
A Token-Based Access Control System for RDF Data in the Clouds

Arindam Khaled∗

Computer Science Department
Mississippi State University

ak697@msstate.edu

Mohammad Farhan Husain1

Latifur Khan2

Kevin W. Hamlen3

Bhavani Thuraisingham4

Department of Computer Science
University of Texas at Dallas

{1mfh062000, 2lkhan}@utdallas.edu
{3hamlen, 4bhavani.thuraisingham}@utdallas.edu

Abstract

The Semantic Web is gaining immense popularity—
and with it, the Resource Description Framework (RDF)
broadly used to model Semantic Web content. However, ac-
cess control on RDF stores used for single machines has
been seldom discussed in the literature. One significant ob-
stacle to using RDF stores defined for single machines is
their scalability. Cloud computers, on the other hand, have
proven useful for storing large RDF stores; but these sys-
tems lack access control on RDF data to our knowledge.

This work proposes a token-based access control system
that is being implemented in Hadoop (an open source cloud
computing framework). It defines six types of access levels
and an enforcement strategy for the resulting access control
policies. The enforcement strategy is implemented at three
levels: Query Rewriting, Embedded Enforcement, and Post-
processing Enforcement. In Embedded Enforcement, poli-
cies are enforced during data selection using MapReduce,
whereas in Post-processing Enforcement they are enforced
during the presentation of data to users. Experiments show
that Embedded Enforcement consistently outperforms Post-
processing Enforcement due to the reduced number of jobs
required.

1 Introduction

The Semantic Web is becoming increasingly ubiquitous.
More small and large businesses, such as Oracle, IBM,
Adobe, Software AG, and many others, are actively us-
ing Semantic Web technologies [22], and broad applica-
tion areas such as Health Care and Life Sciences are con-
sidering its possibilities for data integration [22]. Sir Tim

∗The work was done while the author was a graduate student at the
University of Texas at Dallas.

Berners-Lee originally envisioned the Semantic Web as a
machine-understandable web [3]. The power of the Seman-
tic Web lies in its codification of relationships among web
resources [22].

Semantic Web, along with ontologies, is one of the most
robust ways to represent knowledge. An ontology formally
describes the concepts or classes in a domain, various prop-
erties of the classes, the relationships between classes, and
restrictions. A knowledge base can be constructed by an
ontology and its various class instances. An example of a
knowledge base (ontology and its instance) is presented in
Figure 1.

Resource Description Framework (RDF) is widely used
for Semantic Web due to its expressive power, semantic
interoperability, and reusability. Most RDF stores in cur-
rent use, including Joseki [15], Kowari [17], 3store [10],
and Sesame [5], are not primarily concerned with secu-
rity. Efforts have been made to incorporate security, es-
pecially in Jena [14, 20]; however, one drawback of Jena
is that it lacks scalability. Its execution times can become
quite slow with larger data-sets, making certain queries over
large stores intractable (e.g., those with 10 million triples or
more) [12, 13].

On the other hand, large RDF stores can be stored and
retrieved from cloud computers due to their scalability, par-
allel processing ability, cost effectiveness, and availabil-
ity. Hadoop (Apache) [1]—one of the most widely used
cloud computing environments—uses Google’s MapRe-
duce framework. MapReduce splits large jobs into smaller
jobs, and combines the results of these jobs to produce the
final output once once the sub-jobs are complete. Prior work
has demonstrated that large RDF graphs can be efficiently
stored and queried in these clouds [6, 12, 13, 18]. To our
knowledge, access control has not yet been implemented on
RDF stores in Hadoop. Doing so is the subject of this work.

Our system implements a token-based access control
system. System administrators grant access tokens for

Employee

Salary

isPaid

Sales
Person

Branch
Manager

Regional
Manager

Company

worksFor

Address

livesIn

City

has

Temperature

Avg Summer Temp

Dwight
Schrute

Jim
Halpert

Michael
Scott

David
Pam

Halpert

50000

isPaid

90000

isPaid

95000

isPaid

100000

isPaid

40000

isPaid

Dunder
Mifflin

worksForworksForworksForworksFor worksFor

David’s
Address

livesIn
Long
Island

has

75◦F

Avg Summer Temp

SubClassOf
InstanceOf

Figure 1. A sample RDF ontology and ontology instance

security-relevant data according to agents’ needs and secu-
rity levels. Conflicts that might arise due to the assignment
of conflicting access tokens to the same agent are resolved
using the timestamps of the access tokens. We use the
Lehigh University Benchmark (LUBM) [9] test instances
for experiments. A few sample scenarios have been gener-
ated and implemented in Hadoop.

We have several contributions. First, we propose an
architecture that scales well to extremely large data-sets.
Second, we address access control not only at the level of
users but also at the level of subjects, objects, and pred-
icates, making policies finer-grained and more expressive
than past work. Third, a timestamp-based conflict detection
and resolution algorithm is proposed. Fourth, the architec-
ture has been implemented and tested on benchmark data
in several alternative stages: Query Rewriting (preprocess-
ing phase), Embedded Enforcement (MapReduce execu-
tion phase), and Post-processing Enforcement (data display
phase). Finally, the whole system is being implemented
on Hadoop—an open source cloud computing environment.
We consider the work beneficial for others considering ac-
cess control for RDF data in Hadoop.

The remainder of the paper is organized as follows. In
Section 2, we present related work and a brief overview of
Hadoop and MapReduce. Section 3 introduces access to-
kens, access token tuples, conflicts, and our conflict reso-
lution algorithm. We describe the architecture of the our
system in Section 4. In Section 5, we describe the impact
of assigning access tokens to agents, including experiments
and their running times. Finally, Section 6 concludes with a
summary and suggestions for future work.

2 Background

2.1 Related Work

We begin by describing prior work on RDF Security for
single machines. We then summarize some of the proposed

Cloud Computing architectures that store RDF data. Fi-
nally, we provide a summary of our own prior work.

Although plenty of research has been undertaken on stor-
ing, representing, and reasoning about RDF knowledge, re-
search on security and access control issues for RDF stores
is comparatively sparse [20]. Reddivari et al. [20] have im-
plemented access control based on a set of policy rules.
They address insertion/deletion actions of triples, models,
and sets in RDF stores, as well as see and use actions.
Jain and Farkas [14] have described RDF protection ob-
jects as RDF patterns, and designed security requirements
for them. They show that the security level of a subclass
or sub-property should be at least as restricted as the super-
type. The RDF triple-based access control model proposed
in [16] considers explicit and implicit authorization propa-
gation.

Most of these works are implemented in Jena. However,
Jena scales poorly in that it runs on single machines and is
unable to handle large amounts of data [12, 13]. Husain et
al. [12, 13] propose and implement an architecture to store
and query large RDF graphs. Mika and Tummarello [18]
store RDF data in Hadoop. The SPIDER system [6] stores
and processes huge RDF data-sets, but lacks an access con-
trol mechanism.

Our proposed architecture supports access control for
large data-sets by including an access control layer in the
architecture proposed in [13]. Instead of assigning access
controls directly to users or agents, our proposed method
generates tokens for specific access levels and assigns these
tokens to agents, considering the business needs and secu-
rity levels of the agents. Although tokens have been used
by others for access control to manage XML documents [4]
and digital information [11], these have not been used for
RDF stores. One of the advantages of using tokens is that
they can be reused if the needs and security requirements
for multiple agents are identical.

2.2 Hadoop and MapReduce

In this section we provide a brief overview of Hadoop [1]
and MapReduce. In Hadoop, the unit of computation is
called a job. Users submit jobs to Hadoop’s JobTracker
component. Each job has two phases: Map and Reduce.
The Map phase takes as input a key-value pair and may
output zero or more key-value pairs. In the Reduce phase,
the values for each key are grouped together into collec-
tions traversable by an iterator. These key-iterator pairs are
then passed to the Reduce method, which also outputs zero
or more key-value pairs. When a job is submitted to the
JobTracker, Hadoop attempts to position the Map processes
near to the input data in the cluster. Each Map process and
Reduce process works independently without communicat-
ing. This lack of communication is advantageous for both
speed and simplicity.

3 Access Control Levels

Definition 1. Access Tokens (AT) permit access to security-
relevant data. An agent in possession of an AT may view
the data permitted by that AT. We denote AT’s by positive
integers.

Definition 2. Access Token Tuples (ATT) have the form
〈AccessToken, Element , ElementType, ElementName〉,
where Element can be Subject , Object , or Predicate,
and ElementType can be described as URI , DataType ,
Literal , Model , or BlankNode . Model is used to access
Subject Models, and will be explained later in the section.

For example, in the ontology in Figure 1, David is a
subject and 〈1,Subject ,URI ,David〉 is an ATT. Any agent
having AT 1 may retrieve David ’s information over all
files (subject to any other security restrictions governing
access to URI’s, literals, etc., associated with David ’s ob-
jects). While describing ATT’s for Predicates , we leave the
ElementName blank ().

Based on the record organization, we support six access
levels along with a few sub-types described below. Agents
may be assigned one or more of the following access levels.
Access levels with a common AT combine conjunctively,
while those with different AT’s combine disjunctively.

1. Predicate Data Access: If an object type is defined
for one particular predicate in an access level, then
an agent having that access level may read the whole
predicate file (subject to any other policy restrictions).
For example, 〈1,Predicate, isPaid , 〉 is an ATT that
permits its possessor to read the entire predicate file
isPaid .

2. Predicate and Subject Data Access: Agents possess-
ing a Subject ATT may access data associated with a

1

AT

Vitamins

E

Predicate

Object

Agent

Figure 2. Conjunctive combination of ATT’s
with a common AT

particular subject, where the subject can be either a
URI or a DataType . Combining one of these Sub-
ject ATT’s with a Predicate data access ATT having the
same AT grants the agent access to a specific subject of
a specific predicate. For example:

(a) Predicate and Subject as URI’s: Combining
ATT’s 〈1,Predicate, isPaid , 〉 and 〈1,Subject ,
URI ,MichaelScott〉 (drawn from the ontology
in Figure 1) permits an agent with AT 1 to ac-
cess a subject with URI MichaelScott of predi-
cate isPaid .

(b) Predicate and Subject as DataTypes: Simi-
larly, Predicate and DataType ATT’s can be com-
bined to permit access to subjects of a specific
data type over a specific predicate file.

For brevity, we omit descriptions of the different Sub-
ject and Object variations of each of the remaining ac-
cess levels.

3. Predicate and Object: This access level permits
a principal to extract the names of subjects satis-
fying a particular predicate and object. For exam-
ple, with ATT’s 〈1,Predicate, hasVitamins, 〉 and
〈1,Object ,URI , E〉, an agent possessing AT 1 may
view the names of subjects (e.g., foods) that have vi-
tamin E. More generally, if X1 and X2 are the set of
triples generated by Predicate and Object triples (re-
spectively) describing an AT, then agents possessing
the AT may view set X1 ∩ X2 of triples. An illustra-
tion of this example is displayed in Figure 2.

4. Subject Access: With this access level an agent may
read the subject’s information over all the files. This
is one of the less restrictive access levels. The subject
can be a URI , DataType , or BlankNode .

5. Object Access: With this access level an agent may
read the object’s subjects over all the files. Like the

previous level, this is one of the less restrictive access
levels The object can be a URI , DataType , Literal ,
or BlankNode .

6. Subject Model Level Access: Model level access per-
mits an agent to read all necessary predicate files to ob-
tain all objects of a given subject. Of these objects, the
ones that are URI’s are next treated as subjects to ex-
tract their respective predicates and objects. This pro-
cess continues iteratively until all objects finally be-
come literals or blank nodes. In this manner, agents
possessing Model level access may generate models
on a given subject.

The following example drawn from Figure 1 illus-
trates. David lives in LongIsland . LongIsland is a
subject with an Avg Summer Temp predicate hav-
ing object 75◦F . An agent with Model level access
of David may therefore read the average summer tem-
perature of LongIsland .

3.1 Access Token Assignment

Definition 3. An Access Token List (AT-list) is an array of
one or more AT’s granted to a given agent, along with a
timestamp identifying the time at which each was granted.
A separate AT-list is maintained for each agent.

When a system administrator decides to add an AT to
an agent’s AT-list, the AT and timestamp are first stored
in a temporary variable TempAT . Before committing the
change, the system must first detect potential conflicts in the
new AT-list.

3.2 Final output of an Agent’s ATs

Each AT permits access to a set of triples. We refer to
this set as the AT’s result set. The set of triples accessible
by an agent is the union of the result sets of the AT’s in the
agent’s AT-list. Formally, if Y1, Y2, . . . , Yn are the result
sets of AT’s AT1, AT2, . . . , ATn (respectively) in an agent’s
AT-list, then the agent may access the triples in set Y1∪Y2∪
· · · ∪ Yn.

3.3 Security Level Defaults

An administrator’s AT assignment burden can be con-
siderably simplified by conservatively choosing default se-
curity levels for data in the system. In our implementation,
all items in the data store have default security levels. Per-
sonal information of individuals is kept private by denying
access to any URI of data type Person by default. This
prevents agents from making inferences about any individ-
ual to whom they have not been granted explicit permission.

However, if an agent is granted explicit access to a particu-
lar type or property, the agent is also granted default access
to the subtypes or sub-properties of that type or property.

As an example, consider a predicate file Likes that lists
elements that an individual likes. Assume further that
Jim is a person who likes Flying , SemanticWeb, and
Jenny , which are URI’s of type Hobby , ResearchInterest ,
and Person , respectively, and 1 is an AT with ATTs
〈1,Subject ,URI , Jim〉 and 〈1,Likes,Predicate, 〉. By
default, agent Ben having only AT 1 cannot learn that
Jenny is in Jim’s Likes-list since Jenny’s data type is
Person . However, if Ben also has AT 2 described by
ATT 〈2,Object ,URI , Jenny〉, then Ben will be able to see
Jenny in Jim’s Likes-list.

3.4 Conflicts

A conflict arises when the following three conditions oc-
cur: (1) An agent possesses two AT’s 1 and 2, (2) the result
set of AT 2 is a proper subset of AT 1, and (3) the timestamp
of AT 1 is earlier than the timestamp of AT 2. In this case
the later, more specific AT supersedes the former, so AT 1 is
discarded from the AT-list to resolve the conflict. Such con-
flicts arise in two varieties, which we term subset conflicts
and subtype conflicts.

A subset conflict occurs when AT 2 is a conjunction
of ATT’s that refines those of AT 1. For example, sup-
pose AT 1 is defined by ATT 〈1,Subject ,URI ,Sam〉, and
AT 2 is defined by ATT’s 〈2,Subject ,URI ,Sam〉 and
〈2,Predicate,HasAccounts, 〉. In this case the result set
of AT 2 is a subset of the result set of AT 1. A conflict will
therefore occur if an agent possessing AT 1 is later assigned
AT 2. When this occurs, AT 1 is discarded from the agent’s
AT-list to resolve the conflict.

Subtype conflicts occur when the ATT’s in AT 2 involve
data types that are subtypes of those in AT 1. The data types
can be those of subjects, objects or both.

Conflict resolution is summarized by Algorithm 1. Here,
Subset(AT 1,AT 2) is a function that returns true if the re-
sult set of AT 1 is a proper subset of the result set of AT 2,
and SubjectSubType(AT 1,AT 2) returns true if the sub-
ject of AT 1 is a subtype of the subject of AT 2. Similarly,
ObjectSubType(AT 1,AT 2), decides subtyping relations
for objects instead of subjects.

4 Proposed Architecture

Our architecture consists of two components. The upper
part of Figure 3 depicts the data preprocessing component,
and the lower part shows the components responsible for
answering queries.

Three subcomponents perform data generation and pre-
processing. We convert RDF/XML [2] to N -Triples seri-
alization format [7] using our N -Triples Converter com-
ponent. The Predicate Split (PS) component takes the N -
Triples data and splits it into predicate files. These steps

Input: AT newAT with timestamp TSnewAT

Result: Detect conflict and, if none exists, add
(newAT , TSnewAT) to the agent’s AT-list

1 currentAT []← the AT’s and their timestamps;
2 if (!Subset(newAT , tempATTS) AND

!Subset(tempATTS , newAT) AND
!SubjectSubType(newAT, tempATTS)) AND
!SubjectSubType(tempATTS, newAT) AND
!ObjectSubType(newAT, tempATTS)) AND
!ObjectSubType(tempATTS, newAT)) then

3 currentAT [lengthcurrentAT].AT ← newAT ;
4 currentAT [lengthcurrentAT].TS ← TSnewAT ;
5 else
6 count ← 0;
7 while count < lengthcurrentAT do
8 AT tempATTS ← currentAT [count].AT ;
9 tempTS ← currentAT [count].TS ;

10 /* the timestamp during the AT assignment */
11 if (Subset(newAT , tempATTS) AND

(TSnewAT ≥ tempTS)) then
12 /* a conflict occurs */
13 currentAT [count].AT ← newAT ;
14 currentAT [count].TS ← TSnewAT ;
15 else if ((Subset(tempATTS, newAT)) AND

(tempTS < TSnewAT)) then
16 currentAT [count].AT ← newAT ;
17 currentAT [count].TS ← TSnewAT ;
18 else if ((SubjectSubType(newAT, tempATTS)

OR ObjectSubType (newAT, tempATTS)) AND
TSnewAT ≥ tempTS) then

19 /* a conflict occurs */
20 currentAT [count].AT ← newAT ;
21 currentAT [count].TS ← TSnewAT ;
22 else if ((SubjectSubType(tempATTS, newAT)

OR ObjectSubType (tempATTS, newAT)) AND
(tempATTS < TSnewAT)) then

23 currentAT [count].AT ← newAT ;
24 currentAT [count].TS ← TSnewAT ;
25 end
26 count ← count + 1;
27 end
28 end

Algorithm 1: Conflict detection and resolution

pre-processor

N -triple Converter

PS

Summary Statistics

RDF/XML Data

Hadoop Cluster

processed data files

User

answer

Query Interface
Engine

query

map-reduce framework

query

Join Executer

Plan Generator

jobs

Input Selector

Access Control
Unit

Data Processing

Query Processing

Figure 3. The system architecture

are described in Section 4.1. The output of the last com-
ponent is then used to gather summary statistics, which are
delivered to the Hadoop File System (HDFS).

The bottom part of the architecture shows the Access
Control Unit and the MapReduce framework. The Access
Control Unit takes part in different phases of query execu-
tion. When the user submits a query, the query is rewritten
(if possible) to enforce one or more access control policies.
The MapReduce framework has three sub-components. It
takes the rewritten SPARQL query from the query interface
engine and passes it to the Input Selector and Plan Gen-
erator. This component selects the input files, decides how
many jobs are needed, and passes the information to the Job
Executer component, which submits corresponding jobs to
Hadoop. The Job Executer component communicates with
the Access Control Unit to get the relevant policies to en-
force, and runs jobs accordingly. It then relays the query
answer from Hadoop to the user. To answer queries that
require inferencing, we use the Pellet OWL Reasoner. The
policies are stored in the HDFS and loaded by the Access
Control Unit each time the framework loads.

4.1 Data Generation and Storage

We use the LUBM [9] dataset for our experiments. This
benchmark dataset is widely used by researchers [8]. The
LUBM data generator generates data in RDF/XML serial-
ization format. This format is not suitable for our purpose
because we store data in HDFS as flat files. If the data is
in RDF/XML format, then to retrieve even a single triple
we need to parse the entire file. Also, RDF/XML format is
not suitable as an input for a MapReduce job. Therefore we
store data as N -Triples, because with that format we have

Table 1. Sample data for an LUBM query
type ub:advisor ub:takesCourse ub:teacherOf

GS1 Student GS2 A2 GS1 C2 A1 C1

GS2 Student GS1 A1 GS3 C1 A2 C2

GS3 Student GS3 A3 GS3 C3 A3 C3

GS4 Student GS4 A4 GS2 C4 A4 C4

GS1 C1 A5 C5

GS4 C2

a complete RDF triple (Subject, Predicate, and Object) in
one file line, which is very convenient for MapReduce jobs.
We therefore convert the data to N -Triple format, partition-
ing the data by predicate. This step is called PS. In real-
world RDF datasets, the number of distinct predicates is
no more than 10 or 20 [21]. This partitioning reduces the
search space for any SPARQL query that does not contain a
variable predicate [19]. For such a query, we can just pick
a file for each predicate and run the query on those files
only. We name the files by predicate for simplicity; e.g., all
the triples containing predicate p1:pred are stored in a file
named p1-pred. A more detailed description of this process
is provided in [13].

4.2 Example Data

Table 1 shows sample data for three predicates. The
leftmost column shows the type file for student objects af-
ter the PS step. It lists only the subjects of the triples
having rdf:type predicate and student object. The rest of
the columns show the advisor, takesCourse, and teacherOf
predicate files after the PS step. Each row has a subject-
object pair. In all cases, the predicate can be retrieved from
the filename.

4.3 Policy Enforcement

Our MapReduce framework enforces policies in two
phases. Some policies can be enforced by simply rewrit-
ing a SPARQL query during the query parsing phase. The
remaining policies can be enforced in the query answering
phase in two ways. First, we can enforce the policies as we
run MapReduce jobs to answer a query. Second, we can
run the jobs for a query as if there is no policy to enforce,
and then take the output and run a set of jobs to enforce the
policies. These post-processing jobs are called filter jobs.
In both cases, we enforce predicate-level policies while we
select the input files by the Input Selector. In the following
sections we discuss these approaches in detail.

4.3.1 Query Rewriting

Policies involving predicates can be enforced by rewriting
a SPARQL query. This involves replacing predicate vari-
ables by the predicates to which a user has access. An ex-
ample illustrates. Suppose a user’s AT-list consists of AT 1

SELECT ?o WHERE
{ A ?p ?o } =⇒ SELECT ?o WHERE

{ A takesCourse ?o }

Figure 4. A SPARQL query before and after
rewriting

described by ATT 〈1,Predicate, takesCourses, 〉 (i.e., the
user may only access predicate file takesCourse). If the
user submits the query on the left of Figure 4, we can re-
place predicate variable ?p with takesCourse. The rewritten
query is shown on the right of the figure.

After query is rewritten we can answer the query in two
ways, detailed in the following two sections.

4.3.2 Embedded Enforcement

In this approach, we enforce the policies as we answer a
query by Hadoop jobs. We leverage the query language’s
join mechanism to do this kind of enforcement. Policies
involving URI’s, literals, etc., can be enforced in this way.
For example, suppose access to data for some confidential
courses is restricted to only a few students. If an unprivi-
leged user wishes to list the courses a student has taken, we
can join the file listing the confidential courses with the file
takesCourse, and thereby enforce the desired policy within
the Reduce phase of a Hadoop job. Suppose courses C3 and
C4 are confidential courses. If an unprivileged user wishes
to list the courses taken by GS 3, then we can answer the
query by the Map and Reduce code shown in Algorithms 2
and 3.

1: splits ← value.split()
2: if Input file = sensitiveCourses then
3: output(splits[0],"S")
4: else if splits[0] = GS 3 then
5: output(splits[1],"T")
6: end if

Algorithm 2: Pseudo-code for EEMAP

1: count ← 0
2: iter ← values.iterator()
3: while iter .hasNext() do
4: count++
5: t← iter .next()
6: end while
7: if count = 1 AND t = "T" then
8: output(key)
9: end if
Algorithm 3: Pseudo-code for EEREDUCE

Algorithm 2 shows the code of the Map phase. It first
splits each line into a key and a value. If the input is from a

Table 2. EEMap output and EEReduce input
EEMap Output EEReduce Input
Key Value Key Values
C1 T C1 T
C3 S C3 S, T
C3 T C4 S
C4 S

confidential course file, it outputs the course and a flag ("S"
for “secret”) denoting a confidential course as the output
pair in line 3. If it is from the takesCourse file, it checks
whether the subject is GS 3 in line 4. If so, it outputs the
course as the key and a flag ("T" for “takes”) indicating
that the course is of student GS 3. The left half of Table 2
shows the output of Algorithm 2 on the example data.

Algorithm 3 shows the code of the Reduce phase. It gets
a course as the key and the flag strings as the value. The
input it gets while running on our example data is shown in
the right half of Table 2. The code simply counts the number
of flags in line 4. If the only flag indicates that the course is
of student GS 3 (line 7), then it outputs the course (line 8).
A confidential course that is taken by the student GS 3 has
an additional flag, raising the count to 2, and preventing
those courses from being reported. A confidential course
not taken by the student will also have one flag indicating
that it is a confidential course. The check whether the flag
is the one for course taken by student GS 3 prevents such
courses from being reported. These two checks together
ensure that only non-confidential courses taken by GS 3 are
divulged in the output. Hence, only course C1 appears in
the output.

4.3.3 Post-processing Enforcement

The second approach runs jobs as if there are no access con-
trols, and then runs one or more additional jobs to filter the
output in accordance with the policy. The advantage of this
approach is that it is simple to implement, but it may take
longer to answer the query. We can use the previous exam-
ple to illustrate this approach. We first run the job as if there
is no restriction on courses. Then we run one extra job to
enforce the policy. The extra job takes two files as input: the
output of the first job and the confidentialCourses file con-
taining the URI’s of confidential courses. In the Map phase
we output the course as the key and, depending on the input
file, a flag string. The Map code is largely the same as Algo-
rithm 2. The only difference is that we do not need to check
the URI identifying the student, since the output of the first
job will contain the courses taken by only that student. The
code for the Reduce phase remains the same. Hence, at the
end of the second job we get output that does not contain
any confidential courses.

0 0.5 1 2 6 9
0

50

100

150

200

250

300

350

ru
n

ti
m

e
(s

ec
)

data set size (K triples)

Postprocessing
Embedded

Figure 5. Performance measurements for the
takesCourse scenario

0 0.5 1 2 6 9
0

50

100

150

200

250

300

350

ru
n

ti
m

e
(s

ec
)

data set size (K triples)

Postprocessing
Embedded

Figure 6. Performance measurements for the
displayTeachers scenario

5 Experimental Setup and Results

We ran our experiments in a Hadoop cluster of 10 nodes.
Each node had a Pentium IV 2.80 GHz processor, 4 GB
main memory, and 640 GB disk space. The operating
system was Ubuntu Linux 9.04. We compared our Em-
bedded Enforcement approach with our Postprocessing En-
forcement approach. We used the LUBM100, LUBM500,
LUBM1000, LUBM2000, LUBM6000 and LUBM9000
datasets for the experiments.

We experimented with these approaches using two sce-
narios: takeCourse and displayTeachers. In the takesCourse
scenario, a list of confidential courses cannot be viewed by
an unprivileged user for any student. A query was submitted
to display the courses taken by one particular student. Fig-
ure 5 shows the runtimes of the two different approaches.

In the displayTeachers scenario, an unprivileged user may
view information about the lecturers only. A query was sub-
mitted to display the URI of people who are employed in
a particular department. Even though professors, assistant
professors, associate professors, etc., are employed in that
department, only URI’s of Lecturers are returned because of
the policy. Figure 6 shows the runtimes we obtained from
the two different approaches for this scenario.

We observe that Postprocessing Enforcement always
takes 20–80% more time than the Embedded Enforcement
approach. This can be easily explained by the extra job
needed in Postprocessing. Hadoop takes roughly equal
times to set up jobs regardless of the input and output data
sizes of the jobs. The Postprocessing Enforcement ap-
proach runs more jobs than the Embedded Enforcement ap-
proach, yielding the observed overhead.

6 Conclusion and Future Improvements

Access controls for RDF data on single machines have
been widely proposed in the literature, but these systems
scale poorly to large data-sets. The amount of RDF data
in the web is growing rapidly, so this is a serious limita-
tion. One of the most efficient ways to handle this data is
to store it in cloud computers. However, access control has
not yet been adequately addressed for cloud-resident RDF
data. Our implemented mechanism incorporates a token-
based access control system where users of the system are
granted tokens based on business needs and authorization
levels. We are currently building a generic system that in-
corporates tokens and resolves policy conflicts. Our next
goal is to implement Subject Model Level Access that recur-
sively extracts objects of subjects and treats these objects as
subjects as long as these objects are URI’s. This will allow
agents possessing Model level access to generate models on
a given subject.

References

[1] Apache. Hadoop. http://hadoop.apache.org/.
[2] D. Beckett. RDF/XML syntax specification (revised). Tech-

nical report, W3C, February 2004.
[3] T. Berners-Lee. Semantic web road map. http://www.

w3.org/DesignIssues/Semantic.html, 1998.
[4] L. Bouganim, F. D. Ngoc, and P. Pucheral. Client-

based access control management for XML documents. In
Proc. 20émes Journées Bases de Données Avancées (BDA),
pages 65–89, Montpellier, France, October 2004.

[5] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame:
A generic architecture for storing and querying RDF. In
Proc. 1st International Semantic Web Conference (ISWC),
pages 54–68, Sardinia, Italy, June 2002.

[6] H. Choi, J. Son, Y. Cho, M. K. Sung, and Y. D. Chung.
SPIDER: a system for scalable, parallel / distributed evalua-
tion of large-scale RDF data. In Proc. 18th ACM Conference
on Information and Knowledge Management (CIKM), pages
2087–2088, Hong Kong, China, November 2009.

[7] J. Grant and D. Beckett. RDF test cases. Technical report,
W3C, February 2004.

[8] Y. Guo, Z. Pan, and J. Heflin. An evaluation of knowledge
base systems for large OWL datasets. In In Proc. 3rd Inter-
national Semantic Web Conference (ISWC), pages 274–288,
Hiroshima, Japan, November 2004.

[9] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for
OWL knowledge base systems. Journal of Web Semantics,
3(2–3):158–182, 2005.

[10] S. Harris and N. Shadbolt. SPARQL query processing with
conventional relational database systems. In Proc. Web In-
formation Systems Engineering (WISE) International Work-
shop on Scalable Semantic Web Knowledge Base Systems
(SSWS), pages 235–244, New York, New York, November
2005.

[11] L. E. Holmquist, J. Redström, and P. Ljungstrand. Token-
based access to digital information. In Proc. 1st Interna-
tional Symposium on Handheld and Ubiquitous Comput-
ing (HUC), pages 234–245, Karlsruhe, Germany, September
1999.

[12] M. F. Husain, P. Doshi, L. Khan, and B. M. Thuraisingham.
Storage and retrieval of large RDF graph using Hadoop and
MapReduce. In Proc. 1st International Conference on Cloud
Computing (CloudCom), pages 680–686, Beijing, China,
December 2009.

[13] M. F. Husain, L. Khan, M. Kantarcioglu, and B. Thuraising-
ham. Data intensive query processing for large RDF graphs
using cloud computing tools. In Proc. IEEE 3rd Interna-
tional Conference on Cloud Computing (CLOUD), pages 1–
10, Miami, Florida, July 2010.

[14] A. Jain and C. Farkas. Secure resource description frame-
work: an access control model. In Proc. 11th ACM
Symposium on Access Control Models and Technologies
(SACMAT), pages 121–129, Lake Tahoe, California, June
2006.

[15] Joseki. http://www.joseki.org.
[16] J. Kim, K. Jung, and S. Park. An introduction to authoriza-

tion conflict problem in RDF access control. In Proc. 12th
International Conference on Knowledge-Based Intelligent
Information and Engineering Systems (KES), pages 583–
592, Zagreg, Croatia, September 2008.

[17] Kowari. http://kowari.sourceforge.net.
[18] P. Mika and G. Tummarello. Web semantics in the clouds.

IEEE Intelligent Systems, 23(5):82–87, 2008.
[19] E. Prud’hommeaux and A. Seaborne. SPARQL query lan-

guage for RDF. Technical report, W3C, January 2008.
[20] P. Reddivari, T. Finin, and A. Joshi. Policy based access

control for an RDF store. In Proc. Policy Management for
the Web Workshop, 2005.

[21] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and
D. Reynolds. SPARQL basic graph pattern optimization us-
ing selectivity estimation. In Proc. 17th International Con-
ference on World Wide Web (WWW), pages 595–604, Bei-
jing, China, April 2008.

[22] W3C. Semantic web frequently asked questions. http:
//www.w3.org/RDF/FAQ, 2009.

