Towards Security-aware Program Visualization
for Analyzing In-lined Reference Monitors’

Aditi Patwardhan, Kevin W. Hamlen, and Kendra Cooper
Department of Computer Science
The University of Texas at Dallas
Email: aditi.patwardhan @student.utdallas.edu, {hamlen,kcooper} @utdallas.edu

Abstract—In-lined Reference Monitoring frameworks are an
emerging technology for enforcing security policies over un-
trusted, mobile, binary code. However, formulating correct policy
specifications for such frameworks to enforce remains a daunting
undertaking with few supporting tools. A visualization approach
is proposed to aid in this task; preliminary results are presented
in this short paper. In contrast to existing approaches, which
typically involve tedious and error-prone manual inspection of
complex binary code, the proposed framework provides auto-
matically generated, security-aware visual models that follow
the UML specification. This facilitates formulation and testing
of prototype security policy specifications in a faster and more
reliable manner than is possible with existing manual approaches.

I. INTRODUCTION

Software security is becoming increasingly important with
the growth of the Internet and mobile code technologies like
Java. Mobile code technologies generate software components
for environments in which code-consumers receive code from
separate code-producers. These components are mainly dis-
tributed as binary executable files that are downloaded from
web pages or as email attachments. In many realistic settings,
not all code-producers are fully trusted; for example, web
pages may be served from untrusted servers or emails may
arrive from untrusted senders. Security is an obvious concern
in such an environment. Violations can range from information
leakage to access control violations and data corruption.

Secure mobile code environments constrain the behavior
of untrusted code by enforcing liveness or safety properties.
Many practical policies can be formulated as safety policies.
A classic example is the confidentiality policy that prohibits
network-send operations after the process has read from a
confidential file. This prevents the untrusted process from
divulging the file’s content over the network. These history-
based (i.e., stateful) safety policies can be encoded formally
as security automata [1]. A security automaton is a finite state
automaton that accepts policy-permitted sequences of security-
relevant events. Bisimulation of the security automaton with
the untrusted program is used as a mechanism to enforce the
underlying security policies. When an impending violation is
detected by the automaton, the offending process is terminated.

In-lined reference monitors (IRM’s) [1] have been proposed
as a mechanism to insert security automata into untrusted

*Supported by AFOSR YIP award FA9550-08-1-0044

binary code by modifying it (e.g., [2]-[4]) prior to execution.
This results in self-monitoring code that is guaranteed to self-
terminate before policy violations occur. IRM’s provide a pow-
erful means to enforce application-specific security policies,
but identifying and defining a good security policy, particularly
at the bytecode level, is challenging. For example, to prohibit
network-send operations, one must be able to rigorously define
what constitutes a network-send operation. This may involve
considering hundreds of primitive instructions that constitute
potentially security-relevant operations, each of which must be
identified in a complete, correct specification of the policy. In
general, much manual analysis and inspection of malicious
and non-malicious binary code may be required in order
to formulate a policy that prohibits all undesired program
behaviors without curtailing desired behaviors.

A visualization approach, with tool support, is needed to aid
the analysis of the untrusted binary code and to facilitate faster
and more reliable discovery and prototyping of application-
specific security policies. In this short paper, we present a visu-
alization framework that generates security-aware UML-based
visual models for the low-level Java bytecode; preliminary re-
sults are reported. The framework supports static and dynamic
models. The static visual model represents the underlying class
structures; the dynamic visual model represents the possible
execution sequences (control-flows) in the application. Each
execution sequence is mapped to the set of corresponding state
transitions of the security automaton (given by the security
policy); a user-defined color code is provided to visually
map the control-flow blocks to the corresponding security
automaton states and indicate possible security violations. The
approach and tool support have been validated using a classic
confidentiality policy and two test applications that violate this
policy by leaking information over the network.

The remainder of this paper is organized as follows. Sec-
tion II discusses the existing tool support for analysis of
bytecode and other related work. Section III describes our
visualization framework proposed for the security analysis,
and the prototype proof of concept that we have developed.
Section IV summarizes and proposes future work.

II. RELATED WORK

Practical IRM systems constitute a growing body of past
work (c.f., [5]). The Java-MOP system [3] combines runtime
monitoring with aspect-oriented programming. It specifies the

low-level Java bytecode

M Controller

Static Views Engine 0

a
. 2
Bytecode| | UML Class UML Class Security- %.g
I)F/’arser > Diagram [Diagram > aware View 7*_?_2
Creator Layout Generator 5%
Sl

12
Dynamic Views Engine g
S
UML Activity| [UML Activity Security- B
Bytecode - - : Yo
™ P > Diagram [Diagram > aware View > >-2
arser £E
Creator Layout Generator 5w
25
w T

Fig. 1. A security-aware visualization framework

desired security properties, along with the code to execute
if a security violation is detected. The specification is then
translated to Aspect] code and integrated into the applica-
tion program using an aspect weaver. The SPoX (Security
Policy XML) system [4] provides a purely declarative policy
specification language in which security-relevant events are
designated via Aspect] pointcuts, and policies over these
events are specified as security state transitions. We developed
our visualization tool based in part on bytecode analysis
libraries provided by the SPoX toolkit.

Traditional text-based, code-level visualization is supported
by many established tools including decompilers (e.g., [6],
[7]), debuggers, and various low-level libraries for static code
analysis. Eclipse [8] provides an integrated debugger for
Java source code that allows execution of the source code
interactively by stepping through each line of code. Some open
source byte code debuggers are also available for finding the
trace of execution at a binary code level. Reverse engineering
tools (e.g., [9], [10]) and context-independent analyses (e.g.,
[11]) augment such analyses with support for abstraction
visualization and binary format discovery.

However, all of these tools are general purpose; they do not
provide specialized support for security. For example, policy-
violating control-flows are not automatically identified for the
user; they must be manually discovered and extracted. The
modeling tools (e.g., [9]) use UML as the modeling notation,
which is a powerful and established standard for the graphical
modeling of object oriented software design and analysis. We
take the approach of catering to security-specific requirements
while utilizing the powerful features of a visual modeling
notation like UML and using the concept of abstraction for
a better representation of the underlying bytecode.

The BCEL API (Byte Code Engineering Library) [12] pro-
vides a programmatic foundation for analyzing Java bytecode.
Our visualization framework uses this API to extract low-level
Java bytecode information.

Graphical models of low-level code provide easier, faster,
and more reliable analysis of an application’s structure and
its possible control-flows than their text-only counterparts.
We therefore adopt a graphical approach. Desirable quality
attributes and functional requirements for general-purpose
code visualization tools have been well-studied [13], but there
has been no similar study of security-aware tool functionality.

III. SECURITY-AWARE VISUALIZATION FRAMEWORK

Figure 1 depicts the structure of our visualization frame-
work, which transforms low-level bytecode into UML-based
visual models [14], [15]. It is composed of a controller
and separate view engines for the generation of static and
dynamic visual models. The static views engine generates the
view for the static structure of the application modeled as
a UML class diagram. The dynamic views engine generates
the dynamic views for the detailed control-flow diagrams for
each class method within the application code, modeled as
a UML activity diagram. These UML specifications are used
to provide the security-aware views of the application. We
choose the Unified Modeling Language (UML) specification
for our visual model, as it has become the de facto standard
for visual modeling of software applications. We represent
the class structures and their relationships using UML class
diagrams, and the control-flows using UML activity diagrams.

The UML class diagrams can be used to compare the
untrusted bytecode with the self-monitoring, rewritten code
obtained from an IRM framework. The UML activity diagrams
can be used to map the prototype security policy to the un-
derlying control structure and to visually identify the security
events in the control-flows.

Our visualization framework is built atop the Eclipse plug-
in architecture [8]. It can be launched within the Eclipse
environment or used as a standalone rich client desktop
application. The plug-in architecture allows for easy exten-
sibility to add further custom diagrams related to the security
specifications. Further, it does not require any special setup;
the only main requirement is a standard Java runtime environ-
ment. The prototype tool developed is available at the URL
http://utdallas.edu/~aap085000/VisualizationTool.

A. Security-Aware Static View

To effectively prototype and analyze real IRM’s and the
policies they enforce, it is important to be able to easily
visualize and compare the class structure of original and IRM-
modified Java bytecode applications. For example, most practi-
cal policies constrain usage of certain security-relevant system
classes by untrusted applications. The IRM must therefore
track the security state of these security-relevant objects at
runtime to enforce the policy. The IRM typically accomplishes
this by injecting new wrapper classes that inherit from and
extend the system classes with extra security state fields
maintained by the IRM [3], [4]. Thus, visualizing the class
structure of original and IRM-modified applications reveals
much about the potential effects of the policy-enforcement
upon the untrusted application, including undesired side-
effects and potential runtime overhead.

The UML class diagrams [14] represent the static structure
of the original and/or IRM-modified system as a structure of
classes and relationships between them. They are generated
via four pipelined components: a bytecode parser, UML class
diagram creator, UML class diagram layout, and security-
aware view generator.

The bytecode parser identifies the classes, their data at-
tributes and methods, the visibility options of the data at-
tributes and methods, and the relationships between the
classes. The UML relationships supported include generaliza-
tion (based on class inheritance) and association (based on
class object reference).

The diagram creator generates the entities of the UML class
diagram that represent the information extracted by the parser.
Classes are mapped to UML class elements, and class relation-
ships are mapped as generalization or association relationships
of the UML class diagram. Supported UML class diagram
elements include classes, data attributes, operations, visibility
attributes, generalization relationships, and association rela-
tionships. We construct the class diagram with inheritance
relationships up to one level into the system libraries. Since
the class hierarchy is a tree rooted at java.lang.Object,
this yields a strong inheritance-based structure.

These UML diagram entities are then input as graph ele-
ments to the layout algorithm to generate the visual diagram.
We use an inheritance-based structure similar to the one
in [16] for the automatic layout generation of the class diagram
with minimal edge cross-overs. The visualizer allows users to
manually adjust the generated layout via a select, drag, and
drop functionality for the class elements of the diagram.

The framework can additionally render a visual comparison
between the original and the rewritten, IRM-modified applica-
tion bytecode. This is extremely useful for analyzing changes
in the static structure that result from enforcement of a given
policy by an IRM. Separate UML class diagrams are generated
for the original and IRM-modified application bytecode. Visual
color-coded cues are provided to the changes made to the
original bytecode during the rewriting process for enforcing
the policy. Currently our prototype supports this at the class
level granularity; any new classes added to the bytecode by
the IRM are highlighted in the class diagram.

The framework’s static model visualization has been val-
idated using a test application that divulges a confidential
file by sending its content over the network. We used the
SPoX IRM system [4] to enforce a policy that prohibits
write-access to the Java Socket library once a confidential
file has been accessed. The class structures of the original,
unsafe application bytecode and the SPoX-modified bytecode
were then compared using the visualization framework. The
new security class injected by the IRM was identified and
highlighted in the visual model. Due to space constraints, the
screen shots for the before and after class diagrams are not
included here; they are available in [17].

B. Security-Aware Dynamic View

UML activity diagrams are used to illustrate the control-
flows in a system [14], [15]. Activities typically consist of
a network of nodes and edges that represent the flow within
the activity; we therefore use them to represent the control-
flows. The dynamic views engine consists of four pipelined
components: a bytecode parser, a UML activity diagram

creator, a UML activity diagram layout and a security-aware
view generator.

The bytecode parser extracts instruction sequences that are
partitioned into basic blocks—subsequences of consecutive
instructions for which all control-flows (other than exception
flows) enter at the beginning and leave at the end without
intermediate branching. (Exceptions may result in premature
exit from a basic block, and therefore receive special treatment
described below.)

The UML activity diagram creator maps these basic blocks
as the call action nodes of the activity diagrams. Call action
nodes define the units of work that are atomic within the
activity [15], and are therefore well-suited to basic blocks.
Each basic block that ends in a conditional branch introduces
a decision node to the diagram. Basic blocks that could throw
exceptions caught by a local handler are visualized via control-
flow edges from the basic block to the entry-point of the local
exception handler. For visual clarity, the control-flow edges
to exception handler blocks are shown as dashed arrows to
differentiate from the normal control-flow edges.

The UML activity diagram constructs include call action
nodes, control-flow edges, and control nodes, including an
initial node, final nodes, and decision nodes. We use a dataflow
analysis technique to identify all possible control-flows in the
control structure of the activity diagram by traversing them
statically. The UML diagram layout generates a flowchart-like
layout that contains call action nodes ordered by underlying
bytecode offsets, and the control-flows between them.

The security-aware view generator further provides security-
aware views of the activity diagram generated. It takes an
input security policy from the user and maps the policy to the
control-flows depicted by the activity diagram. We detect all
possible policy violations in the control-flows by computing
a function f : Q — 29 that maps each node ¢ € Q in the
control-flow graph to a conservative approximation of the set
of security automaton states s € S that the node could assume
at runtime. The computation involves obtaining the least fixed
point of the functional F': (Q x S) — (Q x S) defined by

F(g) =g9U{(q,50)}U{(¢,0(¢,9)|(q,¢) € E,s € g(q)}

where qp and s(are the start states of the control-flow graph
and security automaton (respectively), £ C () x () is the transi-
tion relation for the control flow graph, and § : (Q x S) — S
is the transition function for the security automaton, which
defines how each basic block modifies the security state when
executed. Our current implementation is intra-procedural; an
inter-procedural extension is left for future work.

The visualizer then identifies sites of potential policy vi-
olations by identifying the control-flow graph nodes ¢ € @
for which there exists a security state s € (fiz(F"))(q) such
that (q,s) & 6. These are the states for which the security
automaton has no transition, and that therefore might exhibit
a policy violation at runtime. These nodes ¢ are therefore
the sites where an IRM will typically in-line runtime security
checks to detect and prevent potential violations. The visual-
izer renders these nodes in a unique, user-specified color to

v UML Diagram Visualizer
Eile Help

¥ ClientServer | [Client.main &3 =0

= @ Client

@ <init>

new <ClientS...
3: dup
4 invokespecial.

% @ ClientSocket

@ Server

69 load 2
70: ifgt #21

73: aload_1
74: invokeyirtual ..
T7: return

Fig. 2. A UML activity diagram with control-flow nodes color-coded by
possible security state

bring them to the attention of the user.

We take a conservative approach in which the detection
of policy violations may include some false positives. For
example, a potential violation might be identified within an
execution branch that is never actually traversed at runtime
due to the value of some trusted input variable. However,
false negatives will not occur; all potential violations are
conservatively identified.

The framework’s dynamic model visualization has been
validated using a test client-server application (Figure 2). The
screen shot illustrates the main method of the client, which
contains a loop with a send and a read operation. The security
policy prohibits sends after reads. The visualizer detects that
this could result in a policy violation for control-flows that
exhibit two or more iterations of the loop body. The generated
high-level view of the control structure maps the possible
security states of the automaton that each basic block could
enter, thereby identifying those where a security violation
could result. In this case the white node indicates that the
security automaton is in an initial state, the striped nodes
indicate that the security automaton may be in various different
policy-adherent states on various different runs, and the filled
node indicates a possible policy violation.

IV. CONCLUSIONS AND FUTURE WORK

We have introduced a security-aware, bytecode visualiza-
tion framework that facilitates fast and easy prototyping and
analysis of IRM security policies and their implementations.
This is the first approach to address this concern. Experiments
show that the framework, implemented as a prototype tool,
can generate visual diagrams and identify code points where
possible security violations could occur at runtime. Without
an automated tool, such analyses are extremely difficult and
time-consuming even for experts, since they involve manually
understanding an application’s binary structure, its possible
control-flows, and its potentially security-relevant operations.

Rapid development and prototyping of candidate security
policies is therefore typically impractical without such a tool.

A number of limitations have been identified in the vi-
sualization framework. With respect to the UML diagrams
created, for example, the framework does not support reverse
engineering to the complete, standard definitions of UML class
and activity diagrams. The current subset has been adequate
for the example applications used in the validation, but may
need to be extended in the future. In addition, the security-
aware color coding scheme used has not been rigorously
defined as a UML extension, such as a profile or a stereotype.
The graph based algorithms to create the diagrams also need
to be systematically defined and analyzed.

The approach taken to identify the possible security viola-
tions may include false positives, wherein some unreachable
control-flows are identified as possible sources of policy
violations. However, the approach does not suffer from false
negatives; it conservatively identifies all violations.

The framework can be easily extended to provide further
support for visualization with respect to security, including
extended debugging functionality and support for visual mod-
eling. These are avenues we intend to explore in future work.

REFERENCES

[1]1 F. B. Schneider, “Enforceable security policies,” ACM Transactions on
Information and System Security, vol. 3, no. 1, pp. 30-50, 2000.

2] U. Erlingsson and F. B. Schneider, “SASI enforcement of security
policies: A retrospective,” in Proc. New Security Paradigms Workshop,
September 1999, pp. 87-95.

[3] F. Chen and G. Rosu, “Java-MOP: A monitoring oriented programming
environment for Java,” Lecture Notes in Computer Science, vol. 3440,
pp. 546-550, 2005.

[4] K. W. Hamlen and M. Jones, “Aspect-oriented in-lined reference moni-
tors,” in Proc. ACM Workshop on Programming Languages and Analysis
for Security, 2008.

[5] J. Ligatti, L. Bauer, and D. Walker, “Run-time enforcement of non-
safety policies,” ACM Transactions on Information and System Security,
vol. 12, no. 3, January 2009.

[6] P. Kouznetsov, “JAD: The fast Java decompiler,” http://www.kpdus.com/
jad.html.

[7]1 Ahpah Software, Inc., “The SourceAgain decompiler,” http://www.
ahpah.com/products.html.

[8] “The Eclipse platform,” http://www.eclipse.org.

[9] International Business Machines, “IBM software architect,” http://
www-01.ibm.com/software/awdtools/swarchitect.

[10] H. M. Kienle and H. A. Miiller, “Rigi: An environment for software
reverse engineering, exploration, visualization, and redocumentation,”
Science of Computer Programming, vol. 75, no. 4, pp. 247-263, 2010.

[11] G. Conti, E. Dean, M. Sinda, and B. Sangster, “Visual reverse engineer-
ing of binary and data files,” Lecture Notes in Computer Science, vol.
5210, pp. 1-17, 2008.

[12] “Byte code engineering library,” http://jakarta.apache.org/bcel/.

[13] H. M. Kienle and H. A. Miiller, “Requirements of software visualization
tools: A literature survey,” in Proc. 4th IEEE International Workshop on
Visualizing Software for Understanding and Analysis, June 2007.

[14] B. Gruegge and A. H. Dutoit, Object-Oriented Software Engineering:
Using UML, Patterns and Java, 2nd ed. Prentice Hall, 2004.

[15] J. Arlow and I. Neustadt, UML 2 and the Unified Process: Practical
Object-oriented Analysis and Design, 2nd ed. Addison-Wesley, 2005.

[16] J. Seemann, “Extending the Sugiyama algorithm for drawing UML
class diagrams: Towards automatic layout of object-oriented software
diagrams,” Lecture Notes in Computer Science, vol. 1353, pp. 415424,
1997.

[17] A. A. Patwardhan, “Security-aware program visualization for analyzing
in-lined reference monitors,” Master’s thesis, University of Texas at
Dallas, June 2010.

