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ABSTRACT
Complex software is built by composing components implement-
ing largely independent blocks of functionality. However, once the
sources are compiled into an executable, that modularity is lost.
This is unfortunate for code recipients, for whom knowing the com-
ponents has many potential benefits, such as improved program
understanding for reverse-engineering, identifying shared code
across different programs, binary code reuse, and authorship attri-
bution. This paper proposes a novel approach for decomposing such
source-free program executables into components. Given an exe-
cutable, our approach first statically builds a decomposition graph,
where nodes are functions and edges capture three types of rela-
tionships: code locality, data references, and function calls. It then
applies a graph-theoretic approach to partition the functions into
disjoint components. A prototype implementation, BCD, demon-
strates the approach’s efficacy: Evaluation of BCD with 25 C++
binary programs to recover the methods belonging to each class
achieves high precision and recall scores for these tested programs.
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• Information systems → Clustering; • Software and its engi-
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Figure 1: Illustration of binary code hierarchy.

1 INTRODUCTION
Complex software is built by composing smaller components that
implement largely independent blocks of functionality. For example,
Figure 1 illustrates a hierarchy of an executable file that contains
m functions, denoted Fx with x ∈ [1,m]. These functions can
be associated with k modules or components, denoted Cx with
x ∈ [1,k]. Such components are integral to widely-used program-
ming paradigms like modular programming and object-oriented pro-
gramming. For instance, each class in a C++ program can be con-
sidered a separate component. Even in programming languages
like C that lack classes, modules, and packages, programmers often
place each component in its own source file and provide inter-
faces through header files. Such modular software design is key to
keeping code complexity at bay, controlling code development and
maintenance costs, and facilitating code reuse.

Once the source files are compiled into object files and those
object files are statically linked into an executable, this structural
modularity is hidden. This is unfortunate because most commercial
off-the-shelf (COTS) software are released as executables without
debugging information. Binary code analysis performed over a
third-party executable (without access to its source code) could
greatly benefit from modularity information. Security applications
that could benefit include program understanding and decompil-
ing [4, 11], finding related functions like the decryption routine
for a given encryption routine [6], identifying shared code across
different programs [16, 23, 29, 32, 33], reusing binary code [5, 18],
authorship attribution [1, 20, 26], and binary-level enforcement of
object flow integrity policies [31]. In all these applications, analysis
of an unknown binary at only the function level is time consuming
or inadequate, especially when the number of functions is large.
However, it may be intuitively easier or more effective to analyze
functions that are grouped at the component level.

For instance, many binary code reuse applications entail reusing
a set of functions belonging to a program component as a unit,
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rather than reusing the functions individually [5, 17, 18]. Intuitively,
component reuse is more useful since a set of functions (e.g., a li-
brary) can handle more complex logical tasks than individual func-
tions. As another example, consider the application of authorship
attribution using machine learning approaches [1, 26]. Discovery
of discriminatory stylistic patterns of code authors is potentially
enhanced by knowledge of each program’s components, since pat-
terns within each isolated function might be too fine-grained and
dispersed, whereas patterns spanning component-related function
families may provide a richer feature set.

This paper presents a novel static approach to decompose an
executable into components. Our approach is independent of the
compiler used to generate the executable and applies to both object-
oriented and procedural programs. The main idea in our approach is
to examine three key properties (code locality, data references and
function calls) that preserve useful information regarding the origi-
nal program components throughout the compilation process. We
represent these properties in the form of a decomposition graph, and
use a graph-theoretic clustering algorithm to identify the compo-
nents. We have implemented our approach as a tool called BCD. Our
empirical evaluation of BCD on 25 C++ programs, whose ground
truth we manually extracted using source code and debugging
symbols, shows high component detection accuracy.

2 BINARY CODE DECOMPOSITION
While much structural information is lost during compilation, an
executable still maintains useful information that can aid in identi-
fying program components created by the programmers or intro-
duced by a programming paradigm. In this section, we first describe
how BCD builds a graph for each of the three key decomposition
properties of code locality, data references, and function calls (Sec-
tion 2.1). We then detail how BCD builds the decomposition graph
from the three property graphs (Section 2.2). Finally, we describe
the clustering algorithm to partition the decomposition graph into
components (Section 2.3).

2.1 Decomposition Properties
The first step in our approach is to build a directed graph for each
of the three key decomposition properties of code locality, data ref-
erences, and function calls. In each graph, nodes correspond to the
functions in the executable. Different tools can be used to identify
functions in an executable such as IDA [8], BYTEWEIGHT [3], and
Dyninst [14]. BCD currently uses IDA to identify the functions in
an executable, but can easily be adapted to use other tools.
Code locality to sequence graph (SG). When developing a pro-
gram, structurally related functions are often placed close to each
other in the source code by programmers or the programming para-
digm. For example, the programming paradigmmay place functions
that operate on the same data next to each other such as the meth-
ods of a class. Source code locality transfers directly to the binary
code because the compiler generates an object file for each source
file and then the static linker concatenates the code (.text) sections
of each object file to produce the code section of the final executable.
Thus, functions that were next to each other in the source code
(e.g., from the same source file or in the same class) end up being
next to each other in the final executable. Code locality captures

the intutition that functions that are close to each other more likely
belong to the same component. To generate the sequence graph,
the functions identified by IDA are sorted in increasing order of
their starting address. Then, directed edges are added between con-
secutive functions, directed from the function at lower address to
the one at higher address.
Data references to data-reference graph (DRG). Functions op-
erating on the same data are more likely to be structurally related,
as they are related to the data semantics. This is especially true
in object-oriented programming, where encapsulation makes data
members be accessed by methods in the class. BCD constructs a
data-reference graph by adding edges between functions that ac-
cess the same variable. In an executable, global variables, static
variables, and constant string literals are allocated statically with
lifetime spanning across the entire program execution. In this work,
a data reference is the offset of a statically allocated variable in
the .data, .bss, or .rodata sections of an executable. For local
variables and non-static class members, storage is dynamic. We
focus on static data, global variables, and string literals because
local variables in the stack do not reveal data references across
functions. Moreover, data references to heap-allocated variables
are difficult to analyze statically. To build the data-reference graph,
BCD first creates a mapping between a function f and the set of
statically allocated variables it references D. We denote this map-
ping as Φ : f → D, where D = ⟨D1, . . . ,Dm⟩. Here, D j is the
offset of the jth static variable accessed by function f . An edge
between two functions f i and f j is added when they reference at
least one variable in common. To maintain the directed semantics
of all graphs, an edge in each direction is added between the two
functions. A larger set of common data references between two
functions implies a stronger likelihood that both functions are part
of the same component. Thus, an edge weight is assigned propor-
tional to the number of common data references between the two
functions. The weight is the same in both directions.
Function calls to call graph (CG). The final decomposition prop-
erty that BCD leverages is that of function calling relationships.
Intuitively, when function f i calls function f j , it is likely that those
two functions are structurally related. If a set of functions call each
other more than they call functions not in the set, then it is more
likely that the set of functions belongs to the same component. BCD
builds a call graph by adding a directed edge from function f i to
function f j if f i calls f j . The larger the number of calls between
two functions the stronger their structural relationship. This no-
tion is captured by assigning an edge weight corresponding to the
number of calls between two functions.
Challenges. In each of the above graphs, it is challenging to iden-
tify component boundaries—i.e., a set of edges that when removed
results in a disconnected set of subgraphs, each representing a com-
ponent. Particularly, boundaries between consecutive components
(e.g., C++ classes) are unknown. This affects component boundary
identification in a sequence graph. Similarly, component boundary
identification in a data reference graph is affected by generic func-
tions such as memcpy or printf that may operate on the same data,
despite being largely unrelated to the set of related functions within
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a component. Finally, it is not always true that a function calls an-
other related function. For example, the main function may act as a
dispatcher to other functions and is not contextually related to its
callees. Thus, no single graph can be used to detect components. To
address these challenges, the next step combines the three graphs
into a decomposition graph.

2.2 Decomposition Graph Construction
While a graph built using a decomposition property contains infor-
mation about structural relationships between functions, it may not
contain sufficient information to identify components (i.e., disjoint
subgraphs that represent groups of structurally related functions).
To address this issue, our approach constructs a weighted and di-
rected decomposition graph H = (V ′,E ′,W ), combining SG, CG,
and DRG. Here, V ′ is the set of functions in the executable and E ′
is the union of all edges from the three decomposition properties.
Graph edges are weighted according to the associated decompo-
sition property. We denote an edge between function pair f i and
f j by (f i , f j ). For all (f i , f j ) ∈ E ′, BCD computes an edge weight
wi j as a linear combination of the corresponding edge weights in
SG, CG and DRG. We assign a value of 1 to each edge weight in SG
for indicating the relationship between consecutive functions.
Edge weight computation. The edge weights for each graph can
be represented as an adjacency matrix M , in which each matrix
element Mi j

x corresponds to an edge (f i , f j ) ∈ Ex . Subscript x ∈
{s,d, c} denotes SG, DRG, or CG, respectively. For nodes in SG,Ms
consists of an adjacency matrix whose elements are each 1 or 0:

M
i j
s =

{
1 if (f i , f j ) ∈ Es

0 otherwise

However, in the case of DRG and CG, the corresponding matrix
elements have a value equal to the count of common data references
or function calls, respectively:

M
i j
d =

{
yd if (f i , f j ) ∈ Ed , , where 0 < yd ∈ N
0 otherwise

M
i j
c =

{
yc if (f i , f j ) ∈ Ec , where 0 < yc ∈ N
0 otherwise

where N denotes natural numbers.
While matrices for SG and CG directly capture the interaction

strength of functions, Md only captures the number of common
data references. Particularly, the elements ofMd ignore the effect of
dissimilarity in the globally ordered set of data references obtained
from Φ. A typical linker orders data references according to the
order in which functions refer to them. Therefore, it is more likely
that two functions accessing far apart variables (according to the
global order of data references) belong to different components
compared to functions accessing nearby variables. We capture this
notion using a dissimilarity score ρd between pairs of functions
in Ed . For each (f i , f j ) ∈ Ed , ordered lists of data references Di =

Φ(f i ) and D j = Φ(f j ) are obtained from Φ for functions f i and f j ,
respectively. We use the Levenshtein distance [7], a popular string
distance measure, to obtain the dissimilarity score between Di and

D j . Each element of the dissimilarity score matrix is given by

ρ
i j
d =

{
1 − L(Di ,D j )

max(p,q) if (f i , f j ) ∈ Ed ∧max(p,q) > 0
0 otherwise

where Di = Φ(f i ) has length p, D j = Φ(f j ) has length q, and L
denotes the Levenshtein distance. When the length of either Di or
D j is 0, we assign ρ

i j
d = 0 since L(Di ,D j ) = max(p,q).

Given the three matrices (Ms ,Md , andMc ) and the dissimilarity
matrix ρd , the combined edge weights are obtained using a linear
combination of elements in matrices as follows. We first compute a
penalty matrix N that computes the inverse distance between the
ordered set of functions. Each element of N is given by

N i j =

{ 1
|i−j | if i , j

1 otherwise

This penalty encourages the formation of components consisting
of functions that are sequentially connected. Finally, the final edge
weight matrix of the decomposition graph is given by

W = N ◦ (αMs + βMc + γ (ρd ◦Md ))

where α , β and γ are scalar hyperparameters, and operator ◦ de-
notes element-wise multiplication or Hadamard product. We empir-
ically determine the value of each hyperparameter through cross-
validation (see Section 3.1).

2.3 Partitioning
Our inductive assumption is that components are formed from dis-
joint sets of functions that primarily interact with other functions
within the component, while interacting less with functions in other
components. Since the number of components (or communities)
in a given executable is unknown, we use Newman’s generalized
community detection algorithm [22], which does not require prior
knowledge of the number of existing components (or communities).
The algorithm has a time complexity of O((m+n)n), wherem is the
number of edges and n the number of vertices in the graph. It opti-
mizes a modularity function, where modularity Q is defined as the
difference between the fraction of edges that fall within the given
cluster and the expected fraction of edges if they were distributed
at random. Modularity is widely used as a goodness measure for
graph clustering, and is computed as Q =

∑
i (eii −

∑
j e

i j ), where
ei j is the fraction of edges in the network that connect nodes in
cluster Ci to those in cluster Cj (i.e., component boundaries).

The algorithm follows a bottom-up hierarchical clustering ap-
proach. It begins by considering each node as a separate community.
It then merges the nodes connected with edges having optimal
weights and detects the number of communities by optimizing
the global modularity. Since our decomposition graph captures
the function interactions as edge weights, we expect that related
functions would be grouped inside the same component.

3 EVALUATION
In this section, we first present our experimental setup in Section 3.1
and then the evaluation results of BCD in Section 3.2.
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Source Code Binary Code

Header C++ Object
ID Program Project KLOC Files Files Type Files Classes Methods Funcs

P1 DynamicDPI.exe Dynamic DPI 4.6 19 17 PE 17 16 171 2,604
P2 genericucp.exe UPnP Control Point 4.7 8 6 PE 6 7 68 634
P3 WRTPackageDebug.exe WinRT Debug Tool 1.5 11 7 PE 7 7 38 488
P4 AmbientLightAware.exe Ambient Light 1.6 6 5 PE 5 4 31 910
P5 BC6HBC7EncoderCS.exe BC6HBC7 Encoder 1.8 5 5 PE 5 16 148 905
P6 CameraCapture.exe CameraCapture UI 3.6 21 11 PE 10 8 144 3,226
P7 StarterKit.exe VS 3D Starter Kit 7.0 18 10 PE 7 11 133 2,526
P8 AsyncDynamicObserver.exe Multithreaded Login 2.5 14 11 PE 11 10 38 1,082
P9 DynamicObserver.exe Multithreaded Login 1.5 11 8 PE 8 6 25 739
P10 DistributorMQ.exe Multithreaded Login 2.5 14 11 PE 11 10 43 1,093
P11 DynamicShaderLinkage.exe Dynamic Shader 44.2 20 16 PE 14 14 198 4,114
P12 7z.exe 7zip 27.2 41 69 PE 69 112 837 2,179
P13 7zG.exe 7zip 28.8 56 89 PE 89 149 890 2,530
P14 7zFM.exe 7zip 37.9 73 140 PE 140 182 979 3,149
P15 nping.exe Nmap 23.4 21 18 PE 18 15 228 2,340
P16 nmap.exe Nmap 58.3 50 48 PE 48 13 572 6,265
P17 cppcheck.exe Static analysis tool 171.2 81 81 PE 78 78 668 2,248
P18 lzip LZMA compressor 3.9 5 5 ELF 5 11 23 33
P19 tinyXMLTest Tiny XML 7.1 2 5 ELF 5 14 138 2,744
P20 gperf Gperf 8.3 14 11 ELF 11 19 81 58
P21 Astyle Astyle 18.3 3 6 ELF 4 17 152 2,740
P22 re2c Re2c 18.8 23 22 ELF 20 30 133 285
P23 lshw Lshw 24.2 12 13 ELF 13 7 125 1,429
P24 smartctl SMART disk analyzer 53.4 30 25 ELF 16 36 139 457
P25 pdftohtml Pdf to html converter 91.4 87 87 ELF 85 125 1048 499

Table 1: Programs used in BCD evaluation.

3.1 Experiment Setup
We evaluate BCD using 25 programs. The dataset includes popular
projects (e.g., Nmap, 7zip) collected from the Microsoft sample code
repository [21], SourceForge [28], and the GNU software reposi-
tory [12]. The dataset has executables from 4 projects having a size
greater than 50 KLOC. These projects include multiple executables
that often share code between themselves. In addition, 10 of the
programs are benchmarks used for evaluating the Lego System [30],
which recovers class hierarchies and composition-relationship us-
ing static and dynamic analysis techniques.

For all 25 programs, the source code is publicly available. Each
program’s source code is compiled with debugging information for
extracting the ground truth needed to evaluate BCD. The ground
truth is a mapping of methods in each class obtained from the de-
bugging symbols, with corresponding class information. Since the
source code may not be well structured or may not strictly follow
modular programming principles, we extract the set of functions
in each class and manually verify whether they form a component.
Note that we only use the source code and debugging symbols to
generate the necessary ground truth. BCD operates on the exe-
cutables without access to source code or debugging symbols. For
evaluating the effect of compiler optimization, we include PE (P1-
P17) executables compiled using Visual Studio and ELF executables
(P18-P25) compiled using g++.

Table 1 summarizes the 25 C++ programs. For each program, it
shows the program identifier, the program name, the project the
program belongs to, and source code and binary code statistics.

Evaluation metrics.We measure the overall performance of BCD
by computing the Precision P , Recall R, and F1 score values. The
number of functions in a component may have high variance (i.e.,
a few components may have a small number of functions, while
others may have a large number of functions). Such cases may
mislead our analysis if a simple average of component scores is
considered. Thus, we report a weighted average of scores [25] across
all components. This macro-averaged score is computed as

Pw =

Nc∑
i=1

Pi
ni
Nf
, Rw =

Nc∑
i=1

Ri
ni
Nf
, Fw1 =

Nc∑
i=1

F
(i)
1

ni
Nf

(1)

where Pi , Ri , and F
(i)
1 are the scores for component Ci ; Nf is the

total number of functions in all components; ni is the number of
functions in component Ci ; and Nc is the total number of compo-
nents in the executable.
Graph weight hyperparameter training. In the decomposition
graph construction, hyperparameters α , β , and γ determine the
contribution of edge weights from the sequence graph, function-call
graph, and data-reference graph, respectively. For normalization,
we constrain α + β + γ = 1. To empirically obtain the value of
hyperparameters, we perform a grid-search over the range values.
Specifically, given a dataset of binary executables, we apply 5-fold
cross-validation by running BCD on the dataset for different values
of α , β ∈ [0, 1] with a step size of 0.1, and assign γ = 1− α − β . The
final choice of hyperparameter values corresponds to the maximum
cross-validated average Fw1 score.
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Figure 2: (a) Fw1 score comparison for decomposing
programs using different feature sets. ( CG-BCD,

DRG-BCD, DRG-CG-BCD, All-BCD). (b)
Weighted-macro-averaged precision, recall and

F1 scores.

Baseline. We compare the accuracy of BCD with three baseline
methods that use some (but not all) of the decomposition properties.
The first two baselines use a single decomposition property, i.e.,
either a CG (denoted by CG-BCD) or a DRG (denoted by DRG-BCD).
We avoid using the SG as baseline since it would result in either a
single component, or in each function forming its own component.
The third baseline uses a combination of edges from DRG and CG to
form the decomposition graph, denoted as DRG-CG-BCD. Finally,
we denote BCD by All-BCD, emphasizing that edges from all three
graphs are used to construct the decomposition graph.

3.2 Results
Figure 2-(a) shows the Fw1 scores for the decomposition into compo-
nents output by BCD and the baseline methods. Here, PX indicates
the program identifier as per Table 1. For both PE and ELF exe-
cutables, the results clearly indicate that the highest Fw1 score is
obtained by All-BCD, which outperforms the baseline methods.
Moreover, the baseline method DRG-CG-BCD, which combines
CG and DRG edges, performs better compared to the other base-
lines that use a single decomposition property (i.e. DRG-BCD and
CG-BCD). This supports our claim that a linear combination of
the edge weights from all three graphs improves the recovery of
components compared to the individual decomposition properties.
In addition, the difference in Fw1 between PE and ELF programs is
negligible, indicating that BCD is robust to variations in executables
produced by different compilers. Moreover, function re-ordering
(from employing different compilers) can vastly affect the code
locality property, i.e., the sequence graph. The results of DRG-CG-
BCD perform close to All-BCD, indicating the robustness of BCD
to such transformations by ignoring SG edges during partitioning.
Analysis of errors. As BCD automatically determines the number
of components using Newman’s community detection method, the
resulting components may not always agree with the true number
of components in an executable, according to the ground truth. A
phenomenon called under-splitting occurs when functions truly
belonging to two or more classes are grouped into a single com-
ponent by BCD. Conversely, a phenomenon called over-splitting
occurs when a set of functions truly belonging to a single class are
distributed across multiple components.

We examine the performance of BCD in decomposing program
executables into components using the weighted macro-averaged
scores of precision, recall and F1. As illustrated in Figure 2-(b),
the median Fw1 score of programs containing PE executables (and
corresponding variance) is 0.88±0.0036, and that of ELF executables
is 0.84 ± 0.001. Particularly, we observed that component under-
fitting occurs mainly in classes with only one or two functions.
These small-sized components lack strong code and data locality
features. For example, program P18 resulted in the least Fw1 score.
This program has 7 classes, each having a single function. As a
result, we observed 2 under-split partitions, each having functions
from at least 3 different classes.
Hyperparameter sensitivity. We measure BCD’s sensitivity to
meta-weight parameter values by measuring the variance of α , β
andγ obtained during the 5 fold cross-validation. The average value
of meta-weight parameters yielding the highest Fw1 score in each
run are α = 0.237±0.0026, β = 0.362±0.0026, and γ = 0.4±0.0028.
From these results, it can be observed that the performance of BCD
is not significantly sensitive to the training data.
Runtime. We measure the runtime for BCD by aggregating the
time spent during each step, i.e., decomposition properties extrac-
tion, decomposition graph construction, and partitioning. We use a
Windows 32-bit machine with 4GB RAM and disassemble the exe-
cutables using IDA [8]. The extraction of decomposition property
graphs took 3s for the smallest program (P3) and 30s for the pro-
gram (P24) with highest number of functions. Decomposition graph
construction took an average of 10s per program. BCD spends a
majority of time performing graph partitioning. Each iteration of
the LinLogLayout toolkit [24] took a minimum time of 3s for P6,
and a maximum time of 150s for P24.

4 RELATEDWORK
There are numerous closely-related problems to binary decomposi-
tion. They include recovery of class hierarchy in C++ programs [30],
code clone detection [27], program diffing [13, 34], and identifica-
tion of functions with the same semantics [10, 15]. However, these
differ from binary decomposition in their goal. Our goal is to stati-
cally decompose an executable into groups of structurally related
functions. Functions belonging to the same component are likely
to have related structural properties, but they may have very differ-
ent syntactic representations and input-output relationships. For
example, an encryption routine is highly related to its decryption
routine and both are likely located in the same (cryptographic)
component, but their input-output relationships are very different
and can operate of very different data.

Most related are works on software module clustering [2, 19],
which cluster program source code to recommend the best split into
components to the developer. In contrast, our approach operates on
program executables and tries to recover the component structure
that the developer used, which are lost during compilation, rather
than recommending a new component structure.

5 DISCUSSION

Obfuscation. When designing BCD, we assume that the binary is
unobfuscated. In other words, our decomposition graph assumes

5
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that the function sequence is unchanged. However, we also evalu-
ated the robustness of BCD using only call-graph and data-reference
graphs. In our test, when function sequence graph is excluded, BCD
Fw1 score reduces to from 0.86 to 0.78 for C++ applications. Al-
though an adversary could use obfuscation to defeat BCD, those
obfuscations might well have the side-effect of raising detection
alarms. For example, if BCD encounters a binary that seems to have
extremely chaotic locality properties, that in itself could be used as
a malware detection strategy. One way to address obfuscation is
to de-obfuscate before applying BCD, e.g., using solutions such as
dynamic unpackers [9].
Dynamic features. For simplicity, we have focused on features ex-
tracted statically from the executable. However, features extracted
from program executions could also be incorporated into the decom-
position graph, improving its efficiency. Some example dynamic
features that may provide useful modularity information are func-
tions used in a certain order and functions that access the same
data structures in heap-allocated memory.

6 CONCLUSION
This paper introduced the problem of binary code decomposition
and addressed its challenges by proposing a novel approach, called
BCD, for decomposing a program executable into components. BCD
takes a binary executable as input, and extracts code locality, data
references, and calling relationships to build a decomposition graph.
It then applies a graph-theoretic approach to partition the decompo-
sition graph into disjoint components. Our evaluation results show
that BCD is able to achieve a high precision and recall for decom-
posing the tested programs into components having structurally
related functions.
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