 2009. doi:10.1155/2009/640386.

Stärk, R. F., J. Schmid, and E. Börger (2012). Java and the Java Virtual Machine: De�ni-
tion, Veri�cation, Validation. Springer Science & Business Media.

Stockham, T. G. (1972). Image processing in the context of a visual model. Proceedings of
the IEEE 60 (7), 828�842.

Su, T., K. Wu, W. Miao, G. Pu, J. He, Y. Chen, and Z. Su (2017). A survey on data-�ow
testing. ACM Computing Surveys (CSUR) 50 (1).

Swamy, N., J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang (2011). Secure
distributed programming with value-dependent types. In Proc. 16th ACM SIGPLAN Int.
Conf. Functional Programming (ICFP), pp. 266�278.

Tsoi, K. H. and W. Luk (2010). Axel: A heterogeneous cluster with FPGAs and GPUs.
In Proc. 18th Annual ACM/SIGDA Int. Sym. Field Programmable Gate Arrays (FPGA),
pp. 115�124.

Veldema, R., T. Blass, and M. Philippsen (2011). Enabling multiple accelerator acceleration
for Java/OpenMP. In Proc. 3rd USENIX Conf. Hot Topic in Parallelism (HotPar).

Visser, W., C. S. P s reanu, and S. Khurshid (2004). Test input generation with java
PathFinder. In Proc. ACM SIGSOFT Int. Sym. Software Testing and Analysis (ISSTA),
pp. 97�107.

Volckaert, S., B. Coppens, B. D. Sutter, K. D. Bosschere, P. Larsen, and M. Franz (2017).
Taming parallelism in a multi-variant execution environment. In Proc. 12th European
Conf. Computer Systems (EuroSys), pp. 270�285.

Wicker, T. (1963, Nov. 22,). Kennedy is killed by sniper as he rides in car in Dallas; Johnson
sworn in on plane. The New York Times , 1.

Yamanouchi, T. (2007). AES encryption and decryption on the GPU. In H. Nguyen (Ed.),
GPU Gems 3. NVidia Corporation.

Yang, J. and D. Evans (2004). Automatically inferring temporal properties for program
evolution. In Proc. 15th Int. Sym. Software Reliability Engineering (ISSRE), pp. 340�351.

120

Yuan, J., L.-Y. Duan, Q. Tian, S. Ranganath, and C. Xu (2004). Fast and robust short
video clip search for copy detection. In Advances in Multimedia Information Processing,
5th Paci�c Rim Conf. Multimedia (PCM), pp. 479�488.

Zamir, A. R. and M. Shah (2010). Accurate image localization based on Google Maps street
view. In Proc. 11th European Conf. Computer Vision (ECCV), pp. 255�268.

Zheng, M., V. T. Ravi, F. Qin, and G. Agrawa1 (2014). GMRace: Detecting data races
in GPU programs via a low-overhead scheme. IEEE Trans. Parallel and Distributed Sys-
tems 25 (1), 104�115.

Zheng, M., V. T. Ravi, F. Qin, and G. Agrawal (2011). GRace: A low-overhead mechanism
for detecting data races in GPU programs. In Proc. 16th ACM Sym. Principles and
Practice Parallel Programming (PPoPP), pp. 135�146.

121

BIOGRAPHICAL SKETCH

Born in Shanxi, China, Jun Duan came to the United States to pursue his doctoral degree

in computer science at The University of Texas at Dallas. At the end of his �rst year there,

he joined the Software Language Security Laboratory led by Dr. Kevin W. Hamlen. The

constantly-emerged research topics in the area of cybersecurity opened a brand-new world

to him and he decided to concentrate in the domain of GPU-related security. Since then, he

has been conducting a fair amount of research in the �eld and co-authored several papers

which were published in renowned international venues. He has also been invited to present

his work to prestigious conferences, such as ACM HPDC and DATE.

Before enrolling into the PhD program, he studied and worked in Beijing, China. He acquired

his Master's Degree in computer science at Renmin (People's) University of China in the

summer of 2011. There, he was advised by Dr. Deying Li and engaged in research on

computer networks. Due to his persistent e�ort and publication of his work, he was honored

with the Outstanding Graduate Student Award. After graduation, he joined the Department

of Software Development of China Life Insurance Company, the largest insurer in China,

where he worked as a software engineer for two years before moving to the United States.

122

CURRICULUM VITAE

Jun Duan

March 9th, 2021

Contact Information:

Department of Computer Science
The University of Texas at Dallas
800 W. Campbell Rd.
Richardson, TX 75080-3021, U.S.A.

Email: jun.duan@utdallas.edu

Educational History:

M.S., Computer Science, Renmin University of China, 2011
M.S., Computer Science, The University of Texas at Dallas, 2019
Ph.D., Computer Science, The University of Texas at Dallas, 2021

Securing Computations with GPUs
Ph.D. Dissertation
Erik Jonsson School of Engineering & Computer Science, The University of Texas at Dallas
Advisors: Dr. Kevin W. Hamlen

Geometric Routing Algorithms in 3-Dimensional Wireless Sensor Networks
M.S. Dissertation
School of Information, Renmin University of China
Advisor: Dr. Deying Li

Employment History:

Software Engineer, China Life Insurance Company, August 2011 � August 2013

Professional Recognitions and Honors:

Outstanding Graduate Student Award, Renmin University of China, 2011

Publications:

�Better Late Than Never: An n-Variant Framework of Veri�cation for Java Source Code on
CPU × GPU Hybrid Platform. Jun Duan, Kevin W. Hamlen, and Benjamin Ferrell (2019).
In Proc. 28th ACM International Symposium on High-Performance Parallel and Distributed
Computing (HPDC)
�CUDA au Coq: A Framework for Machine-validating GPU Assembly Programs. Benjamin
Ferrell, Jun Duan, and Kevin W. Hamlen (2019). In Proc. 26th Design, Automation & Test
in Europe Conference & Exhibition (DATE)

�VisualVital: An Observation Model for Multiple Sections of Scenes. Jun Duan, Kang Zhang,
and Kevin W. Hamlen (2017). In Proc. 14th IEEE International Conference on Ubiquitous
Intelligence and Computing (UIC)
�3D geometric routing without loops and dead ends in wireless sensor networks. Jun Duan,
Deying Li, Wenping Chen, and Zewen Liu (2014). In Journal of Ad Hoc Networks, Vol. 13
�A New Localized Geometric Routing with Guaranteed Delivery on 3-D Wireless Networks.
Jun Duan, Donghyun Kim, Wenping Chen, and Deying Li (2012). In Proc. 21st Interna-
tional Conference on Computer Communications and Networks (ICCCN/IC3N)
�Geometric Routing Precluding Loops and Dead Ends in 3-D Wireless Sensor Networks. Jun
Duan, Deying Li, and Wenping Chen (2010). In Proc. 2010 IEEE Global Telecommunica-
tions Conference (GLOBECOM)

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Formal Validation & GPUs
	Pros & Cons of Machine-validating GPU Assemblies
	N-variant Systems
	Execution Divergence between CPUs and GPUs
	Surveillance & Camera Positioning
	Insight into our work
	CUDA au Coq
	J-Gang
	VisualVital
	Roadmap

	CUDA au Coq
	Overview
	Background
	Technical Approach
	Data Types
	Memory
	Registers
	Special Registers
	Operands
	Instructions
	Threads
	Warps
	Blocks
	Grids

	Example Validation Results
	Context Lifting
	Proof Procedure
	Non-deterministic Execution

	Summary

	J-GANG
	Overview
	System Design
	Divergence Between Executions
	Model & TCB
	GPU Feature Limitations
	Validation Modes
	Checkpointing
	Translation
	Verification Time Complexity

	Implementation
	Source Language Limitations
	Bytecode Analysis
	Primitives & References
	State Consistency
	GPU-based Verification
	Code Pruning

	Evaluation
	Running Efficiency
	Verification and Correctness

	Summary

	VisualVital
	Overview
	Introduction
	Notions & Models
	Observation Model
	Weight Model
	Camera Projection Model
	Problem Formulation

	Algorithm Design
	Lossless Weight Set
	Points Constricted Set

	Simulation
	Experiment Setup
	Performance
	Analysis
	Time Complexity

	Summary

	Related Work
	Execution Variance
	Heterogeneous Computing
	Verification
	Dataflow Analysis
	Correctness in GPGPU
	Data Race & Divergence
	Visual Models
	Virtual Reality
	Algorithms on Tracking & Coverage
	Mapping Services

	Conclusion
	Appendix: Models and proofs
	PTX Model in Chapter 2
	SDV Rules for lock steps in Chapter 2
	Proof of Theorem 1 in Chapter 4
	The optimal position for a single camera in Chapter 4

	Bibliography
	Biographical Sketch
	Curriculum Vitae

