
Exploiting the Trust Between Boundaries:
Discovering Memory Corruptions in Printers via

Driver-Assisted Testing
Xiaoyu He, Erick Bauman†, Feng Li∗, Lei Yu, Linyu Li, Bingchang Liu, Aihua Piao,

Kevin W. Hamlen†, Wei Huo, and Wei Zou
Institute of Information Engineering, Chinese Academy of Sciences, China

†University of Texas at Dallas, USA
{hexiaoyu, lifeng, yulei, lilinyu, liubingchang, piaoaihua}@iie.ac.cn, {erick.bauman, hamlen}@utdallas.edu

Abstract
TrustScope is a new, a practical approach to identifying vul-
nerabilities in printer firmware without actually touching the
firmware. By exploiting the trust between the firmware and
the device drivers, TrustScope analyzes driver software to
identify the driver endpoints that output the page description
language (PDL) code to be sent to the printer, extracts key
constraints for this output, generates new inputs violating
these constraints, and fuzzes the printer firmware with mali-
cious PDL code composed with these inputs yet conforming
to the grammar of the PDL accepted by the printer. To accom-
modate the black-box nature of printers, printer behavior is
observed strictly externally, allowing TrustScope to detect
more vulnerabilities than only those that produce crashes. A
variety of key optimizations, such as fuzzing without con-
suming paper and ink, and offline test case generation, make
printer vulnerability detection feasible and practical.

An implementation of TrustScope tested with 8 different
printers reveals at least one test case causing anomalous be-
havior in every printer tested. For most printers it finds multi-
ple vulnerabilities, 6 of which have been assigned CVE num-
bers, including buffer overflow and information disclosure.

CCS Concepts: • Security and privacy→ Embedded sys-
tems security.

Keywords: printer, security, vulnerability

* Feng Li is the Corresponding author. The authors from the Institute of
Information Engineering, Chinese Academy of Sciences, are also affiliated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
LCTES ’20, June 16, 2020, London, United Kingdom
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7094-3/20/06. . . $15.00
https://doi.org/10.1145/3372799.3394363

ACM Reference Format:
Xiaoyu He, Erick Bauman, Feng Li, Lei Yu, Linyu Li, Bingchang Liu, Aihua
Piao, Kevin W. Hamlen, Wei Huo, and Wei Zou. 2020. Exploiting the Trust
Between Boundaries: Discovering Memory Corruptions in Printers via
Driver-Assisted Testing. In Proceedings of the 21st ACM SIGPLAN/SIGBED

Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES

’20), June 16, 2020, London, United Kingdom. ACM, New York, NY, USA, 11
pages. https://doi.org/10.1145/3372799.3394363

1 Introduction
In recent years, the number of IoT devices has increased
rapidly. However, many IoT devices were not designed with
security in mind, and IoT security disasters appear regularly.
Printers are long-standing members of the IoT device family
and have played important roles in our daily life. Unfor-
tunately, as with many other IoT devices, the security of
printers tends to be overlooked, and we have witnessed a
number of printer attacks in the past several years. In 2013, a
vulnerability in HP printers was discovered that allowed an
unauthenticated, remote attacker to obtain sensitive informa-
tion [4]. In 2017, “Stackoverflowin” boasted to have hijacked
hundreds of thousands of printers across the Internet and
commanded them to emit pages of ASCII art [29]. In 2018,
there was a printer hack globally, urging people to subscribe
to PewDiePie [11].

Digital printers typically utilize (1) a page description lan-
guage (PDL) to describe the layout of a document, which
describes the appearance of a printed page at a higher level
than an actual bitmap output [32], and (2) a PDL interpreter
that comprises the core of the parsing and rendering compo-
nents in printer devices. Many manufacturers have imple-
mented their own PDLs, such as Adobe’s PostScript, HP’s
PCL, Brother’s Brother Type 3Metalanguage, Canon’s CaPSL,
Xerox’s XES, and so on [30]. PDLs are very complicated and
can be used in complex graphics drawing, image rendering,

with Key Laboratory of Network Assessment Technology, Chinese Academy
of Sciences, Beijing Key Laboratory of Network Security and Protection
Technology, and School of Cyber Security, University of Chinese Academy
of Sciences.

X. He, E. Bauman, F. Li, L. Yu, L. Li, B. Liu, A. Piao, K.W. Hamlen, W. Huo, and W. Zou. "Exploiting the Trust Between Boundaries:
 Discovering Memory Corruptions in Printers via Driver-Assisted Testing." In Proc. 21st ACM SIGPLAN/SIGBED Int. Conf.
 Languages, Compilers, and Tools for Embedded Systems (LCTES), pp. 74-84, 2020.

https://doi.org/10.1145/3372799.3394363

and font processing. For example, PostScript is a stack-based,
Turing-complete language that can be used to implement
mathematical operations, XML parsing, and even web ser-
vices, in addition to the functions mentioned above [7]. Due
to the complexity of PDLs, vulnerabilities often slip into their
interpreters [6, 7, 22].

The most direct approach to identifying vulnerabilities in
a printer’s PDL interpreter is to analyze the printer firmware
in the device. We therefore attempted to acquire firmware
for the top five vendors with the largest market share in
2018—viz., Canon, HP, Brother, Epson, and Kyocera—which
together comprise 73.4% of the market [28]. Table 1 lists the
results of our search, concluding that only firmware from
the top two vendors is available, and only in encrypted form.
Direct firmware analysis [10, 12] is hence not a viable option.
Fuzzing is an alternative approach, since it affords quick

testing of many inputs. However, black-box fuzzing is inef-
fective when the grammar of the input language is complex
and opaque to the fuzzer, as in the case of PDLs, which are
vendor-customized. This makes generation-based fuzzers
like Peach [20] or Sulley [19] infeasible. While PRET [16] has
exploited using grammar-based fuzzing for printer vulnera-
bility discovery, it is mainly targeted at web vulnerabilities,
such as print job manipulation and information leakage, and
requires experts to develop complex grammatical rules for
each PDL, resulting in limited scalability.
Nevertheless, attempts to fuzz printers yield an interest-

ing insight: The PDL code sent to the printers is generated by
printer drivers, which usually contain many security checks
to guard the PDL code that they pass to the printer. However,
attackers generating PDL code on a machine under their con-
trol can easily bypass these checks by modifying or replacing
the driver to send any PDL code they wish. Therefore, a se-
cure printer must re-check the same constraints in their PDL
interpreters (or parsers) within the printer firmware to avoid
being compromised. If printers do not comprehensively repli-
cate the constraint checks in the firmware, then this presents
an opportunity for attacks. The constraints contained within
printer driver software therefore reveal a basis for effective
fuzzing. Reverse-engineering and violating these constraints
to generate malicious PDL code allows us to fuzz printers
without acquiring their firmware.

Based on the above insight, we present TrustScope, a
fully-automated fuzzing tool capable of identifying vulner-
abilities in printers. At a high level, it exploits the trust be-
tween the printer drivers and printer firmwares (in print-
ers). The key idea is that printer firmware might not per-
form the security checks (e.g., integer overflow) again, since
printer drivers have already done so while generating the
PDL code, and printer firmwares often trust the printer dri-
vers. Therefore, by leveraging the printer drivers to gener-
ate syntactically-consistent but semantically-incorrect (and
potentially malicious) PDL code using symbolic execution,
TrustScope can automatically identify vulnerabilities inside

Table 1. The firmware availability of top 5 printer vendors

Brand Market share Available? Unencrypted?

Canon 24.1% ✓ ✗

HP 21.4% ✓ ✗

Brother 11.3% ✗ -
Epson 9.8% ✗ -
Kyocera 6.8% ✗ -

printer firmware by feeding malicious PDL code to printers
without accessing the firmware code.

In short, we make the following contributions.
• Novel Framework. We present TrustScope, the
first framework to identify vulnerabilities in printer
firmware based on symbolic execution of the printer
driver’s code, by exploiting the trust between printer
driver and firmware.
• Efficient Techniques. We develop a set of enabling
techniques, including PDL output function identifica-
tion, interprocedural path identification and constraint
collection for symbolic execution, efficient mutations
for malicious PDL code generation, and printer state
inference.
• Implementation and Evaluation. We have devel-
oped a prototype of TrustScope atop the Windows
platform, and tested it with 8 printers from 5 vendors.
We have found at least one test case causing anoma-
lous behavior in every printer we tested, and we have
obtained 6 new CVEs.

2 Background
2.1 Working Flow of Printers and Assumptions
Figure 1 illustrates a typical flow of data from an application
to a printer. As justified by Table 1, we assume printers are
black boxes whose firmware code is not directly accessible.
However, when a user prints a document, the data typically
passes through several layers before finally reaching the
printer. In particular, when a user chooses to print a docu-
ment in some applications, it first passes the document to
the printer driver. The driver’s rendering modules generate
PDL code, which is then sent to the printer. Next, the PDL
code is parsed by the corresponding interpreter within the
printer firmware, and the result is finally printed onto paper.

According to Figure 1, we can view printer drivers as PDL
code generators, responsible for processing the application
data into a PDL form interpretable by the printer. We sus-
pect many printers today blindly trust the drivers installed
in users’ computers. For example, a printer may assume the
input PDL code generated by its device driver is well-formed,
and therefore completely trusts the PDL code it receives. In
other words, we suspect that the input sanitization in a dri-
ver’s PDL generator is not equal to the input sanitization in
its corresponding interpreter in the printer firmware. Based

User ComputerPrinter

PJL
Interpreter

PCL
Interpreter

PDF
Interpreter

PostScript
Interpreter

Printing
Unit

Document

Application

Adobe Office etc …

Printer Driver

Rendering Modules

Main
Module

Plugin-in

Plugin-in
Communication Interface

USB RAW IPP SMB PDL

Figure 1. Data flow when submitting a document to print

on these conjectures, our approach is to try to find these
inconsistencies and trigger bugs in the printers.

2.2 Key Observations
Our objective is to convert printer drivers into semi-valid
PDL code generators. In contrast to black-box PDL fuzzers,
this can ensure that the generated PDL code is as valid as
possible to pass most of the initial sanitization checks in the
PDL interpreter, which are mostly syntactic. On the other
hand, we leverage some critical elements in drivers and mu-
tate them in order to trigger inconsistencies (invalid seman-
tics). In particular, there are two kinds of critical constraints
that can help generate inconsistent PDL code: predicate con-
straints and data dependence constraints. Both types of con-
straints must be satisfied by legitimate PDL code.

Predicate constraints in PDL code.While generating PDL
operations “op a,b”, the driver checks the legitimacy of
operands a and b to ensure that both are within certain
ranges, and then filters out illegal ones. Some printers might
assume that the driver has already filtered out illegal in-
puts and therefore trust the incoming data. Omitting its own
checks in the firmware makes the printer vulnerable.

Figure 2 exemplifies the potential for predicate constraint
mismatches between printer drivers and firmware with a
code fragment decompiled from theWindows PSCRIPT5.DLL
device driver. Function StringCchPrintfA produces the
PostScript dup instruction, which is passed operand v8. Prior
to calling this function, the driver performs a predicate con-
straint check on v8 to ensure it is within a valid range be-
cause drivers typically do not trust data coming from appli-
cations. However, the printer’s PostScript interpreter (in the
printer firmware) might not recheck this constraint on the
generated dup when it executes the PostScript.

Data dependence constraints in PDL code. In addition
to the predicate constraints (e.g., v8 ≥ v5), there are also
data dependence constraints (e.g., a = b) that play critical
roles in our testing. Specifically, when the driver generates
instructions “op1 a,b” and “op2 c,d”, operands a, b, c , and d
could have data dependencies (e.g., c = b). Since most PDLs

1 if (v8 >= v5 || !*v3)
2 break;
3 StringCchPrintfA(pszDest, 0x100ui64, "dup %d /",
4 (unsigned int)v8);

Figure 2. Decompiled code from the PSCRIPT5.dll
rendering module

1 v129 = v153;
2 StringCchPrintfA(&pszDest, 0x100ui64,
3 "\n%%%IncludeResource: font %s", v153);
4 ...
5 StringCchPrintfA(&pszDest, 0x100ui64,
6 "/%s true /%s hfRedefFont", *(_QWORD*)(v3+56), v129);

Figure 3. Decompiled code from PSCRIPT5.dll showing a
data dependence constraint

are stack-based interpreted languages, changing the context
of an instruction (e.g., causing c , b) might cause serious
damage to the parsing stack, such as a stack overflow.
Figure 3 shows an example of a data dependence con-

straint, where variable v153 is used at line 3 and variable
v129 is used at line 6 to print PDL code via function StringC-
chPrintfA. However, there is a data dependence at line 1. If
we ask the solver to break this constraint (i.e., v129 , v153)
and produce new PDL code with the newly solved value,
then the printer firmware could reach an inconsistent state,
thereby exposing bugs.

Differences with Conventional Constraints. Prior ap-
proaches (e.g., T-Fuzz [21] or TaintScope [31]) also try to
break constraints for vulnerability discovery. However, these
constraints are fundamentally different from PDL constraints
in two ways: (i) A conventional constraint is a check on
program input. In contrast, a PDL context constraint is a
check on program output. (ii) Traditional approaches negate
constraints to find new paths to increase coverage (e.g., by
bypassing a checksum) and hope to find vulnerable code.
In contrast, in this paper we try to break PDL context con-
straints in order to destroy the PDL context and generate
syntactically correct but semantically incorrect PDL code.
While our approach can extend to any PDL, we focus

specifically on the PostScript interpreter for the printers we
test due to its complexity and prevalence, and we implement
our framework on the Windows platform.

3 Design
An overview of TrustScope is shown in Figure 4. There are
five key components in TrustScope, corresponding with the
main challenges in building TrustScope: (1) PDL code gen-
eration function identification, (2) PDL context constraints

Express PDL context constraints
when generating PDL

Extract PDL context constraints hidden in drivers

PDL code
generation

function
identification

PCC paths
identification

Real execution assisted
paperless PDL code

generation in offline mode

Printer
monitoring

Key context
constraints
extraction

Windows driver

PDL seeds

PDL

Figure 4. An overview of TrustScope

(PCC) paths identification, (3) key context constraints ex-
traction, (4) real execution assisted paperless PDL code gen-
eration in offline mode, and (5) printer monitoring. In the
first component, we rely on static binary analysis to find
the rendering modules within drivers and all of the print
functions that generate PDL code within the driver. In the
second component, we use static analysis and symbolic exe-
cution to identify interprocedural feasible paths. In the third
and fourth component, we collect and negate key context
constraints on output function variables and thereby bypass
context constraints in order to generate malicious mutated
PDL code. Finally, we pass our malicious inputs to printers
and monitor for anomalous printer behavior in the fifth com-
ponent, allowing us to detect whether we have generated
an input that reveals a bug in the printer. In this section, we
present detailed design for each component.

3.1 PDL Code Generation Function Identification
Printer drivers contain rendering modules that generate the
PDL code used by printers. While we are specifically inter-
ested in the output functions that are the final endpoints at
which actual PDL code is generated, we must first find the
module within the driver that contains them.

3.1.1 Finding rendering modules. While most printer
drivers use Microsoft’s PSCRIPT5.DLL provided to gener-
ate PostScript, they also use other DLLs as plug-ins to pro-
vide custom rendering functions and modify/inject Post-
Script [15]. Therefore, we must find all rendering compo-
nents that end up generating PostScript output.
Our analysis reveals that the generated PostScript from

a driver consistently correlates to format strings within its
rendering modules—a consistent pattern that is useful for
identifying rendering modules. As shown in Figure 5, the
generated PostScript from a driver has a clear association
with the format strings contained in the rendering module
to generate the PostScript. Therefore, we can print a set of
sample documents and compare strings within the generated
PostScript to the format strings within driver modules. Using
this knowledge, we therefore use dynamic analysis to invoke
the driver, print a set of sample documents, and record the
corresponding PostScript. These documents contain multiple
types of data to print, in order to cover as many output
functions as possible in the rendering module.

DSC_Title db '%%%%Title: %s',0Dh,0Ah,0
Format string extracted from IDA Pro

association

%% Title : <B2E2CAD4D2B3>
%% Creator: Pscript5.dll Version 5.2.2
%% CreationDate: 1/3/2019 16:23:4

PDL statements

Figure 5. Identification of rendering modules

lea r8, aDupD ; "dup %d /"

lea rcx, [rsp+168h+Dest] ; Dest

mov edx, 100h

call sub_18003C960

Figure 6. Finding output function sub_18003C960

Next, we must compare the strings in the generated Post-
Script with the format strings contained within the driver
modules. Such content is in natural language. An intuitive
way to compare the strings would be to simply calculate the
edit distance between the two: namely, between the format
string that contains specifiers, and the string that eventu-
ally is output by the driver. However, this approach does
not work because the printed string, which is generated
by replacing the format specifiers in the format string with
their actual arguments, often has significant changes (i.e.,
the length of the string changes and the actual arguments
replace the format specifiers), as illustrated by the example
in Figure 5.
We therefore adopt a fuzzy string comparison approach

to match them by modifying Fuzzy Wuzzy [24], a fuzzy
string matching library useful for applications such as natu-
ral language processing. Specifically, we first parse the for-
mat string and then split the format string and matching
characters based on the parsing result. Then, we match each
string in the set obtained by the splitting, and sum the match-
ing values of each segment according to their respective
lengths. This approach works well and eventually locates
the rendering modules using the matched format strings.

3.1.2 Finding output functions. After identifying ren-
dering modules, we must then find the output functions
within those modules that generate the actual PostScript
instructions. There are many common methods for identi-
fying output functions. These often require complex data
flow analysis, which makes these methods ineffective for
complex programs, especially the closed-source Windows
drivers that we are facing. Fortunately, through analysis, we
found that the output functions in the drivers have a special
structure. Generally, an output function can be defined as a
function f (. . . , fmtstr, argk , argk+1, . . .), and the function f
replaces format string specifiers in fmtstr with actual argu-
ments (argk , argk+1, . . .), to form the PostScript instructions
and send them to the printer.
Therefore, to identify f , we could to look at the param-

eters to check whether any parameter to a function refers

to one of the format strings in rendering modules. If so, this
function is a candidate of f . An example of such a function
is sub_18003C960 as shown in Figure 6, which takes a for-
mat string specifier as an argument. However, we notice the
arguments are not obvious and we have to perform symbolic
execution to identify them (e.g., lea r8, aDupD) and set
up the execution context (e.g., prepare for the arguments).
Also, there could be multiple functions that access the format
strings, and we should include all of them.

To identify all functions matching f , we first disassemble
the device driver code, extract the control flow graphs (CFGs)
of each rendering module, and retrieve the format strings
we used when identifying that rendering module. After ob-
taining the CFG, we statically identify potentially reachable
paths starting from the entry points and ending at the exit
points of a function, and then perform under-constrained
symbolic execution to attempt to reach each of the function
calls and resolve their parameters.

For all the function calls that can be reached by symbolic
execution, we then check whether any resolved parameter to
a function refers to one of the format strings we previously
retrieved in a callee function. If such a string is being passed
to the function, we assume that the function will directly
lead to generation of PostScript output, and therefore we
mark it as an output function. When we check whether a
callee function is an output function, the caller code needs
to be included as well.

3.2 PCC Paths Identification
In order to collect the context constraints on the generated
PostScript, we must identify the paths that include context
constraints (PCC paths). Through our analysis, we found that
PCC paths are the paths that can reach the calling points of
output functions. However, identifying these paths is not a
straightforward process, as attempting to directly use sym-
bolic execution to find reachable paths inevitably leads to
a path explosion. Previous efforts to avoid this path explo-
sion include trying to filter out obviously unreachable paths
with static analysis, and then performing symbolic execu-
tion on a smaller set of paths. Unfortunately, the number
of paths obtained from static analysis is usually very large,
still resulting in an unacceptably long analysis time. Trying
to further filter the results of the static analysis without ad-
ditional information could result in accidentally removing
valid paths. Another potential solution is to statically find a
set of potential reachable paths, and then follow these paths
with concolic execution. However, this also takes too long.

Our approach. We propose a new approach for identifying
interprocedural reachable paths with improved efficiency
and a higher recall rate relative to simple static filtering, sym-
bolic execution, or full program concolic execution. Figure 7
summarizes our approach, consisting of the following steps:

Data preprocessing

Static data
extraction

Graph structure
transformation Loop unrolling

Identifying intraprocedural paths

Determining reachability
of paths by symbolic

execution

Identifying interprocedural paths

Identifying static
paths in callgraph Path splicing

Determining
reachability of paths by

symbolic execution

Obtaining
intraprocedural paths
by static analysis

Path sets for
splicing

Figure 7.Workflow of path identification

• We provide static paths for the under-constrained sym-
bolic execution to follow, preventing path explosion.
We chose to extract the path from IDA Pro because of
its superior stability for large programs.
• We reduce the burden of judging the reachability of
long interprocedural paths by checking reachability
of each single intraprocedural path in advance. In par-
ticular, we first extract the coarse-grained paths, then
splice the candidate intraprocedural paths to get the
fine-grained paths, and check the reachability to obtain
the final interprocedural paths set.
• There are some differences between the static path we
must analyze and the actual trace. In order to enable
symbolic execution along the static path, we customize
a path search plugin to solve the corner cases.

3.2.1 Data preprocessing. Prior to our analysis, we first
perform three preprocessing steps: (i) We extract callgraphs
and control flow graphs from the rendering modules, which
serve as the basis for our analysis. (ii) We then modify these
graphs to unroll loops in the path. In order to prevent sym-
bolic execution from getting stuck, we need to ensure that
paths are finite, so we unroll each loop only once by remov-
ing back edges on both graphs. (iii) We finally must convert
the paths from the form our disassembler (IDA Pro) pro-
vides into a form that works for symbolic execution, as basic
blocks are not generated for function calls, and the connec-
tion between caller and callee is hidden. We ensure with our
changes that symbolic execution will work correctly.

3.2.2 Identifying intraprocedural paths. Our first ob-
jective is to extract reachable paths within each function.
We start by statically analyzing each function and extracting
static paths from each function in the rendering modules.
The paths start from the function entry points and end at
call sites. After obtaining our set of static paths, we need
to perform local under-constrained symbolic execution on
these paths to determine reachability for calls within these

functions. In contrast to UC-KLEE, we are performing sym-
bolic execution on a set of static paths rather than full static
analysis of the entire function. Even with careful pruning
of paths within functions, UC-KLEE is still susceptible to
a path or memory explosion within complicated functions,
while our approach avoids this explosion by only following
a set of paths. Our approach is similar in concept to concolic
execution, as concolic execution performs symbolic execu-
tion on concrete program paths, whereas we are performing
under-constrained symbolic execution on static paths.

3.2.3 Identifying interprocedural paths. Limiting the
analysis to intraprocedural analysis is inaccurate, as it ig-
nores whole-program flow. Therefore, our next objective is
to extend our analysis to identify interprocedural paths.

Obtaining interprocedural paths. As with the intrapro-
cedural analysis, we start with static analysis, in this case to
search for possible paths to output functions. This follows
the call graph of a module, giving a static path at the function
level. In order to splice these paths in order, we must first
extract static interprocedural paths from the call graph.

Path splicing. We replace each edge in the static interpro-
cedural paths with the corresponding path fragments in the
CFG from our intraprocedural analysis. Each edge corre-
sponds to a set of reachable paths Knm between function n
and functionm in the CFGs within individual functions. We
select among paths reachable between pairs of functions and
splice them together into full paths.

Reachability checking. After obtaining interprocedural
paths by splicing, we use symbolic execution to check the
reachability of the spliced paths.

3.3 Key Context Constraints Extraction
As discussed in §2, printer drivers have context constraints
when generating PDL code, which is important to the PDL
context. After obtaining paths to output functions in the
previous section, the next step is to extract these context
constraints. The context constraints are required so they can
then be broken to generate deformed PDL samples.

Obstacle 1. A straightforward idea to break the PDL con-
straints is to negate constraints directly. However, there are
many paths in the program and negating one of the path
constraints may result in getting another feasible path. The
new path corresponds to another feasible interval for the
PDL instruction arguments. Our goal is to find an infeasible
interval for the PDL instruction arguments. In other words,
we need to find an infeasible path targeting an output func-
tion in order to get a value that cannot be generated under
normal circumstances. The overhead of searching through
every possible path would be very high.

Algorithm 1: Extracting key context constraints
Input: output function: F
Output: key context constraints set: Q3

1 Q3 ← []
2 Y ← []
3 дlobaldoms ← ∅
4 domf uns ← identifyDominators(callдraph, F)
5 foreach domf un in domf uns do
6 callpoints ← getCallpointsToOutput(domf un, F)
7 rawcf дdom← []
8 foreach callpoint in callpoints do
9 rawcf дdom[callpoint]← identifyDomnators(domf un,

callpoint)
10 end
11 foreach cf дdom in intersectionForAllSet(rawcf дdom) do
12 дlobaldoms .add(cf дdom)
13 end
14 end
15 path← searchPathToFun(F)
16 foreach block in symExeIterateBasicBlock(path) do
17 if block in дlobaldoms then
18 foreach con← extractCons(block) do
19 foreach k in iterateAST(con) do
20 if isSymbolic(k) then
21 Y [k].add(con)
22 end
23 end
24 end
25 end
26 if block .addr == F .star tAddr then
27 foreachm in getArgs(F) do
28 foreach j in iterateAST(m) do
29 if isSymbolic(k) and k in Y then
30 Q3[F][k]← Y [k]
31 end
32 end
33 end
34 end
35 end
36 return Q3

Our observation. Experimental analysis reveals that the
context constraints added at dominator nodes of output func-
tions are very important. After negating these checks, we
could get the mutated argument set immediately. Since these
checks exist in every path to the output function, we only
need to analyze one of these paths, which is very effective
and imposes very low overhead. We call these key context
constraints and formally define the key context constraint
set as C = X ∩ Y , where

X = {x | x is the constraint of variable a ∈ A}
Y = {y | y is the constraint added at d ∈ D}
O = {o | o is the output function}
A = {a | a is the argument of function o ∈ O}
D = {d | d is the dominator node of function o ∈ O}

Our approach tends to be much faster than conventional
path search analysis because it requires O(nh) time, where
n is the number of dominating nodes per path and each
basic block has h constraints. In contrast, conventional path
search requiresO(kmh) time, where k is the number of paths
to output function f , andm is the number of basic blocks per
path. Typically n ≪ km, speeding the analysis significantly.

Obstacle 2. To identify the dominator nodes, we must first
construct a global CFG and traverse it to identify global
dominator nodes. However, for large programs, the global
CFGs of complex programs are usually very large. Doing
actual analysis directly on the graphs is often very inefficient.

Our method. Therefore, we present a new method to nar-
row the recognition range of the global dominator nodes
to the dominance function. In this paper, we name domina-
tor nodes in the function call graph as dominator functions
and dominator nodes in the global CFG as global dominator
nodes. For the target node t , the global dominator function
set is DomG(t), the global dominator node set for the target
is DomF(t), and the set of blocks of DomF(t) is DomFB(t). If
there is a node x ∈ DomG(t), with x < DomFB(t), then there
is no path from x to t , so DomG(t) ⊂ DomFB(t). Therefore,
we can identify the dominator function first, and then iden-
tify the global dominator nodes in every dominator function,
thus avoiding the construction of the global CFG.

In the following, we describe the specific technical details
of how to extract the key context constraints in drivers. The
algorithm is shown in algorithm 1.

3.3.1 Identifying dominator nodes. First, we statically
identify the dominator node set α of output functions in
the interprocedural control flow graph. The node set of in-
terprocedural paths ending at an output function is β . The
dominator nodes that we seek are α

⋂
β .

3.3.2 Constructing the constraints map. After identi-
fying dominator nodes, we collect constraints. First, we per-
form symbolic execution on the previously identified in-
terprocedural reachable paths. In this process, we collect
constraints added in dominator nodes. For each constraint,
we iterate its abstract syntax tree (AST) and check whether
each variable in the tree is a symbolic value. If it is a symbolic
value k , we store it in the constraints map Y with key k .

3.3.3 Collecting key context constraints. When the
symbolic execution reaches an output function, we parse
the format string argument of the function and locate an-
other function parameterm according to the format string. If
the parameter is a symbolic value, then we traverse the AST
of argumentm and detect whether each node j on the tree
is in the constraints map Y . If it exists, Y [j] is the constraint
set we want to collect.

3.4 Real Execution Assisted Paperless PDL Code
Generation

After obtaining the context constraints, the next step is to
generate test cases. Since PDLs have complex grammatical
structures, it is almost impossible to directly generate sam-
ples using symbolic execution. Therefore, we use the actual
execution of the printing program to assist the symbolic ex-
ecution to generate test cases. In order to improve the speed

of analysis, we generate test cases in offline mode; and to
make the testing more practical, we propose a new method
to evaluate printers without consuming paper or ink.

3.4.1 Obtaining malicious arguments. The algorithm
to obtain malicious arguments is shown in algorithm 2. First,
we get the output function f at output site д. Next, we get a
path that ends at function f , and then we iterate every arg
of function f and get the related key context constraints C .
Next, we iterate through each constraint c ∈ C and remove
c from the constraints set of argument arg. Next, we negate
c , add that to the constraints set, and pass the constraints
set containing the negated constraint to the solver to find a
solution. Finally, we get the mutated valuen of the parameter
arg and add n to the mutated set Q .

Algorithm 2: Obtaining malicious arguments
Input: output site : д
Output: argument mutated set: Q

1 Q ← {}
2 f ← getOutPutFunc(д)
3 p ← getPathEndAtCallsite(f)
4 args← getArgsOfFunc(f)
5 foreach arg ∈ args do
6 cur_constraints← extractConstraints(p)
7 C ← getKeyContextConstraints(f , arg)
8 foreach c ∈ C do
9 cur_constraints.remove(c)

10 new_con← ¬c
11 cur_constraints.add(new_con)
12 n ← SMTSolver.solve(cur_constraints)
13 Q [д][arg] ← n
14 end
15 end
16 return Q

3.4.2 Real Execution Assisted PDL Code Synthesize.
After getting the mutated parameter set, the next step is to
synthesize PDL code with that parameter set. Specifically,
we implement a tool to make different applications print
data in multiple formats. During the printing, we hook the
output functions and replace the parameters. The process
can be divided into the following steps.

Step 1: Rendering module selection based on the pro-
portion of output functions. The rendering modules in-
clude the main engine and the plug-ins in the printer driver.
In our implementation, we select a module to be analyzed
from the main engine and plug-ins weighted by its propor-
tion of output functions.

Step 2: Selectively hooking to maintain PDL context
with low overhead. We cannot simply hook all the out-
put functions in modules and mutate all their arguments, as
unfortunately this results in both high overhead and poor
results. The result likely will not pass basic lexical and gram-
mar checks, let alone discover the bugs we are looking for.
Therefore, our configurable mutation rate allows us to only
select part of output functions for parameter replacement,

producing mutations that are less likely to violate the lan-
guage grammar.

Step 3: Type identification and argument positioning.
We use the function calling convention to determine the pa-
rameters of the function, and then extract the format string
parameter fmt. Then, we parse fmt according to the C for-
mat string specification, and determine the number and type
of parameters. Our analysis of fmt lets us sequentially lo-
cate and determine the type of the parameters following the
format string parameter.

Step 4: Type based replacement. The types of the function
parameters that we want to replace may vary widely. We
must handle each type of argument differently. For example,
we must replace integer variables directly. In contrast, we
need to replace the content pointed to by pointers. Strings
have the additional constraint of needing to end with the
delimiter ‘\0’. Since we identify the position and type of
arguments in Step 3, we can easily modify each parameter
according to its type.

3.4.3 Offline generation. Testing of printers is usually
done online. In this case, we need to ensure our computer is
connected to printers which decreases the efficiency. How-
ever a technique called Spool Printing [23] allows print jobs
transferred from a computer to be temporarily stored, and
then prints them after they are transferred. This shortens
printing time as it maximizes printer efficiency. By utilizing
this mechanism, we can get test cases directly from the spool
directory and generate test cases without connecting to the
printer. In this way, we configured 60 virtual machines on
OpenStack for parallel test case generation, greatly increas-
ing the speed.

3.4.4 Testing without paper and ink consumption. If
we do not process the tested data and let the printer print the
data on paper as usual, it will waste resources such as ink and
paper, slow the speed of testing, and reduce the life of the
printers. For more efficient and less wasteful testing, we have
to achieve printing without consuming paper and ink. In the
PostScript language, we found that the showpage command
is responsible for printing the rendered data onto the paper.
Therefore, we can remove showpage related commands to
achieve only parsing, not printing, and we implement this
by statically patching rendering modules or replacing the
memory data.

3.5 Printer Monitoring
When a printer receives mutated PDL code, we need to know
whether it triggers any abnormal behaviors. Based on our
analysis, we found that printer exceptions can be classified
into the following four levels:

1. interpreter errors (which do not cause much of a prob-
lem and are not the focus of our attention),

2. errors that put the directly related printer service in
an abnormal state,

3. errors that put other unrelated printer services in ab-
normal states, and

4. errors that result in the printer being entirely unre-
sponsive.

Prior approaches for testing IoT devices only detect limited
exception levels. For instance, IoTFUZZER [3] only detects
fourth level exceptions. In order to achieve effective and
comprehensive monitoring of printers at different granular-
ities, we have designed three monitoring strategies based
on printer characteristics. In the following, we describe how
we monitor exceptions from the second to the fourth level,
respectively.

3.5.1 Monitoring based on printing-related services.
Printers usually have their own exception handling mecha-
nisms, and not every exception can cause printers to crash.
However, there are some printer services that are closely
related to the interpreter. Therefore, for this level exceptions,
we indirectly watch for parser exceptions by monitoring
critical printing services of printers, especially the printing
service of 9100 [17].

3.5.2 Monitoring based on bidirectional communica-
tion of printers. When printing a document, users often
need to know the printer’s status and settings in real time.
This is accomplished via bidirectional communication be-
tween the user’s computer and the printer [14].
We therefore use this channel to get the status data [13].

After that, we analyze the data to seewhether some programs
or devices are affected by an abnormal interpreter state, such
as memory or hard disk.

3.5.3 Monitoring based on ICMP packets. For level
four exceptions, we have implemented a detection method
based on ICMP heartbeat packets. Using this method, we
can monitor the state of the malicious PDL code causing the
printer to crash and not connect.

4 Implementation
Here we present the prototype implementation of
TrustScope and describe its details. At a high level, it
is around 8,000 lines of code in total including Python,
JavaScript, and C++. It also integrates several open source
projects. For static analysis and symbolic execution, we
used the IDA Pro plug-in Sark [1] to extract call graphs and
CFGs, and idalink [34] to connect to IDA Pro for automatic
operation with Python. Since IDA Pro and its related
libraries lack good support in Python 3, we used an older
version (7.8.9.26) of the symbolic execution tool angr [26],
which supports Python 2. Angr was modified to meet our
requirements, and many lines of Python were written for
path splicing and under-constrained symbolic execution
along the static paths. For malicious PDL code generation,

Table 2. Printer data type and tested applications

Application Data types
viso 2013 vsdx
office 2013 pptx
firefox svg, html
mspaint png, bmp, jpg, tif, gif

we used the cross-platform analysis tool Frida [18] for API
hooking to realize real-time replacement of parameters.

5 Evaluation
To evaluate TrustScope, we collected 8 IoT printers from
4 vendors including HP, Samsung, Lenovo, OKI. The data
to be parsed by a printer is usually divided into three types:
graphics, images, and text. We used 4 applications to print
data in 9 different file formats. The detailed description is
shown in Table 2, and the 9 file types listed provide a range of
inputs for all three categories. In the following, we describe
how each component of TrustScope performed.

5.1 Rendering Module and Output Identification
The result for identifying rendering modules is shown in col-
umn 2 in Table 3. All printers all have two renderingmodules,
one of which is the same for each one: PSCRIPT5.dll.
Having identified the rendering modules of the tested

printers, we then identify the output functions in these mod-
ules. The statistics of how many output functions we identi-
fied in the tested drivers are shown in column 5 in Table 3.
The intermediate result of howmany functions call an output
function is presented in column 4 in Table 3.

5.2 PCC Paths Identification
The most time consuming part of TrustScope is the feasible
path identification, which aims to identify feasible paths from
the sources that introduce the variables used in PDL, and the
sinks (i.e., the printf instructions) that produce the PDL. It is
a two step process (intraprocedural and then interprocedural
with path splicing). TrustScope’s performance statistics are
shown between the 6th and 10th columns in Table 3. We
can see that for each driver, TrustScope is able to identify a
large number of feasible paths.

5.3 Key Context Constraints Extraction
When the feasible path identification is finished, TrustScope
collects the key context constraints. The number of collected
key context constraints for each module is presented in the
11th column of Table 3. We can see there are dozens of con-
text constraints (including predicate constraints and data
dependence constraints) collected for each printer.

5.4 Vulnerabilities Discovery and Case Studies
After collecting the constraints, we then used the constraint
solver to solve the negated constraints and generate the
new PDL code. The total number of test cases generated is
presented in the last column of Table 3. The time spent on
finding intraprocedural paths and interprocedural paths for
each module are shown in columns 7 and 10 in Table 3.
Next, we sent the generated test cases to test how the

printers would react. Encouragingly, TrustScope found vul-
nerabilities in all 8 tested printers, resulting in 6 new CVEs.
The results are shown in Table 4.

HP OfficeJet Pro 8210. We found three test cases that
caused the printer to crash and display “ERROR CODE” along
with a system error number and an exception address on its
display panel. We used gdb to view the instruction of the
exception location, and determined that one is a memory
write exception. By reverse-engineering the firmware code,
we found that this exception occurs in a loop that copies
data to a buffer.

Samsung CLP-680 Series. We found a pair of test cases
that, when submitted to the printer sequentially, cause the
printer panel to display “internal error”, along with a
red light flashing to indicate an error. To further investigate
this vulnerability, we connected to the printer’s serial port.
From the startup log, we found that the system enters into a
serious error state.

6 Future Work
In this paper, we have proposed many new methods. Any
tool needing to perform format string vulnerability analy-
sis of embedded devices can directly apply our method for
identifying output functions. Current symbolic execution
tools face the difficulty of extending to actual applications.
We can use our proposed method to assist in the analysis of
related procedures. Many program analysis methods rely on
control flow or data flow graphs which are particularly large
and difficult to analyze for real programs. Therefore, our
method described in §3.3 could be used to narrow the scope
of the analysis and improve its applicability. Our monitor-
ing method can also be extended to other embedded device
monitoring, such as service-related monitoring.

7 Related work

Printer security. Sibert et al. [27] discovered the danger of
I/O operation in the PostScript file. Costin [5, 8] presented
the possible attack surfaces of printers, without discussing
any systematic and automated approaches to analyze these
security issues. Müller et al. [16] implemented the PRET
framework, which targets web vulnerabilities and relies on
expert experience to write complex syntax rules. In contrast,
our approach utilized the semantic information in printer

Table 3. Statistics of how each component of TrustScope performs.

Idx Printer model Rendering
modules

Output functions Intraprocedural paths Interprocedural paths #Context constraints #Test cases# Callsites Sum # Feasible T(h) # Spliced # Feasible T(h)

P1 Samsung CLP-680 Series PSCRIPT5.dll 715 59 9343 16.7 6808 965 29.90 151 10946smc680rd.dll 47 7 6954 22.57 1700 349 42.81

P2 Samsung ML-371x Series PSCRIPT5.dll 715 59 9343 16.7 6808 965 29.90 111 48316sml371rd.dll 29 5 3033 16.83 585 194 2.81

P3 OKI C711 PSCRIPT5.dll 715 59 9343 16.7 6808 965 29.90 122 35717Okb p03S.dll 30 7 494 1.34 265 144 1.10

P4 Lenovo LJ4010DN PSCRIPT5.dll 715 59 9343 16.7 6808 965 29.90 119 26722lenp1ypr.dll 1768 195 62792 58.94 19847 141 81.53
P5 HP Color LaserJet MFP M277dw PSCRIPT5.dll 715 59 9343 16.7 6808 965 29.90

133 69377P6 HP LaserJet M1536dnf MFP
P7 HP OfficeJet Pro 8210 hpcsr215.dll 839 54 21622 32.08 11633 462 62.84P8 HP PageWide Pro 477dw MFP

Table 4. Summary of discovered vulnerabilities.

Issue Printer model Status Descriptions

1 Samsung CLP-680 Series CVE-2019-6335 Denial of service

2 Samsung ML-371x Series confirmed Not be assigned a CVE
for ending of service

3 Lenovo LJ4010DN CVE-2020-8329 Denial of service

4 Lenovo LJ4010DN CVE-2020-8330 Denial of service

5 HP OfficeJet Pro 8210 CVE-2019-6337 Buffer Overflow
Disclosure of Information

6 HP OfficeJet Pro 8210 CVE-2019-10627 Buffer Overflow
Disclosure of Information

7 HP OfficeJet Pro 8210 CVE-2019-16240 Buffer Overflow
Disclosure of Information

8 HP Color LaserJet MFP M277dw CVE-2019-6337 duplicate 5

9 HP PageWide Pro 477dw MFP CVE-2019-6337 duplicate 5

10 HP PageWide Pro 477dw MFP CVE-2019-10627 duplicate 6

11 HP PageWide Pro 477dw MFP CVE-2019-16240 duplicate 7

12 OKI C711 confirmed confirmed -

13-20 HP LaserJet M1536dnf MFP reported Not analyzed
for ending of service

drivers to find memory-related vulnerabilities in printer in-
terpreters.

IoT security. Chen et al. [2] implemented the firmware sim-
ulation framework FIRMADYNE, which can perform a full-
system simulation of Linux-based firmware to detect vulnera-
bilities. Shoshitaishvili et al. [25] developed Firmalice, which
is used to discover authentication bypassing vulnerabilities
in firmware. Zaddach et al. developed the FIE [9] to discover
bugs of MSP430 firmware. Jonas et al. [33] developed Avatar
to combine firmware emulation with real program execution.
However, these methods rely on firmware code, but usually
there is no firmware code of printers and related PDL doc-
umentation. In contrast, our approach can be used to test
printers without accessing firmware code. IoTFUZZER [3]
mutated communication packets from mobile applications
to IoT devices to discover vulnerabilities in firmware. And
it can only detect whether the device is connected based
on the heartbeat packets, and cannot detect vulnerabilities
that cannot cause IoT devices to crash. In contrast, our tool
is extracts and violates the context constraints to generate

malformed PDL, exposing vulnerabilities in printer firmware
due to missing security re-checks.

8 Conclusion
We have presented TrustScope, a framework that identifies
memory corruptions in printers without accessing printer
firmware or PDL documents. In order to achieve this, we
introduce new techniques to identify PDL output functions
and important semantic paths, extract the key constraints
hidden in drivers, and use real execution to assist the sym-
bolic execution in synthesizing the PDL code. We also use
characteristics of printers to improve printer monitoring.
We have tested TrustScope with 8 printers, and multiple
vulnerabilities were discovered in all of the printers.

Acknowledgments
We would like to thank the anonymous reviewers for their
insightful comments. This work is supported in part by Na-
tional Natural Science Foundation of China under Grant
No. U1836209, 61802394; National Key Research and Devel-
opment Program of China under Grant No. 2016QY071405;
and Strategic Priority Research Program of CAS under Grant
No. XDC02040100. In addition, the authors from University
of Texas at Dallas are supported by U.S. Awards ONRN00014-
17-1-2995, DARPA FA8750-19-C-006, and NSF-IUCRC from
Lockheed Martin.

References
[1] Tamir Bahar. Sark documentation. https://sark.readthedocs.io/en/

latest, 2015.
[2] Daming D. Chen, Maverick Woo, David Brumley, and Manuel Egele.

Towards automated dynamic analysis for Linux-based embedded firm-
ware. In Proceedings of the 23rd Annual Network & Distributed System
Security Symposium (NDSS), 2016.

[3] Jiongyi Chen,Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang
Lin, XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang,
and Kehuan Zhang. IoTFuzzer: Discovering memory corruptions in
IoT through app-based fuzzing. In Proceedings of the 25th Annual
Network & Distributed System Security Symposium (NDSS), 2018.

[4] Cisco. HP printers remote unauthorized file access information
disclosure vulnerability. https://tools.cisco.com/security/center/
viewAlert.x?alertId=29111, May 2013.

https://sark.readthedocs.io/en/latest
https://sark.readthedocs.io/en/latest
https://tools.cisco.com/security/center/viewAlert.x?alertId=29111
https://tools.cisco.com/security/center/viewAlert.x?alertId=29111

[5] Andrei Costin. Hacking printers: For fun and profit. Hack.lu
Security Conference, 2010. http://archive.hack.lu/2010/Costin-
HackingPrintersForFunAndProfit-slides.pdf.

[6] Andrei Costin. Hacking MFPs. 28th Chaos Communication Congress
(CCC), 2011. https://fahrplan.events.ccc.de/congress/2011/Fahrplan/
track/Hacking/4871.en.html.

[7] Andrei Costin. PostScript: Danger ahead?! HITB Security Conference,
2012. https://www.slideshare.net/phdays/postscript-danger-ahead.

[8] Andrei Costin. Andrei Costin papers. http://andreicostin.com/papers,
2016.

[9] Drew Davidson, Benjamin Moench, Thomas Ristenpart, and Somesh
Jha. FIE on firmware: Finding vulnerabilities in embedded systems
using symbolic execution. In Proceedings of the 22nd USENIX Security
Symposium, pages 463–478, 2013.

[10] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-
based whitebox fuzzing. In Proceedings of the 29th ACM Conference
on Programming Language Design and Implementation (PLDI), pages
206–215, 2008.

[11] Patricia Hernandez. Someone hacked printers worldwide,
urging people to subscribe to PewDiePie. November 2018.
https://www.theverge.com/2018/11/30/18119576/pewdiepie-printer-
hack-t-series-youtube.

[12] Valentin Jean Marie Manès, HyungSeok Han, Choongwoo Han,
Sang Kil Cha, Manuel Egele, Edward J. Schwartz, and Maverick Woo.
The art, science, and engineering of fuzzing: A survey. IEEE Transac-
tions on Software Engineering (TSE), 2019.

[13] Microsoft. Bidirectional communication error codes, 2017. https:
//docs.microsoft.com/en-us/windows-hardware/drivers/print/bidi-
error-codes.

[14] Microsoft. Bidirectional communication schema reference.
https://docs.microsoft.com/windows-hardware/drivers/print/bidi-
communications-schema-reference, 2017.

[15] Microsoft. Introduction to rendering plug-ins, 2017.
https://docs.microsoft.com/en-us/windows-hardware/drivers/
print/introduction-to-rendering-plug-ins.

[16] Jens Müller, Vladislav Mladenov, Juraj Somorovsky, and Jörg Schwenk.
Sok: Exploiting network printers. In Proceedings of the 38th IEEE
Symposium on Security & Privacy (S&P), pages 213–230, 2017.

[17] OKI Europe. What is port 9100? https://okiprinting-en-
gb.custhelp.com/app/answers/detail/aid/334/~/what-is-port-
9100%3F, October 2019.

[18] oleavr. Frida – a world-class dynamic instrumentation framework.
https://www.frida.re, 2019.

[19] OpenRCE. sulley: A pure-Python fully automated and unattended
fuzzing framework. https://github.com/OpenRCE/sulley, 2019.

[20] Peach Tech. Peach fuzzer: Discover unknown vulnerabilities. https:
//www.peach.tech, 2020.

[21] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-Fuzz: Fuzzing by
program transformation. In Proceedings of the 39th IEEE Symposium
on Security & Privacy (S&P), pages 697–710, 2018.

[22] Redrain and Min Zheng. A ghost from PostScript. Ruxcon Security
Conference, 2017. https://ruxcon.org.au/assets/2017/slides/hong-ps-
and-gs-ruxcon2017.pdf.

[23] Ricoh. Spool printing. http://support.ricoh.com/bbv1oi/pube/oiview/
0001038/0001038577/view/software/unv/0065.htm, 2009.

[24] SeatGeek. fuzzywuzzy: Fuzzy string matching in Python. https://
github.com/seatgeek/fuzzywuzzy, 2020.

[25] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. Firmalice – automatic detection of au-
thentication bypass vulnerabilities in binary firmware. In Proceedings
of the 22nd Annual Network & Distributed System Security Symposium
(NDSS), 2015.

[26] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, and Giovanni Vigna. SoK: (state of) the
art of war: Offensive techniques in binary analysis. In Proceedings of
the 37th IEEE Symposium on Security & Privacy (S&P), 2016.

[27] W. Olin Sibert. Malicious data and computer security. In Proceedings
of the 19th National Information Systems Security Conference, 1996.

[28] Statista. Printer share by vendor worldwide from 2015 to
2019. https://www.statista.com/statistics/541347/worldwide-printer-
market-vendor-shares.

[29] Iain Thomson. Hacker: I made 160,000 printers spew out
ASCII art around the world. The Register, February 2017.
https://www.theregister.co.uk/2017/02/06/hacker_160000_printers.

[30] Undocumented Printing Wiki. Page description languages
[undocumented printing]. http://www.undocprint.org/formats/
pagedescriptionlanguages.

[31] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. TaintScope: A
checksum-aware directed fuzzing tool for automatic software vul-
nerability detection. In Proceedings of the 31st IEEE Symposium on
Security & Privacy (S&P), pages 497–512, 2010.

[32] Wikipedia. Page description language. https://en.wikipedia.org/wiki/
Pagedescriptionlanguage.

[33] Jonas Zaddach, Luca Bruno, Aurelien Francillon, Davide Balzarotti,
et al. AVATAR: A framework to support dynamic security analysis
of embedded systems’ firmwares. In Proceedings of the 21st Annual
Network & Distributed System Security Symposium (NDSS), 2014.

[34] zardus. Some glue facilitating remote use of IDA (the Interactive
DisAssembler) Python API. https://github.com/zardus/idalink, 2018.

http://archive.hack.lu/2010/Costin-HackingPrintersForFunAndProfit-slides.pdf
http://archive.hack.lu/2010/Costin-HackingPrintersForFunAndProfit-slides.pdf
https://fahrplan.events.ccc.de/congress/2011/Fahrplan/track/Hacking/4871.en.html
https://fahrplan.events.ccc.de/congress/2011/Fahrplan/track/Hacking/4871.en.html
https://www.slideshare.net/phdays/postscript-danger-ahead
http://andreicostin.com/papers
https://www.theverge.com/2018/11/30/18119576/pewdiepie-printer-hack-t-series-youtube
https://www.theverge.com/2018/11/30/18119576/pewdiepie-printer-hack-t-series-youtube
https://docs.microsoft.com/en-us/windows-hardware/drivers/print/bidi-error-codes
https://docs.microsoft.com/en-us/windows-hardware/drivers/print/bidi-error-codes
https://docs.microsoft.com/en-us/windows-hardware/drivers/print/bidi-error-codes
https://docs.microsoft.com/windows-hardware/drivers/print/bidi-communications-schema-reference
https://docs.microsoft.com/windows-hardware/drivers/print/bidi-communications-schema-reference
https://docs.microsoft.com/en-us/windows-hardware/drivers/print/introduction-to-rendering-plug-ins
https://docs.microsoft.com/en-us/windows-hardware/drivers/print/introduction-to-rendering-plug-ins
https://okiprinting-en-gb.custhelp.com/app/answers/detail/a_id/334/~/what-is-port-9100%3F
https://okiprinting-en-gb.custhelp.com/app/answers/detail/a_id/334/~/what-is-port-9100%3F
https://okiprinting-en-gb.custhelp.com/app/answers/detail/a_id/334/~/what-is-port-9100%3F
https://www.frida.re
https://github.com/OpenRCE/sulley
https://www.peach.tech
https://www.peach.tech
https://ruxcon.org.au/assets/2017/slides/hong-ps-and-gs-ruxcon2017.pdf
https://ruxcon.org.au/assets/2017/slides/hong-ps-and-gs-ruxcon2017.pdf
http://support.ricoh.com/bb_v1oi/pub_e/oi_view/0001038/0001038577/view/software/unv/0065.htm
http://support.ricoh.com/bb_v1oi/pub_e/oi_view/0001038/0001038577/view/software/unv/0065.htm
https://github.com/seatgeek/fuzzywuzzy
https://github.com/seatgeek/fuzzywuzzy
https://www.statista.com/statistics/541347/worldwide-printer-market-vendor-shares
https://www.statista.com/statistics/541347/worldwide-printer-market-vendor-shares
http://www.undocprint.org/formats/page_description_languages
http://www.undocprint.org/formats/page_description_languages
https://en.wikipedia.org/wiki/Page_description_language
https://en.wikipedia.org/wiki/Page_description_language
https://github.com/zardus/idalink

	Abstract
	1 Introduction
	2 Background
	2.1 Working Flow of Printers and Assumptions
	2.2 Key Observations

	3 Design
	3.1 PDL Code Generation Function Identification
	3.2 PCC Paths Identification
	3.3 Key Context Constraints Extraction
	3.4 Real Execution Assisted Paperless PDL Code Generation
	3.5 Printer Monitoring

	4 Implementation
	5 Evaluation
	5.1 Rendering Module and Output Identification
	5.2 PCC Paths Identification
	5.3 Key Context Constraints Extraction
	5.4 Vulnerabilities Discovery and Case Studies

	6 Future Work
	7 Related work
	8 Conclusion
	References

