Hatman: Intra-cloud Trust Management for Hadoop

Safwan Mahmud Khan and Kevin W. Hamlen
Department of Computer Science
University of Texas at Dallas
Richardson, Texas, USA
{safwan,hamlen} @utdallas.edu

Abstract—Data and computation integrity and security are
major concerns for users of cloud computing facilities. Many
production-level clouds optimistically assume that all cloud
nodes are equally trustworthy when dispatching jobs; jobs are
dispatched based on node load, not reputation. This increases
their vulnerability to attack, since compromising even one
node suffices to corrupt the integrity of many distributed
computations.

This paper presents and evaluates Hatman: the first full-
scale, data-centric, reputation-based trust management system
for Hadoop clouds. Hatman dynamically assesses node integrity
by comparing job replica outputs for consistency. This yields
agreement feedback for a trust manager based on EigenTrust.
Low overhead and high scalability is achieved by formulating
both consistency-checking and trust management as secure
cloud computations; thus, the cloud’s distributed computing
power is leveraged to strengthen its security. Experiments
demonstrate that with feedback from only 100 jobs, Hatman
attains over 90% accuracy when 25% of the Hadoop cloud is
malicious.

Keywords-cloud computing; integrity; Hadoop; reputation-
based trust management; security

I. INTRODUCTION

Enormous progress in hardware, networking, middleware,
and virtual machine technologies have led to an emer-
gence of new, globally distributed computing platforms
that provide computation facilities and storage as services
accessible from anywhere via the Internet. At the fore of
this movement, cloud computing [1], [2l], [3] has been
widely heralded as a new, promising platform for delivering
information infrastructure and resources as IT services [4],
[S]. Customers can access these services in a pay-as-you-
go fashion while saving huge capital investment in their
own IT infrastructure [6]. Thus, cloud computing is now
a pervasive presence of enormous importance to the future
of e-commerce.

Data integrity and privacy have emerged as major con-
cerns for prospective users of clouds [7]. A survey by Fujitsu
Research Institute reveals that 88% of prospective customers
are worried about who has access to their data in the cloud
and demand more trustworthiness [8]]. Such surveys reveal
an urgent need to meaningfully address these concerns for
real-world cloud systems.

While cloud data privacy has received a great deal of
popular attention in the literature (cf., [9]], [[LO]), computation

integrity also remains a significant problem for large-scale,
production-level cloud architectures. An attacker who is able
to compromise even one cloud node potentially gains the
ability to corrupt the outcomes of all computations allocated
to that node. Since clouds subdivide and distribute their
computations as widely as possible across their nodes to
achieve high performance and scalability, this means that a
single compromised node can corrupt the integrity of many
or even all of the jobs undertaken by the cloud.

As an example, consider a Hadoop MapReduce cloud [11]
that performs military intelligence data mining, similar to the
one currently under development by the U.S. National Secu-
rity Agency [12]. An attacker who has compromised just one
node in such a cloud can introduce nearly arbitrary error into
simple computations, such as word counting or clustering
computations, by simply forcing the compromised node to
yield false, outlying answers to queries. These answers are
summed or averaged into the answers returned by the other
nodes, resulting in a final answer (delivered to the user)
that is largely dictated by the attacker. Such computational
integrity corruption could be applied to frustrate military
intelligence data-mining efforts by masking important data
correlations or introducing false ones.

For this reason, a large body of work on cloud security
focuses on protecting nodes from being compromised in
the first place (cf., [13], [[14]). Data processing clouds [15],
including Hadoop, execute untrusted, user-submitted code
on trusted cloud nodes during job processing, and must
therefore remain vigilant against malicious mobile code
attacks. Virtualization technologies, including trusted hard-
ware, hypervisors, secure OSes, and trusted VMs are the
typical means by which such mobile code is secured (e.g.,
[L6], [17]). However, a variety of studies have shown that
clouds introduce significant new security challenges that
make mobile code security a non-trivial, ongoing battle [18]],
[19], [13], [20]. For example, the Cloud Security Alliance
has identified insecure cloud APIs, malicious insiders, shared
technology issues, service hijacking, and unknown risk pro-
files all as top security threats to clouds [21].

We therefore examine trust management as a second line
of defense for cloud computation integrity enforcement.
Trust management systems [22] weather (rather than pre-
clude) malicious behavior in distributed systems by tracking

reputations of untrusted agents (e.g., cloud nodes) over time.
Agents who frequently exhibit behavior characterized as ma-
licious by more trustworthy agents accrue poor reputations,
and therefore become distrusted by the rest of the sys-
tem. This facilitates detection and rejection of misbehaving
agents without the need to modify the underlying hardware,
software, or communication protocols of each agent in the
system.

To evaluate reputation-based trust management in a realis-
tic cloud environment, we augment a full-scale, production-
level data processing cloud—Hadoop MapReduce [3],
[L1]—with a reputation-based trust management implemen-
tation based on EigenTrust [23]. The augmented system
replicates Hadoop jobs and sub-jobs across the untrusted
cloud nodes, comparing node responses for consistency.
Consistencies and inconsistencies constitute feedback in
the form of agreements and disagreements between nodes.
These form a trust matrix whose eigenvector encodes the
global reputations of all nodes in the cloud. The global trust
vector is consulted when choosing between differing replica
responses, with the most reliable response delivered to the
user as the job outcome.

To achieve high scalability and low overhead, we show
that job replication, result consistency checking, and trust
management can all be formulated as highly parallelized
MapReduce computations. Thus, the security offered by
the cloud scales with its computational power. Our primary
contributions are therefore as follows:

« We implement and evaluate intra-cloud trust manage-
ment for a real-world cloud architecture—Hadoop.

e Our system adopts a data-centric approach that rec-
ognizes job replica disagreements (rather than merely
node downtimes or denial of service) as malicious.

o We show how MapReduce-style distributed computing
can be leveraged to achieve purely passive, full-time,
yet scalable attestation and reputation-tracking in the
cloud.

The remainder of the paper proceeds as follows. Section|[I]]
begins with a system overview. Implementation details and
experimental results are described and analyzed in and
IVl respectively. Related work is summarized in and
qVI| concludes with recommendations for future work.

II. SYSTEM OVERVIEW

A. Overview of Hadoop Architecture

The Hadoop Distributed File System (HDFS) [3] is a
master/slave architecture designed to run on commodity
hardware. Each HDFS cluster has a single NameNode mas-
ter, which manages the file system namespace and regulates
access to files by customers. In addition, there are a number
of DataNodes, usually one per node in the cluster, which
manage storage attached to the nodes on which they run.

The DataNodes are arranged in racks for replication pur-
poses. Customers communicate with the NameNode, which
coordinates the services from the DataNodes.

MapReduce [11] is an increasingly popular distributed
programming paradigm used in cloud computing environ-
ments. It expedites the processing of large datasets using in-
expensive cluster computers. Additional advantages include
load balancing and fault tolerance.

In this research work we use Hadoop’s MapReduce frame-
work [3]]. In Hadoop, the unit of computation is called a job.
Customers submit jobs to Hadoop’s JobTracker component.
Each job has two phases: Map and Reduce. The Map phase
maps input key-value pairs to a set of intermediate key-value
pairs. The Reduce phase reduces the set of intermediate key-
value pairs that share a key to a smaller set of key-value
pairs traversable by an iterator. When a job is submitted to
the JobTracker, Hadoop attempts to place the Map processes
near to the input data in the cluster to reduce the commu-
nication cost. Each Map process and Reduce process works
independently without communication.

B. Hatman Architecture

Hatman (HAdoop Trust MANager) augments Hadoop
NameNodes with reputation-based trust management of their
slave DataNodes. The trust management system is cen-
tralized in the sense that NameNodes maintain a small,
trusted store of trust and reputation information; however,
all computation is decentralized in that trust matrix com-
putations and user-submitted job code is all dispatched
to DataNodes. NameNode computations therefore remain
restricted to simple bookkeeping operations related to job
dispatch. This keeps the system scalable and maintains high
trustworthiness of NameNodes by minimizing their attack
surfaces.

Hatman users submit Hadoop jobs J with two additional
parameters: (1) a group size n and (2) a replication factor
k. The NameNode distributes user-submitted computation .J
across kn DataNodes, as illustrated in Fig. [I] Each group
of n nodes independently processes job J, with any sub-
jobs being redistributed to the nodes of the group that
spawned it. Different groups are permitted to have some
common members (though this is unlikely when kn is small
relative to the size of the cloud), but no two groups are
identical. Increasing n therefore yields higher parallelism
and increased performance, whereas increasing k yields
higher replication and increased security.

Interpretation of the results of these replicated computa-
tions proceeds according to Algorithm [I] Line [3]first collects
candidate results from each of the k replica groups. The
collected results are compared pairwise by lines [7] and [9]
Hadoop job results are simply files, which can be partitioned
and compared in a highly distributed fashion; therefore,
comparison of non-trivial results is implemented by line [J]
as a second Hatman job over freshly selected nodes and

DataNode 0
Group 1
DataNode n — 1
V,
NameNode
3\
DataNode kn — n
> Group k

DataNode kn — 1

/

Figure 1. A Hatman job replicated k times and distributed across n data
nodes per replica group.

groups. The comparison job recursively leverages the trust
management system to ensure high data integrity, resulting
in a reliable comparison.

Lines 16| tally agreements and disagreements between
the groups in a local trust matrix. Lines periodically
use this to compute a global trust vector for all nodes in
the system. Finally, line 22] uses the global trust vector to
evaluate the most trustworthy result to return to the user.
We next discuss the details of the local trust matrix, the
global trust matrix computation, and the evaluation function,
respectively.

A large category of Hadoop jobs tend to be stateless
and deterministic [24], [25], [26]. Thus, when all nodes are
reliable, all k replica groups yield identical results r, with
high probability. However, when some nodes are malicious
or unreliable, the NameNode must choose which of the
differing responses to deliver to the user, and it must decide
how the reputations of members of disagreeing groups are
affected by the disagreement.

To make this decision, we appeal to a trust model defined
by a local trust matrix T;; = oyj;t;;, where t;; € [0,1]
measures how much agent 7 trusts agent j, and «;; € [0, 1]
measures agent ¢’s relative confidence in his choice of
t;; [27]. The confidence values are relative in the sense that
vazl o;; = 1, where N is the total number of agents.

In Hatman, DataNode ¢ trusts DataNode j proportional
to the percentage of jobs shared by ¢ and j on which ’s
group agreed with j’s group. That is, ¢;; = A;;/C;; where
Cy; is the number of jobs shared by ¢ and j and A;; is
the number of those jobs on which their groups’ answers
agreed. DataNode i’s relative confidence is the percentage

Algorithm 1 Hatman job processing
Input: job J, group size n, replication factor k
Output: job result r

1: Choose k unique groups G, each of size n

2: for all groups G, do

3. 14 < HadoopDispatch(Gy, J)

4: end for

s: for all pairs (G, Gy) with g # h do

6: if ry and r, are small then

7: eq < (rg =711)

8: else

9: eq < HatmanDispatch(ry =714)
10: end if

11: for all (,5) € Gy x G, with i # j do
12: Cij — Cij + 1 (and Cji = Cij)

13: if eq = true then

14: Aij — Aij + 1 (and Aji = Aij)
15: end if

16: end for

17: end for

18: if time to update trust vector then

19: T < HatmanDispatch(tmatriz(A, C))
20: t + HatmanDispatch(EigenTrust(T))
21: end if

22: m « argmax, eval(Gy)

23: return 7,

of assessments of j that have been voiced by i:

Qij = =W (1)
2 k=1Chj
Multiplying T;; = oy;t;; therefore yields matrix
7 By o 2
Zk:l Cl;
This is the computation performed by tmatriz(A,C) in
line [T9] of Algorithm [1]

This formula is well-defined whenever j has shared at
least one job with another DataNode (making the denom-
inator non-zero). When j has not yet received any shared
jobs, we allow all DataNodes to initially trust j (so ¢;; = 1)
with uniform confidence (o;; = 1/N).

This differs from EigenTrust [23]], which initially distrusts
new agents because it targets networks with potentially
uncontrolled churn. A default distrust of new peers disin-
centivizes leaving and rejoining such a network to reset
reputation. In contrast, clouds typically have more controlled
churn; new cloud nodes undergo some form of validation and
authorization by organization personnel at installation and
cannot leave and rejoin the network arbitrarily. Therefore,
Hatman trusts new nodes by default and reduces that trust
in response to evidence of compromise.

Following EigenTrust, line 20| computes the left eigen-
vector of local trust matrix 7" to obtain a vector ¢ of global
reputations for all DataNodes. Once again, this computation
is formulated as a distributed Hatman job across a fresh set
of nodes and replica groups. The trust vector is recomputed
at regular intervals and at idle periods rather than after every
job to avoid overburdening the network.

Reputation vector ¢ is used as a basis for evaluating
the trustworthiness of each group’s response. We employ
evaluation function
_ |Gl

—wﬁ—k(l—w)

ZieG ti
Zies ti

where S = U?zlGj is the complete set of DataNodes
involved in the activity, and weight w € [0, 1] defines the
relative importance of group size versus group collective
reputation in assessing trustworthiness. In we observe
highest accuracy with w = 0.2, demonstrating that repu-
tation is about 4 times more effective than simple majority
voting for identifying integrity violations. The result yielded
by the group with the highest evaluation score is the one
returned to the user.

eval(G) (3)

C. Activity Types

An activity is a tree of sub-jobs whose root is a job J
submitted to Algorithm [T] There are three different types of
activities that Hatman undertakes: user-submitted activities,
bookkeeping activities, and police activities.

User-submitted activities are jobs submitted by cloud
customers. These receive highest priority in the system, with
parameters n and k chosen by the user (and perhaps entailing
higher customer cost in response to demands for greater
parallelism and replication).

Bookkeeping activities are result-comparison and trust
matrix computation jobs submitted by lines [9] and
of Algorithm These inherit the priority of the user-
submitted job with which they are associated, and receive
high replication factors k to ensure their integrity.

Police activities are dummy jobs (e.g., replayed user-
submitted activities or stock jobs) whose sole purpose is to
exercise the system. These are undertaken during periods of
low load to help trust matrix 7' converge more quickly. The
results of police activities are discarded, providing a safe
means to assess reliability of low-reputation nodes without
risking delivery of low-integrity results to users.

D. Attacker Model and Assumptions

We assume that attackers can compromise DataNodes
but not NameNodes. NameNodes do not execute any user-
submitted code, and have a substantially simpler computing
architecture relative to DataNodes, reducing their vulnerabil-
ity to attack. We also assume that communication between
NameNodes and DataNodes is cryptograhpically protected,
so that a man-in-the-middle cannot forge or replay messages.

Table I
HATMAN CODE BREAKDOWN

Component Description Lines
ActivityGen Generate police activities. 300
NameNode Additions:
TrustMatrix ~ Compute local trust ma- 3500

trix and dispatch eigenvec-
tor job computations.

Evaluator Evaluate group responses 4000
and select results.
Interface Initialize and finalize jobs. 1500
Job Code:
Compare Test results for equiva- 600
lence.
EigenVector = Compute left eigenvector 300
of local trust matrix.
Clustering Police activity code. 600
Total 11000

Following prior work [25], [26], we assume that most
(but not necessarily all) jobs are deterministic and stateless,
so that inconsistencies are indicative of integrity violations.
This assumption is valid for a large category of data
processing jobs that dominate Hadoop and similar cloud
frameworks. Non-determinism based on random number
generation can be adapted to our system by requiring job-
authors to expose random number generator seeds as job
inputs, so that they can be duplicated across replica groups.

Attacker-compromised nodes in our model occasionally
(or always) submit incorrect results for jobs that they pro-
cess. Confidentiality and denial of service attacks are outside
our scope, but are addressed by a large body of other work
(ctf., [9], [LOD).

IITI. IMPLEMENTATION

Our implementation of Hatman consists of about 11,000
lines of Java code added to the open source release of
Hadoop v0.20.3. Table [I] reports a size breakdown of each
component’s programming.

The majority of the implementation modifies Hadoop’s
JobTracker and NetworkTopology modules to adjust the dis-
tribution of input and output files, and modify the scheduling
of jobs during Map and Reduce phases in accordance with
Algorithm [T} This accounts for about 82% of the implemen-
tation.

Approximately 1500 lines of additional MapReduce code
implement distributed algorithms for result comparison,
eigenvector computation, and police activity jobs. For our
police activities we used a K-means clustering algorithm
that partitions randomly generated data sets of 10,000 data
points into 2 clusters. A separate ActivityGen module sub-
mits police activities to NameNodes during idle times or
other periods of low activity. To maximize the effectiveness
of the police jobs, they are submitted with parameters n = 1
and k = 3. Group size n = 1 helps the trust manager reliably

Success Rate (%)

1 2 3 4 5 6 7 8 9 10

Frame Position over time

Figure 2. Success rate over time

trace inconsistencies to one misbehaving node per group,
and small, odd replication factor £ helps break potential ties
with low overhead.

Our test architecture is a Hadoop cluster consisting of
8 DataNodes and 1 NameNode. Node hardware consists
of Intel Pentium IV 2.40-3.00GHz processors with 2-4GB
memory each, running Ubuntu operating systems. In each
test, 2 of the 8 nodes (25%) are malicious, randomly
returning correct or incorrect results for each job they are
assigned.

IV. RESULTS AND ANALYSIS

In all experiments we used Equation [3] for evaluation
with group size weighted at w = 0.2 and group reputation
weighted at 1 — w = 0.8. This yielded the best success
rates in all cases. Police activities were submitted at regular
intervals between user-submitted jobs, and account for 30%
of the network’s overall load.

Fig. P]illustrates Hatman’s success rate in selecting correct
job outputs in a Hadoop cloud of 25% malicious nodes, with
user-submitted jobs having group size n = 1 and replication
factor £ = 3. Each data point reports the average success
rate over a frame consisting of 20 user activities. Initially the
success rate is 80% because there is initially no reputation
information for the nodes. However, by frame 8 all the
malicious nodes have been identified and the success rate
rises to 100%. The average success rate over all frames is
89%.

Fig. |3| considers the same experiment but with the results
divided into only two frames (1st half and 2nd half) of 100
activities each, an increased group size of n = 2, and an
increased replication factor k£ ranging from 3 to 7. The plot
for the 2nd half of the experiment is substantially above
the one for the Ist half in all cases, illustrating that after
100 activities the trust algorithm has converged to 96.33%
accuracy on average. As expected, higher replication factors
push the success rate even higher—near 100% with k = 7.

Figures examine the impact of replication factor k
and group size n more directly. Fig. |4 shows that increasing
the replication factor can substantially increase the success

120 T
1st half —o—
100 b 2nd half —+—
g sk
[}
3
= 60 -
@
2 40|
0
20 -
0 Il
3 5 7

Figure 3. Two-frame comparison for n = 2

Success Rate (%)
=
(=]
T
\

Figure 4. k versus success rate

rate for any given frame on average. The impact is more
pronounced when n is small because feedback from replica
inconsistencies is more node-specific with smaller group
sizes, leading to more accurate blame assigned by the
trust manager. In fact, with sufficiently high k& and low n,
accuracy can be pushed almost arbirarily high, as seen by
the 100% success rate at k = 7 and n = 1.

Fig. [5] demonstrates the high scalability of our approach
by showing how activity times remain almost completely flat
as k increases. This is because all significant computations
associated with replica management are fully parallelized
across the entire cloud. Note that £ = 7 and n = 2 results
in a total load kn = 14 that is almost twice the size of
our cloud. Nevertheless, activity time remains comparable
tok=3and n = 2.

Based on this preliminary evidence, we believe that Hat-
man will scale extremely well to larger Hadoop clusters
with larger numbers of data nodes. Each additional data
node adds to the size of the trust matrix, but since all trust
matrix operations are distributed across all available data
nodes, each additional node also increases the power of the
cloud to manage the larger trust computations. This agrees
with experimental evidence from prior work showing that
EigenTrust and similar distributed reputation-management
systems scale well to large networks [28].

480 T
n=1 —o—
470 p=2

450 1

440 i

430 1

420 B

410 1

Time taken by one activity (in sec)

400

= o

Figure 5. Kk versus activity time

V. RELATED WORK

Cloud computing security has exploded into a vast re-
search area in recent years [14], with much of the work
focusing on data privacy [9]. Data integrity is a second
major concern that involves challenges related to secure
storage (e.g., [29]], [30]) and secure integrity attestation of
computation results. The latter is the subject of our work.

AdapTest [25] and RunTest [26] implement cloud service
integrity attestation for the IBM System S stream processing
system [24]] using attestation graphs. Always-agreeing nodes
form a clique in the graph, facilitating detection of malicious
collectives.

In contrast, our work considers a reputation-based trust
management approach to integrity violation detection in
Hadoop clouds. Trust management systems probabilisti-
cally anticipate future misbehavior of untrusted agents
based on their histories of past behavior. Reputation-based
trust managers, such as EigenTrust [23], NICE [31], and
DCRC/CORC [32], assess trust based on reputations gath-
ered through personal or indirect agent experiences and
feedback.

Opera [33] employs reputation-based trust management
to improve Hadoop computation efficiency. It tracks node
trust as a vector of efficiency-related considerations, such as
node downtime and failure frequency. However, malicious
behavior in the form of falsified computation results are not
considered, making it unsuitable for protecting against data
integrity attacks.

Policy-based trust management [34] has been used as a
basis for allowing cloud users to intelligently select reliable
cloud resources for their computations, and to provide ac-
countability of cloud providers to their customers [33], [36].
These approaches necessarily involve re-architecting clouds
to expose some or all of their internal resources to users,
so that users can make informed choices regarding those
resources.

Peer-to-peer, distributed, decentralized trust management
has also been recognized as a natural means of providing
inter-cloud security guarantees [37]], [38]. Each cloud acts as

an individual peer in a super-cloud with no central authority.
Inter-cloud computations are then partitioned and distributed
based in part on cloud reputations.

As an alternative to trust management, traditional byzan-
tine fault tolerance has been used extensively to detect and
isolate malicious behavior in networks of replicated services,
including clouds [39]], [40]. However, these solutions typi-
cally involve implementation of new communication proto-
cols for untrusted agents, complicating their application to
existing, large-scale cloud implementations such as Hadoop.

Although there is strong evidence that EigenTrust and
similar trust management approaches scale well to networks
with large numbers of data nodes [28]], NameNode scal-
ability is not something we studied. Hadoop’s use of a
single NameNode has been identified in the literature as
a potential bottleneck [41], and several current works are
exploring the feasibility of distributing NameNode compu-
tations and metadata [42]], [43]]. Hatman benefits from these
advancements, since they offer opportunities to more widely
distribute its trust matrix metadata.

VI. CONCLUSION

Hatman extends Hadoop clouds with reputation-based
trust management of slave data nodes based on FEigen-
Trust [23]]. To obtain high scalability, all trust management
computations are formulated as distributed cloud computa-
tions. This leverages the considerable computing power of
the cloud to improve the data integrity of cloud computa-
tions. Experiments show that Hatman consistently obtains
over 90% reliability after just 100 jobs even when 25% of
the network is malicious, and scales extremely well with
increased job replication rates.

Although our implementation augments a full-scale,
production-level cloud system, our evaluation is preliminary.
In future work we plan to extend our analysis to consider
more sophisticated data integrity attacks (e.g., malicious
collectives) against larger clouds. We also plan to investigate
the impact of job non-determinacy on integrity attestations
based on consistency-checking.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. NSF-0959096.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] Amazon, “Amazon elastic compute cloud,” http://aws.
amazon.com/ec?.

[2] Microsoft, “Windows Azure,” http://www.windowsazure.com.

[3] Apache, “Hadoop,” http://hadoop.apache.org.

http://aws.amazon.com/ec2
http://aws.amazon.com/ec2
http://www.windowsazure.com
http://hadoop.apache.org

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

(16]

(17]

R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging IT platforms: Vision, hype,
and reality for delivering computing as the Sth utility,” in
Future Generation Computer Systems (FGCS), 2009, pp.
599-616.

A. Weiss, “Computing in the cloud,” in ACM Networker,
2007, pp. 16-25.

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia, “Above the clouds: A Berkeley view of cloud
computing,” U.C. Berkeley, Tech. Rep. UCB/EECS-2009-28,
20009.

S. Pearson, Y. Shen, and M. Mowbray, “A privacy manager
for cloud computing,” in Proc. IEEE Int. Conf. on Cloud
Computing (CLOUD), 2009, pp. 90-106.

Fujitsu, “Personal data in the cloud: A global survey of
consumer attitudes,” Fujitsu Research Institute, Tech. Rep.,
2010.

M. D. Ryan, “Cloud computing privacy concerns on our
doorstep,” Communications of the ACM (CACM), vol. 54,
no. 1, pp. 36-38, 2011.

D. Chen and H. Zhao, “Data security and privacy protection
issues in cloud computing,” in Proc. Int. Conf. on Computer
Science and Electronics Engineering (ICCSEE), 2012, pp.
647-651.

J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” Communications of the ACM
(CACM), vol. 51, no. 1, pp. 107-113, 2008.

B. Iannotta, “Securing the cloud: The intel community’s high-
stakes bid to keep its data safe,” C4ISR Journal, DefenseNews,
November 2011.

S. Subashini and V. Kavitha, “A survey on security issues
in service delivery models of cloud computing,” Journal of
Network and Computer Applications, vol. 34, no. 1, pp. 1-11,
2011.

K. W. Hamlen, M. Kantarcioglu, L. Khan, and B. Thurais-
ingham, “Security issues for cloud computing,” Int. Journal
of Information Security and Privacy (IJISP), vol. 4, no. 2, pp.
3648, 2010.

J. Du, W. Wei, X. Gu, and T. Yu, “Towards secure dataflow
processing in open distributed systems,” in Proc. ACM Work-
shop on Scalable Trusted Computing (STC), 2009, pp. 67-72.

S. Berger, R. Caceres, D. Pendarakis, R. Sailer, E. Valdez,
R. Perez, W. Schildhauer, and D. Srinivasan, “TVDc: Man-
aging security in the trusted virtual datacenter,” ACM SIGOPS
Operating Systems Review (OSR), vol. 42, no. 1, pp. 4047,
2008.

A. S. Ibrahim, J. Hamlyn-Harris, J. Grundy, and M. Almorsy,
“CloudSec: A security monitoring appliance for virtual ma-
chines in the IaaS cloud model,” in Proc. 5th Int. Conf. on
Network and System Security (NSS), 2011, pp. 113-120.

(18]

[19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

M. Christodorescu, R. Sailer, D. L. Schales, D. Sgandurra,
and D. Zamboni, “Cloud security is not (just) virtualization
security,” in Proc. ACM Cloud Computing Security Workshop
(CCSW), 2009, pp. 97-102.

Y. Chen, V. Paxson, and R. H. Katz, “What’s new about cloud
computing security?” Electrical Engineering and Computer
Sciences, University of California at Berkeley, Tech. Rep.
UCB/EECS-2010-5, January 2010.

M. A. Morsy, J. Grundy, and I. Miiller, “An analysis of the
cloud computing security problem,” in Proc. Ist Asia-Pacific
Workshop on Cloud Computing (APSEC-CLOUD), 2010.

Cloud Security Alliance, “Top threats to cloud computing
v1.0,” March 2010, http://cloudsecurityalliance.org/topthreats/
csathreats.v1.0.pdf.

M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust
management,” in Proc. IEEE Security & Privacy (S&P),
1996, pp. 164-173.

S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The
EigenTrust algorithm for reputation management in P2P net-
works,” in Proc. Int. World Wide Web Conf. (W3C), 2003, pp.
640-651.

B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo,
“SPADE: The System S declarative stream processing en-
gine,” in Proc. ACM SIGMOD Int. Conf. on Management of
Data, 2008, pp. 1123-1134.

J. Du, N. Shah, and X. Gu, “Adaptive data-driven service
integrity attestation for multi-tenant cloud systems,” in Proc.
IEEE Int. Workshop on Quality of Service (IWQoS), 2011,

pp. 1-9.

J. Du, W. Wei, X. Gu, and T. Yu, “RunTest: Assuring integrity
of dataflow processing in cloud computing infrastructures,”
in Proc. ACM Symposium on Information, Computer and
Communications Security (ASIACCS), 2010, pp. 293-304.

M. Jakubowski, R. Venkatesan, and Y. Yacobi, “Quantifying
trust,” Microsoft Corporation, Tech. Rep. MSR-TR-2009-119,
20009.

A. G. West, S. Kannan, I. Lee, and O. Sokolsky, “An
evaluation framework for reputation management systems,”
in Trust Modeling and Management in Digital Environments:
From Social Concept to System Development, Z. Yan, Ed.
IGI Global, 2010, pp. 282-308.

S. Nepal, C. Shiping, Y. Jinhui, and D. Thilakanathan,
“DlaaS: Data integrity as a service in the cloud,” in Proc.
IEEE Int. Conf. on Cloud Computing (CLOUD), 2011, pp.
308-315.

K. D. Bowers, A. Juels, and A. Oprea, “Hail: A high-
availability and integrity layer for cloud storage,” in Proc.
ACM Conf. on Computer and Communications Security
(CCS), 2009, pp. 187-198.

S. Lee, R. Sherwood, and B. Bhattacharjee, “Cooperative peer
groups in NICE,” in Proc. Annual Joint Conf. of the IEEE
Computer and Communications Societies (INFOCOM), 2003,
pp. 1272-1282.

http://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
http://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf

(32]

(33]

(34]

[35]

(36]

[37]

M. Gupta, P. Judge, and M. H. Ammar, “A reputation system
for peer-to-peer networks,” in Proc. ACM Int. Workshop on
Network and Operating Systems Support for Digital Audio
and Video (NOSSDAV), 2003, pp. 144-152.

T. Nguyen and S. Weisong, “Improving resource efficiency
in data centers using reputation-based resource selection,” in
Proc. Int. Conf. on Green Computing (ICGREEN), 2010, pp.
389-396.

M. Blaze, J. Feigenbaum, and M. Strauss, “Compliance
checking in the PolicyMaker trust management system,” in
Proc. Int. Financial Cryptography Conf. (FC), 1998, pp. 254—
274.

P. D. Manuel, S. Thamarai Selvi, and M.-E. Barr, “Trust
management system for grid and cloud resources,” in Proc.
Int. Conf. on Advanced Computing (ADCONS), 2009, pp.
176-181.

R. Ko, P. Jagadpramana, M. Mowbray, S. Pearson, M. Kirch-
berg, Q. Liang, and B. Lee, “TrustCloud: A framework for
accountability and trust in cloud computing,” in Proc. IEEE
World Congress on Services (SERVICES), 2011, pp. 584-588.

J. Abawajy, “Determining service trustworthiness in inter-
cloud computing environments,” in Proc. Int. Sym. on Per-
vasive Systems, Algorithms, and Networks (I-SPAN), 2009,
pp. 784-788.

(38]

[39]

[40]

[41]

[42]

[43]

W. Li and L. Ping, “Trust model to enhance security and
interoperability of cloud environment,” in Proc. Int. Conf. on
Cloud Computing (CLOUD), 2009, pp. 69-79.

Y. Zhang, Z. Zheng, and M. R. Lyu, “BFTCloud: A byzan-
tine fault tolerance framework for voluntary-resource cloud
computing,” in Proc. IEEE Int. Conf. on Cloud Computing
(CLOUD), 2011, pp. 444-451.

R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong,
“Zyzzyva: Speculative byzantine fault tolerance,” ACM Trans.
on Computer Systems (TOCS), vol. 27, no. 4, 2009.

K. V. Shvachko, “HDEFS scalability: The limits of growth,”
;login:, vol. 52, no. 2, pp. 6-16, 2010.

E. Molina-Estolano, C. Maltzahn, B. Reed, and S. A. Brandt,
“Haceph: Scalable metadata management for Hadoop using
Ceph,” Poster at the 7th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2010.

A. S. Talwalkar, “HadoopT — breaking the scalability limits of
Hadoop,” Master’s thesis, Rochester Institute of Technology,
Rochester, New York, January 2011.

	Introduction
	System Overview
	Overview of Hadoop Architecture
	Hatman Architecture
	Activity Types
	Attacker Model and Assumptions

	Implementation
	Results and Analysis
	Related Work
	Conclusion
	References

