Computation Certification as a Service in the Cloud*

Safwan Mahmud Khan and Kevin W. Hamlen
Department of Computer Science
The University of Texas at Dallas
Richardson, Texas, USA
{safwan,hamlen} @utdallas.edu

Abstract—This paper proposes a new form of Security as a
Service (SECaaS) that allows untrusted, mostly serial computa-
tions in untrusted computing environments to be independently
and efficiently validated by trusted, commodity clouds. This
addresses the longstanding problem of safely executing high
assurance computations on untrusted hosts.

Untrusted computations are instrumented with a checkpoint-
ing mechanism that yields a proof of computation integrity as
the computation progresses. This proof can be validated by a
trusted cloud to ensure that the computation was carried out
faithfully. Cloud parallelism and replication is leveraged to vali-
date the proof efficiently even when the original computation is
not parallelized. This affords a means of high-assurance, serial
computation on cloud-aware, mobile devices that mix resource-
rich but untrusted hardware with trusted but comparatively
resource-impoverished hardware components. An implementa-
tion for Java and Hadoop MapReduce demonstrates that the
approach is effective for commodity VMs, clouds, and software.

Keywords-result checking; computation integrity; software
security; cloud computing; Hadoop MapReduce

I. INTRODUCTION

Protecting remote software from corruption by untrusted
or malicious host environments has long been an important
challenge for Trustworthy Computing (TwC) paradigms, such
as mobile devices that mix trusted and untrusted hardware [1]],
and trustworthy grids that distribute computations to remote,
untrusted hosts [2]]. In these contexts, untrusted environments
are computing platforms (e.g., hardware, OSes, and VMs)
that have unfettered access to the distributed computations
they receive, including the ability to tamper with the mobile
code, its program state, and its results. To achieve high
reliability and integrity for computations, secure grids must
prevent or detect all such tampering for each computation
they distribute.

Many existing platforms therefore aggressively apply
remote attestation technologies to detect and preclude soft-
ware tampering in untrusted environments [3l], [4]. For
example, hardware- and software-based attestation mech-
anisms evidence the integrity of remote client states through
cryptographically signed memory snapshots taken statically

*This paper contains material supported in part by National Science
Foundation grant #1065216 and U.S. Air Force Office of Scientific Research
grant FA9550-10-1-0088. All opinions and conclusions expressed are those
of the authors and not necessarily of the NSF or AFOSR.

or at runtime [3], [6l]. However, code integrity alone does not
guarantee that a computation result is correct. For instance,
an attacker may run the software without any alterations but
still return corrupted results to the requester. Code integrity
checking must therefore be coupled with result integrity
checking, which usually involves embedding a secret sub-
computation that is difficult to reverse engineer and that can
be checked by the requester [7]], or by refactoring distributed
computations into function compositions that can be validated
cryptographically [8]], [9], [LO].

Unfortunately, all of these approaches require a significant
redesign of most software. For example, typical Android
apps are not easily modified to contain inextricable, secret
computations or cryptographically verifiable compositions.
As a result, few mainstream mobile computing devices
have adopted these technologies. Moreover, many of these
solutions rely on software obfuscation [[L1], [12], which does
not provide rigorous guarantees, since clever attackers can
potentially reverse the obfuscation.

In contrast, clouds [13], [14], [15] are an increasingly
popular grid computing paradigm [16]] utilized by myriad
mobile device architectures [[17]. Clouds offer massive
parallelism and potentially high integrity assurance through
replication. For example, trust management has been used
in clouds to ensure that even if some cloud nodes are
malicious, computation results are nevertheless correct with
high probability [18]]. The favorable business model for
cloud-powered mobile apps has led to a rapidly growing
mobile cloud market that is expected to exceed $9 billion
by 2014 [19].

While clouds offer an attractive means for mobile devices
to remote their high assurance computations, cloud-assisted
devices still face at least two significant limitations in practice:
First, most mobile devices do not have perpetual, continuous
access to the cloud. Thus, many of their computations must
be carried out using purely local resources, pending cloud
access. We observe that such devices would benefit from
a trust-but-verify model in which computations are initially
carried out locally using a potentially untrusted environment
(e.g., insecure CPU and storage), trusted for a limited time,
but then verified once cloud access is available. For example,
a password that unlocks a software product could be verified
locally, allowing the software it protects to be used for

a limited time, after which the tamper-proof portion of
the hardware seeks validation of the password verification
computation by the cloud.

Second, although clouds offer high parallelism, most
everyday app computations are not highly parallelized and
therefore derive little or no benefit from such parallelism.
Thus, we seek a computation verification strategy that
allows mostly serial computations performed in an untrusted
environment to be rapidly validated using the massive
parallelism offered by the cloud. Such validation empowers
clouds with a new form of Security as a Service (SECaaS)
that provides high assurance for local, untrusted, mostly-serial
computations.

Our answer to this challenge is a Cloud-based COmpu-
tation VERIifier (CloudCover) that allows untrusted Java
computations to yield a proof of computation integrity as
a side-effect of the computation. The proof can then be
validated against the original code and the computation’s
result to formally verify that the result is correct. Neither the
computation nor the proof (nor their origins) are trusted by
CloudCover. A (possibly forged) proof either proves that a
given computation results from a given code, or it does not.
If the former, the result is correct regardless of where the
proof came from; if the latter, the computation, the proof, or
both are untrustworthy. Thus, CloudCover can be formalized
as proof-carrying computation, in the spirit of proof-carrying
code [20].

CloudCover proofs have the advantageous quality that the
task of verifying them can be parallelized almost arbitrarily
even when the original computation is not parallelizable.
Thus, they derive maximal benefit from massively parallel
architectures, like clouds. To demonstrate, we implement
CloudCover for Hadoop MapReduce [21]], and use it validate
non-parallelizable Java computations for message digest
generation using SHA-1 [22]] and MDS5 [23]] cryptographic
hash functions. Experimental results indicate that CloudCover
scales extremely well, with the only practical limit to paral-
lelization stemming from the fixed overhead of dispatching
new mappers and reducers.

Our work therefore offers the first computation integrity
validation mechanism that

o requires minimal changes to existing software;

o fully leverages the massive parallelism available from
commodity data processing clouds, such as MapReduce;

o provides a tunable range of integrity assurances, from
rigorous, absolute assurance to probabilistic assurance
(with verification overhead scaling linearly with assur-
ance level); and

o is applicable to everyday mobile app computations,
such as those that contain mostly serial computations
implemented in interpreted bytecode languages like Java.

Section [l begins with a presentation of the system details
of CloudCover. Our implementation and experimental results

are outlined in and respectively. Section [V]discusses
related work. Finally, concludes with a brief discussion
of directions for future work.

II. SYSTEM OVERVIEW
A. Architecture and Threat Model

We consider two possible system architectures, one in
which trusted and untrusted devices are physically separate,
and one in which trusted and untrusted hardware is co-located
on a single mobile device. Both architectures are illustrated
in Fig. In both cases, a resource-impoverished, trusted
component wishes to distribute a computation to an untrusted
component that is comparatively resource-rich.

The trusted component cannot efficiently distribute the
computation across the cloud directly because (a) it currently
lacks cloud access, (b) the cloud’s computing power is
based on parallelism, which goes unutilized when the
computation is mostly serial, and/or (c) the computation
is tentative in the sense that only certain outcomes demand
verification, and the computation outcome is not known in
advance. The last case arises frequently in grid computing.
For example, SETI@home [24] aggressively validates only
those computations whose results suggest the existence of
extraterrestrial intelligence.

In each scenario, we assume that the trusted component
is secure in the sense that no malicious user has access to it,
or those that do cannot corrupt its computations, storage, or
state. Typically we expect that such components consist of
expensive, more secure hardware that is less efficient or more
constrained due to its extra security. In contrast, untrusted
components consist of insecure hardware and/or remote,
untrusted machines that are entirely exposed to malicious
users and activities.

The checker of our system is a cloud computing platform
that may consist of hundreds or thousands of nodes. It is
a high assurance, massively parallelized data processing
framework whose computation results are trusted, but it is
best applied to highly parallelized computations. Assigning
it serial computations is prohibitively slow and expensive.

Figure [T] summarizes the system workflow together with
the architecture. The trusted component first instruments the
mobile code with proof-generation logic. The instrumented
code is then distributed to the untrusted component. A
cooperative recipient executes the computation faithfully,
yielding a computation result and a proof of computation
integrity. The code, result, and proof can then be sent
to the cloud (when it becomes available) for parallelized
verification. A malicious, untrustworthy, or compromised
recipient, however, returns an incorrect result. There exists
no proof that the original code yields such a result, so cloud
validation inevitably fails, irrespective of the proof submitted
by the untrusted component. Thus, the incorrect result is
rejected.

1. trusted software

¢ 2. result & checkpoints

Secure Hardware
Trusted Machine

n., .
Same ;;Device

Insecure Hardware

Untrusted,

Remote Machine

3. trusted software,
untrusted result & checkpoints

Checker

4. verdict (true/false)

(Cloud)

.

Figure 1.

checkpointing computation

T 1 1 0

CPo Py CPo CP3 CPy

CPoG——POCp, CPh = cpy?
CP1G—Ocp| cpy = cpy?
CPoG——POCcph, cph = cps?
CP3G——PO Pl cph = cpy?

Figure 2. CloudCover checkpointing and validation

B. Computation Integrity Proof Generation and Validation

CloudCover approaches the problem of proof generation
through checkpointing, as illustrated in Fig. 2] Mobile
Java code is instrumented with a checkpoint operation that
periodically saves the current program state to disk. Initial
checkpoint cp, is the program start state and is fully charac-
terized by the code itself, so needn’t be generated explicitly.
The last checkpoint cp,, characterizes the computation result.

A chain of such checkpoints constitutes a proof that a
computation whose initial state is cp yields result cp,,. The
proof can be validated by recomputing all the segments of the
chain in parallel. That is, for each checkpoint i < n, cloud
node 7 initializes its JVM to state cp,; and computes until the
next checkpoint, yielding state cp). It then decides whether
cp; = cp;,q- If any of these equivalence checks fail, the
proof fails and the computation is rejected. This transforms
a serial computation into a fully parallelized re-computation
that only takes as long as the longest checkpoint interval (plus
some time for the checkpoint equivalence check) to validate.
The equivalence check can be additionally parallelized, as
discussed in

Proof validation through checkpoint chaining engenders

System architecture of CloudCover

a natural trade-off between assurance and computational
expense through spot-checking. A spot-checking validator re-
computes and checks each segment in the checkpoint chain
with probability p. This reduces the total computation cost to
a fraction p of the total, and detects erroneous computation
results with probability p. Thus, clients may tune parameter
p in accordance with their desired level of assurance and the
expense of cloud computing time.

One naive way to implement checkpointing for Java
programs is to take a system-level snapshot of the JVM
process image at fixed time intervals. However, this approach
is inadequate for computation certification for at least two
reasons: (1) JVM process images vary greatly at the byte
level depending on the particular JVM version and the
underlying hardware. For example, different JVMs have
radically different underlying implementations, including
memory allocation strategies, JIT compilation behavior, and
a variety of other low-level details. These differences are
transparent to Java programs, but they make it difficult or
impossible to compare system-level JVM process images
for semantic equality. (2) Even when comparing process
images from identical JVM versions on identical hardware,
semantic equivalence of the JVM state is not an identity
function. Many JVM objects have internal fields, such as
hash values and clock times, that are irrelevant to semantic
object equivalence.

We therefore implement checkpointing at the Java level
rather than the system level. Our implementation extends
Apache’s open source Javaflow library [25]. Javaflow includes
a suspend operation that generates continuations. Each
continuation object contains a snapshot of the stack trace,
including the call stack, local and global variables, and the
program counter. Such continuations can later be resumed
(i.e., replayed) by passing the continuation object to the

library’s continueWith method. As a simple example, a
program that prints numbers from 1 to 100 can be suspended
immediately after printing 50. The resulting continuation can
be resumed later, resulting in the program printing 51, etc.,
until another suspension is encountered. Continuations can
be serialized for mobile execution. We leverage continuations
as checkpoints for CloudCover.

Although Javaflow supports suspension and resumption
of computations via continuations, it does not support
continuation equivalence-checking. This is necessary for the
checkpoint equivalence check in Fig. 2] CloudCover therefore
extends Javaflow’s Continuation class with an equals method
that compares two suspended program states for semantic
equivalence. Two states are equivalent if they consist of equal-
length stacks whose corresponding slots contain equivalent
values and objects. Deciding such semantic equivalence is
non-trivial in general; for example, the states may contain
objects with private fields to which the continuation object
lacks access, or they may include fields whose values are
semantically equivalent but non-identical. Fortunately, all
Java objects have their own equals methods, which encode
an object-specific notion of semantic equivalence.

Every Java program therefore carries within itself a general
contract of object-equality [26], encoded by the collective
implementations of all its equals methods. This contract can
be leveraged to decide semantic equivalence of arbitrary
program states. It is this insight that allows CloudCover
to validate computations without any significant change to
existing Java programs.

C. CloudCover Protocol

CloudCover’s protocol is detailed in Algorithm [I] We
denote the trusted component, untrusted component, and
checker as TC, UC, and C (respectively) in the algorithm.
The order of the generated checkpoints is important since
the checker accepts a checkpoint as input, resumes it, and
matches its result with the immediate next checkpoint. If
there are n checkpoints, it therefore organizes n — 1 pairs.
For line we use our customized equals() method included
in the modified Javaflow library.

D. Attacks and Defenses

The following are some ways in which a malicious
untrusted component might attack CloudCover:

o Untrusted components can alter the number and/or
positions of checkpoints. This is discovered by the
checker with probability p when it compares the first
altered checkpoint with the one yielded by the trusted
software, since their memory states and/or program
counters must differ.

o Untrusted components can modify other parts of the
software. This threat is certainly detectable since the
checker runs the trusted software received from the

Algorithm 1 CloudCover Protocol

1: TC chooses number n > 2 and placement of checkpoints

2: TC inserts n — 2 suspend calls into software (the initial
and final checkpoints are implicit)

3: TC sends modified (trusted) code ¢ to UC

4: UC executes ¢ and sends generated checkpoints and
result to TC

5: TC sends c, checkpoints, and result to C

6: C organizes checkpoints into pairs (cp;, cp; ;)

7. C dispenses (c, cp;, cp;,.1) as input to each computation
unit (e.g. mappers in Hadoop)

8: for each checkpoint c¢p, where i € [0,n) do

9: if rand() < p then

10: cpl < continue With(cp,)

11: if cp; = cp,;,, then

12: computation unit returns rue
13: else

14: computation unit returns false
15: end if

16: end if

17: end for

18: return the conjunction of all the unit return values

trusted component, not from the untrusted one, and thus
discovers the difference.

« Untrusted components can leave the code uncorrupted,
but tamper with the checkpoints and/or results it sends
to the trusted component. This is discovered with
probability p when a checkpoint equivalence check fails.

CloudCover trusts the cloud platform. Clouds can attain
suitable trustworthiness through trust management, replica-
tion, virtualization, and a variety of other technologies (e.g.,
Hatman [[18]], AdapTest [27] or RunTest [28]]) not typically
available to mobile devices and other, stand-alone, cloud-
assisted machines.

Privacy preservation of computation results is beyond
our scope. For such protection, we refer the reader to
numerous related works on that subject, including Anony-
mousCloud [29], secure multiparty computation [30], and
differential privacy [31].

III. IMPLEMENTATION

Implementation of CloudCover for a real-world architec-
ture is a key contribution of our work. We therefore target
Java computations, which are the basis for many mobile app
domains, and we implement computation validation using
a commodity data processing cloud—Hadoop MapReduce.
We leverage Javaflow’s built-in functionalities for taking
checkpoints of software and resuming software from check-
points. Our custom implementation of equals() for Javafiow
continuations decides semantic equivalence of checkpoints.

The checker is deployed on a Hadoop [[15]] cluster con-
sisting of 6 DataNodes and 1 NameNode. Node hardware

is comprised of Intel Pentium IV 2.40, 3.00GHz processors
with 2-4GB of memory each, running Ubuntu operating
systems. Javaflow was installed and configured on each
DataNode in the Hadoop distributed environment, making it
available to distributed jobs. We implemented a mechanism
for reading and writing checkpoints for mappers in Hadoop
in an appropriate file format for equality-checking with
Javaflow. LZO compression was applied to all Hadoop
file transfers to minimize transfer and storage costs. For
trusted and untrusted components of CloudCover, we use
standard desktop computers with configurations similar to
the individual cloud nodes above.

For experiments, we select two non-parallelizable crypto-
graphic hash functions, SHA-1 [22] and MDS5 [23]], which
yield message digests. These were instrumented with Javaflow
checkpointing operations placed within their inner loops.
Both algorithms are widely used in TwC, yet not paralleliz-
able beyond fine-grained, instruction-level optimization (cf.,
[32]]). This makes them good subjects for our tests. Both
functions take strings of arbitrary length as input, where SHA-
1 and MDS5 produce 160-bit and 128-bit message digests,
respectively. We choose fairly long strings as inputs in our
experiments to demonstrate the benefits of fast, parallelized
validation of comparatively long, serial computations.

Aside from verifying checkpoint chain segments in parallel,
we additionally parallelized the checkpoint equality checking
procedure in our implementation. Continuations are stacks
that can be partitioned arbitrarily into sub-stacks that can all
be checked in parallel for equivalence. We implemented this
for Javaflow by introducing a continuation compare method.
During comparison, instead of equality-checking each pair
of objects inside the checkpoints, a mapper can redirect
them to other mappers by submitting new jobs in Hadoop.
The advantage is that if any individual checkpoint-pair is
extremely large (e.g., very large stacks), then the checkpoint
equality-checking job can be parallelized to compensate.
In our experiments, the stacks are not that large, so this
feature went unexercised. (With small stacks, parallelizing
the equality-checking task is not worthwhile, since the task of
splitting the stacks introduces more overhead than it saves.)

IV. EXPERIMENTAL RESULTS

In all our experiments, any corruption of checkpoints (e.g.,
moving, modifying, or omitting them) and/or corruption of
results provoked rejection by the checker (see §II-D). The re-
mainder of our evaluation therefore focuses on performance.

Our first experiment (Fig. [3) illustrates the superiority of
CloudCover over a single machine verifier for SHA-1 applied
to a 38KB input string. We produce 391 checkpoints for
this experiment and observe that the Hadoop cluster clearly
outperforms a single machine—with 6 nodes, it exhibits
approximately 23% gain. Although adding nodes reduces
the overall validation time, it suffers diminishing returns
typical of parallel architectures. The diminishing returns are

350

—~ 300
»
o 250
i= 200
2150
€ 100
S
& 50
0 .
single 3-node 6-node
machine Hadoop Hadoop
Cluster Size
Figure 3. SHA-1 computation verification time

primarily due to additional overhead for file /O on HDFS
(Hadoop’s file system) and additional network communication
per additional node. Additionally, 391 checkpoints for this
experiment spawns a number of parallel mappers that exceeds
the total capacity of our Hadoop cluster. It therefore places
many mappers in the queue. For this reason, a 3-node cluster
takes less than double the time of a 6-node cluster (but
still beats the single node performance by 10%). With a
larger cluster of hundreds or thousands of machines, we
therefore expect even better performance than exhibited by
our comparatively small-scale testbed.

Our second experiment (Fig. @) considers an MD5 algo-
rithm applied to a 38KB input string using the same cluster
sizes. It generates 612 checkpoints and achieves a similar
performance gain: 3-node and 6-node Hadoop clusters run
12% and 25% faster, respectively, than a single machine
setup. The increased number of checkpoints results in longer
validation times than the first experiment. This indicates that
for any given computation and cluster configuration, there
may be an optimal number and distribution of checkpoints. In
addition, although the number of checkpoints is 57% greater,
the verification time is more than 57% longer than for SHA-1.
This is because the MD5 computation’s checkpoints are much
larger on average than those generated for SHA-1, because the
MDS5 implementation places more large objects on its stack
at checkpoint times. Accordingly, an optimal implementation
should select checkpoint positions strategically so as to avoid
such overhead when possible.

Figure[3]reports certification times for SHA-1 computations
over various input string lengths using 6 checkpoints. For
our small cluster, 6 checkpoints was an optimal number
(more and fewer checkpoints yielded higher overall runtimes).
We expect that with larger clusters the optimal number of
checkpoints rises proportionately to the cluster size. With a
single machine, the verification time climbs rapidly with the
input string length, whereas for Hadoop clusters it climbs
much more slowly. For instance, where the performance
difference between 3-node Hadoop and a single machine
is about 5.5% for a 38KB string, it is about 60% for

Running Time

3-node
Hadoop

6-node
Hadoop

single
machine

Cluster Size

Figure 4. MDS5 computation verification time

8
Z6 W75KB text |
Q PA150KB text
E 5
[
o0 4
& 2
1
0 .
single 3-node 6-node
machine Hadoop Hadoop
Cluster Size
Figure 5. SHA-1 verification times with 6 checkpoints

a 150KB input (4 times as large). Thus, the longer the
serial computation, the greater advantage is observed for the
parallelized validation architecture.

CloudCover’s parallelized verification strategy scales
best when applied to certify computations whose time-
complexities are greater than their space-complexities. In
these cases, CloudCover’s division of the original com-
putation’s runtime across n nodes introduces speed-ups
that rapidly outpace the overhead introduced by checkpoint
operations, which typically have time complexity equal to
the computation’s space-complexity. To illustrate, Fig. [§]
compares the certification times for a quadratic-time, linear-
space, insertion sort computation against the runtimes of the
original, serial computation without any checkpointing. With
a 600K-element input array and a 6-node cluster, certification
completes 74% faster than the original computation on the
same cloud. (Since the original computation is serial, the
cloud cannot parallelize it and it runs on only one node.)

V. RELATED WORK

Automatic result checking has been studied in the literature
for at least a quarter century. It was first proposed as a means
of debugging software [33]]. Later work extended the idea
to fault tolerance by observing that certain algorithms can

350
M300K elements
. 300 B600K elements|
=250
g
i 200
2150
g
S 100
24
50
) original computation parallelized certification
(no checkpointing) (6 checkpoints)
Computation
Figure 6. Original computation runtimes vs. verification runtimes for

insertion sort on a 6-node Hadoop MapReduce cluster

be reformulated to yield a certification trail of data that
witnesses the integrity of the algorithm’s result [34]. When
available, such a trail can be verified independently by a
distinct, faster certification algorithm to achieve efficient
result checking. This insight has led to recent work in the
formal methods community on frameworks for developing
trail-producing software and their certifiers [33]].

Unfortunately, the addition of certification trails to software
is non-trivial in general (justifying the application of formal
methods). It typically requires reformulating and reimple-
menting the algorithm, as well as developing a completely
new certification stage that is unique to each algorithm being
checked. Applying the technique to most existing, production-
level software is therefore a significant challenge.

Homomorphic encryption has been proposed as a way to
cryptographically protect computation results on untrusted
hosts, making incorrect results arbitrarily difficult for mali-
cious hosts to forge [10]. The disadvantage of these schemes
is that homomorphic encryption currently only supports a
very limited set of data operations, and therefore cannot yet
be applied to a majority of computations.

Computations that are already parallelized and distributed
across clouds can be probabilistically checked by simply
replicating some or all of the sub-tasks and comparing
the results for inconsistencies. Past works have therefore
imbued MapReduce architectures with fault tolerance through
massive replication with inconsistency resolution via majority
voting [36] or distributed trust management [18]. In contrast,
CloudCover focuses on certifying the significant class of
computations that are not massively parallelized, including
those that are inherently serial.

Remote attestation is an alternative to result checking that
supplies evidence to a distrustful appraiser that an untrusted,
remote target is running authorized software atop permissible
hardware [37]. By assuring the integrity of the remote
computing environment, its results can be trusted without

additional checking. Remote attestation solutions typically
rely upon secure co-processors to attest hardware integrity [3]],
[4], and software monitors that relay cryptographically
protected evidence of software integrity at load-time and
in real-time as the remote computation progresses [, [6l,
(71, 3.

However, the evidence exhibited by remote attestation
solutions is not a proof. A knowledgeable, resourceful, or
lucky adversary can potentially forge false evidence to corrupt
the computing environment without detection (cf., [38]],
[39]], [40]). This is partly because most software monitors
rely upon code obfuscation [L1], [12]], [41] or blackbox
security [42], which does not provide formal guarantees
against reverse-engineering and corruption. An attacker with
powerful reverse-engineering tools or inside knowledge of
the obfuscation strategy can therefore potentially corrupt
computations in ways that are not detectable by the appraiser.
This invites an arms race in which attackers hone increasingly
sophisticated analysis tools while defenders weave ever more
complex obfuscations to bewilder them.

VI. CONCLUSION

CloudCover is a novel approach to SECaaS that allows
Java computations executed in untrusted environments to be
validated by commodity data processing clouds. Conceptually,
it realizes proof-carrying computations as checkpoint chains.
Generation and validation of such proofs is possible with
relatively minor changes to existing Java software due to
the insight that all Java programs already carry a notion
of checkpoint equality encoded in their object-equality
implementations. This serves as a computation integrity
contract that can be validated by a trusted third party. The
validation algorithm is massively parallelizable even when
the original computation is largely serial, and can be spot-
checked for even more efficient validation of probabilistic
(yet quantifiable) integrity guarantees.

We demonstrate the feasibility of CloudCover’s approach
by implementing it and evaluating it on a real-world archi-
tecture: Hadoop MapReduce. Experimental results indicate
that relatively few modifications to existing Java software are
needed to add proof-carrying capabilities, and that validation
services have a natural implementation as MapReduce jobs.

Our current implementation instruments Java programs
with proof-carrying powers semi-manually. Future work
should consider automated, binary-level approaches for doing
so. In addition, our preliminary experiments consider only
small-scale clouds, simple Java computations, and clients
consisting of desktop machines. In the future, we intend to
scale our work to larger scenarios and handheld devices, such
as smart phones.

Applying our approach to other languages requires a
means of generating checkpoints that can be compared for
semantic equivalence. Managed, object-oriented, bytecode
languages, such as Java, .NET, and ActionScript, facilitate

such comparison through built-in class methods that decide
object-equality. Native codes that realize checkpoints as
process memory images admit such certification only if the
images can be made insensitive to low-level hardware details
that differ between the untrusted host and the trusted checker.
Future work should investigate the feasibility of extending
our work to such domains.

REFERENCES

[1] A. Vasudevan, E. Owusu, Z. Zhou, J. Newsome, and J. M.
McCune, “Trustworthy execution on mobile devices: What
security properties can my mobile platform give me?” in
Proceedings of the 5th International Conference on Trust and

Trustworthy Computing (TRUST), 2012, pp. 159-178.

[2] A. Cooper and A. Martin, “Towards a secure, tamper-proof
grid platform,” in Proceedings of the 6th IEEE International
Symposium on Cluster Computing and the Grid (CCGrid),
2006, pp. 373-380.

[3] Trusted Computing Group, “TCG attestation PTS protocol:
Binding to TNC IF-M, version 1.0, revision 28,” August 2011.

[4] M. Nauman, S. Khan, X. Zhang, and J.-P. Seifert, “Beyond
kernel-level integrity measurement: Enabling remote attes-
tation for the Android platform,” in Proceedings of the 3rd
International Conference on Trust and Trustworthy Computing
(TRUST), 2010, pp. 1-15.

[5] C. Kil, E. C. Sezer, A. M. Azab, P. Ning, and X. Zhang,
“Remote attestation to dynamic system properties: Towards
providing complete system integrity evidence,” in Proceedings
of the IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2009, pp. 115-124.

[6] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and
P. Khosla, “Pioneer: Verifying integrity and guaranteeing
execution of code on legacy platforms,” in Proceedings of the
ACM Symposium on Operating Systems Principles (SOSP),
2005, pp. 1-16.

[7] P. Falcarin, R. Scandariato, M. Baldi, and Y. Ofek, “Integrity
checking in remote computation,” in Atti del XLIII Congresso
Annuale (AICA), October 2005.

[8] M. B. MBarka, F. Krief, and O. Ly, “Entrusting remote
software executed in an untrusted computation helper,” in
Proceedings of the International Conference on Network and
Service Security (N2S), 2009, pp. 1-5.

[9] T. Sander and C. F. Tschudin, “Towards mobile cryptography,”
in Proceedings of the IEEE Symposium on Security & Privacy
(S&P), 1998, pp. 215-224.

[10] ——, “Protecting mobile agents against malicious hosts,” in
Proceedings of Mobile Agents and Security, G. Vigna, Ed.,
1997, pp. 44-60.

[11] M. Ceccato, M. Di Penta, P. Falcarin, F. Ricca, M. Torchiano,
and P. Tonella, “A family of experiments to assess the effec-
tiveness and efficiency of source code obfuscation techniques,”
Emperical Software Engineering, pp. 1-35, 2013.

[12] C. Collberg and J. Nagra, Surreptitious Software: Obfuscation,
Watermarking, and Tamperproofing for Software Protection.
Addison-Wesley, 2010.

(13]

(14]
[15]
[16]

[17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

Amazon, “Amazon elastic compute cloud,” http://aws.amazon
com/ec2l

Microsoft, “Windows Azure,” http://www.windowsazure.com,
Apache, “Hadoop,” http://hadoop.apache.org,

R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging IT platforms: Vision, hype,
and reality for delivering computing as the 5th utility,” Future
Generation Computer Systems, vol. 25, no. 6, pp. 599-616,
June 2009.

M. Gerla and D. Huang, Eds., Proceedings of the 1st Edition of
the MCC Workshop on Mobile Cloud Computing, SIGCOMM
Special Interest Group on Data Communication. ACM,
August 2012.

S. M. Khan and K. W. Hamlen, “Hatman: Intra-cloud trust
management for Hadoop,” in Proceedings of the 5th IEEE
International Conference on Cloud Computing (CLOUD), June
2012, pp. 494-501.

W. Holden, “Mobile cloud applications & services: Monetising
enterprise & consumer markets 2009-2014,” Juniper Research,
Tech. Rep., January 2010.

G. C. Necula and P. Lee, “Safe, untrusted agents using proof-
carrying code,” in Proceedings of Mobile Agents and Security,
1998, pp. 61-91.

J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” Communications of the ACM
(CACM), vol. 51, no. 1, pp. 107-113, 2008.

National Institute of Standards and Technology, “Secure
hash standard,” April 1995, Federal Information Processing
Standard.

R. L. Rivest, “The MD5 message digest algorithm,” April
1992, Internet RFC 1321.

D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer, “SETI@home: An experiment in public-
resource computing,” Communications of the ACM (CACM),
vol. 45, no. 11, pp. 56-61, 2002.

Apache Commons, “Javaflow,” http://commons.apache.org/
sandbox/javaflow,

J. Bloch, Effective Java, 2nd ed. Sun Microsystems, 2008,
ch. 3, Item 8: Obey the general contract when overriding
equals, pp. 33-44.

J. Du, N. Shah, and X. Gu, “Adaptive data-driven service
integrity attestation for multi-tenant cloud systems,” in Pro-
ceedings of the IEEE International Workshop on Quality of
Service (IWQoS), 2011, pp. 1-9.

J. Du, W. Wei, X. Gu, and T. Yu, “RunTest: Assuring integrity
of dataflow processing in cloud computing infrastructures,” in
Proceedings of the ACM Symposium on Information, Computer
and Communications Security (ASIACCS), 2010, pp. 293-304.

S. M. Khan and K. W. Hamlen, “AnonymousCloud: A data
ownership privacy provider framework in cloud computing,”
in Proceedings of the 11th IEEE International Conference on

(30]

(31]

[32]

(33]

[34]

(35]

[36]

(37]

(38]

[39]

[40]

[41]

[42]

Trust, Security and Privacy in Computing and Communications
(TrustCom), June 2012.

Y. Lindell and B. Pinkas, “Secure multiparty computation
for privacy-preserving data mining,” Journal of Privacy and
Confidentiality, vol. 1, no. 1, pp. 59-98, 20009.

L. Roy, S. T. Setty, A. Kilzer, V. Shmatikov, and E. Witchel,
“Airavat: Security and privacy for MapReduce,” in Proceedings
of the 7th USENIX Conference on Networked Systems Design
and Implementation (NSDI), 2010, pp. 297-312.

J. Nakajima and M. Matsui, “Performance analysis and
parallel implementation of dedicated hash functions,” in
Proceedings of the Annual International Conference on Theory
and Application of Cryptographic Techniques: Advances in
Cryptology (EUROCRYPT), 2002, pp. 165-180.

M. Blum and S. Kannan, “Designing programs that check
their work,” in Proceedings of the 21st ACM Symposium on
Theory of Computing (STOC), 1989, pp. 86-97.

G. F. Sullivan, D. S. Wilson, and G. M. Masson, “Certification
of computational results,” IEEE Transactions on Computers
(TC), vol. 44, no. 7, pp. 833-847, 1995.

G. Barthe, P. Buiras, and C. Kunz, “A functional framework
for result checking,” in Proceedings of the 9th International
Symposium on Functional and Logic Programming, 2010, pp.
72-86.

M. Moca, G. C. Silaghi, and G. Fedak, “Distributed results
checking for MapReduce in volunteer computing,” in Proceed-
ings of the International Parallel & Distributed Processing
Symposium (IPDPSW), 2011, pp. 1847-1854.

G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen,
B. O’Hanlon, J. Ramsdell, A. Segall, J. Sheehy, and B. Sniffen,
“Principles of remote attestation,” in Proceedings of the 10th
International Conference on Information and Communications
Security (ICICS), vol. 10, no. 2, 2011, pp. 63-81.

S. Delaune, S. Kremer, M. D. Ryan, and G. Steel, “A formal
analysis of authentication in the TPM,” in Proceedings of the
7th International Conference on Formal Aspects of Security
and Trust (FAST), 2010, pp. 111-125.

C. Castelluccia, A. Francillon, D. Perito, and C. Soriente,
“On the difficulty of software-based attestation of embedded
devices,” in Proceedings of the 16th ACM Conference on
Computer and Communications Security (CCS), 2009, pp.
400-409.

A. Perrig and L. van Doorn, “Refutation of ‘On
the difficulty of software-based attestation of embed-
ded devices’,” http://sparrow.ece.cmu.edu/group/pub/perrig-
vandoorn-refutation.pdf, 2010.

K. Fukushima, S. Kiyomoto, T. Tanaka, and K. Sakurai,
“Analysis of program obfuscation schemes with variable
encoding technique,” IEICE Transactions: Special Section
on Cryptography and Information Security, vol. 91-A, no. 1,
pp- 316-329, January 2008.

F. Hohl, “Time limited blackbox security: Protecting mobile
agents from malicious hosts,” in Mobile Agents and Security,
1998, pp. 92-113.

http://aws.amazon.com/ec2
http://aws.amazon.com/ec2
http://www.windowsazure.com
http://hadoop.apache.org
http://commons.apache.org/sandbox/javaflow
http://commons.apache.org/sandbox/javaflow
http://sparrow.ece.cmu.edu/group/pub/perrig-vandoorn-refutation.pdf
http://sparrow.ece.cmu.edu/group/pub/perrig-vandoorn-refutation.pdf

	Introduction
	System Overview
	Architecture and Threat Model
	Computation Integrity Proof Generation and Validation
	CloudCover Protocol
	Attacks and Defenses

	Implementation
	Experimental Results
	Related Work
	Conclusion
	References

