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This paper explores the integration of semantic computing technologies with security

technologies. Past and current research on the application of semantic web technologies
for policy management and inference control, the application of data mining technologies

for intrusion and malware detection, and programming language-based approaches to

mobile code certification and data confidentiality enforcement are discussed.
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1. Introduction

The explosive growth of the Web since its advent in the mid-1990s has generated

increasing demand for tools and algorithms that can effectively manage data, in-

formation, and knowledge on a mass scale. There is now so much data on the Web

that managing it with conventional tools is becoming almost impossible. For exam-

ple, Google continually invents and deploys increasingly distributed, decentralized

technologies to maintain its indexing system, which now stores and serves tens of

petabytes of data with updates processed in parallel by thousands of machines per

day worldwide [1]. Google and most other web search engines are primarily limited

to syntax-based queries, with search results based on keyword and phrase lookups.

However, these syntactic searches place heavy reliance upon a human user, who

must parse, filter, and analyze the search results to infer semantic properties of the

data. This limits their usefulness for automating complex tasks that require a ma-

chine agent to reliably obtain answers to many thousands of queries without user

assistance.

To mine and manage these more sophisticated semantic properties, Tim Bern-

ers Lee’s Semantic Web expresses semantic properties via machine-understandable

web pages [2]. This allows data mining techniques to more effectively analyze the

information and reliably extract information not available via syntactic search. Se-

mantic web technologies have given rise to a broad array of semantic computing

technologies, which facilitate automated reasoning about semantic properties at all

levels of computing, including the operating system, network, database, program-

ming language, and applications levels. This in turn facilitates the development of
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intelligence systems and networks, which can use the information to automatically

discover otherwise hidden patterns and relationships within the data. The ability

of semantic computing to increase the availability of these data relationships has

introduced both new security opportunities and new security threats. Study and

development of secure semantic computing technologies is therefore an important

emerging category of security research.

Our work has focused on three aspects of secure semantic computing technolo-

gies: First, we focus on secure semantic technologies for designing and developing

intelligent web information management systems that store and process vast quan-

tities of data. Data has become a critical resource in many organizations for which

efficient and reliable data access, sharing, and information extraction is essential

to organization operation. Hence, it is necessary to protect data and information

from both unauthorized access and malicious corruption. Our main focus here is on

inference control and policy specifications with semantic web technologies. Second,

we examine data mining technologies for cyber-security applications. In particu-

lar, we discuss data mining for intrusion detection and malicious code detection.

We also discuss privacy-preserving data mining technologies. Third, we consider

the importance of programming language semantics for meta-reasoning in semantic

webs—that is, the ability to automatically reason about the machine agents that

process and purvey semantic web data.

2. Semantic Technologies, Policy Management, and Inference

Control

Semantic technologies are playing a major role in policy management and inference

control. In the 1990s, technologies such as Datalog were used to specify and reason

about policies. A hallmark of this work was the development of inference controllers

that protect relational database systems from confidentiality attacks that infer se-

crets from non-confidential data. Datalog-based reasoners would reason about the

past history of query responses released to the user and determine which further

information is releasable without violating the confidentiality policy [3]. An example

of such an inference controller is illustrated on the left of Figure 1.

More recently, semantic web technologies are being applied to formally specify

policies for data management as well as information sharing. The significant advan-

tage of Semantic Web technologies is their representational and reasoning power.

This representational power can be leveraged to represent security policies about the

data along with the data itself. For example, XML-based languages such as eXten-

sible Access Control Markup Language (XACML) have been used to specify various

types of security policies. Researchers have proposed extensions for XACML for

finer-grained access control. Furthermore, languages such as Resource Description

Framework (RDF) are also being explored for representing the policies.

Reasoning engines such as Jena [4] and Pellet [5] are also being explored for

representing and reasoning about Semantic Web-based policy specifications and
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Fig. 1. An inference controller (left) and its analog for semantic web (right)

determining whether there are security violations through inference. For example,

Jena manages RDF graphs, and Pellet reasons with RDF graphs. We have applied

these technologies to develop a semantic web-based inference controller [6], depicted

on the right of Figure 1. Semantic web technologies have also been applied for policy

management for organizational data sharing [7]. In this case, each organization

specifies its policies in XML, RDF, or Web Ontology Language (OWL). When data

is shared among organizations, the policies are applied and only information for

which the requesting principals are authorized is shared. Policy-based information

sharing is illustrated in Figure 2.

Inference control is important not only for reasoning at the granularity of sep-

arate, security-relevant data objects and how they relate, but also for reasoning

about the internal structure and content of individual data objects. For example,

research on securing XML content and its schemas is currently investigating how to

control access to various portions of sensitive text documents for reading, browsing,

and modifications. To illustrate, consider the sentence, “President Obama is trav-

eling to Iraq on April 20, 2011.” A coarse-grained policy language might be forced
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to permit or deny access to this sentence in its entirety, whereas a finer-grained,

semantic-based policy language could permit access to alternate sentences that con-

vey a semantic subset of the information—e.g., “President Obama is traveling to

Iraq” or “President Obama is traveling on April 20, 2011.” An inference control

system could additionally deny access to one of these two latter sentences once the

other has been accessed in order to prohibit inference of the complete sentence.

Such security frameworks enforce policies on RDF (and the XML that underlies it)

based on semantic interpretations of the data. Figure 3 illustrates access control for

documents based on semantic web technologies such as XML [8].

Secure semantic technologies are also being applied for ontology alignment. Mas-

sive data repositories shared by many organizations, divisions, and users inevitably

develop conflicting semantic structures and classifications for common data. For

example, the marketing department might classify customer last name data under

the concept “Surname,” while the customer support department might classify the

same information as “Family name” in troubleshooting tickets. Ontology alignments

identify matching concepts across ontologies. This is very important for homeland

security applications where such alignments often correspond to critical security

information. For example, an ontology alignment inference algorithm might deter-

mine that John A. Smith and John Smith are actually aliases for the same person

with high probability.

In our research, we are investigating an approach to this problem based on the

path difference among concepts in the ontologies combined with an approximate

privacy-preserving matching technique [9]. The approach is illustrated in Figure 4.

Path differences are computed by comparing the path leading from each concept to

the root of its ontology. The more similar these paths are, the more semantically

similar the concepts. By compactly encoding these paths as strings (e.g., by adopting

numeric encodings of concepts), we can discover and replace corresponding values

in the original records. We can then match these modified records by using an

approximate privacy-preserving matching technique that privately computes the

distances between pairs of records and returns only record pairs whose distance
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remains below a certain threshold.

Privacy-preservation is a vital consideration for secure ontology alignment be-

cause the alignment introduces new data relationships that, if disclosed, might vi-

olate the system’s confidentiality policy directly or lead to confidentiality-violating

inferences. For example, if the fact that John Smith is a CIA officer is classified as

Top-secret, and aligning the ontologies reveals that John A. Smith and John Smith

are the same person, then previously public information about John A. Smith may

need to be reclassified, or the alignment itself may need to be classified, to preserve

the secret.

This example also illustrates that secure ontology alignment can offer rare and

valuable opportunities to automatically detect and correct policy specification er-

rors through the detection of policy conflicts. Data security policy specifications for

massive repositories are often highly complex and dynamic, and therefore a poten-

tially significant source of system vulnerabilities. A flaw in the specification can lead

to catastrophic data integrity violations, confidentiality violations, or both. When

separate divisions or organizations formulate separate data security policy specifica-

tions for differing ontologies over common data, an alignment of the ontologies can

reveal conflicts that should be conservatively reconciled and brought to the atten-

tion of administrators. Extending the example above, if the CIA has classified John

Smith’s affiliations as Top-secret and the FBI has classified John A. Smith’s affilia-

tions as Public, but ontology alignment infers that John Smith and John A. Smith

are the same person, then the system can conservatively reclassify John A. Smith’s

affiliations as Top-secret (i.e., the join of Top-secret and Public in the security lat-

tice) and bring the conflict to the attention of the authorized administrators of both

ontologies.

3. Data Mining, Cyber-security, and Privacy

Data mining technologies can leverage the semantic policy specification and data

representation techniques summarized in Section 2 to extract previously unknown

information from large data repositories. Historically, data mining has been applied

to unstructured or unorganized data sets as a basis for inferring the sorts of se-

mantic information that is already explicit in semantic webs and other semantic
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computing frameworks (cf., [10]). Applying data mining to domains in which these

semantics are readily available avoids this problem and can therefore leverage the

explicit semantic information to infer more subtle data classifications, clusters, as-

sociations, and anomalies that are not reliably inferable by traditional data mining

in the absence of semantic computing. Retargeting traditional data mining tech-

nologies, such as machine learning, statistical analysis, neural networks, association

rule mining, decision trees, and genetic algorithms, to semantic computing domains

is therefore an important area of converging research for both fields.

Our past work has applied data mining techniques for both national security

and cyber-security applications. In the case of national security, a major goal is to

gather data about terrorist behavior, analyze the data, and extract nuggets useful

for predicting attacks and conducting counter-terrorism activities. One significant

challenge for this research has been the development of approaches that provably

protect the privacy of non-terrorists without sacrificing the precision and power

of the algorithms for anticipating attacks. Collecting large amounts of information

about many individuals generally improves predictive power, but also increases the

danger of privacy violations in the form of unauthorized associations or direct leaks

of private data. Therefore, researchers are examining ways to carry out data mining

and at the same time ensure privacy. This area has come to be known as privacy-

preserving data mining [11].

Figure 5 illustrates a perturbation approach to privacy-preserving data min-

ing that introduces noise (i.e., random values) into the data in such a way that

the perturbed data is difficult or impossible to mine for confidential data about

individuals, yet higher-level associations and classifications are preserved and can

therefore continue to be reliably mined by analysis tools. Alternatively, multi-party

computation approaches allow data mining algorithms to be implemented in a dis-

tributed fashion by multiple mutually-distrusting organizations. Each organization

verifiably computes its portion of the classification algorithm without divulging its

private data to any of the others. The results of the distributed computations can

then be combined to reveal the results of the analysis without risking disclosure of

the private data to which the analysis was applied.

In the case of cyber-security, our prior work has implemented intrusion detection

systems that mine data access logs for anomalies indicative of cyber-attacks [12].

Automated detection of previously unseen malware (i.e., zero-day attacks) is another

important emerging application of data mining research that we have applied for

cyber-defense [13]. Figure 6 illustrates data mining approaches to semantics-based

intrusion detection.



Secure Semantic Computing 7

Training
Data

Feature
Extraction

Training Model

Unlabeled
Data

Feature
Extraction

Testing Classification

Fig. 6. Data mining for cyber-security

4. Semantic Computing and Programming Language Security

Scripts, web services, mobile bytecode applets, and other programmatic elements

now pervade a large portion of the Web and other large information systems. For

example, most e-commerce web sites use JavaScript code to dynamically organize

and render product information for users, Flash applets to display web advertise-

ments, Java applets to access customer information and inventory data from web

services atop remote SQL databases, and a variety of other code to facilitate secure

payment processing. Relatively little of the content exists as plaintext HTML or

XML. These programmatic technologies are essential for scalably supporting dy-

namic content, on-demand data search and filtering, and data presentations that

support user interaction. Reasoning effectively about security properties of large

information systems therefore demands analyses that couple strong data semantic

analyses with strong program semantic analyses.

Like inference control for data security, software security policies are temporal—

each event’s permissibility potentially depends on the history of previous events

observed by the system. However, unlike inference control, which must anticipate all

possible future behavior of human agents, the binary text of an untrusted program

provides a rich field of semantic information that reduces the space of possible

program behaviors that must be considered. This has led to a growing body of

language-based security research that leverages program semantic information to

enforce powerful, end-to-end security policies that consider both the data and code

elements of complex systems [14].

In recent years, language-based security research has been dominated by work

on enforcement mechanisms for two important classes of policies: safety policies and

information flow policies.

4.1. Safety Policy Enforcement and In-lined Reference Monitors

Safety policies essentially say that some “bad event” must not happen. For example,

to prevent unauthorized disclosure of private tax information, a tax calculator applet

might be subjected to a policy that prohibits it from sending any messages to third-

party advertisers once it has read the private information. Safety policies can be

formalized as security automata [15], such as the one depicted in Figure 7. The

edges of the automaton are labeled with predicates that match security-relevant

events. The automaton thereby defines a language of permissible event sequences
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Fig. 7. A security automaton that prohibits sending private tax information to a third-party ad

company

that programs may exhibit. In this case, the “bad event” is a send operation in

state 1, for which there is no outgoing edge. Our past work has developed the first

XML-based policy specification language for safety policies that constrain mobile

Java bytecode [16]. Each specification denotes a security automaton in which edges

are labeled by aspect-oriented pointcuts, which are expressions that denote sets of

security-relevant program operations and their arguments.

Reference monitors enforce safety policies by monitoring untrusted programs as

they run, simulating the security automaton and halting the program to prevent

impending violations. However, reference monitors implemented at the OS level can

be prohibitively inflexible in the sense that updating the monitor to enforce a new

policy requires modifying the OS, which is difficult even when the OS source code

is available, and impossible when it is purely binary code distributed over a net-

work of mutually distrusting principals. This is a common scenario in mobile code

frameworks. Language-based approaches to safety policy enforcement have there-

fore introduced the idea of automatically in-lining the code of the reference monitor

directly into the binary code of untrusted programs. This yields self-monitoring

mobile code whose enforcement mechanism is carried around with the mobile code

itself. The in-lining process essentially identifies all binary operations that poten-

tially change the security automaton’s state, and instruments them with guard code

that tracks the automaton state at runtime. If the guard code detects an impend-

ing violation at runtime, it takes corrective action, such as by self-terminating the

process or rolling back to a policy-adherent state. We have successfully developed

in-lined reference monitoring systems for .NET bytecode [17], Java bytecode [18],

ActionScript Flash [19], and even x86 native code [20].

In-lined reference monitors (IRMs) have the additional benefit that they are

amenable to formal verification. Such certified IRMs allow the in-lining process to

be shifted to an untrusted third party, with the resulting self-monitoring code inde-

pendently verified by the code-recipient. A certifying IRM framework is illustrated

in Figure 8. Our work on .NET bytecode IRMs introduced a verification mechanism

that formalized policy adherence as type-safety [17], permitting a simple client-side

type-checker to independently verify that third-party in-liners yield self-monitoring

code that is provably policy adherent on all possible runs. Our later work on Action-

Script Flash IRMs for web ad security has introduced heavier-weight but stronger

IRM verification systems based on model-checking [19].
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4.2. Information Flow Control

Information flow policies constrain the runtime flow of data from private sources

to public sinks rather than constraining the program’s history of observable op-

erations. This is elegantly expressible as a static code semantics that augments a

traditional type system with a lattice of classification labels [21]. For example, the

programmer might annotate high-confidentiality integer variables with type inthigh
and low-confidentiality integer variables with type int low . To protect against ex-

plicit information leaks, a type-checker can verify at compile-time that there are no

explicit or implicit dataflows from variables or expressions of type τhigh to those of

type τlow . The Java Information Flow (JIF) system implements information flow

controls via static type-checking for Java programs [22].

Two of the most significant long-term challenges for language-based information

flow control research concern covert channels and robust declassification. Covert

channels allow a passive attacker to infer confidential information from program

outputs not intended for information communication, such as program timing and

power consumption rates. For example, differential power analysis (DPA) [23] has

been used to extract cryptographic keys from smart cards even in the absence of ex-

plicit or implicit, confidentiality-violating flows. Such power channels are extremely

difficult to model accurately because they concern hardware details that can vary

at the manufacturing level.

Robust declassification addresses the reality that most secure systems must in-

tentionally release confidential information under certain conditions in order to

perform their functions. A classic example is a password-checker, which divulges

one bit of information about the confidential password to the attacker every time

it rejects an incorrect guess. An information flow control system that has no es-

cape mechanism by which a programmer can safely declassify information is too

restrictive to be useful for most realistic applications. However, it is precisely the

places where sanctioned declassification takes place that confidentiality vulnerabili-

ties are most likely to arise. Therefore, an important ongoing area of study involves

inventing technologies that can quantify and warn the programmer about excessive
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information leaks at declassification sites.

5. Summary and Directions

Semantics-based computing is essential for supporting intelligent, autonomous

agents and formal verification systems that reason about data and system properties

at all levels, from operating systems to applications to the data they manipulate.

However, the increasing adoption of semantic computing technologies introduces

both new security challenges and new security opportunities. Challenges arise from

the increasing availability of deep semantic information about confidential data.

Inference control and data mining technologies can exploit this information to im-

plement new forms of confidentiality attacks, but the same technologies form the

basis for the most powerful defenses against these attacks. Similarly, language-based

security technologies, such as certifying in-lined reference monitors and static, type-

based information flow controls are important for reasoning about the programmatic

components of the semantic web and other semantic computing frameworks.
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