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Abstract—Weaponized software is the latest development in
a decades-old battle of virus-antivirus co-evolution. Reactively
adaptive malware and automated binary transformation are two
recently emerging offensive and defensive (respectively) technolo-
gies that may shape future cyberwarfare weapons. The former
intelligently learns and adapts to antiviral defenses fully automati-
cally in the wild, while the latter applies code mutation technology
to defense, transforming potentially dangerous programs into safe
programs. These technologies and their roles within the landscape
of malware attack and defense are examined and discussed.

“Prepare to hear of occurrences which are usually deemed
marvellous. Were we among the tamer scenes of nature, I
might fear to encounter your unbelief, perhaps your ridicule;
but many things will appear possible in these wild and
mysterious regions which would provoke the laughter of those
unacquainted with the ever-varied powers of nature: . . . ”

—Mary Shelley (Frankenstein, 1818)

I. MALWARE EVOLUTION: PAST AND PRESENT
The last few years have witnessed a fundamental paradigm

shift in the objectives, power, and capabilities of malicious
software (malware). Although malware technologies have
historically undergone steady increases in sophistication, their
history has been punctuated by periodic revolutionary leaps
that have demanded heightened attention from the security
community. Most recently, the emergence of advanced cyber-
warfare weaponry and tactics is now shaping a new era of
weaponized software attacks and defenses. This new theater of
war demands new offensive and defensive software innovations
from government, academia, and industry.

The first viruses of the early-to-mid 1980s were tiny
programs consisting of just a few hundred bytes of machine
code, often crafted by graduate students who were more
interested in intellectual challenge than serious damage [1].
A major perceptual change occurred in 1988 when one of
these intellectual exercises, the Morris worm, went wrong and
infected a significant portion of the internet, denying service
and costing an estimated millions of dollars in cleanup [2]. This
brought malware to the attention of the wider public, giving
birth in the ensuing years to an industry of antivirus defense.

Early malware detection systems relied upon simple byte
scanning [3], which prompted malware authors to equip their
creations with polymorphism. Polymorphic malware randomizes
or mutates most or all of its constituent bytes on each propaga-
tion so that no two instances look alike. This frustrates syntax-
based detectors, such as signature-matchers, which identify
malware by scanning for malware-specific byte sequences
(signatures). The most widely employed polymorphic strategy
continues to be packing—compression and/or encryption of

the malware payload with a randomly chosen dictionary and/or
key. This randomizes all payload bytes each time the virus
propagates, leaving few meaningful bytes visible to defenders.

The few remaining code bytes typically encode the decryp-
tor, which must remain directly executable. This potential weak
point is typically addressed through malware metamorphism—
obfuscation algorithms that change the decryptor’s binary
implementation by randomly reordering instructions, adding
junk code, or applying semantics-preserving transformations.
The earliest dedicated polymorphic mutation engines appeared
in 1991 (e.g., MtE), and packing-based, metamorphically-
assisted mutation has since become a mainstay of virus stealth.

Over the last decade, two additional leaps in malware
technology rose to prominence: zero-day exploits and botnets.
In 2003 the Slammer worm infected an estimated 90% of
infectable hosts within minutes of its release. Although the
primary vulnerability it exploited was not a zero-day, the
unprecedented speed with which it exploited a relatively new,
widely unpatched vulnerability placarded the inadequacies
of semi-manual responses to intrusions. Fully automated
methods of reliably detecting and quarantining previously
unseen malware, and patching newly discovered vulnerabilities,
became a defensive imperative. Malware authors now prize
and market zero-days as potent vehicles for rapid, large-scale
attacks [4], [5]. Such vulnerabilities dominated the list of top
cyber threats for the first quarter of 2013 [6].

The rise of numerous botnets in 2007, including the prolific
Cutwail and Srizbi botnets, introduced a new wrinkle for
defense: adversarial command and control (C&C). Through a
C&C network, bot-masters can respond to defender gambits by
uploading malware software updates and launching coordinated
attacks against rival targets. This has transformed what was
previously an isolate-and-destroy scenario for defenders into a
chess match in which each side seeks to systematically capture
and destroy the other’s assets (cf., [7]).

As such, it is no longer possible to win most prolonged
cyber-battles with only a strong defense. Offensive capabil-
ities are needed to take down rival C&C servers, perform
reconnaissance, and infiltrate and sabotage enemy networks.
Accordingly, the USAF recently acknowledged the existence of
at least six cyber-weapons in its war arsenal [8], and DARPA
is now actively soliciting cyberwarfare research that augments
both national defensive and offensive capabilities [9].

While the sophistication of malware capabilities has thus
risen steadily with the increasing profit available to cyber-
criminals, past malware pales in comparison to this emerging
new generation of weaponized software. In 2010, the Stuxnet
virus infected and destroyed nuclear centrifuges in the high-



security uranium-enrichment plant in Natanz, Iran [10]. To
accomplish this considerable feat, Stuxnet exploited an unprece-
dented four zero-day vulnerabilities, used stolen cryptographic
credentials to authenticate itself, accessed C&C servers to
self-update, and crossed architectural boundaries to infect
centrifuge-controlling PLCs. The DuQu, Flame, and Gauss
viruses have subsequently been identified as cyber-weapons of
similar complexity that were likely authored by the same or
collaborating nation-states [11].

Surprisingly, although Stuxnet and its variants boast superior
capabilities in almost all aspects of malware development, they
have little or no polymorphic functionality; each copy is roughly
the same, making them relatively easy to detect once identified.
Despite this apparent weakness, evidence indicates that Flame
(which is a colossal 20MB in size) successfully operated in the
wild, infecting large organizations and gathering intelligence,
for over two years before it was finally discovered [12].

This embarrassing history testifies to a serious scalability
problem in the modern antivirus industry. Malware analysts
currently face a backlog of unclassified software samples so vast
that complex monstrosities like Flame can hide in plain sight
for years before analysts manage to fully vet them. Faster, more
powerful automation is required to better prioritize unanalyzed
software in these databases, and potentially detect previously
unseen malicious behavior in the wild.

The deficiency also highlights an obvious avenue of po-
tential future progress toward a strong, national cyber-offense.
Hiding in plain sight is unlikely to be an effective stealth
strategy for weaponized software in the long-term future.
Advances in software stealth are therefore needed by nation-
states wishing to maintain superiority in the cyber arms race.

II. NEXT-GENERATION ATTACKS
A. Reactively Adaptive Malware

Reactively adaptive malware [13], [14] is one such offensive
advance that we have been studying in the Software Security
Lab at The University of Texas at Dallas (UTD). Such malware
capitalizes on the observation that nearly all conventional
malware obfuscation strategies have a common weakness:
their mutations are undirected. For example, encryption-based
polymorphic viruses randomly choose new encryption keys in
the hope that the resulting random cyphertexts will contain
few common, distinguishing features or patterns. Defenders
exploit this weak assumption by unearthing invariant feature
patterns, such as high entropy or unique decryptor logic, to
craft signatures that match all variants of the malware. Once a
signature is known, future mutations can be reliably identified
(at least until a radical change to the malware is effected—
usually with manual attacker assistance via a C&C server).

In contrast, reactively adaptive malware undergoes directed
mutation. It intelligently learns a model of how signature-
matchers identify malware, and then reverses it to discover
obfuscations that defeat them. This allows it to quickly adapt
and evade signature updates. Reactively adaptive malware thus
instantiates true stealth rather than mere undirected diversity.

In recent work, we demonstrated the feasibility and effec-
tiveness of a naturally reactively adaptive approach dubbed
Frankenstein [14]–[16]. Rather than mutating purely randomly,
Frankenstein re-implements itself entirely from code fragments
that it harvests from (benign) programs already present on
infected victim machines. Like the monster created by the
scientist in Shelley’s novel, each Frankenstein mutant is

therefore the product of stitching together pilfered body parts
from its unsuspecting victims.

Unlike conventional metamorphic malware, Frankenstein’s
corpus of mutations is therefore not limited to a finite set of
code transformation rules; it can learn new implementations of
itself from the ever expanding corpus of programs it encounters
during its travels. Moreover, since each mutation is composed
entirely of code from “normal” (usually benign) programs, they
tend to exhibit statistical features typical of benign software.

B. A Frankensteinian Example
Table I shows some assembly code from two Frankenstein-

generated mutations of an oligomorphic obfuscator. The first
column expresses the function of each code fragment as
a goal predicate. Mutation #1 was generated from code
fragments (gadgets) harvested from the Windows calculator
application (calc.exe). Mutation #2’s gadgets were harvested
from Microsoft Paint (mspaint.exe). After mutation, we
disassembled the victim applications to determine the sources
of the gadgets Frankenstein chose. These origins are reported
to the right of each code fragment.

The results show the natural diversity and even creativity
that can arise from Frankenstein’s mutation strategy. For exam-
ple, while the first mutation of the second goal (L′

1 = L1 + 1)
uses a simple add instruction to increment the eax register, the
second mutation uses address arithmetic to increment eax by
moving it into the edi register (via the mov instruction) and then
loading the effective address of edx+1 (via the lea instruction).
Meanwhile, the ancillary pop ebp instruction from the first
mutation’s implementation is later used to achieve its next goal
of locating a temporary variable v1 at location ebp-4.

Despite the radically different functionalities of malicious
payloads and benign victim programs, there is typically no
shortage of gadgets available in the latter to implement the
former. For example, to implement the first mutant’s third
gadget, Frankenstein repurposed the calculator’s code for com-
puting hyperbolic sines (asinhrat); whereas the corresponding
gadget from the second mutant was lifted from a subroutine
that draws with an opaque paint brush (BltReplace). The size
and code diversity of most applications compiled from myriad
optimizing Windows compilers, and the richness of the Intel
CISC instruction architecture, provide Frankenstein an ample
supply of diverse gadgets with which to implement its payloads.

For illustration purposes, the goal predicates in Table I are
fairly simple and low-level, and the gadget implementations
are relatively small and concise. However, with more abstract,
higher-level goals, Frankenstein can find even an even more
diverse array of implementations containing larger, more
complex gadgets. For example, goals L′

1 = L1+1 and v1 = L1

could be coalesced into the single goal v1 = L′
1 = L1 + 1,

prompting Frankenstein to consider gadgetry that performs
both assignments simultaneously, or in reverse order, or with
instruction sequences that intertwine the two operations.

III. NEXT-GENERATION DEFENSES
What detection methods are feasible for combating next-

generation stealth technologies like Frankenstein? One avenue
of clear promise is semantics-based detection [17], which
statically infers models that approximate how untrusted software
might behave when executed, irrespective of the syntax with
which it implements that behavior. Thus, untrusted software is
judged by what it will do, not what it looks like.



TABLE I. TWO FRANKENSTEIN MUTATIONS OF AN OLIGOMORPHIC OBFUSCTATOR

Mutation from Windows Calculator Mutation from Microsoft PaintGoal
Predicate Mutant #1 Gadget Origin Mutant #2 Gadget Origin
L1 = 0 push 0x19

pop edx
xor eax, eax

CCalcEngine
xor eax, eax
cmp [ebp+0x10], eax SetupPenBrush

L′
1 = L1 + 1 pop ebp

add eax, 1 (misc)
mov edi, eax
lea eax, [edi+1] GetBilinearFilteredSample

v1 = L′
1 push 0x80000000

push edi
mov [ebp-4], eax

asinhrat
mov [ebp-4], eax
push [esi+30]
mov eax, [ebp+8]
push [esi+0x2c]
push [ebp+0x10]

BltReplace

L2 = arraySize mov eax, [ebp+8]
mov ecx, [ebp+0x14] Vector iterator

mov edi, [ebp+0x14]
and [0x108b40c], 0
and [0x108b408], 0
mov [0x108a2b0], ebx
mov [0x108a2ac], edi
mov [0x108b410], ebx

PGSSkeletalStrokeHelper

L12 = v1 mov eax, [ebp-4]
mov edi, [ebp+8] scale

mov ecx, [ebp-4]
mov edx, [ebp-8] AddRef

L6 = &CipherText push [ebp-4]
mov eax, [ebp+0xc] CreateDecoderFromResource

mov eax[ebp+0xc]
mov esi, ecx CWIAMgr::Acquire

.

.

.

...
...

Unfortunately, semantic-based detectors typically require a
model of malicious behavior to which untrusted software can be
compared. By definition, good models rarely exist for zero-day
exploits. Moreover, fundamental limits of computability dictate
that there will always be some software implementations too
opaque for such detectors to learn [18], and that will therefore
either be conservatively rejected (potentially harming mission-
critical programs) or unsafely permitted (inviting attacks).

Software monitoring (e.g., via virtualization) avoids some
of these limitations by catching malicious behavior as it occurs
instead of trying to predict it statically. However, significant
classes of mission-critical software cannot be virtualized
(e.g., the PLCs infected by Stuxnet, which interface with
hardware), and the monitors themselves are often susceptible
to compromise. For example, the Java VM, despite its array
of sandboxing, type-checking, and object encapsulation safety
measures, has been plagued with about 20 highest-severity zero-
day vulnerabilities during the first quarter of 2013 alone [19].

Our ongoing work at UTD has been exploring an unusual
alternative: automated, preemptive, binary transformation of
untrusted code [20]–[23]. Rather than merely inspecting un-
trusted programs for malicious programming, or executing
them as-is in a heavily monitored environment, our work
preemptively modifies untrusted binary programs before they
execute to make them incapable of violating system- or user-
specified safety policies. The code transformations are carefully
designed so that non-malicious code suffers no ill effects; its
(safe) behaviors are preserved. However, malicious (possibly
concealed) programming is rendered inoperable.

An intriguing advantage is that the transformation algorithm
need not actually detect all malicious code in order to
successfully deactivate it. For example, to secure an operation
f(x) whose safety depends on the runtime value of argument
x (which cannot be statically predicted in general), it can
conservatively replace f(x) with alternative code that proceeds
at runtime only when x is safe. In this way the need to statically
predict whether x is potentially unsafe is avoided, bypassing
the historic computability limitations of static analyses.

Moreover, unlike traditional runtime monitors or virtual
machines, code transformation results in a relatively small, self-

contained, self-monitoring, binary program that is amenable
to automated, formal security analysis. Our prior work has
developed fully automated verification systems that can in-
dependently prove that each transformed program has been
rendered incapable of violating the security policy [20], [22].
This eliminates the need to trust the transformation algorithm or
any of the (possibly complex) infrastructure that was needed to
implement it, providing exceptional levels of security assurance.

As an example, Fig. 1 illustrates the system architecture of
REINS [20], which automatically transforms Windows native
code applications by instrumenting them with security checks
that enforce a specified safety policy. REINS takes only the
raw application binary and the policy as input. It requires
no application source code or debugging information, and its
transformations are agnostic to the source language, compiler,
and tool chain used to generate the original program. Formal
verification of the transformed code’s safety is quick, taking
about 0.4 s/MB on a standard laptop, and the transformations
introduce an average of just 2.4% runtime overhead. In general,
REINS rarely knows whether the programs it transforms were
malicious. It blindly transforms them such that any policy-
violating functionality that may have been lurking within them
is rendered unreachable or inert.

Of course REINS is not a silver bullet. It still has the
limitation of requiring a security policy specification to enforce.
If the correct policy is unknown (e.g., the threat is zero-day),
an adequate specification might not be available. However, in
some cases even this requirement can be relaxed.

For example, the STIR system [21] protects binary native
code applications from return-oriented programming (ROP)
attacks [24] by imbuing them with the power to randomize their
own basic block layouts each time they are loaded. In order
for ROP attacks to be effective, attackers must typically predict
the address locations of abusable gadgets in victim process
address spaces. By frequently re-randomizing all such locations,
successful prediction through rote probing becomes vanishingly
improbable. Thus, ROP attacks are stymied by the transforma-
tion without the need for a precise and comprehensive policy
that identifies all exploitable software vulnerabilities.
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Fig. 1. System architecture of a binary code transformation system

IV. CONCLUSIONS AND FUTURE WORK
While research on offensive software technologies has

historically focused on anticipating future attacks, the rise
of cyberspace as a theater of war now also demands that such
research be additionally applied for purposes of active national
defense through strong offensive capabilities. Next-generation
software stealth technologies are likely to be an important part
of tomorrow’s cyber-arsenals.

To defend against this futuristic weaponry, there is a tremen-
dous need for research on better malware detection paradigms
that go beyond mere syntactic inspection or incomplete
simulation of untrusted code. Automated, preemptive, binary-
transformation is one promising alternative that offers numerous
advantages over traditional approaches. By conservatively
modifying potentially dangerous byte sequences in untrusted
programs before they run, these transformation algorithms can
successfully preclude malicious software behavior even when
static analyses conservatively fail, and when simulations prove
inconclusive. Recent advances have shown that the technology
is applicable to large-scale, production-level software products
even when their source code and implementation details are
unavailable. Formal, automated verification provides the highest
level of security assurance for the resulting transformed code.

Although these offensive and defensive technologies offer
great promise, there is still much work that remains to be
done. On the offensive front, malware stealth technologies like
Frankenstein offer resistance to syntax-based detection but not
semantic-based detection. Future work must therefore consider
reactively adaptive semantic obfuscation of payloads.

On the defensive front, the effectiveness of code-transfor-
mation often remains contingent upon precise, comprehensive
security policies that formally distinguish permissible from
impermissible software behavior. Such policies are extremely
difficult to manually formulate, even for domain experts.
Therefore, automated inference of unsafe software and user
behavior is needed as a support infrastructure to ensure that
these techniques scale with the increasingly diverse range of
software systems and security needs posed by government and
industry. Our ongoing work on secure data- and stream-mining
is introducing new, more powerful learning algorithms for these
domains [25]–[27].
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