Efficient Multistream Classification using Direct
Density Ratio Estimation

Ahsanul Haque*, Swarup Chandra*, Latifur Khan*, Kevin Hamlen*, and Charu AggarwalT
*Department of Computer Science, The University of Texas at Dallas, Richardson, TX, USA
Email: {axh129430, src093020, lkhan, hamlen} @utdallas.edu
fIBM T. J. Watson Research Center, Yorktown, NY, USA, Email: charu@us.ibm.com

Abstract—Traditional data stream classification techniques
assume that the stream of data is generated from a single
non-stationary process. On the contrary, a recently introduced
problem setting, referred to as Multistream Classification involves
two independent non-stationary data generating processes. One
of them is the source stream that continuously generates labeled
data instances. The other one is the target stream that generates
unlabeled test data instances from the same domain. The distri-
butions represented by the source stream data is biased compared
to that of the target stream. Moreover, these streams may have
asynchronous concept drifts between them. The multistream
classification problem is to predict the class labels of target
stream instances, while utilizing labeled data available from the
source stream. In this paper, we propose an efficient solution
for multistream classification by fusing drift detection into online
data shift adaptation. Experiment results on benchmark data sets
indicate significantly improved performance over the only existing
approach for multistream classification.

Keywords—Multistream Classification; Data Shift adaptation;
Direct Density Ratio Estimation

I. INTRODUCTION

Data stream mining has attracted researchers due to its
importance in today’s connected digital world. However, until
recently, researchers have focused on mining a single stream
of data [1], [2], [3]. Even if data is received from more than
one streams simultaneously, all of them are assumed to be
generated from a non-stationary data generating process [4].
Therefore, all such streams can be combined into a single
stream of data, as data from these streams represent the same
distribution. However, combining streams may not be effective
in particular scenarios, especially if these streams represent
different distributions with asynchronous and independent con-
cept drifts among them. This type of scenarios may arise if data
is generated by different but related non-stationary processes.

For example, consider building a model for predicting sen-
timent of tweets [5]. Typically, sentiment is not provided as the
ground truth along with a tweet. So, in order to collect training
data, a few users may agree to provide tweets along with
sentiment label information. On the contrary, tweets on which
the model needs to analyze the sentiment may come from any
twitter user. Users providing the training data may represent
only a small portion of the population. Therefore, if we assume
two streams of data, one from the twitter users providing
labeled data, another from the whole population of twitter
users, a sampling bias may exist between the distributions
represented by these streams of data. This type of data shift
between streams of data may occur due to limited supervision,
or lack of control over the data generating process [4].

A new problem setting called Multistream Classification
has been introduced in [4] to address similar scenarios as
discussed above. It involves two simultaneous streams of data.
One of the streams, called the source stream, provides labeled
training data. The other stream, called the target stream,
provides only unlabeled test data. The classification task is
to use the labeled data from the source stream for classifying
unlabeled data from the target stream efficiently. As pointed
out before, combining these streams may result in a different
overall distribution compared to the individual distributions.
Moreover, independent and asynchronous concept drifts may
occur in either stream over time. Therefore, traditional tech-
niques for data stream mining may not be effective if applied
on the combined stream.

In this paper, we propose an efficient approach for multi-
stream classification. The approach uses two sliding windows
for storing recent instances from the source and the target
stream. Data shift between these streams is addressed by
weighing each source instance based on the density ratio. Let
Ps(-) and Pr(-) be the distributions represented by recent
source and target data instances respectively. Density ratio for
an instance x is defined by B(x) = 1;28 A Gaussian kernel
model is used in the proposed approach for direct density ratio
estimation. The model is updated online with incoming in-
stances. An ensemble classifier is used for classification, where
each model is trained on weighted source stream instances.

The proposed approach has inherent capability of address-
ing asynchronous concept drifts in multistream classification.
It uses density ratios estimated by the Gaussian kernel model
for detecting any change between distributions represented
by weighted source and target stream data. If a significant
change is detected, the Gaussian kernel model for density
ratio estimation is updated. Moreover, weights for the source
stream labeled data are re-evaluated using the updated kernel
model, and the ensemble classifier is updated. Efficiency of the
proposed approach stems from the fact that it uses the same
kernel model for addressing both data shift and asynchronous
concept drift in multistream classification. Experiment results
on benchmark data sets show the efficiency of the proposed
approach in terms of both accuracy and execution time.

II. RELATED WORK

A fundamental assumption in data mining is that both
training and test data represent the same data distribution [6].
However, this assumption may be violated in practical real-
world applications due to limited supervision, or lack of
control over the data gathering process. Addressing arbitrary

differences between training and test data distribution is a diffi-
cult problem [7]. That is why, most approaches addressing this
challenge assume that the training and test data distributions,
denoted by Py.(-) and P;.(-) respectively, are related by a
covariate shift assumption. More specifically, the relationship
between the training and test data distributions is such that
Pi.(ylx) = Pi(ylx) and Pi.(x) # Pi(x), where x and y
denote covariates and label of the data instance respectively.
Kernel Mean Matching [7] and KLIEP [8] are among the
techniques that are available in the literature for handling
covariate shift in data. However, these approaches work only
on fixed-size training and test data.

Kawahara and Sugiyama [9] extended KLIEP for direct
online density ratio estimation. However, they considered a
single stream of data, where set of training/reference and
test data instances are determined by a sliding window. In
this paper, we consider multistream classification problem [4],
where two simultaneous data streams, i.e., source and target
streams over the same domain are considered. MSC (Multi-
Stream Classifier) [4] is the only known existing technique for
multistream classification. However, it suffers from a number
of shortcomings. First, it uses a hybrid ensemble classifier
with complex update procedure. Second, it executes expen-
sive concept drift detection simultaneously over the two data
streams for handling asynchronous concept drifts. Third, once
a concept drift is detected in either stream, it uses expensive
batch algorithm for data shift adaptation. These shortcomings
add a significant overhead to the execution time.

III. THE PROPOSED APPROACH

In this paper, we propose an efficient solution for multi-
stream classification by fusing drift detection into data shift
adaptation. We refer to this approach as FUSION (eFficient
mUItiStream classification using direct denslty estimatiON).

Update
Y
Source Stream D::;:‘;zz:‘i" Drift Detection
(Labeled) i (DRM) Module (DDM)
A
Non-statl?nary Train Model Yes @ No
Domain
v
Target Stream Ensemble Class
(Unlabeled) Classifier Prediction

Fig. 1: Overview of FUSION

The core components of FUSION have been illustrated in
Figure 1. It has four modules, i.e., Density Ratio Estimation
(DRM), Drift Detection (DDM), classification, and update. Let
S and 7 denote the source and target stream respectively. Two
sliding windows are used to store recent instances from S and
T, referred to as source and target sliding window, and denoted
by Wy and Wr respectively. The maximum allowable size,
and the current sizes of Wg and Wy are denoted by N,,,
Ng, and N respectively.

FUSION uses an ensemble classifier for classification. The
first model in the ensemble is trained on the initial instances
from Wg. However, to correct possible covariate shift between
S and 7T, each instance from the sliding window is given an
importance weight. FUSION uses the density ratios estimated
from the Density Ratio Estimation Module (DRM) as the
importance weights. Label for any new instance arriving in T
is predicted by taking the majority voting from the ensemble
classifier. DRM updates the model for density ratio estimation
incrementally with each incoming instance in either window.

As new instances arrive in S or 7, the Drift Detection
Module (DDM) detects any significant drift between the dis-
tributions represented by weighted source stream data, and
target stream data. Once a drift is detected, DRM is updated
to incorporate the change, and weights for source stream data
are re-evaluated. Subsequently, the new weights are used for
training a new model, and updating the ensemble classifier.
Next, we discuss the modules in FUSION.

A. Density Ratio Estimation Module (DRM)

FUSION uses a Gaussian kernel model similar to [8] for
direct density estimation. The model is updated incrementally
as new instances appear in S or 7. Next, we describe the
density ratio estimation module used by FUSION, and its
online update procedure.

1) Gaussian kernel model: At time t, we define source
distribution Pg and target distribution Pr by the distributions
represented by data instances in YWg and W respectively
at that moment. Instances from S are labeled, and used to
train the classification models. For any instance x from S,

Bx) = gg; is used as its importance weight in the learning

process. Using Gaussian kernel model, 8(x) is estimated as
follows:

Nt)
-3 Wk, (x,wg)))
i=1
where ng) is the *" instances in W, o = {ai}il\fl is the set
of parameters to be learned, and K, (-,-) is a Gaussian kernel

with kernel width o, i.e., K, (x,x') = exp{ [” . The

target sliding window instances, YW1, works as the Gaussian

centers. We choose kernel width o by likelihood cross valida-
tion following [8].

2) Learning parameters: The target distribution is esti-
mated by weighted training distribution, Pr(x) = 5(x)Ps(x).
The objective of minimizing the Kullback-Liebler divergence
from Pr(x) to Pr(x) leads to the following convex optimiza-
tion problem-

Zlog(ZaZ K, (W9, Wi))

maximize
CT R e
Ns Np _
subject to — ZZO@ - (,Wg)) =1,
j=11i=1
and o, a9,...,an, > 0. 2)

The set of parameters & = {c;} 7 in model (1) is learned
by solving the above optimization problem.

3) Updating parameters online: Kawahara and Sugiyama
have proposed an online update method for « in [9]. However,
unlike multistream classification scenario, this method assumes
only one stream of data with a sliding window for defining the
set of reference and test data instances. In this paper, we adapt
this method for multistream classification scenario.

In case of a new instance in S, only the constraints in the
optimization problem in Eq. (2) need to be satisfied, as the
instance does not affect the optimization problem directly. On
the contrary, a new instance in 7 directly affects the problem in
Eq. (2). Therefore, o needs to be updated along with constraint
satisfaction in this case.

The method for updating o online is based on the on-
line learning technique for kernel methods proposed in [10].
Assuming that 5(-) is searched within a reproducing kernel
Hilbert space H, the following reproducing property holds-

(B(), K(-,x")) = B(x) (€)

Considering the empirical error for the new instance in 7,
and the reproducing property stated above, « is updated as
follows-
i=1,...,Npr—1
i= Nrp “)

@\s

& +— (1— n)\)aH_l
A ﬁ(W<NT7+1>)

where A and 7 denote the regularization parameter and the
learning rate respectively.

B. Training and Classification

FUSION uses an ensemble classifier, denoted by M. It
trains the first model in the ensemble using the initial Ng
and Np instances in Wg and Wrp respectively, referred
to as the warm-up period instances. Importance weights for
Wg instances are estimated by the Density Ratio Estimation
(DRM) module as follows-

B(wy) = Zaj - (WP W) i=1

Any learning algorithm that can incorporate importance
weight of training instances can be used in FUSION. As
new instances continue to arrive in S or 7, the ensemble
classifier M is updated if there is a drift between distributions
represented by weighted source stream and target stream data.
FUSION predicts the majority voted class as the class of an
incoming test instance in the target stream.

Ns (5)

C. Drift Detection Module (DDM)

As mentioned before, Py is estimated by Pr = (3(x)Ps(x).
The classifier is updated following a drift, i.e., a significant
difference between Pr and S(x)Ps(x). Let a° be the set of
initial parameters. As mentioned before, these parameters are
updated online as new instances arrive in S or 7. Let a! be
the set of parameters at time ¢. A drift is detected at time ¢ if-

o, 00 s ()

Sglanm .

s ()

>T

where 3, and j3, are density ratios defined by a° and of
respectively, and 7 is a user defined threshold.

D. Classifier Update

Once a drift is detected, or the sliding windows reach
the maximum capacity, first the Gaussian kernel model of
DRM (specified in Eq. (1)) is updated by re-evaluating o
as discussed in Section III-A2. Then, a new model is trained
based on instances from Wy along with weights calculated by
the updated DRM. Next, the ensemble classifier M is updated
using the newly trained model. The maximum number of
models M can contain is L. If M contains less than L models
currently, the new model is simply added to M. Otherwise,
the worst model in the ensemble is replaced by the new model.
Finally, W g and Wr are re-initialized.

IV. EVALUATION

Dataset # features # classes # instances
ForestCover 54 7 150,000
KDD 42 23 200,000
PAMAP 53 19 150,000
SynRBF@002 70 7 100,000
SynRBF@003 70 7 100,000

TABLE I: Characteristics of Data Sets

A. Data sets

Table I lists the data sets used in the experiments. The first
three data sets are from real-world. SynRBF@X are synthetic
data sets generated using RandomRBFGeneratorDrift from
MOA [11] framework, where X is the Speed of change of
centroids in the model. We generate two such data sets using

= {0.002,0.003} to evaluate the approaches on concept
drifts having various intensities and frequencies. Each of these
synthetic data sets contain data having 70 attributes and from
7 classes. We simulate source and target streams from each
data set following the method mentioned in [4].

B. Setup

We have used the only available method for multistream
classification, i.e., Multistream Classifier (MSC) [4] as the
baseline approach. MSC uses Support Vector Machine (SVM)
as the base classifier. To implement SVM, we used weighted
LibSVM library [12] with RBF kernel as suggested in [4]. For
a fair comparison, we have also used SVM as the base classifier
in the proposed approach (FUSION). The kernel width (o) for
the Gaussian kernel model in FUSION is selected by likelihood
cross validation. We have used N,,, = 500 and L = 6 as the
default setting, if not mentioned otherwise. Moreover, we use
A =0.01 and n = 1 in the experiments following [9]. We have
implemented both approaches using Python version 2.7.6. We
have executed all the experiments in a /inux machine with 2.40
GHz core and 16 GB of main memory.

Data Set FUSION MSC.
Accuracy Time (Sec) Accuracy Time (Sec)
ForestCover 76.23 305.82 59.62 443.46
KDD 98.16 271.24 94.36 765.18
PAMAP 90.05 292.51 83.79 499.60
SynRBF@002 54.03 319.72 37.98 465.36
SynRBF@003 53.87 336.99 38.89 513.14

TABLE II: Classification Accuracy and Execution Time

C. Performance

Classification accuracy of FUSION on different data sets
have been shown in Table II. We observe that FUSION
achieves much better accuracy compared to the existing base-
line approach (MSC). The difference in performance is more
evident in case of the synthetic data sets, where we alter degree
of concept drifts intentionally to test the adaptability of the
approaches.

We have reported average time to process 1000 instances
(in seconds) by the approaches on different data sets in
Table II. The major contributing factor in the time complexity
of FUSION is learning « in the Gaussian kernel model. Since
a is learned only once at the beginning, and then updated
online onward, FUSION is expected to be faster than MSC.
Results from Table II shows that FUSION exhibits much better
performance in terms of execution time compared to MSC.

100 4 Accuracy [40 100 4 Accuracy [1000
Execution Time Execution Time

%

Execution Time (Seconds)
Accuracy
. .
\7
\
T
Execution Time (Seconds)

(a) Ensemble Size (b) Maximum Window Size

Fig. 2: Parameter Sensitivity of FUSION on PAMAP

D. Sensitivity

In this section, we examine the sensitivity of FUSION to
the ensemble size (L), and the maximum size of the sliding
windows (IV,;,). We plot the average accuracy and execution
time taken to process 1000 data instances by FUSION with
different values of the parameters in Fig (2). It can be observed
from Fig. (2a) that FUSION is not much sensitive to the size
of the ensemble. As mentioned before, unlike MSC, ensemble
management is much lightweight in FUSION compared to
MSC. Therefore, changing ensemble size does not affect
the execution time of FUSION significantly. Sensitivity of
FUSION to N, is shown in Fig. (2b). The accuracy slightly
increases with increasing N,,,. Importantly, we observe that the
execution time of FUSION increases gradually with increasing
N,,,. This is expected since the execution time of FUSION

depends on N,,. Overall the experiment results indicate that
FUSION is not too much sensitive to the parameters.

V. CONCLUSION

In this paper, we have proposed FUSION, a framework
for efficient multistream classification. The main challenges
of multistream classification are data shift, and asynchronous
data drifts between source and target stream data. To address
these challenges, FUSION uses an ensemble classifier, where
each model is trained using weighted instances from the source
stream. The weights are estimated using a Gaussian kernel
model by estimating density ratios. The same model is also
used for addressing asynchronous drifts between source and
target stream. Experiment results show the effectiveness of the
proposed approach.

ACKNOWLEDGMENTS

This material is based upon work supported by The Air
Force Office of Scientific Research under award no. FA9550-
14-1-0173 and FA9550-12-1-0077, NSF award no. DMS-
1322353, and IBM faculty award (Research).

REFERENCES

[11 A. Haque, L. Khan, M. Baron, B. Thuraisingham, and C. Aggarwal,
“Efficient handling of concept drift and concept evolution over stream
data,” in 2016 IEEE 32nd International Conference on Data Engineer-
ing (ICDE), May 2016, pp. 481-492.

[2] A. Haque, L. Khan, and M. Baron, “Sand: Semi-supervised adaptive
novel class detection and classification over data stream,” in Thirteenth
AAAI Conference on Artificial Intelligence, Feb 2016, pp. 1652-1658.

[3] M. M. Masud, T. M. Al-Khateeb, L. Khan, C. Aggarwal, J. Gao,
J. Han, and B. Thuraisingham, “Detecting recurring and novel classes
in concept-drifting data streams,” in 2011 IEEE 1Ith International
Conference on Data Mining, Dec 2011, pp. 1176-1181.

[4] S. Chandra, A. Haque, L. Khan, and C. Aggarwal, “An adaptive frame-
work for multistream classification,” in The 25th ACM International
Conference on Information and Knowledge Management (CIKM), Oct
2016.

[5] E.Kouloumpis, T. Wilson, and J. D. Moore, “Twitter sentiment analysis:
The good the bad and the omg!” Icwsm, vol. 11, pp. 538-541, 2011.

[6] B. Z. Zadrozny, “Learning and evaluating classifiers under sample
selection bias,” in In International Conference on Machine Learning
(ICML), 2004, pp. 903-910.

[7]1 J. Huang, A. Gretton, K. M. Borgwardt, B. Scholkopf, and A. J. Smola,
“Correcting sample selection bias by unlabeled data,” in Advances in
neural information processing systems, 2006, pp. 601-608.

[8] M. Sugiyama, S. Nakajima, H. Kashima, P. V. Buenau, and M. Kawan-
abe, “Direct importance estimation with model selection and its appli-
cation to covariate shift adaptation,” in Advances in neural information
processing systems, 2008, pp. 1433-1440.

[9] Y. Kawahara and M. Sugiyama, “Sequential change-point detection
based on direct density-ratio estimation,” Stat. Anal. Data Min., vol. 5,
no. 2, pp. 114-127, Apr. 2012.

[10] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online Learning with
Kernels,” IEEE Transactions on Signal Processing, vol. 52, pp. 2165—
2176, August 2004.

[11] A. Bifet, G. Holmes, B. Pfahringer, P. Kranen, H. Kremer, T. Jansen,
and T. Seidl, “Moa: Massive online analysis, a framework for stream
classification and clustering,” in Journal of Machine Learning Research,
2010, pp. 44-50.

[12] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 2, no. 3, p. 27, 2011.

