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Data and computation integrity and security are major concerns for users of cloud computing

facilities. Today’s clouds typically place centralized, universal trust in all the cloud’s nodes.

This simplistic, full-trust model has the negative consequence of amplifying potential damage

from node compromises, leaving such clouds vulnerable to myriad attacks.

To address this weakness, this dissertation proposes and evaluates new paradigms for de-

centralizing cloud trust relationships for stronger cloud security. Five new paradigms are

examined: (1) Hatman decentralizes trust through computation replication in clouds to

ensure computation integrity. Its prototype implementation embodies the first full-scale,

data-centric, reputation-based trust management system for Hadoop clouds. (2) Anony-

mousCloud decentralizes trust by decoupling private billing information from a cloud job’s

code and data. The resulting cloud conceals computation and data ownership information

from nodes that compute using the data, thereby impeding malicious nodes from learning

who owns these resources without disrupting the cloud’s power to process and bill jobs.

(3) Penny is a fully decentralized peer-to-peer structure that shifts trust away from tradi-
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tional, centralized, cloud master nodes to an equal distribution of trust over all nodes. It

supports integrity and confidentiality labeling of data, and enforces a notion of ownership

privacy that permits peers to publish data without revealing their ownership of the data.

(4) CloudCover decentralizes trust on the user side. It proposes a new form of Security as a

Service (SECaaS) that allows untrusted, mostly serial computations in untrusted computing

environments to be independently and efficiently validated by trusted, commodity clouds.

Finally, (5) SilverLine automatically in-lines secure information flow tracking code into un-

trusted job binaries, facilitating enforcement of custom security policies without any change

to the underlying cloud kernel, operating system, hypervisor, or file system implementa-

tions. This makes SilverLine exceptionally easy to deploy and maintain on rapidly evolving

cloud frameworks, since the cloud and security enforcement implementations are completely

separate and orthogonal.

Experiments demonstrate that each paradigm is an effective strategy for realizing stronger

security in cloud computing frameworks at modest overheads through reducing or shifting

the trusted computing base.
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CHAPTER 1

INTRODUCTION

Revolutionary advances in hardware, networking, middleware, and virtual machine tech-

nologies have led to an emergence of new, globally distributed computing platforms, namely

cloud computing, that provide computation facilities and storage as services accessible from

anywhere via the Internet without significant investments in new infrastructure, training,

or software licensing. Infograph reports that 63% of financial services, 62% of manufac-

turing, 59% of healthcare, and 51% of transportation industries are using cloud computing

services (Meijer, 2012). According to Rackspace (Nicholson et al., 2013), this pay-as-you-go

service saves around 58% of cost.

As a result, more than 50% of global 1000 companies are projected to store sensitive data

in public clouds by 2016 (Smith et al., 2011). However, a significant barrier to the adoption

of cloud services is customer fear of data integrity and privacy loss in the cloud (Pear-

son et al., 2009). A survey by Fujitsu Research Institute reveals that 88% of prospective

customers are worried about who has access to their data in the cloud and demand more

trustworthiness (Fujitsu, 2010). Additionally, there are mission-critical clouds: for exam-

ple, the NSA is using MapReduce (Dean and Ghemawat, 2008) clouds for intelligence data

mining (Iannotta, 2011), and the NIH is using AWS cloud (Amazon, 2013) for health data

management (Cravedi and Randall, 2012). Therefore, cloud computing security has estab-

lished its paramount importance.

There are numerous security issues involved in clouds, some of which include:

• Privacy Preservation: preserving privacy of data and its owners,

• Computation Integrity: ensuring computations are correct,
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• Secure Storage: storing data securely (e.g., via encryption),

• Authentication and Authorization: cloud user access control, and

• Secure Remote Platform Attestation: detecting and protecting against software

tampering.

This dissertation examines most of these issues (all but secure storage) from the perspective

of trust decentralization, minimization, and management in clouds.

Since users lack full control over resources in clouds, they must rely on trust mechanisms.

A dictionary definition of trust is, “firm belief in the reliability, truth, ability, or strength

of someone or something” (Soanes and Stevenson, 2006). Thus it revolves around assurance

and confidence that people, data, entities, information or processes will function or behave in

expected ways (Pearson and Benameur, 2010). In a heterogeneous environment, this notion

of trust is inevitably difficult to precisely quantify, so there is no universally accepted defi-

nition of trust in cloud computing. However, by reducing, eliminating, and/or distributing

trust relationships between cloud infrastructure components and users, one can make rela-

tive, incremental improvements to the trustworthiness of clouds, improving their security.

This relative notion of trust is well established in the general security literature (cf., Blaze

et al., 1996, 2009).

The current implementations of clouds (Amazon, 2013; Microsoft, 2013; Apache, 2013)

typically have centralized, universal trust of all the cloud nodes. This security paradigm

suffers from a major drawback: though the nodes may be considered trustworthy by the

clouds, if the attackers can compromise some, or even one, of the nodes in the cloud over

time, the whole computation is compromised or data integrity and privacy can be breached.

Therefore, this dissertation focuses on how to decentralize these trust relationships in clouds

in order to improve security without impairing efficiency.

To deal with this centralized trust in clouds, one can bring forth different possible solu-

tions, which we can categorize into mainly two lines of defense:
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• First Line of Defense: Most cloud defense technologies seek to prevent attackers

from compromising any cloud resources in the first place. One major category of such

technologies is virtualization, which uses secure operating systems, hardware, and vir-

tual machines to place layers of security between security-sensitive cloud resources and

untrusted user activities. However, inevitably these defenses are not perfect. It is pru-

dent to expect that some attackers will penetrate this first line of defense, motivating

a second line of defense.

• Second Line of Defense: Beneath the first line of defense, one can add a second line

of defense to detect and mitigate successful intrusions. The classic approach adopts

distributed fault tolerance—for instance, Byzantine fault tolerance. However, many

fault tolerant approaches only target adversaries that act purely randomly (e.g., a

hostile environment that randomly corrupts computations). In contrast, attackers are

typically non-random. They strategically exploit attack vectors that subvert the de-

fense with high probability. This has motivated research on trust management models

that seek to harden distributed and decentralized (e.g., peer-to-peer) networks against

malicious adversaries. This latter approach is the subject of this dissertation.

We explore the problem of trust management in clouds through five works, described below.

Hatman. Our first proposed work, Hatman (Khan and Hamlen, 2012b), decentralizes

trust through replication in the cloud, and ensures computation integrity. To evaluate

reputation-based trust management in a realistic cloud environment, we augment a full-

scale, production-level data processing cloud—Hadoop MapReduce (Apache, 2013; Dean

and Ghemawat, 2008)—with a reputation-based trust management implementation based

on EigenTrust (Kamvar et al., 2003). The augmented system replicates Hadoop jobs and

sub-jobs across the untrusted cloud nodes, comparing node responses for consistency. Consis-

tencies and inconsistencies constitute feedback in the form of agreements and disagreements



4

between nodes. These form a trust matrix whose eigenvector encodes the global reputations

of all nodes in the cloud. The global trust vector is consulted when choosing between differing

replica responses, with the most reliable response delivered to the user as the job outcome. To

achieve high scalability and low overhead, we show that job replication, result consistency

checking, and trust management can all be formulated as highly parallelized MapReduce

computations. Thus, the security offered by the cloud scales with its computational power.

Different cloud computing platforms may vary in the details of their internal architec-

tures, usually with one or few centralized master nodes and a large collection (e.g., hundreds

of thousands) of slave nodes in Hadoop. The trust management system is centralized in

the sense that master nodes maintain a small, trusted store of trust and reputation infor-

mation; however, all computation is decentralized in that trust matrix computations and

user-submitted job code is all dispatched to slave nodes.

AnonymousCloud. Our next paradigm, AnonymousCloud (Khan and Hamlen, 2012a),

decentralizes trust by decoupling billing information from submitted jobs. This work con-

cerns the problem of privacy-preserving computation. AnonymousCloud conceals data prove-

nance from cloud nodes that compute over the data, and conceals recipient identities in the

form of IP addresses and ownership labels. Anonymization is achieved through the instanti-

ation of a Tor anonymizing circuit (Dingledine et al., 2004) inside the cloud, through which

private data and jobs are anonymously supplied by and returned to users. Circuit length

is a tunable parameter k, affording a flexible trade-off between the degree of anonymity

and the computational overhead of the circuit. To maintain a pay-per-use business model,

clouds must inevitably track ownership information at some level for billing and auditing

purposes. AnonymousCloud therefore implements a public-key cryptography-based anony-

mous authentication that disassociates data ownership metadata from the private data it

labels.
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Penny. The above frameworks have centralized master nodes in clouds that are trusted for

integrity, in order to reuse the existing cloud infrastructure. To eliminate that centralized

trust, we can adopt a structured peer-to-peer (P2P) topology, which we present in our

work Penny (Khan and Hamlen, 2013b). All of the master nodes can act as peers, and

they distribute jobs and data between them. However, in order to obtain that level of

decentralization, we must abandon the existing cloud structure and implement a whole new

protocol.

We have designed, implemented, and tested Penny, a P2P networking protocol that ex-

tends Chord (Stoica et al., 2001) with secure integrity- and confidentiality-labeling of shared

data. Penny uses a distributed reputation management system based on EigenTrust (Kamvar

et al., 2003) to securely manage data labels without the introduction of a central authority.

The data labels empower requester peers to avoid downloads of low-integrity data, and allow

sender peers to deny low-privilege peers access to high-confidentiality data. In addition,

sender peers may publish and serve their data anonymously, frustrating attacks that seek to

single out and target owners of security-relevant data. We have applied Penny to construct

a secure, fully decentralized, data management system for traditional data files as well as

Resource Description Framework (RDF) data.

CloudCover. Following the constitution of a trustworthy cloud, we can take advantage

of it for computation certification as a service from this cloud. We propose this in Cloud-

Cover (Khan and Hamlen, 2013a), which decentralizes trust as well—this time on the user

side. CloudCover allows untrusted Java computations in an untrusted environment to yield

a proof of computation integrity as a side-effect of the computation. The proof can then

be validated against the original code and the computation’s result to formally verify that

the result is correct. Neither the computation nor the proof (nor their origins) are trusted

by CloudCover. A (possibly forged) proof either proves that a given computation results
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from a given code, or it does not. If the former, the result is correct regardless of where

the proof came from; if the latter, the computation, the proof, or both are untrustworthy.

Thus, CloudCover can be formalized as proof-carrying computation, similar to proof-carrying

code (Necula and Lee, 1998). CloudCover proofs have the advantageous quality that the task

of verifying them can be parallelized almost arbitrarily even when the original computation is

not parallelizable. Thus, they derive maximal benefit from massively parallel architectures,

like clouds.

SilverLine. Our last paradigm, SilverLine (Khan et al., 2014) is a novel, more modu-

lar framework for enforcing mandatory information flow policies on commodity workflow

clouds by leveraging Aspect-Oriented Programming (AOP) and In-lined Reference Monitors

(IRMs). Unlike traditional system-level approaches, which typically require modifications to

the cloud kernel software, OS/hypervisor, or cloud file system layout, SilverLine automati-

cally in-lines secure information flow tracking code into untrusted job binaries as they arrive

at the cloud. This facilitates efficient enforcement of a large, flexible class of information flow

and mandatory access control policies without any customization of the cloud or its under-

lying infrastructure. The cloud and the enforcement framework can therefore be maintained

completely separately and orthogonally. We implement and deploy SilverLine on a fullscale,

real-world data processing cloud—Hadoop MapReduce.

The remainder of the dissertation proceeds as follows. Chapters 2–6 present each security

paradigm described above, respectively. Relevant related work is discussed in Chapter 7.

Finally, Chapter 8 concludes with a summary and a discussion of directions for future work.



CHAPTER 2

HATMAN: INTRA-CLOUD TRUST MANAGEMENT FOR HADOOP1

While cloud data privacy has received a great deal of popular attention in the literature (cf.,

Ryan, 2011; Chen and Zhao, 2012), computation integrity also remains a significant problem

for large-scale, production-level cloud architectures. An attacker who is able to compromise

even one cloud node potentially gains the ability to corrupt the outcomes of all computations

allocated to that node. Since clouds subdivide and distribute their computations as widely

as possible across their nodes to achieve high performance and scalability, this means that a

single compromised node can corrupt the integrity of many or even all of the jobs undertaken

by the cloud.

As an example, consider a Hadoop MapReduce cloud (Dean and Ghemawat, 2008) that

performs military intelligence data mining, similar to the one currently under development

by the U.S. National Security Agency (Iannotta, 2011). An attacker who has compromised

just one node in such a cloud can introduce nearly arbitrary error into simple computations,

such as word counting or clustering computations, by simply forcing the compromised node

to yield false, outlying answers to queries. These answers are summed or averaged into the

answers returned by the other nodes, resulting in a final answer (delivered to the user) that

is largely dictated by the attacker. Such computational integrity corruption could be applied

to frustrate military intelligence data-mining efforts by masking important data correlations

or introducing false ones.

1 c© 2012 IEEE. Reprinted, with permission, from Safwan M. Khan and Kevin W. Hamlen. Hatman:
Intra-cloud Trust Management for Hadoop. In Proceedings of the 5th IEEE International Conference on
Cloud Computing (CLOUD), pp. 494–501, June 2012.

7
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For this reason, a large body of work on cloud security focuses on protecting nodes

from being compromised in the first place (cf., Subashini and Kavitha, 2011; Hamlen et al.,

2010). Data processing clouds (Du et al., 2009), including Hadoop, execute untrusted, user-

submitted code on trusted cloud nodes during job processing, and must therefore remain

vigilant against malicious mobile code attacks. Virtualization technologies, including trusted

hardware, hypervisors, secure OSes, and trusted VMs are the typical means by which such

mobile code is secured (e.g., Berger et al., 2008; Ibrahim et al., 2011). However, a variety

of studies have shown that clouds introduce significant new security challenges that make

mobile code security a non-trivial, ongoing battle (Christodorescu et al., 2009; Chen et al.,

2010; Subashini and Kavitha, 2011; Morsy et al., 2010). For example, the Cloud Security

Alliance has identified insecure cloud APIs, malicious insiders, shared technology issues,

service hijacking, and unknown risk profiles all as top security threats to clouds (Cloud

Security Alliance, 2010).

We therefore examine trust management as a second line of defense for cloud computation

integrity enforcement. Trust management systems (Blaze et al., 1996) weather (rather than

preclude) malicious behavior in distributed systems by tracking reputations of untrusted

agents (e.g., cloud nodes) over time. Agents who frequently exhibit behavior characterized

as malicious by more trustworthy agents accrue poor reputations, and therefore become

distrusted by the rest of the system. This facilitates detection and rejection of misbehaving

agents without the need to modify the underlying hardware, software, or communication

protocols of each agent in the system.

To evaluate reputation-based trust management in a realistic cloud environment, we

augment a full-scale, production-level data processing cloud—Hadoop MapReduce (Apache,

2013; Dean and Ghemawat, 2008)—with a reputation-based trust management implementa-

tion based on EigenTrust (Kamvar et al., 2003). The augmented system replicates Hadoop

jobs and sub-jobs across the untrusted cloud nodes, comparing node responses for consis-

tency. Consistencies and inconsistencies constitute feedback in the form of agreements and
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disagreements between nodes. These form a trust matrix whose eigenvector encodes the

global reputations of all nodes in the cloud. The global trust vector is consulted when choos-

ing between differing replica responses, with the most reliable response delivered to the user

as the job outcome.

To achieve high scalability and low overhead, we show that job replication, result consis-

tency checking, and trust management can all be formulated as highly parallelized MapRe-

duce computations. Thus, the security offered by the cloud scales with its computational

power. Our primary contributions are therefore as follows:

• We implement and evaluate intra-cloud trust management for a real-world cloud ar-

chitecture—Hadoop.

• Our system adopts a data-centric approach that recognizes job replica disagreements

(rather than merely node downtimes or denial of service) as malicious.

• We show how MapReduce-style distributed computing can be leveraged to achieve

purely passive, full-time, yet scalable attestation and reputation-tracking in the cloud.

Consequently, Hatman decentralizes trust through replication in the clouds and ensures

computation integrity.

2.1 System Overview

2.1.1 Overview of Hadoop Architecture

The Hadoop Distributed File System (HDFS) (Apache, 2013) is a master/slave architecture

designed to run on commodity hardware. Each HDFS cluster has a single NameNode master,

which manages the file system namespace and regulates access to files by customers. In

addition, there are a number of DataNodes, usually one per node in the cluster, which manage

storage attached to the nodes on which they run. The DataNodes are arranged in racks for
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replication purposes. Customers communicate with the NameNode, which coordinates the

services from the DataNodes.

MapReduce (Dean and Ghemawat, 2008) is an increasingly popular distributed program-

ming paradigm used in cloud computing environments. It expedites the processing of large

datasets using inexpensive cluster computers. Additional advantages include load balancing

and fault tolerance.

In this research work we use Hadoop’s MapReduce framework (Apache, 2013). In

Hadoop, the unit of computation is called a job. Customers submit jobs to Hadoop’s Job-

Tracker component. Each job has two phases: Map and Reduce. The Map phase maps input

key-value pairs to a set of intermediate key-value pairs. The Reduce phase reduces the set of

intermediate key-value pairs that share a key to a smaller set of key-value pairs traversable

by an iterator. When a job is submitted to the JobTracker, Hadoop attempts to place the

Map processes near to the input data in the cluster to reduce the communication cost. Each

Map process and Reduce process works independently without communication.

2.1.2 Hatman Architecture

Hatman (HAdoop Trust MANager) augments Hadoop NameNodes with reputation-based

trust management of their slave DataNodes. The trust management system is centralized

in the sense that NameNodes maintain a small, trusted store of trust and reputation infor-

mation; however, all computation is decentralized in that trust matrix computations and

user-submitted job code is all dispatched to DataNodes. NameNode computations there-

fore remain restricted to simple bookkeeping operations related to job dispatch. This keeps

the system scalable and maintains high trustworthiness of NameNodes by minimizing their

attack surfaces.

Hatman users submit Hadoop jobs J with two additional parameters: (1) a group size

n and (2) a replication factor k. The NameNode distributes user-submitted computation
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Figure 2.1. A Hatman job replicated k times and distributed across n data nodes per replica
group.

J across kn DataNodes, as illustrated in Figure 2.1. Each group of n nodes independently

processes job J , with any sub-jobs being redistributed to the nodes of the group that spawned

it. Different groups are permitted to have some common members (though this is unlikely

when kn is small relative to the size of the cloud), but no two groups are identical. Increasing

n therefore yields higher parallelism and increased performance, whereas increasing k yields

higher replication and increased security.

Interpretation of the results of these replicated computations proceeds according to Al-

gorithm 1. Line 3 first collects candidate results from each of the k replica groups. The

collected results are compared pairwise by lines 7 and 9. Hadoop job results are simply files,

which can be partitioned and compared in a highly distributed fashion; therefore, comparison

of non-trivial results is implemented by line 9 as a second Hatman job over freshly selected

nodes and groups. The comparison job recursively leverages the trust management system

to ensure high data integrity, resulting in a reliable comparison.
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Algorithm 1 Hatman job processing

Input: job J , group size n, replication factor k
Output: job result r

1: Choose k unique groups Gg each of size n
2: for all groups Gg do
3: rg ← HadoopDispatch(Gg, J)
4: end for
5: for all pairs (Gg, Gh) with g 6= h do
6: if rg and rh are small then
7: eq ← (rg =? rh)
8: else
9: eq ← HatmanDispatch(rg =? rh)

10: end if
11: for all (i, j) ∈ Gg ×Gh with i 6= j do
12: Cij ← Cij + 1 (and Cji = Cij)
13: if eq = true then
14: Aij ← Aij + 1 (and Aji = Aji)
15: end if
16: end for
17: end for
18: if time to update trust vector then
19: T ← HatmanDispatch(tmatrix (A,C))
20: t← HatmanDispatch(EigenTrust(T ))
21: end if
22: m← arg maxg eval(Gg)
23: return rm

Lines 11–16 tally agreements and disagreements between the groups in a local trust

matrix. Lines 18–21 periodically use this to compute a global trust vector for all nodes in

the system. Finally, line 22 uses the global trust vector to evaluate the most trustworthy

result to return to the user. We next discuss the details of the local trust matrix, the global

trust matrix computation, and the evaluation function, respectively.

A large category of Hadoop jobs tend to be stateless and deterministic (Gedik et al., 2008;

Du et al., 2011, 2010). Thus, when all nodes are reliable, all k replica groups yield identical

results rg with high probability. However, when some nodes are malicious or unreliable,

the NameNode must choose which of the differing responses to deliver to the user, and
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it must decide how the reputations of members of disagreeing groups are affected by the

disagreement.

To make this decision, we appeal to a trust model defined by a local trust matrix Tij =

αijtij, where tij ∈ [0, 1] measures how much agent i trusts agent j, and αij ∈ [0, 1] measures

agent i’s relative confidence in his choice of tij (Jakubowski et al., 2009). The confidence

values are relative in the sense that
∑N

i=1 αij = 1, where N is the total number of agents.

In Hatman, DataNode i trusts DataNode j proportional to the percentage of jobs shared

by i and j on which i’s group agreed with j’s group. That is, tij = Aij/Cij where Cij is the

number of jobs shared by i and j and Aij is the number of those jobs on which their groups’

answers agreed. DataNode i’s relative confidence is the percentage of assessments of j that

have been voiced by i:

αij =
Cij∑N
k=1Ckj

(2.1)

Multiplying Tij = αijtij therefore yields matrix

Tij =
Aij∑N
k=1Ckj

(2.2)

This is the computation performed by tmatrix (A,C) in line 19 of Algorithm 1.

This formula is well-defined whenever j has shared at least one job with another DataN-

ode (making the denominator non-zero). When j has not yet received any shared jobs, we

allow all DataNodes to initially trust j (so tij = 1) with uniform confidence (αij = 1/N).

This differs from EigenTrust (Kamvar et al., 2003), which initially distrusts new agents

because it targets networks with potentially uncontrolled churn. A default distrust of new

peers disincentivizes leaving and rejoining such a network to reset reputation. In contrast,

clouds typically have more controlled churn; new cloud nodes undergo some form of validation

and authorization by organization personnel at installation and cannot leave and rejoin the

network arbitrarily. Therefore, Hatman trusts new nodes by default and reduces that trust

in response to evidence of compromise.



14

Following EigenTrust, line 20 computes the left eigenvector of local trust matrix T to

obtain a vector t of global reputations for all DataNodes. Once again, this computation is

formulated as a distributed Hatman job across a fresh set of nodes and replica groups. The

trust vector is recomputed at regular intervals and at idle periods rather than after every

job to avoid overburdening the network.

Reputation vector t is used as a basis for evaluating the trustworthiness of each group’s

response. We employ evaluation function

eval(G) = w
|G|
|S|

+ (1− w)

∑
i∈G ti∑
i∈S ti

(2.3)

where S = ∪kj=1Gj is the complete set of DataNodes involved in the activity, and weight

w ∈ [0, 1] defines the relative importance of group size versus group collective reputation

in assessing trustworthiness. In Section 2.3 we observe highest accuracy with w = 0.2,

demonstrating that reputation is about 4 times more effective than simple majority voting for

identifying integrity violations. The result yielded by the group with the highest evaluation

score is the one returned to the user.

2.1.3 Activity Types

An activity is a tree of sub-jobs whose root is a job J submitted to Algorithm 1. There

are three different types of activities that Hatman undertakes: user-submitted activities,

bookkeeping activities, and police activities.

User-submitted activities are jobs submitted by cloud customers. These receive highest

priority in the system, with parameters n and k chosen by the user (and perhaps entailing

higher customer cost in response to demands for greater parallelism and replication).

Bookkeeping activities are result-comparison and trust matrix computation jobs submit-

ted by lines 9, 19, and 20 of Algorithm 1. These inherit the priority of the user-submitted

job with which they are associated, and receive high replication factors k to ensure their

integrity.



15

Police activities are dummy jobs (e.g., replayed user-submitted activities or stock jobs)

whose sole purpose is to exercise the system. These are undertaken during periods of low load

to help trust matrix T converge more quickly. The results of police activities are discarded,

providing a safe means to assess reliability of low-reputation nodes without risking delivery

of low-integrity results to users.

2.1.4 Attacker Model and Assumptions

We assume that attackers can compromise DataNodes but not NameNodes. NameNodes

do not execute any user-submitted code, and have a substantially simpler computing archi-

tecture relative to DataNodes, reducing their vulnerability to attack. We also assume that

communication between NameNodes and DataNodes is cryptograhpically protected, so that

a man-in-the-middle cannot forge or replay messages.

Following prior work (Du et al., 2011, 2010), we assume that most (but not necessarily

all) jobs are deterministic and stateless, so that inconsistencies are indicative of integrity

violations. This assumption is valid for a large category of data processing jobs that dom-

inate Hadoop and similar cloud frameworks. Non-determinism based on random number

generation can be adapted to our system by requiring job-authors to expose random number

generator seeds as job inputs, so that they can be duplicated across replica groups.

Attacker-compromised nodes in our model occasionally (or always) submit incorrect re-

sults for jobs that they process. Confidentiality and denial of service attacks are outside our

scope, but are addressed by a large body of other work (cf., Ryan, 2011; Chen and Zhao,

2012).
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Table 2.1. Hatman code breakdown

Component Description Lines

ActivityGen Generate police activities. 300

NameNode Additions:

TrustMatrix Compute local trust matrix and
dispatch eigenvector job compu-
tations.

3500

Evaluator Evaluate group responses and se-
lect results.

4000

Interface Initialize and finalize jobs. 1500

Job Code:

Compare Test results for equivalence. 600
EigenVector Compute left eigenvector of local

trust matrix.
300

Clustering Police activity code. 600

Total 11000

2.2 Implementation

Our implementation of Hatman consists of about 11,000 lines of Java code added to the open

source release of Hadoop v0.20.3. Table 2.1 reports a size breakdown of each component’s

programming.

The majority of the implementation modifies Hadoop’s JobTracker and NetworkTopology

modules to adjust the distribution of input and output files, and modify the scheduling of

jobs during Map and Reduce phases in accordance with Algorithm 1. This accounts for

about 82% of the implementation.

Approximately 1500 lines of additional MapReduce code implement distributed algo-

rithms for result comparison, eigenvector computation, and police activity jobs. For our

police activities we used a K-means clustering algorithm that partitions randomly generated

data sets of 10,000 data points into 2 clusters. A separate ActivityGen module submits police

activities to NameNodes during idle times or other periods of low activity. To maximize the

effectiveness of the police jobs, they are submitted with parameters n = 1 and k = 3. Group
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size n = 1 helps the trust manager reliably trace inconsistencies to one misbehaving node

per group, and small, odd replication factor k helps break potential ties with low overhead.

Our test architecture is a Hadoop cluster consisting of 8 DataNodes and 1 NameNode.

Node hardware consists of Intel Pentium IV 2.40–3.00GHz processors with 2–4GB memory

each, running Ubuntu operating systems. In each test, 2 of the 8 nodes (25%) are malicious,

randomly returning correct or incorrect results for each job they are assigned.

2.3 Results and Analysis

In all experiments we used Equation 2.3 for evaluation with group size weighted at w = 0.2

and group reputation weighted at 1 − w = 0.8. This yielded the best success rates in all

cases. Police activities were submitted at regular intervals between user-submitted jobs, and

account for 30% of the network’s overall load.

Figure 2.2 illustrates Hatman’s success rate in selecting correct job outputs in a Hadoop

cloud of 25% malicious nodes, with user-submitted jobs having group size n = 1 and replica-

tion factor k = 3. Each data point reports the average success rate over a frame consisting

of 20 user activities. Initially the success rate is 80% because there is initially no reputation

information for the nodes. However, by frame 8 all the malicious nodes have been identified

and the success rate rises to 100%. The average success rate over all frames is 89%.

Figure 2.3 considers the same experiment but with the results divided into only two

frames (1st half and 2nd half) of 100 activities each, an increased group size of n = 2,

and an increased replication factor k ranging from 3 to 7. The plot for the 2nd half of the

experiment is substantially above the one for the 1st half in all cases, illustrating that after

100 activities the trust algorithm has converged to 96.33% accuracy on average. As expected,

higher replication factors push the success rate even higher—near 100% with k = 7.

Figures 2.4–2.5 examine the impact of replication factor k and group size n more directly.

Figure 2.4 shows that increasing the replication factor can substantially increase the success
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Figure 2.3. Two-frame comparison for n = 2

rate for any given frame on average. The impact is more pronounced when n is small because

feedback from replica inconsistencies is more node-specific with smaller group sizes, leading

to more accurate blame assigned by the trust manager. In fact, with sufficiently high k and

low n, accuracy can be pushed almost arbirarily high, as seen by the 100% success rate at

k = 7 and n = 1.

Figure 2.5 demonstrates the high scalability of our approach by showing how activity

times remain almost completely flat as k increases. This is because all significant computa-

tions associated with replica management are fully parallelized across the entire cloud. Note
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Figure 2.5. k versus activity time

that k = 7 and n = 2 results in a total load kn = 14 that is almost twice the size of our

cloud. Nevertheless, activity time remains comparable to k = 3 and n = 2.

Based on this preliminary evidence, we believe that Hatman will scale extremely well

to larger Hadoop clusters with larger numbers of data nodes. Each additional data node

adds to the size of the trust matrix, but since all trust matrix operations are distributed

across all available data nodes, each additional node also increases the power of the cloud to

manage the larger trust computations. This agrees with experimental evidence from prior
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work showing that EigenTrust and similar distributed reputation-management systems scale

well to large networks (West et al., 2010).



CHAPTER 3

ANONYMOUSCLOUD: A DATA OWNERSHIP PRIVACY PROVIDER

FRAMEWORK IN CLOUD COMPUTING1

This work concerns the problem of privacy-preserving computation in the cloud. The com-

plementary problem of secure storage of private cloud data has been studied extensively in

the literature (cf., Ryan, 2011; Chen and Zhao, 2012), but cannot usually be applied while

the data is in decrypted form for the duration of a computation. Secure multiparty computa-

tion (Lindell and Pinkas, 2009) and differential privacy (Roy et al., 2010) are both powerful

approaches to privacy-preserving cloud computation on decrypted data, but are inapplica-

ble to many real-world cloud computations. In particular, jobs submitted to the cloud as

arbitrary binary code are difficult to automatically reformulate as secure multiparty compu-

tations, and high differential privacy sometimes comes at the expense of highly imprecise,

noisy results.

In these cases, the level of privacy can sometimes be improved by concealing data own-

ership, provenance, and/or semantics from the participants in a computation in addition to

(or instead of) anonymizing the data itself. For example, a computation that mines medical

data might be deemed insecure if cloud nodes receive sequences of numbers labeled “patient

temperatures” with owner id “Mercy Hospital”; however, the same computation might be

deemed suitably private if each node receives only unlabeled sequences of numbers amidst

a context of millions of other similar anonymous jobs for thousands of diverse, anonymous

users.

1 c© 2012 IEEE. Reprinted, with permission, from Safwan M. Khan and Kevin W. Hamlen. Anony-
mousCloud: A Data Ownership Privacy Provider Framework in Cloud Computing. In Proceedings of the
11th IEEE International Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom), pp. 170–176, June 2012.
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Our AnonymousCloud framework therefore conceals data provenance from cloud nodes

that compute over the data, and conceals recipient identities in the form of IP addresses and

ownership labels. Anonymization is achieved through the instantiation of a Tor anonymizing

circuit (Dingledine et al., 2004) inside the cloud, through which private data and jobs are

anonymously supplied by and returned to users. Circuit length is a tunable parameter

k, affording a flexible trade-off between the degree of anonymity and the computational

overhead of the circuit.

To maintain a pay-per-use business model, clouds must inevitably track ownership infor-

mation at some level for billing and auditing purposes. AnonymousCloud therefore imple-

ments a public-key cryptography-based anonymous authentication that disassociates data

ownership metadata from the private data it labels. Thus, a separate manager node that

does not have access to the private data can bill customers appropriately using the owner-

ship metadata, while computation nodes that have access to the private data but not the

metadata can securely carry out the anonymous job. Managers are trusted not to collude

with computation nodes to violate privacy, but all other nodes including the master node

are potentially malicious.

Our experimental results show via simulation that AnonymousCloud provides data own-

ership privacy with a high success rate against the collective efforts of a large percentage of

attackers in the system, and does so with reasonable computational overhead.

Therefore, AnonymousCloud decentralizes the trust by decoupling billing information

from the submitted jobs.

3.1 System Architecture

The system architecture of AnonymousCloud is given in Figure 3.1. It consists of a cloud

provider CP and a separate manager M . Each are discussed respectively below, concluding

with a discussion of the communication protocol between the two.
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Customer
(C)
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(SN)
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anonymous

direct
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Figure 3.1. System architecture of AnonymousCloud

3.1.1 Cloud Providers

CPs provide computation services to customers C, who submit computations as jobs. Cus-

tomers can access these services in a pay-as-you-go fashion, with payment managed by the

separate manager. Different CPs may vary in the details of their internal architectures (cf.,

Amazon, 2013; Microsoft, 2013; Apache, 2013). We assume only that jobs are submitted to

the CP via a centralized master node MN , which partitions and schedules sub-computations

across a large collection (e.g., hundreds of thousands) of slave nodes SN s. All SN s are there-

fore directly connected to the MN , and there is arbitrary connectivity between the SN s.

AnonymousCloud amends Tor functionality (Dingledine et al., 2004) to the MN and

SN s without modifying the job allocation and scheduling details of the cloud in any way.

All principals (M , C, MN , and SN s) are additionally equipped with public-private key pairs
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from a well established certificate authority CA. The public keys work as the symmetric or

mutual keys during Tor circuit construction.

3.1.2 Managers

Managers are separate from the CP ’s computing infrastructure, and facilitate only customer

authentication and billing. They have four primary responsibilities related to our work:

• M provides central storage of public keys for MN and SN s and serves them to C on

request.

• M maintains a graph of SN connectivity. This facilitates Tor circuit construction by

encoding the universe of available circuit links for circuit initialization.

• M provides each C a unique access token t and credentials c (e.g., a password) via

which Cs can authenticate themselves to M to obtain cloud services.

• M additionally generates a unique nonce n for each of C’s transactions to protect the

authentication system against replay attacks. The authentication protocol is described

in greater detail in Section 3.1.3 below.

In deployed implementations, M likely has additional responsibilities related to authen-

tication, such as key revocation, certificate update, auditing, customer billing, etc. These

responsibilities are deployment-specific, and are therefore beyond the scope of this work.

3.1.3 Authentication Protocol

The authentication and circuit construction protocol of AnonymousCloud is depicted in

Figure 3.2 and detailed in Algorithm 2.

C begins each service transaction by communicating its access token and credentials to

M , and requesting an anonymizing circuit of length k. If at least k connected nodes are
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Algorithm 2 Authentication and circuit construction protocol

1: C asks M to choose k available SN s based on SN connectivity
2: if C has invalid token t or invalid credentials c then
3: M rejects the request from C
4: else
5: repeat
6: M selects k SN s (or the most available)
7: M provides C with public keys KSN and KMN and fresh nonce n
8: C validates keys KSN and KMN with the CA
9: if any key fails validation by the CA then

10: M revokes the invalid keys
11: end if
12: until all keys are valid
13: C performs Tor circuit construction (Dingledine et al., 2004) over the SNs using the

Ks as symmetric keys
14: C signs t, c, and n with private key kC and encrypts it with public key KM , yielding

m = 〈t, 〈t, c, n〉kC 〉KM

15: C sends 〈m, data〉KMN
in layered encryption format over the circuit to MN

16: MN anonymously receives and decrypts the message with private key kMN

17: MN forwards m to M for authentication
18: M decrypts m using kM and verifies signature kC using KC , yielding t, c, and n
19: M verifies t, c, and n; and it verifies KC with the CA
20: if authentication fails then
21: M returns false to MN
22: MN discards the service request
23: else
24: M returns true to MN
25: MN dispatches the data computation
26: MN anonymously returns the result to C over the circuit
27: end if
28: end if
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〈t, c, k〉KM -

SN list, KSN , KMN , n�

circuit construction -

〈〈t, 〈t, c, n〉kC 〉KM
, data〉KMN -

〈t, 〈t, c, n〉kC 〉KM�

true -

job dispatch�

computation result -

computation result�

C M SN s MN

Figure 3.2. Authentication and circuit construction message sequence. Solid lines denote
direct communications, whereas dashed lines denote anonymous communication through the
Tor circuit.

available, M returns such a list; otherwise it may offer a list shorter than k. The returned

list includes the public keys KSN of all the selected slave nodes, as well as the public key

KMN of the master node. M also generates a fresh nonce n for C and stores a local copy.

To prevent replay attacks (Syverson, 1994), the next service request from C will only be

authenticated by M if it is labeled with n.

In step 8 of Algorithm 2, C verifies the certificates with the certificate authority and

stores them locally. To lessen the load, C may cache these results to avoid re-authenticating

certificates that have not changed.

C then transmits the requested computation and its data anonymously via the Tor circuit

to MN in step 15. MN can read the data but not the encrypted ownership metadata

m = 〈t, 〈t, c, n〉kC 〉KM
. It therefore forwards m to M for validation. M can read metadata

m by decrypting it using its private key kM , however it has no access to the associated job’s

data. M verifies C’s digital signature using public key KC , and validates KC ’s certificate

with the certificate authority (possibly caching the results to more efficiently service future
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requests). The access tokens t inside and outside the digital signature are additionally

compared for equality, the credentials c are validated against t, and the nonce n is checked

against the local copy. If all these steps succeed, M invalidates the nonce and returns true

to MN ; otherwise it returns false and the request is denied.

Upon successful authentication, MN dispatches the requested computation in accordance

with the CP ’s internal architecture and protocols. If customer billing is based on computa-

tional resource consumption or other information that only becomes available as the compu-

tation progresses, MN can report such information to M without knowing the job’s owner by

tagging it with encrypted authentication information m. M can then attribute the incurred

expenses to the correct customer.

Once the computation is complete, its results are anonymously delivered to C via the

Tor circuit. The Tor circuit is then dismantled and its resources reclaimed by the CP .

3.2 Results and Analysis

We implemented AnonymousCloud in a simulation setup using Java, with experiments de-

signed to measure the resilience of the system against privacy attacks and the computational

overhead introduced by privacy protections. Each experimental data point is the result

of simulating 1000 customer service requests to a cloud consisting of 1 master node and

N = 1000 slave nodes. The simulation model includes the high-level protocol outlined in

Section 3.1.3 but not low-level details of the underlying network and encryption operations,

which are expected to be specific to each deployment.

A successful attack against our system is defined as the linkability (Pfitzmann and

Hansen, 2010) of private data to its corresponding ownership metadata by one or more

malicious principals. Principals include the manager, the master node, and all slave nodes.

Ownership metadata includes customer pseudonyms (viz., access tokens and IP addresses)

and authentication credentials. We assume that private data does not include pseudonyms
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Figure 3.3. Privacy enforcement success as a function of Tor circuit length k in a cloud of
p = 30% malicious slave nodes

or other information from which customer identities can be inferred; anonymizing the private

data is the subject of related work.

In order for an attack against AnonymousCloud to succeed, the manager or master node

(or both) must be malicious. Managers are the only principals that receive decryptable

access tokens or credentials, and all other communications involving pseudonyms and data

are conducted via Tor circuits having the master node as the only untrusted endpoint.

Managers are separate from CPs and have a much smaller attack surface because they

do not process customer-submitted computations. Our experiments therefore assume that

managers are trusted, but that master nodes are always malicious. In addition, we assume

that a percentage p of slave nodes are also malicious and collude with the malicious master

node in an effort to violate privacy.

Figure 3.3 plots the average privacy enforcement success rate for different Tor circuit

lengths k in a cloud with a malicious master node and 30% malicious slave nodes. If k = 0,

AnonymousCloud does not provide any anonymity; furthermore, any length less than 3

significantly increases the ease of successful end-to-end timing attacks (Hopper et al., 2010).

We therefore restrict our attention to circuit lengths of at least 3. At k = 3 we obtain an
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Figure 3.4. Privacy enforcement success for Tor circuits of length k = 3 as a function of
percentage p of malicious slave nodes

already high success rate of 96.5%. Increasing k to 5 further elevates this 99.4%, and at

k = 10 there were no privacy failures at all.

Figure 3.4 plots the success rate of a fixed circuit length k = 3 in clouds with varying

percentages p of malicious slave nodes. The results show how resilient our system is against

malicious collectives. Even when clouds are 50% malicious, AnonymousCloud attains an

85.8% privacy preservation rate with just k = 3. When 70% of the cloud is malicious, the

success rate drops to 62%, indicating that longer circuits are required to resist such pervasive

attacks.

The results reported in Figures 3.3 and 3.4 can be generalized by observing that with high

probability all k slave nodes in a Tor circuit must collude in order to compromise security.

Thus, the curves in Figures 3.3 and 3.4 approximate the formula for random sampling without

replacement:

success ≈ 1−
(
pN

k

)/(
N

k

)
(3.1)

Privacy inevitably comes at some computational expense. It is therefore important to

consider the computational cost associated with the introduction of anonymizing circuits.

Figure 3.5 plots the total number of messages per customer service request required to carry
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Figure 3.5. Communication overhead for different circuit lengths k

out AnonymousCloud’s authentication protocol for varying circuit lengths k. Messages are

tallied based on the implementation in the real time. This does not include computational

overhead for cryptographic operations, which might noticeably increase the overhead in a real

deployment. Although we did not consider these in our simulation, Figure 3.5 nevertheless

provides a general picture of the overhead that can be expected. We observe that as circuit

length k increases, the total message count per request rises steeply. For k = 3 it is 38, and

for k = 5, it almost doubles to 68. We conclude that there is a significant tradeoff between

escalation of k and the overhead cost of communications.

The sharp increase in communications overhead potentially invites denial-of-service at-

tacks by customers who request unreasonably long circuits. We therefore recommend incen-

tivizing reasonable values of k by charging customers proportionally to the communications

overhead incurred by their demanded level of privacy. Recall that master nodes can report

computational expense information associated with anonymous jobs to managers by labeling

it with the encrypted ownership data they received during authentication. This allows the

master node to report the expense without knowing the identity of the customer. Managers

may also want to impose a mandatory upper limit on k during authentication to further

control congestion.



CHAPTER 4

PENNY: SECURE, DECENTRALIZED DATA MANAGEMENT1

In the previous two frameworks (Chapter 2 and Chapter 3), we have centralized master nodes

in clouds that are trusted for integrity, in order to reuse the existing cloud infrastructure.

What if we can change the cloud architecture? Can we get even more decentralization?

To answer this question in the affirmative, this chapter adopts a structured peer-to-peer

(P2P) toplogy that eliminates centralized trust. All of the master nodes can act as peers

and they distribute jobs and data between them. However in order to obtain that level of

decentralization, we must abandon the existing cloud structure and implement a whole new

protocol.

Peer-to-peer (P2P) networking is a distributed, load-balancing computing paradigm de-

signed to scalably share work loads between peers. Unlike traditional client-server models,

each peer in a P2P network is an equally privileged, equipotent participant in the distributed

computation or service. This has the advantage of avoiding centralized points of failure that,

when successfully attacked, suffice to dismantle the entire network. P2P was first popularized

as a vehicle for music-sharing (Napster, 2012), but has since expanded to general-purpose

file- and data-sharing applications (e.g., Gnutella, 2010; KaZaA, 2012; BitTorrent, 2012) and

is increasingly important as a basis for fault-tolerant cloud computing (Marozzo et al., 2010).

Since its inception, it has been tremendously popular and ubiquitous because of its collective

computation power, natural load-balancing, and low-cost deployability. For example, it has

1 c© 2013 IJNS. Reprinted, with permission, from Safwan M. Khan and Kevin W. Hamlen. Penny: Secure,
Decentralized Data Management. International Journal of Network Security (IJNS), 16(4):289–303, July
2014, forthcoming.
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been estimated that BitTorrent traffic accounts for roughly 27–55% of all Internet traffic

(depending on geographical location) as of February 2009 (Schulze and Mochalski, 2009).

However, while P2P networks have proven successful for maintaining high data availabil-

ity under adversarial or noisy conditions, enforcing strong data integrity and confidentiality

under these conditions remains a difficult challenge. Integrity enforcement is challenging be-

cause P2P networks lack a centralized authority who can identify and evict malicious nodes

from the network. Malicious nodes are therefore free to propagate malicious code or untrust-

worthy data by misrepresenting it as a high-integrity resource available for download (Wang

et al., 2010). Approximately 18.5% of all BitTorrent downloads contain malware (Berns and

Jung, 2008) as a result. Confidentiality enforcement is impeded by the explicit divulgence

of sender peer positions during overlay communications while the requesting peer remains

anonymous (Borisov, 2005; Ciaccio, 2006). This allows malicious peers to anonymously

identify and target purveyors of security-relevant resources.

To address these deficiencies, we have designed, implemented, and tested Penny, a P2P

networking protocol that extends Chord (Stoica et al., 2001) with secure integrity- and

confidentiality-labeling of shared data. Penny uses a distributed reputation management

system based on EigenTrust (Kamvar et al., 2003) to securely manage data labels without

the introduction of a central authority. The data labels empower requester peers to avoid

downloads of low-integrity data, and allow sender peers to deny low-privilege peers access

to high-confidentiality data. In addition, sender peers may publish and serve their data

anonymously, frustrating attacks that seek to single out and target owners of security-relevant

data.

We have applied Penny to construct a secure, fully decentralized, data management sys-

tem for traditional data files as well as Resource Description Framework (RDF) data. RDF

is a popular web data format that is of particular importance to Semantic Web technologies.

Stores of RDF data can be extremely large and security-sensitive, resulting in an increasing
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demand for secure distributed computing paradigms that can manage them efficiently (cf.,

Khaled et al., 2010; Cai et al., 2004). Managing RDF data in a P2P network has the advan-

tage of facilitating dynamic, low-cost growth of the network to accommodate expansion of

the data set without sacrificing the security guarantees traditionally associated with more

centralized networks, such as clouds. Though there has been much research within the se-

mantic web community on the security and privacy of RDF data, few works consider a fully

decentralized approach like the one considered here.

Our prior work proposed Penny’s overlay and resource-sharing protocol as a preliminary

study without any implementation or experiments (Tsybulnik et al., 2007). We here ex-

tend that theoretical work with improvements to the architectural design, new formulas for

computing data integrity and confidentiality labels, empirically determined optimal neigh-

borhood sizes, new publish and request protocols adapted for RDF data, and other new

empirically tested algorithms necessary for the system. We also describe a full implementa-

tion of the Penny client, supporting traditional files and RDF datasets, with experimental

results and analysis.

4.1 Penny Network

Penny implements a standard Chord ring, but with an extended form of reputation tracking:

For each peer and data object, Penny allots k score-manager peers and k key-holder peers

(respectively) to compute and track the peer or object’s trust label(s). Parameter k is fixed

at network start and controls the degree of replication; greater k means greater security,

since attackers must compromise more peers to successfully corrupt data. Penny strategically

positions responsibility-sharing score-managers and key-managers at adjacent ring positions,

forming a neighborhood. This greatly improves lookup efficiency over standard Chord, since

only one overlay message (instead of k) suffices to contact all k replicas. The result is high

replication (and therefore high security) with low overhead.
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To protect data ownership privacy, data lookups in Penny employ a cryptographically

protected extra level of indirection. Data-serving peers first encrypt their requests with the

public key of the data item’s key-holder, and then ask an arbitrary score-manger to forward

the server’s key (not its real identifier) and encrypted information to the key-holder. As a

result, the key-holder does not know who the real owner of the data item is, and so when

someone later requests that data item, the key-holder forwards the request back through the

score-manger(s). Meanwhile, the score-mangers do not know which data items are owned by

which peers, and thus learn no peer-object associations as they forward the requests. As a

result, the ownership information is concealed from all other parties.

We explain this protocol in detail below, beginning with foundational definitions in Sec-

tion 4.1.1 and proceeding to architectural details in Section 4.1.2.

4.1.1 Definitions

Agents: We refer to the peers in a P2P network as agents. Each agent a is assigned

an identifier ida by applying a one-way, deterministic hash function to its IP address and

port number. We assume that identifiers are unique and that agents cannot influence which

identifiers they are assigned. An agent’s identifier determines its position in the network’s

ring structure. When agents are arranged in a ring, each agent has a predecessor pred(a)

and a successor succ(a). We refer to the interval (idpred(a), ida] as the identifier range of

agent a.

Objects and keys: An object o is an atomic item of data (e.g., a file) shared over a

P2P network. Each object also has a unique identifier id o obtained by applying a one-way,

deterministic hash function to its name. Objects can be owned by multiple agents. A single

key is associated with each object and each agent. The keys for object o and agent a are

defined by keyo = h(id o) and keya = h(ida) respectively, where h is a one-way, deterministic

hash function over the domain of identifiers.
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Key-holders and score-managers: Each agent a1 is assigned a (not necessarily unique)

key-range, denoted kr(a1). Agent a1 is charged with tracking the global integrity and con-

fidentiality labels (discussed later) assigned to all objects o that satisfy keyo ∈ kr(a1). In

addition, agent a1 tracks the global trust values (discussed later) assigned to all agents a2

satisfying keya2 ∈ kr(a1). Whenever keyo ∈ kr(a1) holds, we refer to agent a1 as a key-holder

for object o, and we refer to object o as a daughter object of agent a1. Likewise, whenever

keya2 ∈ kr(a1) holds we refer to a1 as a score-manager for agent a2, and we refer to agent a2

as a daughter agent of agent a1. Every peer in a Penny network acts as both a key-holder

for some objects and a score-manager for some peers.

Local confidentiality and integrity labels: Each object o is labeled with a measure

of its integrity and confidentiality levels. We denote the integrity and confidentiality labels

assigned to object o by agent a as ia(o) and ca(o), respectively. Similarly, there are local

integrity and confidentiality labels for agents with whom other agents had transactions.

Integrity labels measure data quality; confidentiality labels measure who should be permitted

to own the data. In Penny, confidentiality and integrity labels are modeled as real numbers

from 0 to 1 inclusive, with 0 denoting lowest confidentiality and integrity and 1 denoting

highest confidentiality and integrity.

Local trust values: Trust measures the belief that one agent has that another agent

or object will behave as expected or promised. Each ordered pair of agents (a1, a2) has a

local trust value denoted ta1(a2) that measures the degree to which agent a1 trusts agent a2.

Likewise, each ordered pair of agent and object (a, o) has a local trust value denoted ta(o)

that measures the degree to which agent a trusts object o. Like confidentiality and integrity

labels, trust values range from 0 to 1 inclusive (cf., Kamvar et al., 2003). Local integrity and

confidentiality labels are computed and assigned based on local trust values.
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Global labels and trust values: Each object o in the system is associated with global

integrity and confidentiality labels, denoted io and co, respectively, and measured by global

trust values To. Likewise, each agent a is associated with global integrity and confidentiality

labels, denoted ia and ca, respectively, and measured by global trust values Ta. Key-holders

with a common key-range compute To and score-managers with a common key-range calcu-

late Ta using Secure EigenTrust (Kamvar et al., 2003). Thus, the global labels and global

trust values for any object o and for any agent a can be acquired by any agent in the network

by contacting all key-holders akh for object o, and all score-managers asm for agent a.

4.1.2 Network Architecture

Identifier Space and Neighborhood

A Penny ring is like a Chord ring, with Penny’s identifier ranges being equal to Chord’s

key-ranges. However, a Penny agent’s key-range strictly subsumes its identifier range, and

agent key-ranges are not unique. Key-ranges are assigned in a Penny ring so that for every

agent a, there are between min(k, n) and c agents in the ring whose key-ranges are equal to

kr(a), where n is the total number of agents and c is a fixed bound on neighborhood size.

(The choice of c is discussed in Section 4.2.1; usually c = 3k.) Bounding neighborhood size

from below by k limits the influence of malicious agents, because each contributes at most

1/k of the responses to a secure query. Bounding it from above by c ensures that lookup is

not too costly, and it bounds the storage overhead for finger tables.

Message Routing

An agent can contact all score-managers for a particular agent a, or all key-holders for a

particular object o, using O(logN + k) messages. The first O(logN) messages propagate

the message using the Chord algorithm (Stoica et al., 2001) to an agent whose identifier

range includes keya or keyo, who then forwards it directly to the other O(k) agents in
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Figure 4.1. Penny message propagation

its neighborhood. Penny therefore reduces the overhead of all network operations that

involve contacting key-holders, score-managers, and RDF data owners by a factor of k over

EigenTrust. This permits higher replication rates (e.g., k = 16) that are often infeasible

with past approaches.

As in Chord, each agent a in a Penny ring maintains a finger table that is used to route

messages efficiently. For each i ∈ [0,m), agent a’s finger table includes the agent whose

identifier range includes (ida + 2i) mod 2m (where 2m is the size of the identifier space). In

addition, agent a’s finger table also includes an entry for each agent in its neighborhood. The

size of each finger table is therefore O(m + k), where k is a constant dictating the number

of redundant key-holders assigned to each key.

Figure 4.1 shows an example of the propagation of a Penny message through the resulting

ring. In this example, m = 6. Agent 0 wishes to send a message to all agents whose key-

range includes identifier 28. First, the message is propagated along the ring according to the

Chord algorithm to the agent whose identifier range includes 28 (agent 42). This involves

first sending the message to the agent whose identifier range includes 0 + 24 = 16 (owner is

agent 16), and next to the agent whose identifier range includes 16 + 23 = 24 (owner is agent
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Figure 4.2. Agent join operation

42). Once the message reaches an agent whose key-range includes 28, that agent forwards

the message directly to all other agents in its neighborhood. These are all agents in the ring

whose key-ranges include 28.

Network Dynamics

To maintain the invariant that the number of score-managers for each key-range stays be-

tween k and c, a Penny network must occasionally split or merge neighborhoods as agents

join and leave the network. If a peer-join causes a neighborhood’s population to rise above

c, it splits into two smaller neighborhoods. Dually, if peer-leave reduces a neighborhood’s

population below k, some or all peers from an adjacent neighborhood migrate in.

When an agent anew joins a Penny ring, it is by default assigned a key-range identical to

its successor’s. Its successor informs all agents in its neighborhood that they should update

their finger tables to include anew . However, if this would result in a neighborhood size b

that is greater than c, a split occurs. The first bb/2c agents and the last b − bb/2c agents

in the neighborhood each become their own neighborhoods. The key-ranges of the new

neighborhoods are the unions of the identifier ranges of the agents within each.
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Figure 4.2 illustrates a join operation with a split. Identifiers are labeled next to each

agent outside the ring, and agent key-ranges are labeled inside the ring. In this example,

k = 2, c = 4, and m = 6, so when the agent with identifier 8 joins, key-range [5, 42] has

more than c agents and must be split.

When an agent aold leaves a Penny ring, it informs its successor asucc and the other agents

in aold ’s neighborhood. If asucc is in a different (adjacent) neighborhood, asucc informs the

other agents in that neighborhood that the neighborhood’s key-range has grown to include

identifiers up to and including idpred + 1 (where apred is aold ’s predecessor). Likewise, agents

in aold ’s neighborhood must shrink their key-ranges so that they end with idpred .

If the departure of aold causes aold ’s neighborhood to have fewer than k members, two

adjacent neighborhoods must be merged. Let Hold be aold ’s neighborhood and Hpred be the

preceding neighborhood. If |Hold | < k, then the agent in Hold whose predecessor is in Hpred

sends a merge request to its predecessor. That merge request is then forwarded to all agents

in Hpred . If |Hpred | ≤ k + 1, then both neighborhoods merge to form a single neighborhood.

Otherwise, the rightmost (|Hpred |−|Hold |)/2 agents of neighborhood Hpred join neighborhood

Hold . The key-ranges of the new neighborhoods are the unions of the identifier ranges of the

agents in the new neighborhoods.

Figure 4.3 illustrates an agent leave operation that requires a key-range merge. Here,

the departure of agent 15 from the ring leaves fewer than k = 2 agents in its neighborhood.

Agent 16 therefore merges with its predecessor neighborhood; agents in both neighborhoods

extend their key-ranges to include the identifier ranges of all agents in the new neighborhood.

Whenever an agent’s key-range shrinks due to any of the above operations, it must

transfer any state associated with keys not in its new range to the appropriate key-holders.

Similarly, whenever its key-range grows, it receives state associated with new keys from the

agents who previously occupied that range. An average net population change of 1
2
(c − k)

agents per neighborhood is required before that neighborhood will need to be split or merged.
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Figure 4.3. Agent leave operation

Thus, by initializing c to be large relative to k, the frequency of these state transfer operations

can be reduced.

Agent’s Local State

In addition to routing messages, each agent a in a Penny network plays three different roles:

It acts as a server when sharing objects, as a score-manager for agents whose keys fall within

its key-range, and as a key-holder for objects whose keys fall within its key-range. For each

of these roles, it maintains some internal state:

• To act as server, it maintains a list of the identifiers id o of each object o that it owns.

• To act as score-manager, it maintains a list of daughter agents ad that satisfy keyad
∈

kr(a). These are the agents for whom agent a is a score-manager. For each daughter

agent ad, it also maintains a vector of global trust values Tad with global integrity and

confidentiality labels iad and cad , respectively.

• To act as key-holder, it maintains a list of daughter objects od that satisfy keyod
∈ kr(a).

These are the objects for which agent a is a key-holder. For each daughter object od,
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Figure 4.4. Publish protocol for traditional file objects

it maintains a vector of global trust values Tod with global integrity and confidentiality

labels iod and cod , respectively.

• For encrypted communication, it chooses a public key, private key pair (Ka, ka).

• It maintains a list of the keys keysvr and public keys Ksvr of the agents that serve object

o. Thus key-holders do not learn the actual identifiers of agents who serve object o,

only their keys.

• It maintains local trust values ta(a1) and ta(o) for agents a1 and objects o with whom it

had experience. These local trust values give rise to local integrity and confidentiality

labels that agent a associates with a1 and o.

Publishing and Downloading Protocols for Traditional File Objects

Once a Penny network has been initialized, agents interact according to the protocols detailed

below. The protocol diagrams that follow use solid arrows to denote messages that are sent

directly from agent to agent without using the P2P overlay, and dashed arrows for messages

that use the P2P overlay to find the message target based on its ring identifier. Dashed

arrows therefore actually involve sending O(logN + k) total messages. Arrows with double-

heads may optionally be sent via anonymizing tunnels for privacy (Chaum and van Heyst,

1991; Freedman et al., 2002; Zhu and Hu, 2008). Notation Ka denotes agent a’s public key,

and 〈. . .〉K denotes a message encrypted with key K.
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Figure 4.5. Request protocol for traditional file objects

When an agent asvr wishes to share an object o, it must first publish that object according

to the protocol depicted in Figure 4.4. Agent asvr first obtains (possibly anonymously) the

public keys of all key-holders akh for object o. Agent asvr next encrypts the object identifier

and its own public key with each of the key-holders’ public keys. It asks one of its score-

managers asm to forward the encrypted messages to the key-holders akh . Agent asm conceals

agent asvr ’s identity by sending only its key (which later can be used to get the global trust

values and labels from the server’s score-manger) to the key-holder rather than its identifier,

along with the encrypted message.

To request an object (Figure 4.5), requester areq first sends the requested object’s identifier

to all key-holders akh for the object. Each key-holder responds with the object’s global

integrity and confidentiality labels, and a list of the keys and public keys of servers who offer

the object. Agent areq can then obtain the object from any server asvr by sending a request

to all score-managers for agent asvr . Score-mangers reply to areq with the server’s global trust

labels. Based on a selection procedure (Section 4.1.2), areq then sends a download request

message. In the message, the requested object’s identifier is encrypted with the server’s

public key to avoid disclosing it to the selected server’s score-manager. The score-managers

forward the request to the server. The server can then anonymously send the data directly

to the requester.
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Publishing and Downloading Protocols for RDF Datasets

Besides traditional file lookup, Penny also supports RDF dataset queries. RDF triples are

stored within file objects, but it would be prohibitively inefficient and insecure to store all

triples within a single file owned by a single peer. Triples are therefore distributed over

many smaller files distributed across many peers, with a protocol for locating each triple’s

containing file. Neighborhoods therefore collaborate to manage a subset of triples. Instead

of keys for files, we associate triples with identifiers directly, and all neighborhood agents

reply with list of servers who own the identified triples. One is chosen from this list using

the selection procedure in Section 4.1.2.

This publishing procedure is detailed in Algorithm 3. To distribute the load of serving

particularly popular triples, each agent maintains a usage count for each triple it serves.

When this count exceeds an agent-imposed popularity threshold, it defers storage of future

instances of that triple component to its successors in the ring. This implements a form of

coalesced chaining in the distributed hash table.

RDF queries have syntax ([?]s,[?]p,[?]o), where s is a subject, p is a predicate, and o is

an object, and where each optional ? indicates an unknown in the query. For example, query

(s,p,?o) requests all RDF triples satisfying subject s and predicate p. For downloading or

querying RDF datasets over Penny network, agents implement Algorithm 4.

Reputation-based Trust Management

Penny incorporates a reputation-based trust management system based on EigenTrust (Kam-

var et al., 2003). EigenTrust is a secure, distributed trust management system that maintains

a globalized trust value for each agent. These globalized trust values are obtained by an iter-

ative computation that approximates the left eigenvector v of the matrix T of all local trust

values in the network. That is, if we define element Tij to be the degree to which agent ai

trusts agent aj, then the left eigenvector v of matrix T measures each agent a’s global trust
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based on how much each agent trusts a, how much each agent trusts the agents who trust

a, etc.

If an agent ai downloads a file or RDF data from an agent aj, it rates the transaction

as positive (rating 1) or negative (rating −1) based on the experience. We may define local

trust value s(ai, aj) as the sum of these ratings of agent aj by agent ai. Then, in order to

aggregate the local trust values, they are normalized. We may define normalized local trust

value, c(ai, aj), as follows:

c(ai, aj) =
max(s(ai, aj), 0)∑
x max(s(ai, ax), 0)

(4.1)

This ensures that all values are between 0 and 1. These normalized local trust values are

then aggregated.

To keep the algorithm scalable and robust, eigenvector v is computed in a distributed and

redundant fashion, where k different agents (score-managers) are responsible for computing

each element of v. This conforms to Secure EigenTrust (Kamvar et al., 2003), except with

global trust labels extended to objects as well as agents, and score-manager replicas grouped

into Penny neighborhoods for better performance rather than disbursed throughout the ring.

Data Selection Procedure

Every object request (whether a traditional file download or RDF query) delivers to re-

questing agent areq a set S of agents who can supply the object. If some respondents are

malicious, some of these responses may differ. Agent areq must choose among them based

on their reputations. To do so, it partitions S by response. Let R denote the resulting

equivalence relation, so that quotient set S/R is the set of agent groups, each of which re-

turned a common response. For each partition P ∈ S/R we compute the following evaluation

function:

f(P ) = w1
|P |
|S|

+ w2

∑
a∈P t(a)∑
a∈S t(a)

+ (1−w1−w2)
1

|S/R|
(4.2)
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Algorithm 3 Publish protocol for RDF data

1: for each RDF triple r do
2: for each part (subject/predicate/object) rp of r do
3: attempt ← 0
4: while true do
5: id ← succ(h(rp + attempt))
6: ask aid to store the triple r
7: if aid already at popularity threshold then
8: aid refuses to store r
9: attempt ← attempt + 1

10: else
11: aid stores r
12: break
13: end if
14: end while
15: end for
16: end for

Algorithm 4 Download protocol for RDF data

for each sub-query q in query Q do
for each part (subject/predicate/object) qp in q do

attempt ← 0
while true do

id ← succ(h(qp + attempt))
Request triples D from aid satisfying qp
if |D| < agent aid ’s popularity threshold then

break // the search for qp is finished
else

attempt ← attempt + 1
end if

end while
end for

end for
Download triples from servers in list obtained above
Locally compute query result from retrieved data

where w1 and w2 are weights in [0, 1] that prioritize each partition’s relative size and rep-

utation, respectively, in the evaluation. We determine acceptable values for w1 and w2

experimentally in Section 4.2.
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Algorithm 5 Data server selection procedure

if all members of S have trust 0 then
select one server from S randomly

else if transaction is a police transaction then
w1 ← 0
w2 ← 0
for each partition P ∈ S/R do

choose partition P with probability f(P )
end for

else
w1 ← 0.2
w2 ← 0.8
B ← arg maxP∈S/Rf(P )
B ← arg maxP∈B|P |
choose a partition randomly from set B

end if

Equation 4.2 is used by Algorithm 5 to resolve the selection choice. In the algorithm,

police transactions are non-user transactions submitted by the security system during idle

times in order to improve convergence. These are discussed in the next section.

4.2 Implementation and Results of Experimental Evaluation

We developed a Java implementation of Penny and tested its ability to weather several

simulated attack scenarios. Efficiency and robustness of the network was evaluated in terms

of the percentage of successful query responses. All experiments employ 20% malicious nodes

and 10 pre-trusted agents (Kamvar et al., 2003, §4.5). Throughout the simulation, we use

SHA-256 for all hashing and 2160 for the identifier space size. We do not simulate the details

of the underlying network and encryption operations, or anonymizing tunnels, since these

are covered by prior works (see Section 7.3). Experiments are conducted under dynamic

conditions, including peer joins and leaves, and neighborhood splitting and merging.

In our implementation and analysis of Penny, we focus on four classes of attacks:
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• A malicious agent or collective might spread corrupt or incorrect data. For example,

the malicious agent or collective might spread malicious code or circulate false facts.

• A malicious agent or collective might attach incorrect security labels to data. In partic-

ular, low-integrity data might be ascribed a high-integrity label, or high-confidentiality

data might be ascribed a low confidentiality label.

• A malicious agent or collective might attempt to learn which agents own certain data,

perhaps as a prelude to staging additional attacks against those agents.

• A malicious agent or collective might attempt to generate a list of all data served by

a particular agent, violating that agent’s privacy.

We do not consider attacks upon the network overlay itself, such as message misrouting,

message tampering, or denial of service attacks. These attacks are beyond the scope of this

work, but could be addressed with various techniques, such as digital signatures, delivery

receipts, and non-deterministic routing (Hamlen and Hamlen, 2012).

4.2.1 Bounding Neighborhood Size

As discussed in Section 4.1.2, the upper bound c for the size of a neighborhood must be

chosen so as to balance high security (high c) with good performance (low c). We empiri-

cally determine a suitable value for c as follows. Each experiment consists of three phases of

dynamic activity: (1) 1000 agents join the network, (2) 1000 random joins and leaves occur,

and (3) 2000 more joins and leaves occur. All other network activities, including neigh-

borhood splitting and merging, agent finger table updates, periodic EigenTrust runs, file

downloads, etc., all occur randomly within all phases. The first two phases serve to initialize

and stabilize the network; statistical results are gathered and reported only for phase 3. We

tested networks with replication factors k ranging from 3 to 90, with 10 trials per replication
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Figure 4.6. Performance comparisons for c = 2k

factor. We also tested neighborhood size bounds of c = 2k and c = 3k, obtaining the best

results for c = 3k.

Figures 4.6(a) and 4.7(a) show that the number of neighborhood split and merge op-

erations is greatly reduced when c is increased from 2k to 3k. This is because splitting a

size-2k neighborhood results in one of size k, which is near the lower bound on neighborhood

size. The new neighborhoods are therefore susceptible to merging, leading to oscillations be-

tween sizes k and 2k, and many expensive merge/split operations. Choosing c = 3k resolves
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Figure 4.7. Performance comparisons for c = 3k

this problem. Splitting size-3k neighborhoods yields size-3
2
k neighborhoods, which must un-

dergo considerable churn before they must be merged (at size k) or split again (at size 3k).

Even though the neighborhoods are larger, the vastly reduced number of split/merge oper-

ations leads to significantly fewer maintenance messages total, as shown in Figures 4.6(b)

and 4.7(b). The curve in Figure 4.7(b) is smoother than the one in Figure 4.6(b) because of

the elimination of the oscillations.
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4.2.2 Results for File Downloads

In this section we conduct different experiments for traditional file downloads in the presence

of malicious agents, and show the robustness of Penny against these attacks. We simulate the

publish protocol (Figure 4.4) and the request protocol (Figure 4.5). For these experiments,

there are 1000 agents and 100 file objects in the system, and k = 5. We run 1000 downloads

in the simulation, each of which uses the selection procedure in Algorithm 5.

Algorithm 5 makes the natural choice of preferring high- over low-reputation agents for

user-submitted requests. We discovered that this tends to cause EigenTrust (and other

reputation-based trust management systems) to converge slowly because low-reputation

agents are so rarely exercised. To correct this, we introduced a new form of transaction,

called a police transaction, that is designed to harmlessly exercise the system during idle

periods rather than yield a correct result. Such transactions utilize low-reputation agents,

providing higher-reputation agents additional opportunities to evaluate their answers. In

our simulations, we used 50% police transactions.

For non-police transactions, we placed greatest weight on reputations (w2 = 0.8) and the

remaining weight on consensus size (w1 = 0.2). We consider each 20 downloads as one frame

and thus show the frame position over time with 1000 downloads. After each frame, we

run the EigenTrust algorithm and compute global trust values accordingly. For each type

of experiment, we run it 5 times and take the average success rate. For all experiments,

we pessimistically assume that all malicious agents know the identities of all the pre-trusted

agents, and that they must display high trust for those agents in order to avoid lowering their

own reputations. Thus, malicious agents trust only other malicious agents and pre-trusted

agents.

In our negative feedback experiment, malicious agents always serve malicious files, and

non-malicious agents who download the files always submit negative feedback for the trans-

action. Figure 4.8 shows that under these conditions, malicious agents fail to accrue high
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Figure 4.8. Negative feedback experiment success rates

trust. Figure 4.8(a) is for a static network with no leaves or joins, and Figure 4.8(b) is for

a dynamic network undergoing constant churn. As expected, convergence is slower in the

presence of dynamic activity; the static network converges at about frame 10, whereas the

dynamic doesn’t until about frame 20. For both, we get a very high average success rate:

95.58% for the static network and 92.22% for the dynamic one, even with 20% malicious

agents.
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Figure 4.9. Half-correct behavior experiment success rates

Figure 4.9 records the results of our half-correct behavior experiment, in which malicious

agents provide correct files 50% of the time. Non-malicious agents always provide positive

feedback for correct files and negative feedback for corrupt ones. Both static and dynamic

networks converge quickly—at approximately frames 14 and 24, respectively. Average success

rates were also still very high: 96.72% for the static network and 94.50% for the dynamic

one. We further observe that the success rates are higher than each corresponding negative

feedback experiment, since malicious agents provide correct files 50% of the time. On the
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Figure 4.10. Malware propagation experiment success rates

other hand, convergence is slower because non-malicious agents take longer to identify the

malicious agents.

Our malware propagation experiment next considers the pervasive problem of botnet mal-

ware infections of P2P file-sharing networks. In this experiment, non-malicious downloaders

of malicious files have a 20% chance of becoming infected and exhibiting malicious behavior

thereafter. Malicious agents behave the same as in the half-correct behavior experiment.

In both static (Figure 4.10(a)) and dynamic (Figure 4.10(b)) networks, success rates ini-
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Figure 4.11. Malware propagation rates

tially drop as previously high-reputation agents suddenly attack the system. However, the

reputation system adapts and around frame 16 the non-malicious agents manage to largely

isolate the infection. The count of malicious agents continues to grow monotonically, as seen

in Figures 4.11(a) and 4.11(b), because the experiment includes no facility for disinfection.

But the growth slows, and any new malicious agents are identified relatively quickly by

the non-malicious majority. The average success rates were 93.04% for static networks and

90.44% for dynamic ones.



55

4.2.3 Results for RDF Datasets

We next present experiments for RDF dataset downloads in the presence of malicious agents,

and show the robustness of Penny networks. We simulate the publish protocol (Algorithm 3)

and download protocol (Algorithm 4). The rest of the experimental setup is same as in

Section 4.2.2. We use the LUBM100 (Guo et al., 2005) dataset for our experiments, which

is broadly used by researchers for similar evaluations (Guo et al., 2004). The LUBM data

generator yields datasets in RDF/XML format, which we converted to N -triples format. For

download or query purposes, we use atomic triple queries and conjunctive multi-predicate

queries (cf., Cai et al., 2004). We conduct the same three sets of experiments for RDF

datasets as reported in Section 4.2.2.

For the negative feedback experiment (Figure 4.12) we see average success rates of 95.12%

for static networks and 87.26% for dynamic ones. These are slightly lower than the corre-

sponding rates for non-RDF file downloads because of the additional number of transactions

required to successfully answer RDF queries. If any sub-query fails, the entire query fails.

In addition, the coalesced chaining implemented by Algorithm 4 requires additional trans-

actions to retrieve popular triples. Convergence rates are slightly lower for the same reason.

Despite this, both success rates and convergence rates remain quite high for a network with

so much malicious population.

The half-correct behavior experiment exhibits even faster convergence, as seen in Fig-

ure 4.13. The static network converges at about frame 15, and the dynamic at 25. Average

success rates were similarly high at 96.46% and 92.78%, respectively.

While malware is not possible in RDF data to our knowledge, for the sake of complete-

ness we replicated the malware propagation experiment for the RDF publish and download

protocol. Results are reported in Figures 4.14–4.15. Both static and dynamic networks

exhibited fast convergence; about frame 19 for the static network and 29 for the dynamic

one. Success rates were similarly promising, being 92.90% and 88.98% on average for the
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Figure 4.12. RDF negative feedback experiment success rates

static and dynamic cases, respectively. Again, these are slightly lower than for file downloads

because of the higher complexity of the RDF protocol. As before, both networks exhibit an

initial drop in success but manage to adapt and recover fairly smoothly.

4.3 Discussion

The high success rates and strong convergence properties experimentally observed in Sec-

tion 4.2 can be traced largely to Penny’s support for exceptionally high data replication via
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Figure 4.13. RDF half-correct behavior experiment success rates

its neighborhood topology. Label retrieval is efficient in Penny, requiring approximately the

same number of messages as object lookup in a Chord network, but with k independent

replicas of each label. An agent can retrieve any object’s global integrity label by sending

a single request message, which gets forwarded at most O(logN + k) times throughout the

network. The request solicits O(k) response messages, from which one response is selected

via Algorithm 5.
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Figure 4.14. RDF malware propagation experiment success rates

Penny inhibits the spread of low-integrity data (e.g., malware) by maintaining a global

integrity label for each object shared over the network. Agents wishing to avoid such data

can therefore consult each object’s global integrity label before downloading it. Thus, the

problem of restraining the spread of malware over a Penny network reduces to the problem

of efficiently maintaining and reporting accurate integrity labels.

In addition to global integrity labels, Penny also maintains global confidentiality labels

for objects. Agents can use these labels as a basis for selectively serving data to other
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Figure 4.15. RDF malware propagation rates

agents—possibly based on the requester’s trust level, global confidentiality label, or other

credentials.

An object’s global security labels are determined by the votes of other agents in the

network via EigenTrust (Kamvar et al., 2003). Votes are weighted by the reputation of each

voter so that the votes of agents who are widely regarded as trustworthy are more influential

than the votes of those who are not. This makes it difficult for a malicious agent to attach a

high integrity label to low-integrity data. In order for such an attack to succeed, malicious
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agents must collectively have such good reputations that they outweigh the votes of all other

voters. Penny uses EigenTrust to track agent reputations and to prevent malicious agents

from accruing good reputations.

Secure hashing and replication are both employed to protect against malicious key-holders

and score-managers who might falsify an object’s global integrity labels or an agent’s global

trust value. Use of a secure hash function for identifier assignment ensures that agents cannot

dictate the set of objects and agents for which they serve as key-holders and score-managers.

By ensuring that there exist at least k key-holders and score-managers for every key-range,

Penny prevents any one agent from subverting the reputation of any object or agent. At

least bb/2c agents in a neighborhood must be malicious in order to subvert a reputation,

where b ≥ k is the neighborhood size.

Malicious peers cannot elevate their own reputations by switching IP addresses or creating

false network accounts because all agent and object reputations start at zero in Penny (cf.,

Kamvar et al., 2003). An agent or object acquires a positive reputation only by participating

in positive transactions with other agents. Agents with established reputations then report

positive feedback for those transactions, elevating the new agent’s reputation.

Unlike Penny, Chord (Stoica et al., 2001) requires each key-holder to maintain a list of

the agents who own the key-holder’s daughter objects. These lists are reported to any agent

who requests the object, divulging the identities of all agents who own a particular object.

To address this privacy vulnerability, Penny conceals information associating agents with

the objects they own by splitting that information amongst key-holders and score-managers

(see Figure 4.5). A malicious key-holder and a malicious score-manager must therefore

collaborate to learn that a particular server owns a particular object. Opportunities for such

collaboration are limited because key-holders and score-managers cannot choose their key-

ranges. It is therefore unlikely that a malicious collective will occupy both a key-range that

includes a particular victim object’s key and a key-range that includes a particular victim
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agent’s key (assuming the collective is small relative to the size of the network). Thus, Penny

enforces a notion of object ownership privacy.

Key-holders and score-managers can, of course, learn ownership information through

guessing attacks, but this is prohibitively expensive when the space of object and agent

identifiers is large. For example, a malicious agent am can discover whether a particular

object o is served by any agent for which am serves as score-manager by requesting id o and

comparing the key-holders’ responses against its list of daughter agents. However, am cannot

easily produce a list of all objects served by any of its daughter agents because to do so it

would have to search the entire space of object identifiers. Likewise, am can discover whether

a particular server asvr owns any object for which am serves as key-holder. To do so, am

computes keysvr and searches for that key in its list of keys of servers that own am’s daughter

objects. However, am cannot easily produce a list of all servers that own any given object

because it would have to search the entire space of server identifiers. So a large identifier

space provides natural resistance to guessing attacks.



CHAPTER 5

COMPUTATION CERTIFICATION AS A SERVICE IN THE CLOUD1

Protecting remote software from corruption by untrusted or malicious host environments

has long been an important challenge for Trustworthy Computing (TwC) paradigms, such

as mobile devices that mix trusted and untrusted hardware (Vasudevan et al., 2012), and

trustworthy grids that distribute computations to remote, untrusted hosts (Cooper and

Martin, 2006). In these contexts, untrusted environments are computing platforms (e.g.,

hardware, OSes, and VMs) that have unfettered access to the distributed computations they

receive, including the ability to tamper with the mobile code, its program state, and its

results. To achieve high reliability and integrity for computations, secure grids must prevent

or detect all such tampering for each computation they distribute.

Many existing platforms therefore aggressively apply remote attestation technologies to

detect and preclude software tampering in untrusted environments (Trusted Computing

Group, 2011; Nauman et al., 2010). For example, hardware- and software-based attesta-

tion mechanisms evidence the integrity of remote client states through cryptographically

signed memory snapshots taken statically or at runtime (Kil et al., 2009; Seshadri et al.,

2005). However, code integrity alone does not guarantee that a computation result is cor-

rect. For instance, an attacker may run the software without any alterations but still return

corrupted results to the requester. Code integrity checking must therefore be coupled with

result integrity checking, which usually involves embedding a secret sub-computation that is

difficult to reverse engineer and that can be checked by the requester (Falcarin et al., 2005),

1 c© 2013 IEEE/ACM. Reprinted, with permission, from Safwan M. Khan and Kevin W. Hamlen. Com-
putation Certification as a Service in the Cloud. In Proceedings of the 13th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 434–441, May 2013.
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or by refactoring distributed computations into function compositions that can be validated

cryptographically (M’Barka et al., 2009; Sander and Tschudin, 1998, 1997).

Unfortunately, all of these approaches require a significant redesign of most software. For

example, typical Android apps are not easily modified to contain inextricable, secret com-

putations or cryptographically verifiable compositions. As a result, few mainstream mobile

computing devices have adopted these technologies. Moreover, many of these solutions rely

on software obfuscation (Ceccato et al., 2013; Collberg and Nagra, 2010), which does not

provide rigorous guarantees, since clever attackers can potentially reverse the obfuscation.

In contrast, clouds (Amazon, 2013; Microsoft, 2013; Apache, 2013) are an increasingly

popular grid computing paradigm (Buyya et al., 2009) utilized by myriad mobile device

architectures (Gerla and Huang, 2012). Clouds offer massive parallelism and potentially

high integrity assurance through replication. For example, trust management has been

used in clouds to ensure that even if some cloud nodes are malicious, computation results

are nevertheless correct with high probability (Khan and Hamlen, 2012b). The favorable

business model for cloud-powered mobile apps has led to a rapidly growing mobile cloud

market that is expected to exceed $9 billion by 2014 (Holden, 2010).

While clouds offer an attractive means for mobile devices to remote their high assurance

computations, cloud-assisted devices still face at least two significant limitations in practice:

First, most mobile devices do not have perpetual, continuous access to the cloud. Thus,

many of their computations must be carried out using purely local resources, pending cloud

access. We observe that such devices would benefit from a trust-but-verify model in which

computations are initially carried out locally using a potentially untrusted environment (e.g.,

insecure CPU and storage), trusted for a limited time, but then verified once cloud access is

available. For example, a password that unlocks a software product could be verified locally,

allowing the software it protects to be used for a limited time, after which the tamper-proof

portion of the hardware seeks validation of the password verification computation by the

cloud.
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Second, although clouds offer high parallelism, most everyday app computations are not

highly parallelized and therefore derive little or no benefit from such parallelism. Thus, we

seek a computation verification strategy that allows mostly serial computations performed

in an untrusted environment to be rapidly validated using the massive parallelism offered

by the cloud. Such validation empowers clouds with a new form of Security as a Service

(SECaaS) that provides high assurance for local, untrusted, mostly-serial computations.

Our answer to this challenge is a Cloud-based COmputation VERifier (CloudCover) that

allows untrusted Java computations to yield a proof of computation integrity as a side-effect

of the computation. The proof can then be validated against the original code and the

computation’s result to formally verify that the result is correct. Neither the computation

nor the proof (nor their origins) are trusted by CloudCover. A (possibly forged) proof either

proves that a given computation results from a given code, or it does not. If the former,

the result is correct regardless of where the proof came from; if the latter, the computation,

the proof, or both are untrustworthy. Thus, CloudCover can be formalized as proof-carrying

computation, in the spirit of proof-carrying code (Necula and Lee, 1998).

CloudCover proofs have the advantageous quality that the task of verifying them can

be parallelized almost arbitrarily even when the original computation is not parallelizable.

Thus, they derive maximal benefit from massively parallel architectures, like clouds. To

demonstrate, we implement CloudCover for Hadoop MapReduce (Dean and Ghemawat,

2008), and use it validate non-parallelizable Java computations for message digest generation

using SHA-1 (National Institute of Standards and Technology, 1995) and MD5 (Rivest,

1992) cryptographic hash functions. Experimental results indicate that CloudCover scales

extremely well, with the only practical limit to parallelization stemming from the fixed

overhead of dispatching new mappers and reducers.

Our work therefore offers the first computation integrity validation mechanism that

• requires minimal changes to existing software;



65

• fully leverages the massive parallelism available from commodity data processing clo-

uds, such as MapReduce;

• provides a tunable range of integrity assurances, from rigorous, absolute assurance

to probabilistic assurance (with verification overhead scaling linearly with assurance

level); and

• is applicable to everyday mobile app computations, such as those that contain mostly

serial computations implemented in interpreted bytecode languages like Java.

Following the constitution of a trustworthy cloud (Chapter 2 , 3 and 4), we can take

advantage of it for computation certification as a service from this cloud. We propose this in

CloudCover (Khan and Hamlen, 2013a), which decentralizes trust as well; nevertheless, this

time on the user side. We have already distributed trust inside the clouds making it secure;

now we decentralize the trust outside of the clouds and later distribute the computation

verification to this cloud.

5.1 System Overview

5.1.1 Architecture and Threat Model

We consider two possible system architectures, one in which trusted and untrusted devices

are physically separate, and one in which trusted and untrusted hardware is co-located

on a single mobile device. Both architectures are illustrated in Figure 5.1. In both cases, a

resource-impoverished, trusted component wishes to distribute a computation to an untrusted

component that is comparatively resource-rich.

The trusted component cannot efficiently distribute the computation across the cloud

directly because (a) it currently lacks cloud access, (b) the cloud’s computing power is based

on parallelism, which goes unutilized when the computation is mostly serial, and/or (c) the
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Figure 5.1. System architecture of CloudCover

computation is tentative in the sense that only certain outcomes demand verification, and

the computation outcome is not known in advance. The last case arises frequently in grid

computing. For example, SETI@home (Anderson et al., 2002) aggressively validates only

those computations whose results suggest the existence of extraterrestrial intelligence.

In each scenario, we assume that the trusted component is secure in the sense that no

malicious user has access to it, or those that do cannot corrupt its computations, storage, or

state. Typically we expect that such components consist of expensive, more secure hardware

that is less efficient or more constrained due to its extra security. In contrast, untrusted

components consist of insecure hardware and/or remote, untrusted machines that are entirely

exposed to malicious users and activities.

The checker of our system is a cloud computing platform that may consist of hundreds

or thousands of nodes. It is a high assurance, massively parallelized data processing frame-

work whose computation results are trusted, but it is best applied to highly parallelized

computations. Assigning it serial computations is prohibitively slow and expensive.

Figure 5.1 summarizes the system workflow together with the architecture. The trusted

component first instruments the mobile code with proof-generation logic. The instrumented



67

checkpointing computation

cp0 cp1 cp2 cp3 cp4

cp0 cp′
0 cp′

0 ≡ cp1?

cp1 cp′
1 cp′

1 ≡ cp2?

cp2 cp′
2 cp′

2 ≡ cp3?

cp3 cp′
3 cp′

3 ≡ cp4?

Figure 5.2. CloudCover checkpointing and validation

code is then distributed to the untrusted component. A cooperative recipient executes the

computation faithfully, yielding a computation result and a proof of computation integrity.

The code, result, and proof can then be sent to the cloud (when it becomes available) for

parallelized verification. A malicious, untrustworthy, or compromised recipient, however,

returns an incorrect result. There exists no proof that the original code yields such a result,

so cloud validation inevitably fails, irrespective of the proof submitted by the untrusted

component. Thus, the incorrect result is rejected.

5.1.2 Computation Integrity Proof Generation and Validation

CloudCover approaches the problem of proof generation through checkpointing, as illustrated

in Figure 5.2. Mobile Java code is instrumented with a checkpoint operation that periodically

saves the current program state to disk. Initial checkpoint cp0 is the program start state

and is fully characterized by the code itself, so needn’t be generated explicitly. The last

checkpoint cpn characterizes the computation result.

A chain of such checkpoints constitutes a proof that a computation whose initial state

is cp0 yields result cpn. The proof can be validated by recomputing all the segments of the

chain in parallel. That is, for each checkpoint i < n, cloud node i initializes its JVM to

state cpi and computes until the next checkpoint, yielding state cp ′
i. It then decides whether

cp ′
i ≡ cpi+1. If any of these equivalence checks fail, the proof fails and the computation

is rejected. This transforms a serial computation into a fully parallelized re-computation
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that only takes as long as the longest checkpoint interval (plus some time for the checkpoint

equivalence check) to validate. The equivalence check can be additionally parallelized, as

discussed in Section 5.2.

Proof validation through checkpoint chaining engenders a natural trade-off between as-

surance and computational expense through spot-checking. A spot-checking validator re-

computes and checks each segment in the checkpoint chain with probability p. This reduces

the total computation cost to a fraction p of the total, and detects erroneous computation

results with probability p. Thus, clients may tune parameter p in accordance with their

desired level of assurance and the expense of cloud computing time.

One näıve way to implement checkpointing for Java programs is to take a system-level

snapshot of the JVM process image at fixed time intervals. However, this approach is

inadequate for computation certification for at least two reasons: (1) JVM process images

vary greatly at the byte level depending on the particular JVM version and the underlying

hardware. For example, different JVMs have radically different underlying implementations,

including memory allocation strategies, JIT compilation behavior, and a variety of other

low-level details. These differences are transparent to Java programs, but they make it

difficult or impossible to compare system-level JVM process images for semantic equality.

(2) Even when comparing process images from identical JVM versions on identical hardware,

semantic equivalence of the JVM state is not an identity function. Many JVM objects have

internal fields, such as hash values and clock times, that are irrelevant to semantic object

equivalence.

We therefore implement checkpointing at the Java level rather than the system level. Our

implementation extends Apache’s open source Javaflow library (Commons, 2013). Javaflow

includes a suspend operation that generates continuations. Each continuation object contains

a snapshot of the stack trace, including the call stack, local and global variables, and the

program counter. Such continuations can later be resumed (i.e., replayed) by passing the
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continuation object to the library’s continueWith method. As a simple example, a program

that prints numbers from 1 to 100 can be suspended immediately after printing 50. The

resulting continuation can be resumed later, resulting in the program printing 51, etc., until

another suspension is encountered. Continuations can be serialized for mobile execution. We

leverage continuations as checkpoints for CloudCover.

Although Javaflow supports suspension and resumption of computations via continu-

ations, it does not support continuation equivalence-checking. This is necessary for the

checkpoint equivalence check in Figure 5.2. CloudCover therefore extends Javaflow’s Con-

tinuation class with an equals method that compares two suspended program states for

semantic equivalence. Two states are equivalent if they consist of equal-length stacks whose

corresponding slots contain equivalent values and objects. Deciding such semantic equiv-

alence is non-trivial in general; for example, the states may contain objects with private

fields to which the continuation object lacks access, or they may include fields whose values

are semantically equivalent but non-identical. Fortunately, all Java objects have their own

equals methods, which encode an object-specific notion of semantic equivalence.

Every Java program therefore carries within itself a general contract of object-equality-

(Bloch, 2008), encoded by the collective implementations of all its equals methods. This

contract can be leveraged to decide semantic equivalence of arbitrary program states. It is

this insight that allows CloudCover to validate computations without any significant change

to existing Java programs.

5.1.3 CloudCover Protocol

CloudCover’s protocol is detailed in Algorithm 6. We denote the trusted component, un-

trusted component, and checker as TC, UC, and C (respectively) in the algorithm. The

order of the generated checkpoints is important since the checker accepts a checkpoint as

input, resumes it, and matches its result with the immediate next checkpoint. If there are n
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Algorithm 6 CloudCover Protocol

1: TC chooses number n ≥ 2 and placement of checkpoints
2: TC inserts n−2 suspend calls into software (the initial and final checkpoints are implicit)
3: TC sends modified (trusted) code c to UC
4: UC executes c and sends generated checkpoints and result to TC
5: TC sends c, checkpoints, and result to C
6: C organizes checkpoints into pairs (cpi, cpi+1)
7: C dispenses (c, cpi, cpi+1) as input to each computation unit (e.g. mappers in Hadoop)
8: for each checkpoint cpi where i ∈ [0, n) do
9: if rand() ≤ p then

10: cp ′
i ← continueWith(cpi)

11: if cp ′
i ≡ cpi+1 then

12: computation unit returns true
13: else
14: computation unit returns false
15: end if
16: end if
17: end for
18: return the conjunction of all the unit return values

checkpoints, it therefore organizes n − 1 pairs. For line 11, we use our customized equals()

method included in the modified Javaflow library.

5.1.4 Attacks and Defenses

The following are some ways in which a malicious untrusted component might attack Cloud-

Cover:

• Untrusted components can alter the number and/or positions of checkpoints. This

is discovered by the checker with probability p when it compares the first altered

checkpoint with the one yielded by the trusted software, since their memory states

and/or program counters must differ.

• Untrusted components can modify other parts of the software. This threat is cer-

tainly detectable since the checker runs the trusted software received from the trusted

component, not from the untrusted one, and thus discovers the difference.
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• Untrusted components can leave the code uncorrupted, but tamper with the check-

points and/or results it sends to the trusted component. This is discovered with prob-

ability p when a checkpoint equivalence check fails.

CloudCover trusts the cloud platform. Clouds can attain suitable trustworthiness through

trust management, replication, virtualization, and a variety of other technologies (e.g., Hat-

man (Khan and Hamlen, 2012b), AdapTest (Du et al., 2011) or RunTest (Du et al., 2010))

not typically available to mobile devices and other, stand-alone, cloud-assisted machines.

Privacy preservation of computation results is beyond our scope. For such protection,

we refer the reader to numerous related works on that subject, including Anonymous-

Cloud (Khan and Hamlen, 2012a), secure multiparty computation (Lindell and Pinkas, 2009),

and differential privacy (Roy et al., 2010).

5.2 Implementation

Implementation of CloudCover for a real-world architecture is a key contribution of our

work. We therefore target Java computations, which are the basis for many mobile app do-

mains, and we implement computation validation using a commodity data processing cloud—

Hadoop MapReduce. We leverage Javaflow’s built-in functionalities for taking checkpoints

of software and resuming software from checkpoints. Our custom implementation of equals()

for Javaflow continuations decides semantic equivalence of checkpoints.

The checker is deployed on a Hadoop (Apache, 2013) cluster consisting of 6 DataNodes

and 1 NameNode. Node hardware is comprised of Intel Pentium IV 2.40, 3.00GHz processors

with 2–4GB of memory each, running Ubuntu operating systems. Javaflow was installed and

configured on each DataNode in the Hadoop distributed environment, making it available

to distributed jobs. We implemented a mechanism for reading and writing checkpoints for

mappers in Hadoop in an appropriate file format for equality-checking with Javaflow. LZO
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compression was applied to all Hadoop file transfers to minimize transfer and storage costs.

For trusted and untrusted components of CloudCover, we use standard desktop computers

with configurations similar to the individual cloud nodes above.

For experiments, we select two non-parallelizable cryptographic hash functions, SHA-

1 (National Institute of Standards and Technology, 1995) and MD5 (Rivest, 1992), which

yield message digests. These were instrumented with Javaflow checkpointing operations

placed within their inner loops. Both algorithms are widely used in TwC, yet not paralleliz-

able beyond fine-grained, instruction-level optimization (cf., Nakajima and Matsui, 2002).

This makes them good subjects for our tests. Both functions take strings of arbitrary length

as input, where SHA-1 and MD5 produce 160-bit and 128-bit message digests, respectively.

We choose fairly long strings as inputs in our experiments to demonstrate the benefits of

fast, parallelized validation of comparatively long, serial computations.

Aside from verifying checkpoint chain segments in parallel, we additionally parallelized

the checkpoint equality checking procedure in our implementation. Continuations are stacks

that can be partitioned arbitrarily into sub-stacks that can all be checked in parallel for equiv-

alence. We implemented this for Javaflow by introducing a continuation compare method.

During comparison, instead of equality-checking each pair of objects inside the checkpoints, a

mapper can redirect them to other mappers by submitting new jobs in Hadoop. The advan-

tage is that if any individual checkpoint-pair is extremely large (e.g., very large stacks), then

the checkpoint equality-checking job can be parallelized to compensate. In our experiments,

the stacks are not that large, so this feature went unexercised. (With small stacks, paral-

lelizing the equality-checking task is not worthwhile, since the task of splitting the stacks

introduces more overhead than it saves.)
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5.3 Experimental Results

In all our experiments, any corruption of checkpoints (e.g., moving, modifying, or omitting

them) and/or corruption of results provoked rejection by the checker (see Section 5.1.4). The

remainder of our evaluation therefore focuses on performance.

Our first experiment (Figure 5.3) illustrates the superiority of CloudCover over a single

machine verifier for SHA-1 applied to a 38KB input string. We produce 391 checkpoints for

this experiment and observe that the Hadoop cluster clearly outperforms a single machine—

with 6 nodes, it exhibits approximately 23% gain. Although adding nodes reduces the

overall validation time, it suffers diminishing returns typical of parallel architectures. The

diminishing returns are primarily due to additional overhead for file I/O on HDFS (Hadoop’s

file system) and additional network communication per additional node. Additionally, 391

checkpoints for this experiment spawns a number of parallel mappers that exceeds the total

capacity of our Hadoop cluster. It therefore places many mappers in the queue. For this

reason, a 3-node cluster takes less than double the time of a 6-node cluster (but still beats

the single node performance by 10%). With a larger cluster of hundreds or thousands of

machines, we therefore expect even better performance than exhibited by our comparatively

small-scale testbed.

Our second experiment (Figure 5.4) considers an MD5 algorithm applied to a 38KB

input string using the same cluster sizes. It generates 612 checkpoints and achieves a similar

performance gain: 3-node and 6-node Hadoop clusters run 12% and 25% faster, respectively,

than a single machine setup. The increased number of checkpoints results in longer validation

times than the first experiment. This indicates that for any given computation and cluster

configuration, there may be an optimal number and distribution of checkpoints. In addition,

although the number of checkpoints is 57% greater, the verification time is more than 57%

longer than for SHA-1. This is because the MD5 computation’s checkpoints are much larger

on average than those generated for SHA-1, because the MD5 implementation places more
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Figure 5.3. SHA-1 computation verification time
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Figure 5.4. MD5 computation verification time

large objects on its stack at checkpoint times. Accordingly, an optimal implementation

should select checkpoint positions strategically so as to avoid such overhead when possible.

Figure 5.5 reports certification times for SHA-1 computations over various input string

lengths using 6 checkpoints. For our small cluster, 6 checkpoints was an optimal number

(more and fewer checkpoints yielded higher overall runtimes). We expect that with larger

clusters the optimal number of checkpoints rises proportionately to the cluster size. With a

single machine, the verification time climbs rapidly with the input string length, whereas for

Hadoop clusters it climbs much more slowly. For instance, where the performance difference

between 3-node Hadoop and a single machine is about 5.5% for a 38KB string, it is about



75

0

10

20

30

40

50

60

70

80

single
machine

3-node
Hadoop

6-node
Hadoop

Cluster Size

R
u

n
n

in
g

T
im

e
(s

)

38KB text

75KB text

150KB text

Figure 5.5. SHA-1 verification times with 6 checkpoints

60% for a 150KB input (4 times as large). Thus, the longer the serial computation, the

greater advantage is observed for the parallelized validation architecture.

CloudCover’s parallelized verification strategy scales best when applied to certify com-

putations whose time-complexities are greater than their space-complexities. In these cases,

CloudCover’s division of the original computation’s runtime across n nodes introduces speed-

ups that rapidly outpace the overhead introduced by checkpoint operations, which typically

have time complexity equal to the computation’s space-complexity. To illustrate, Figure 5.6

compares the certification times for a quadratic-time, linear-space, insertion sort compu-

tation against the runtimes of the original, serial computation without any checkpointing.

With a 600K-element input array and a 6-node cluster, certification completes 74% faster

than the original computation on the same cloud. (Since the original computation is serial,

the cloud cannot parallelize it and it runs on only one node.)
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CHAPTER 6

SILVER LINING: ENFORCING SECURE INFORMATION FLOW AT THE

CLOUD EDGE1

Cloud computing has attracted tremendous attention over the past several years as a means

to shrink IT expenditures, improve scalability and reduce administration overhead. As

a result, cloud computing platforms (e.g., Amazon, 2013; Microsoft, 2013; Google, 2013a;

Apache, 2013) have become extremely popular and extensively used. Both government and

industry are adopting new business practices to maximize their effectiveness. The General

Service Administration (GSA) recently announced they have accomplished a cost savings of

almost $2 million USD per year since migrating from Lotus Notes to Google’s cloud-based

email (Coleman, 2012). According to Gartner, the typical IT organization invests two-thirds

of its budget in daily operations, but moving to the cloud is expected to free up 35–50% of

operational and infrastructure resources (Wilcox, 2010).

The ongoing mass shift to clouds for large-scale computing has raised significant concerns

about security, however. More than 50% of global 1000 companies are projected to store

sensitive data in public clouds by 2016 (Smith et al., 2011). It is therefore not surprising

that many customers and businesses have become worried about security and privacy issues

in the cloud. To address these concerns, the last few years have seen extensive research on

adding greater security to cloud platforms. Examples include ensuring cloud computation

integrity (e.g., Chow et al., 2009; Santos et al., 2009; Khan and Hamlen, 2012b), protecting

cloud customer privacy (e.g., Takabi et al., 2010; Pearson et al., 2009; Khan and Hamlen,

1 Submitted to the IEEE International Conference on Cloud Engineering (IC2E), 2014. Safwan M. Khan,
Kevin W. Hamlen and Murat Kantarcioglu. Silver Lining: Enforcing Secure Information Flow at the Cloud
Edge. (submitted)
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2012a), secure data storage in the cloud (e.g., Nepal et al., 2011; Bowers et al., 2009), and

detection and prevention of software tampering (e.g., Fukushima et al., 2011; Khan and

Hamlen, 2013a).

A common challenge faced by many of these efforts is the multitenant problem (Vaquero

et al., 2011). In the complex and distributed environment of clouds, many users have si-

multaneous access to shared computing resources. This invites attacks that corrupt, deny,

or infer secret details of computations or data owned by others. Many security fears asso-

ciated with cloud computing therefore revolve around incomplete isolation of these myriad

users. A prominent example is the debate over cloud computing for healthcare data manage-

ment (Ponemon Institute, 2013). Healthcare data are often sensitive for a human lifetime or

longer, and their disclosure are governed by elaborate regulations in many countries of the

world (e.g., U.S. Department of Health & Human Services, 2013). While data encryption is

a widely used protection while such data is at rest, it does not suffice to protect the data

while it is decrypted for use in computations.

A large category of cloud security research has therefore concerned the enforcement of

various forms of data access control in clouds. Most of these protections are implemented

by modifying the cloud infrastructure (e.g., Bellessa et al., 2011; Bacon et al., 2010) or

the underlying OS (e.g., Roy et al., 2010). Others add an extra access control layer atop

an existing architecture, requiring new protocols (e.g., Ruj et al., 2011; Popa et al., 2010).

While all of these provide effective enforcement, they have the significant drawback of being

difficult to maintain as the cloud infrastructure evolves. Clouds are an extremely dynamic

technology; there are constant improvements being made to enhance the efficiency of job

dispatch, file lookup, data sharing, and a host of other implementation details. Security

systems that customize the cloud implementation are often brittle to these version updates;

they must be adapted or re-implemented frequently as the cloud evolves. This has been

a significant deterrent to their adoption, and therefore a source of insecurity in real-world

clouds.
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To address this need, we propose a novel implementation approach, SilverLine (secure

information flow verification in-lined), that enforces a large class of role-based access control

and information flow security policies on untrusted cloud jobs, but whose implementation is

completely separate and orthogonal to the rest of the cloud. This allows the cloud imple-

mentation and security implementation to be maintained fully independently, with changes

to one having no impact on the other. Our approach realizes the policy enforcement as

an In-lined Reference Monitor (IRM) (Schneider, 2000) whose programming is in-lined into

untrusted binary jobs as they arrive at the cloud edge. After in-lining, the modified jobs

self-enforce the security policy. Thus, no additional security monitoring within the cloud is

needed.

To illustrate one large class of policies that can be elegantly enforced using this strat-

egy, SilverLine enforces Mandatory Role-Based Access Control (MAC RBAC) policies that

restrict explicit information flows between cloud users, roles, jobs, and resources (e.g., files).

The in-lined enforcement code maintains and consults an information flow graph (IFG) im-

plemented as a distributed data resource within the cloud. The IFG tracks information flows

between the various principals, and the IRM prohibits job operations that introduce explicit

flows that violate an administrator-defined policy. The IRM approach is well established for

enforcing many important data confidentiality and integrity policies (Schneider, 2000; Bauer

et al., 2005; Hamlen et al., 2006b,a; Ligatti, 2006; Hamlen, 2006; Hamlen and Jones, 2008;

Aktug et al., 2008; Ligatti et al., 2009; Hamlen et al., 2012), but has not yet seen adoption

in clouds.

SilverLine leverages Aspect-Oriented Programming (AOP) (Kiczales et al., 1997) to ele-

gantly specify, implement, and in-line IRMs into untrusted jobs without access to job source

codes. A rewriter automatically transforms untrusted jobs (Java bytecode binaries) via

aspect-weaving as a preprocessing step before passing them to the cloud. To our knowledge,

SilverLine is the first work that adopts IRMs in clouds to in-line information flow enforce-

ment into jobs. It yields rewritten, self-monitoring cloud jobs without modifying the cloud
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platforms. These features establish it as an exceptionally practical and portable framework

for adding powerful, custom security features to commodity clouds.

To evaluate our system, we deploy it in a realistic cloud environment—the popular

Hadoop MapReduce (Apache, 2013). IRMs are implemented as AspectJ (Kiczales et al.,

2001) pointcuts and advice. In AOP, a pointcut is a program element that identifies join

points (binary program operations), and exposes data from the execution contexts of these

join points to advice code that modifies or replaces them. The advice can thereby implement

a policy that constrains all operations matched by the pointcut. Together, the pointcuts and

advice form an aspect. AOP has been heralded in the software engineering community as a

means of implementing cross-cutting concerns, such as security and process auditing (e.g.,

logging). Our evaluation results demonstrate the efficiency and scalability of this approach

to implementing cloud access controls.

In essence, SilverLine decentralizes the trust on the user side. We augment the security

and move the trust to the checker instead of the job submitters or cloud itself.

6.1 System Overview

6.1.1 Cloud Structure

Clouds typically provide at least three common categories of services to customers:

• Software-as-a-Service (SaaS) models provide software to users who do not wish to

manage the network, servers, software, OS, or storage. Users consume the software

from the clouds. Examples include Salesforce.com (SalesForce.com, 2013) and Google

Apps (Google, 2013b).

• Platform-as-a-Service (PaaS) models provide users the facility to deploy their software

on clouds. Users control their own software, but do not manage network, servers,
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OS or storage. Examples include Cloud Foundry (VMWare, 2013) and Google App

Engine (Google, 2013a).

• Infrastructure-as-a-Service (IaaS) models benefit users with access to the infrastructure

of the cloud to deploy their own resources. However, users do not manage the infras-

tructure. Examples include Amazon EC2 (Amazon, 2013) and Windows Azure (Mi-

crosoft, 2013).

In all of these types of services, users have varying degrees of access to security-sensitive

cloud resources, based on the services they consume. To offer the broadest possible support,

SilverLine remains mostly agnostic to the specific services offered by the underlying cloud.

Different cloud providers may vary in the details of their internal architectures (cf., Apache,

2013; Amazon, 2013; Microsoft, 2013), though in general we assume that at some level their

topologies consist of a few master nodes and a large collection (e.g., hundreds of thousands)

of slave nodes. The complexity of the data dependencies and jobs that manipulate such vast

resources invite subtle errors or malicious attacks that might violate users’ information flow

requirements, motivating a strong, flexible approach to enforcing such policies.

We deploy our system on Hadoop MapReduce (Apache, 2013), which consists of a single

NameNode (with backups) as master node and a large number of DataNodes as slave nodes.

The NameNode manages the HDFS namespace and regulates access to files by users. Addi-

tionally, it dispatches and monitors the computation all over the cloud cluster. DataNodes

are typically distributed one per node in the cluster, managing storage attached to the nodes

on which they run, and independently executing the user-submitted job fragments they are

allocated. Users communicate with the NameNode, which coordinates the services from the

DataNodes.
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6.1.2 Access and Information Flow Control

SilverLine facilitates enforcement of mandatory information flow policies that constrain the

explicit flow of information from one security principal (viz., user, role, job, or resource) to

another along non-side channels within the cloud. We chose this class of policies because it

is simple to understand, arises often within multitenant, distributed workflows, has a well-

established theory of enforcement, and yet is not supported by most commodity workflow

clouds. Thus, a facility to add such support to existing clouds without any modification to

the cloud implementation or infrastructure demonstrates the advantages of our approach.

As an example, a user U who owns a confidential file H might wish to grant limited

read-access to H with some assurance that careless, faulty, or malicious readers of H do not

subsequently leak that data to a world-readable file L. One way to enforce such a policy is

to prohibit readers of H from subsequently writing to L. However, that simple enforcement

strategy does not address information laundering scenarios, in which a principal P1 copies H

to an intermediate file I, after which another principal P2 copies I to L. Sound enforcement

of information flow policies therefore requires maintaining a transitive relation between data

sinks and sources.

SELinux (National Security Agency (NSA), 2013) uses such a strategy to enforce role-

based access control policies that constrain explicit information flows. Because of their broad

usefulness, past work has integrated support for SELinux policies into Hadoop, but at the

cost of non-trivial modifications to the cloud implementation (Roy et al., 2010). SilverLine

does so without modifying the cloud.

6.1.3 Threat Model

Our threat model only concerns explicit, inter-principal, information flows within the cloud.

In particular, it does not concern implicit information flows (e.g., flows that subtly divulge

information by not exhibiting an otherwise observable action), or side-channels (e.g., where
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the attacker observes the timing or power consumption of jobs to infer secrets). We also

do not secure flows outside the cloud. For example, flows that involve one malicious user

communicating a secret to another outside the cloud, who then discloses it publicly within

the cloud, are not secured by SilverLine. All of these forms of confidentiality violation are

important ongoing subjects of extensive study (cf., Sabelfeld and Myers, 2003), but are

outside the scope of our present investigation.

We conservatively assume that jobs submitted to the cloud might contain arbitrary mali-

cious programming, and that attackers know all details of SilverLine’s enforcement strategy

and implementation. For example, attackers might submit jobs containing malicious code

that anticipates the IRM logic that will be in-lined by SilverLine, and that seeks to destroy

or circumvent it at runtime to violate the policy. Thus, SilverLine’s security is not based on

obscurity; knowledge of its implementation does not facilitate successful attacks. The cloud

kernel, Java Virtual Machine (JVM), and underlying OS and hardware are all trusted. In

particular, we assume jobs come in the form of syntactically valid, type-safe Java bytecode

binaries, since malformed or type-unsafe binaries are automatically rejected by the trusted

JVM.

Security-relevant job operations mainly consist of system API calls, which are the only

means for Java code to perform explicit I/O. There are three main APIs of interest: (1) the

HDFS API, (2) Java’s standard runtime API, and (3) the API exposed by the OS to user

processes. The last of these is only directly exposed to Java programs via Java’s native code

interface, which is unsafe and should not be used by jobs compiled for Hadoop. We therefore

adopt the standard precaution of denying native code privileges to all jobs.

Java’s runtime API contains many unsafe I/O operations that (disturbingly) remain fully

available to unprivileged jobs in a standard Hadoop installation. Since the HDFS files are

stored in file objects maintained by the OS, and since the Java I/O libraries afford direct,

uncensored access to this OS view, we found that it is trivial to write malicious Hadoop jobs
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that abuse the Java runtime to bypass all the HDFS access controls. SilverLine closes this

vulnerability by prohibiting access to the Java runtime’s I/O methods; jobs may only access

files via HDFS. The remainder of the IRM implementation focuses on guarding HDFS API

calls.

6.1.4 MapReduce Paradigm

MapReduce (Dean and Ghemawat, 2008) is an increasingly popular distributed program-

ming paradigm used in clouds. It provides automatic parallelization and distribution, fault

tolerance, I/O scheduling, monitoring, and status updates among other features, making

it popular among the commonly used cloud platforms (e.g., Apache, 2013; Amazon, 2013).

Since our system is deployed on Hadoop, we leverage Hadoop’s MapReduce framework.

In Hadoop, user computations arrive as Java bytecode programs (jobs) submitted by

users. Each job consists mainly of two functions: Map and Reduce. The Map function maps

input key-value pairs to a set of intermediate key-value pairs. Based on the configuration,

those may be passed to Shuffle or Sort functions for additional processing. The Reduce

function reduces the set of intermediate key-value pairs that share a key to a smaller set

of key-value pairs traversable by an iterator. Each Map process and Reduce process works

independently on DataNodes without communication.

6.1.5 Policy Specifications and Flow Tracking

An administrator-specified policy file, such as the one in Figure 6.1, defines the specific access

control and information flow policy enforced by SilverLine. Command “mayaccess P1 P2”

grants P1 direct write-access to P2. If P1 is an object (e.g., file) and P2 is a subject (viz.,

user, role, or job), then it grants P2 read-access to P1. (From a policy standpoint, it is as if

file P1 “wrote” to user P2.) Rule “noflow P1 P2” disallows information flows from P1 to P2.
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mayaccess role1 file2;
mayaccess file4 role1;
mayaccess role2 file6;
mayaccess role2 file9;
mayaccess file12 role2;
mayaccess file1 role3;
mayaccess file3 role3;
mayaccess role3 file7;
mayaccess file8 role4;
mayaccess role4 file10;
mayaccess file11 role5;

mayaccess file13 role5;
mayaccess role5 file15;
mayaccess role5 file17;
noflow file4 file2;
noflow role1 file14;
noflow file12 role1;
noflow role1 file15;
noflow file8 role3;
noflow file18 role4;
noflow file20 file16;
noflow file5 file19;

Figure 6.1. Sample Policy File

For example, in Figure 6.1, even though role1 may read file4 and write to file2, it may not

do the former followed by the latter, since flows from file4 to file2 are disallowed.

The policy language in Figure 6.1 is simplistic but suffices for our experiments. It can be

conceptualized as a classic Bell-LaPadula labeling system (Bell and Lapadula, 1973) where

the labels form a lattice of principal subsets (expressing impermissible flow destinations)

ordered by subset relation (Denning, 1976; Sandhu, 1993). Much more expressive policy

languages (e.g., Swamy et al., 2008; Hamlen and Jones, 2008) are possible, but supporting

them is a subject of future work.

To enforce the policy, SilverLine maintains an Information Flow Graph (IFG) stored

as a distributed data structure in HDFS. Figure 6.2 depicts an example IFG. Nodes are

labeled with principals (viz., roles, users, jobs, and resource identifiers) as well as the set

of nodes to which their information must-not flow (shown as dashed edges in the figure).

For example, to enforce the policy in Figure 6.1, node role1 is labeled with must-not set

MN [role1] = {file14, file15}. Solid, directed edges indicate active information flows (e.g., files

currently opened by running jobs) between the nodes.

Whenever a new edge (x, y) is about to be introduced, SilverLine checks whether MN[x]∩

R(y) = ∅, where R(y) is the set of nodes reachable from y. If not, the impending operation

is rejected by throwing a (catchable) exception. Otherwise, the operation is permitted and

MN[x] is propagated to the nodes in R(y). The bold red edges in Figure 6.2 show such a
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Role 1 Role 2

Role 3

Role 4

Role 5

object (file)

read/write

disallowed flow

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

Figure 6.2. A sample Information Flow Graph (IFG). Edge (role1, file2) is rejected because
its addition would complete disallowed flow (file4, file2).

policy violation. The addition of edge (role1, file2) to the graph would complete disallowed

flow (file4, file2), so role1’s request to write to file2 is rejected.

To avoid a bottleneck when accessing the IFG, it is stored as a distributed HDFS data

structure whose disconnected components can be separately locked for exclusive write-access.

Since the IFG only includes edges for current operations, and since reading and writing to

the same file simultaneously is rare (it risks inconsistent results in HDFS), the IFG is usually

quite fragmented; having separate locks for disconnected components therefore scales well.

HDFS does not provide built-in locking support, so we implemented it ourselves as part of

the IRM’s access protocol (without modifying the cloud). All access to the IFG data by the

non-IRM job code is prohibited by the IRM.

6.1.6 In-lined Reference Monitor Design

SilverLine’s main implementation is an AspectJ (Kiczales et al., 2001) program that encodes

the transformation of untrusted job code into safe job code as a set of aspects. Each aspect’s



87

pointcuts identify unsafe program operations (API calls) that might appear in untrusted

jobs, and its advice supplies guard code that secures such operations wherever they appear.

The guard code includes logic for consulting and updating the IFG at runtime. AspectJ’s

aspect-weaver inserts the guard code around each unsafe operation prior to running the job,

resulting in a secure binary.

In contrast to purely static approaches to mobile code security, SilverLine makes no

attempt to decide in advance whether untrusted jobs, when executed, might try to violate

the policy. (In fact, information flow policies are statically undecidable in general (Hamlen

et al., 2006b).) Rather, it introduces programming that discovers impending policy violations

at runtime and intervenes to prevent them.

Protecting the integrity of the IRM from corruption by the surrounding untrusted job

code is a major part of the design. There are three major ways that malicious jobs might

attack the IRM, none of which are successful:

1. Malicious jobs might try to erase or overwrite the IRM code at runtime.

2. Malicious jobs might try to corrupt the IRM’s internal variables or data.

3. Malicious jobs might try to “jump over” the IRM’s runtime security checks to reach

policy-violating operations, bypassing the security code.

Attack 1 is thwarted by denying jobs access to Java’s reflection libraries, which are the

only way to write self-modifying code in Java. Attack 2 is thwarted by storing all the IRM’s

data in local variables and private field members of a non-inheritable class. Type-safety

of the Java bytecode language therefore prevents untrusted job code outside of that class

from corrupting those members. Finally, attack 3 is not possible because the aspect-weaver

retargets all static control-flow transfer instructions so that they cannot bypass the advice.

The only form of dynamic control-flow in Java bytecode is method call, which can only target
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Figure 6.3. System architecture of SilverLine

a method entrypoint, and there are no method entrypoints between the security checks and

the dangerous operations they check. These approaches to ensuring IRM integrity have been

validated by prior studies (Hamlen et al., 2006a; Aktug et al., 2008; Hamlen et al., 2012).

6.1.7 Architecture and Protocol

Figure 6.3 depicts the high-level architecture of SilverLine. End users submit jobs to the

cloud in the usual way; no change to how jobs are created or submitted is required to

accommodate SilverLine. SilverLine’s aspect-weaver intercepts the submitted jobs at the

cloud edge and in-lines the IRM. The aspect-weaver may reside on any node inside cloud,

or may be deployed on a separate machine outside of cloud. The resulting self-monitoring

binaries are then dispatched to the cloud for execution.

SilverLine maintains persistent access history. For example, if user1 runs a job that reads

from file4, and then later runs a separate job that writes to file2, the IFG maintains the node

labels resulting from the earlier job and thereby detects the flow from file4 to file2.

There are interesting design challenges for handling this correctly in a cloud where jobs

run concurrently and job submissions are separate from job executions. For example, if
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Algorithm 7 Initialize IFG

1: for (noallow x y) ∈ policy do
2: MN [x]← MN [x] ∪ {y}
3: end for

user1 first submits job1 and job2 in their entirety to the cloud, and then job1 and job2 run

concurrently, with job1 only reading from file4 and job2 only writing to file2 (no other file

accesses or network accesses), then SilverLine concludes that no information has flowed from

file4 to file2 (yet). The reasoning is that job2 was submitted to the cloud (i.e., written) before

job1 read file4, and the two jobs did not (explicitly) communicate. Such scenarios are why

SilverLine needs separate nodes for users, roles, and jobs.

The IFG initialization and IRM runtime guard code are summarized in Algorithms 7

and 8, respectively. Line 16 of Algorithm 8 computes the IFG subset reachable from y, which

is typically small due to the IFG’s disconnectedness (see Section 6.1.5). Line 20 expresses

IFGs as multisets, since duplicate edges can arise from multiply opened file handles.

6.2 Implementation

Implementation of SilverLine in a real-world cloud environment is one of our main contribu-

tions. We deployed it on a commodity data processing cloud—Hadoop MapReduce (Apache,

2013). Experiments were conducted on a Hadoop cluster consisting of 12 DataNodes and 1

MasterNode. Nodes have Intel Pentium IV 2.40–3.00GHz processors with 2–4GB of memory

each, running Ubuntu operating systems.

As mentioned in Section 6.1.6, SilverLine implements IRMs using AspectJ (Kiczales et al.,

2001). Listing 6.1 shows a (simplified) sample aspect that implements part of Algorithm 8.

For the experiments, the SecurityExceptions that signal policy violations are not caught

by the surrounding job code, so the job simply aborts. Jobs could alternatively take corrective

actions, such as handling the exception by rolling back to a consistent state (but corrective
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Algorithm 8 SilverLine Guard Pseudo-code for Untrusted Operation op on HDFS Object
o

1: if op is a Java I/O API call then
2: throw SecurityException
3: else if op is an HDFS open/close operation then
4: if op open/closes o for reading then
5: x← o
6: y ← job identifier
7: else // op open/closes o for writing
8: x← job identifier
9: y ← o

10: end if
11: if op is a close then
12: IFG ← IFG − {(x, y)}
13: else if (mayaccess x y) 6∈ policy then
14: throw SecurityException
15: else if (x, y) 6∈ IFG then
16: R← breadth first search(IFG , y) // R is small
17: if R ∩MN [x] 6= ∅ then
18: throw SecurityException
19: else
20: IFG ← IFG ] {(x, y)}
21: for z ∈ R do
22: MN [z]← MN [z] ∪MN [x]
23: end for
24: end if
25: end if
26: end if

actions cannot violate the policy, since the code that implements any corrective action is

part of the job and therefore constrained by the IRM). We distribute AspectJ JARs and

aspects to all the nodes in the cloud to enable it in the Hadoop environment. SilverLine

takes advantage of AspectJ’s runtime weaving feature that injects specified security policies

into the binaries of jobs instead of into source code at compile or post-compile time.

To maintain persistent history and track concurrent jobs (Section 6.1.7), jobs are repre-

sented in IFGs as temporary nodes. When a job J is received from a user U , we create a new

node for J and copy MN [U ] to MN [J ]. This reflects the fact that J potentially knows all
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public aspect CloudIRM {

pointcut reads(InputStream f) :
call(∗ ∗ org.apache.hadoop.fs.FileSystem.open(..) && args(f,..);

// Guard HDFS I/O calls
before(InputStream f) throws SecurityException : reads(f)
{

if (!policyMayAccess(f, this_job))
throw new SecurityException("access denied");

lockIFGComponents(IFG, f, this_job);
try {

if (!hasEdge(IFG, f, this_job)) {
Collection〈IFGNode〉 r = BFS(IFG, this_job);
Collection〈IFGNode〉 mn = getLabel(IFG, f);
for(Iterator〈IFGNode〉 i=r.iterator(); i.hasNext(); ) {

if (mn.contains(i.next()))
throw new SecurityException("info flow violation");

}
addEdge(IFG, f, this_job);
for(Iterator〈IFGNode〉 i=r.iterator(); i.hasNext(); ) {
IFGNode v = i.next();
setLabel(IFG, v, getLabel(IFG,v).addAll(mn));
}
}
} finally { unlockIFGComponents(IFG, f, this_job); }
}

// Prohibit Java I/O calls
before(..) throws SecurityException : call(∗ ∗ java.io.∗(..)) {

throw new SecurityException("prohibited operation");
}

}
Listing 6.1. Sample aspect in AspectJ

secrets known by U at the time U submitted J . Whenever J opens a file F1 for reading, we

join (union) (Sandhu, 1993) MN [F1] into MN [J ] (and all nodes reachable from J) to reflect

the flow of secrets from F1 to J . Dually, whenever J opens F2 for writing, we join MN [J ]

into MN [F2] (and all nodes reachable from F2). When J finishes and its results are returned

to U , MN [J ] is joined back into MN [U ]; then we destroy node J and all its adjacent edges.

For efficiently controlling concurrent access to our IFG in HDFS, we implement a straight-

forward synchronization mechanism using semaphores. Far more sophisticated distributed
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Figure 6.4. Performance measurement with increasing concurrency

graph representations are possible (cf., Mondal and Deshpande, 2012), but are left as future

work.

6.3 Experimental Results

To evaluate our system, we conduct two experiments: one with synthetic jobs and one with

real-world jobs drawn from public MapReduce code repositories. All experiments use 5 roles

and include attacks (Section 6.1.3) that attempt to violate the information flow policies

or subvert the IRM. SilverLine successfully blocks all these attacks in our experiments by

halting such jobs before their first violating operations. The remainder of this section re-

ports performance results for the remaining policy-compliant jobs that were not prematurely

terminated.

The first experiment runs chaotic jobs whose Mappers perform randomly chosen HDFS

file operations in random combinations, as well as dangerous Java I/O and system calls (via

java.io.Runtime) with some probability. Figure 6.4 reports performance results, which

illustrate the good scalability of SilverLine. Each trial simulates increasing numbers of users

and jobs simultaneously, taxing the system’s scheduler and shared resources (e.g., the IFG).

Under these conditions of high resource contention, jobs with SilverLine’s IRM installed run
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4.6–7.5% slower (approximately 1.56–2.64 seconds slower) each. This slowdown is primarily

due to locking and unlocking of the distributed IFG data structure for writing, and by the

extra job operations that implement the IRM in each job. Since each lock is acquired for

only a very short time (see Listing 6.1), the overhead remains reasonable.

Figure 6.5 reports the IFG size for the same experiment. The number of IFG nodes

increases with the increasing number of job submissions over the trials, while the edge count

increases due to the higher number of concurrently accessed HDFS file objects. The median

IFG sizes (nodes plus edges) range from 101–374 over the three trials. This means that

each job contributes just 0.6 nodes+edges to the average size of the IFG. This excellent

scalability is because the IFG only tracks concurrent resource accesses, and HDFS avoids

longstanding locks on files. The resulting median job performance overhead comes to a

mere 66ms total extra job time per IFG node or edge. This low impact is due to HDFS’s

aggressive distribution of the IFG over many cloud nodes, and the generally small number

of nodes reachable from any given node (since long edge chains only result from separate

jobs simultaneously reading and writing the same file—usually in error).

Our second experiment (Figure 6.6) examines performance under more practical condi-

tions that involve some common, pre-existing MapReduce programs used in the field. We
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choose two classic MapReduce jobs: (1) k-means clustering, which partitions data points

into 2 clusters, and (2) sorting, which sorts data provided by the input files using a stan-

dard merge-sort algorithm. These were submitted with randomly generated input files to

Hadoop as 200 jobs from 30 simulated users. The experiments were performed both with

and without SilverLine (with the results shown as pairs of bars in the figure) in order to

assess SilverLine’s performance overhead relative to standard Hadoop. We also applied the

same experiment to the chaotic jobs.

Figure 6.6 shows that SilverLine introduces 4.39%, 5.88% and 5.04% performance over-

head, respectively, for chaotic, k-means clustering, and sorting jobs, respectively. The ex-

periment also demonstrates the applicability of our system to existing cloud job codes. No

change to the job binaries was required; they worked seamlessly on Hadoop after instrumen-

tation by SilverLine.



CHAPTER 7

RELATED WORK

Cloud computing has received significant attention from research communities in academia

as well as industry; however, there are many challenges facing cloud computing to be widely

deployed and used. The major, and increasingly demanding, challenge is security.

Cloud computing security has exploded into a vast research area in recent years. There

have been lot of issues and corresponding research work, which are demonstrated in many

articles, including those by Hamlen et al. (2010); Kulkarni et al. (2012); Xiao and Xiao (2012);

Dahbur et al. (2011); Bhadauria and Sanyal (2012). It is beyond the scope of this dissertation

to discuss all of them. We rather describe the works below related to our contributions.

7.1 Hatman

Much of the work in cloud computing security focuses on data privacy (Ryan, 2011). Data

integrity is a second major concern that involves challenges related to secure storage (e.g.,

Nepal et al., 2011; Bowers et al., 2009) and secure integrity attestation of computation

results. The latter is the subject of our Hatman.

AdapTest (Du et al., 2011) and RunTest (Du et al., 2010) implement cloud service in-

tegrity attestation for the IBM System S stream processing system (Gedik et al., 2008) using

attestation graphs. Always-agreeing nodes form a clique in the graph, facilitating detection

of malicious collectives.

In contrast, our work considers a reputation-based trust management approach to in-

tegrity violation detection in Hadoop clouds. Trust management systems probabilistically

anticipate future misbehavior of untrusted agents based on their histories of past behavior.

95
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Reputation-based trust managers, such as EigenTrust (Kamvar et al., 2003), NICE (Lee

et al., 2003), and DCRC/CORC (Gupta et al., 2003), assess trust based on reputations

gathered through personal or indirect agent experiences and feedback.

(Abawajy, 2009) claims to take the first attempt of trustworthiness in inter-clouds com-

puting environment. It uses peer-to-peer concept for their fully distributed approach where

peers are the master nodes from each cloud. However each cloud does not connect with all

other clouds in the inter-clouds, rather they connect to zero or more clouds based on some

policy. Reputation calculation is inefficient as a component named Reputation Manager is

introduced in each cloud to do that task. It is not clear how the feedback is provided from

one peer to another. It does not deal with malicious resources explicitly and does not come

up with any experimental results. (Li and Ping, 2009) is for inter-clouds environment and is

distributed as well. However, its trust management system’s trust calculation is ambiguous

and not based on feedback. It includes no real time experiments, simply simulation results.

(Manuel et al., 2009) builds trust management system for intra-cloud environment and is

centralized. For trust management system, it employs user’s feedback and other factors which

are predefined to calculate trust values - consequently it is a policy-based trust management

system. The procedure is not efficient as master node does all the calculation for each

data node in the cloud. It presents some simulation results but does not implement it

on a real cloud platform. TrustCloud (Ko et al., 2011) proposes a trusted cloud framework

which addresses accountability in cloud computing via technical and policy-based approaches

emphasizing on accountability rather than privacy component of trust we deal in this research

work.

Opera (Nguyen and Weisong, 2010) employs reputation-based trust management to im-

prove Hadoop computation efficiency. It tracks node trust as a vector of efficiency-related

considerations, such as node downtime and failure frequency. However, malicious behav-

ior in the form of falsified computation results are not considered, making it unsuitable for

protecting against data integrity attacks.
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Policy-based trust management (Blaze et al., 1998) has been used as a basis for allowing

cloud users to intelligently select reliable cloud resources for their computations, and to

provide accountability of cloud providers to their customers (Manuel et al., 2009; Ko et al.,

2011). These approaches necessarily involve re-architecting clouds to expose some or all of

their internal resources to users, so that users can make informed choices regarding those

resources.

Peer-to-peer, distributed, decentralized trust management has also been recognized as

a natural means of providing inter-cloud security guarantees (Abawajy, 2009; Li and Ping,

2009). Each cloud acts as an individual peer in a super-cloud with no central authority. Inter-

cloud computations are then partitioned and distributed based in part on cloud reputations.

As an alternative to trust management, traditional byzantine fault tolerance has been

used extensively to detect and isolate malicious behavior in networks of replicated services,

including clouds (Zhang et al., 2011; Kotla et al., 2009). However, these solutions typically

involve implementation of new communication protocols for untrusted agents, complicating

their application to existing, large-scale cloud implementations such as Hadoop.

Although there is strong evidence that EigenTrust and similar trust management ap-

proaches scale well to networks with large numbers of data nodes (West et al., 2010), Na-

meNode scalability is not something we studied. Hadoop’s use of a single NameNode has

been identified in the literature as a potential bottleneck (Shvachko, 2010), and several cur-

rent works are exploring the feasibility of distributing NameNode computations and meta-

data (Molina-Estolano et al., 2010; Talwalkar, 2011). Hatman benefits from these advance-

ments, since they offer opportunities to more widely distribute its trust matrix metadata.

7.2 AnonymousCloud

Data privacy concerns are widely recognized as a significant impediment to consumer con-

fidence in cloud computing (Fujitsu, 2010; Ryan, 2011; Chen and Zhao, 2012). Associated
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challenges span at least three categories of related work: secure remote platform attestation

(i.e., trusted computing), secure data storage, and information-centric security (Chow et al.,

2009).

Trusted computing provides users high assurance that they are communicating with a

remote server consisting of known, trusted hardware and software (Mitchell, 2005). Secure

storage regards the problem of safely storing private data in the cloud (usually in encrypted

form) between computations that use it (e.g., Huang et al., 2011). In contrast, information-

centric approaches imbue data with self-protecting properties, such as by representing it

in a form amenable to direct computation on cyphertexts without decryption (e.g., Liu

et al., 2012). AnonymousCloud’s approach of decoupling private data from its provenance

information can be viewed as an instance of the last of these approaches.

General data anonymization is a vast research area spanning many decades; however,

the most widely used strategies for anonymization of data content are currently differential

privacy (Dwork, 2008) and k-anonymity for privacy-preserving microdata release (Samarati,

2001). Such research benefits our work by providing a means for customers to anonymize

private data content before submitting it to the cloud. We therefore assume that customers

interested in privacy submit data that divulges fewer secrets once it has been decoupled

from provenance and semantic metadata, and that therefore benefits from our anonymization

protocol.

Prior work has also explored decoupling document content from format and structure for

more secure cloud storage and processing (Xu et al., 2009). For example, HTML documents

can be encoded in a format that separates their tree structures from the textual content of

elements and attributes. Since a majority of private data resides in the content, this allows

separate processing of structural-based queries in the cloud without divulging the private

data.

To decouple and conceal provenance metadata, AnonymousCloud employs onion routing

based on Tor (Dingledine et al., 2004). Tor has become the most successful public anonymity
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communication service in the Internet, with tens of millions of users worldwide (Greenberg,

2012). In Tor, initiators choose a path through network and build a circuit in which each

node or onion router in the path knows only its successor and predecessor, but no other

nodes in the circuit. Based on the chosen path or route, the initiator first encrypts the data

with one layer of encryption for each node in the path, from the last node to the first. This

is likened to the layers of an onion, with each hop peeling one layer as the data is forwarded

to its destination. The data can only be read in plaintext once it reaches the endpoint of

the path and all layers have been peeled.

The Tor Cloud project (ExpressionTech and The Tor Project, 2012) has implemented a

full-scale Tor system within a production-level cloud that runs on the Amazon EC2 cloud

computing platform (Amazon, 2013). It provides a user-friendly way of deploying bridges to

help users access an uncensored Internet. Tor Cloud conceals user pseudonyms (e.g., IP num-

bers) from untrusted third-party services, but does not suffice to anonymously access data

from a third-party cloud (Laurikainen, 2010), since clouds require a means of authenticating

users in order to control access to each user’s private data and bill them appropriately.

Our work therefore extends cloud-based onion routing with an anonymous credential sys-

tem for authentication (Chaum, 1985). Anonymous authentication provides zero-knowledge

proof of identity, allowing data to be securely decoupled from provenance for enhanced pri-

vacy. More elaborate anonymous credential systems (e.g., Camenisch and Herreweghen,

2002; Zarandioon et al., 2011; Slamanig, 2011; Camenisch and Lysyanskaya, 2004; Jensen

et al., 2010; Backes et al., 2005) support additional security properties, such as non-transfer-

ability, lazy revocation, and access hierarchies. These are not necessary for our system, but

could be substituted if such properties are desirable for other reasons.

Our attack analysis and experiments do not consider the threat of end-to-end timing

attacks (except that we mandate circuit lengths of at least 3 to preclude the simplest such

attacks). Past works have shown that these attacks are potentially effective against Tor and
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other onion routing systems even when the attacker controls only a few nodes (Abbott et al.,

2007; Hopper et al., 2010). The Tarzan system protects against timing attacks through

generation of artificial cover traffic that masks timing patterns in a sea of mimicry and

noise (Freedman et al., 2002). Future work should consider the feasibility of supplementing

AnonymousCloud with similar protections.

Aside from implementing protections and protocols that directly facilitate greater privacy,

mechanisms that provide greater transparency for internal cloud operations—particularly

distribution and management of security-sensitive data—is critical for instilling greater confi-

dence in end users (Abawajy, 2009; Ko et al., 2011; Nguyen and Weisong, 2010). Future work

should therefore consider augmenting AnonymousCloud with features that afford customers

greater control over data distribution and scheduling details after Tor circuit construction,

and without sacrificing anonymity.

7.3 Penny

P2PRep (Cornelli et al., 2002) is one of the first works to implement secure reputation

management in a real-world P2P network (Gnutella, 2010). Resource-requesting peers in

the network assess the reliability of perspective providers before initiating downloads by

polling large numbers of peers using broadcast messages. Poll responses are then aggregated

by the requesting peer to estimate the desired integrity label or trust value along with

trust values for all peers whose opinions were acquired by polling. This strategy has the

advantage of being implementable atop the existing Gnutella network protocol, but it has the

disadvantage that labels and trust values are not global and are not guaranteed to converge.

That is, the integrity label or trust value obtained depend on which peers were polled, which

in turn depends upon the poller’s placement within the P2P network. Two peers at different

locations in the network might therefore consistently derive different reputations for the same

resource. Broadcast messages can also be expensive, requiring O(bd) messages to be sent,
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where b is the branching factor of the network and d is a time-to-live parameter dictating

the maximum depth of the tree of peers being polled.

XRep (Damiani et al., 2002) enhances P2PRep by combining reputations of providers

and resources, offering more informative polling and overcoming the limitations of strictly

provider-based solutions. However, it still suffers the disadvantages of P2PRep above. Ser-

viceTrust (He et al., 2009) is a service-oriented paradigm that computes trust globally, but

at the cost of centralizing the system, inviting centralized points of failure. One solution

is to compute trust globally using decentralized gossip-based algorithms (Bachrach et al.,

2009). However, this does not recursively apply the trust system to the gossip itself, allowing

malicious agents to potentially gain undue influence by reporting high trust for malicious

allies.

In contrast to these unstructured approaches, Penny is implemented atop a structured

P2P protocol—Chord (Stoica et al., 2001). Chord solves the fundamental problem of effi-

ciently locating peers with particular data objects by assigning a unique identifier to each

peer, and arranging them in a ring structure sorted by identifier. Each peer maintains a

finger table of size m, where 2m is the size of the identifier space. This enables peers to

locate and contact the peer with a given identifier in O(logN) message hops, where N is

the number of peers in the network. In Chord, each shared data object also has a single

key-holder peer, who is charged with directing requesters of that object to peers that own it.

To request an object, a peer can locate its key-holder in O(logN) message hops, whereupon

the key-holder responds with a list of servers from which the object can be downloaded. Al-

ternatives to Chord include CAN (Ratnasamy et al., 2001), Pastry (Rowstron and Druschel,

2001), Tapestry (Zhao et al., 2004), and MAAN (Cai et al., 2004). These systems offer

distributed, scalable, and efficient search, but they do not include data security or privacy

enforcement mechanisms. Penny extends Chord by providing a framework for maintaining

centralized security labels for data shared over a Chord network.
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In trust management systems, peers and occasionally objects in the system are labeled

with trust values based on past peer interactions. These past experiences are consulted to

predict future malicious behavior and incentivize good behavior. There are three major

types of trust management systems. Reputation-based systems use knowledge of a peer’s

reputation (gathered through personal or indirect experience) to determine the trustworthi-

ness of another peer. Examples include EigenTrust (Kamvar et al., 2003), DMRep (Aberer

and Despotovic, 2001), P2Prep (Cornelli et al., 2002), XRep (Damiani et al., 2002), Sporas

and Histos (Zacharia and Maes, 2000), PeerTrust (Xiong and Liu, 2004), NICE (Lee et al.,

2003), and DCRC/CORC (Gupta et al., 2003). In contrast, policy-based trust management

systems, such as PolicyMaker (Blaze et al., 1998), derive peer trust based on supplied cre-

dentials. Finally, trust management systems based on social networks determine trust by

analyzing a complex social network. Examples include Marsh (Marsh, 1994), Regret (Sabater

and Sierra, 2002), and NodeRanking (Rivest et al., 2001).

Penny integrates a reputation-based trust management system based on secure Eigen-

Trust (Kamvar et al., 2003). Each peer is assigned a global trust value based on the peer’s

history of downloads. Global trust values are computed in a distributed manner with mini-

mal load, resulting in assured convergence for all trust queries without centralization.

Resource Description Framework (RDF) is a metadata model for web data exchange. It

is widely used for semantic web knowledge due to its expressive power, semantic interop-

erability, and reusability. We show that Penny is well-suited not only for traditional P2P

file/object lookups/downloads, but also for deploying and querying RDF datasets. Two cate-

gories of prior work have investigated effective RDF data management in P2P environments.

One considers the problem of distributing and retrieving RDF data efficiently (Newman

et al., 2008; Cai et al., 2004; Newman et al., 2008), while the other proposes algorithms for

efficient query processing (but not storage) (Verheijen, 2008; Liarou et al., 2007b,a). Neither

body of work considers peer trust or data security issues to our knowledge.
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Penny’s RDF representation scheme is most closely related to that of RDFPeers (Cai

et al., 2004). RDFPeers stores each RDF triple by hashing it three times (once for subject,

predicate, and object, respectively), resulting in three replicas. Penny adopts a similar

strategy, but for more efficient query processing it indexes each query by hashing only one

of the three parts, retrieves a superset of the desired triples, and locally filters the results.

To ensure confidentiality, Penny peers must send some messages anonymously. This is

accomplished via anonymizing tunnels (Chaum and van Heyst, 1991; Freedman et al., 2002;

Zhu and Hu, 2008), which permit peers to route their messages through tunnels of randomly

chosen peers. Multilayer encryption and randomly generated cover traffic prevent any peer in

the tunnel from learning whether its successor is the message originator or just another hop

in the tunnel. The tunnels are bidirectional, allowing recipients to reply without knowing

the identity of the message originator. The approach has proved to be both flexible and

scalable, requiring little overhead above that incurred by Chord’s existing message-routing

protocol (Chaum and van Heyst, 1991; Freedman et al., 2002).

7.4 CloudCover

Automatic result checking has been studied in the literature for at least a quarter century. It

was first proposed as a means of debugging software (Blum and Kannan, 1989). Later work

extended the idea to fault tolerance by observing that certain algorithms can be reformulated

to yield a certification trail of data that witnesses the integrity of the algorithm’s result (Sul-

livan et al., 1995). When available, such a trail can be verified independently by a distinct,

faster certification algorithm to achieve efficient result checking. This insight has led to re-

cent work in the formal methods community on frameworks for developing trail-producing

software and their certifiers (Barthe et al., 2010).

Unfortunately, the addition of certification trails to software is non-trivial in general

(justifying the application of formal methods). It typically requires reformulating and
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reimplementing the algorithm, as well as developing a completely new certification stage

that is unique to each algorithm being checked. Applying the technique to most existing,

production-level software is therefore a significant challenge.

Homomorphic encryption has been proposed as a way to cryptographically protect com-

putation results on untrusted hosts, making incorrect results arbitrarily difficult for malicious

hosts to forge (Sander and Tschudin, 1997). The disadvantage of these schemes is that ho-

momorphic encryption currently only supports a very limited set of data operations, and

therefore cannot yet be applied to a majority of computations.

Computations that are already parallelized and distributed across clouds can be prob-

abilistically checked by simply replicating some or all of the sub-tasks and comparing the

results for inconsistencies. Past works have therefore imbued MapReduce architectures with

fault tolerance through massive replication with inconsistency resolution via majority vot-

ing (Moca et al., 2011) or distributed trust management (Khan and Hamlen, 2012b). In

contrast, CloudCover focuses on certifying the significant class of computations that are not

massively parallelized, including those that are inherently serial.

Remote attestation is an alternative to result checking that supplies evidence to a distrust-

ful appraiser that an untrusted, remote target is running authorized software atop permissible

hardware (Coker et al., 2011). By assuring the integrity of the remote computing environ-

ment, its results can be trusted without additional checking. Remote attestation solutions

typically rely upon secure co-processors to attest hardware integrity (Trusted Computing

Group, 2011; Nauman et al., 2010), and software monitors that relay cryptographically pro-

tected evidence of software integrity at load-time and in real-time as the remote computation

progresses (Kil et al., 2009; Seshadri et al., 2005; Falcarin et al., 2005; M’Barka et al., 2009).

However, the evidence exhibited by remote attestation solutions is not a proof. A knowl-

edgeable, resourceful, or lucky adversary can potentially forge false evidence to corrupt the

computing environment without detection (cf., Delaune et al., 2010; Castelluccia et al., 2009;
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Perrig and van Doorn, 2010). This is partly because most software monitors rely upon code

obfuscation (Ceccato et al., 2013; Collberg and Nagra, 2010; Fukushima et al., 2008) or

blackbox security (Hohl, 1998), which does not provide formal guarantees against reverse-

engineering and corruption. An attacker with powerful reverse-engineering tools or inside

knowledge of the obfuscation strategy can therefore potentially corrupt computations in

ways that are not detectable by the appraiser. This invites an arms race in which attack-

ers hone increasingly sophisticated analysis tools while defenders weave ever more complex

obfuscations to bewilder them.

7.5 SilverLine

Isolation of multiusers in clouds is recognized as a significant research problem. Past work

has proposed many different access control mechanisms to mutually isolate untrusted cloud

jobs and their resources. At an implementation level, these can be broadly categorized into

two main streams: (1) those that modify the cloud architecture or system, and (2) those

that create an extra access control layer.

NetODESSA (Bellessa et al., 2011) introduces a distributed, host-level, dynamic policy

monitoring system into the network layer of clouds. An administrator writes general policies

for groups of nodes, from which the system infers more rules dynamically. Cloud-hosted

services have also been proposed as a means to enforce end-to-end information flow con-

trol (Bacon et al., 2010). The vision involves a data tagging scheme that can enforce MAC,

Information Flow Control (IFC), and RBAC policies that ensure end-to-end security for the

whole data life through application-level virtualization. Airavat (Roy et al., 2010) enforces

mandatory information flow control on Hadoop clouds by applying SELinux-style (National

Security Agency (NSA), 2013) MAC to prevent information leaks through system resources.

It additionally applies differential privacy to detect leaks within job input-output relations.

While powerful, all of these approaches require deep modifications to the VM and/or cloud
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framework and implementation, which may raise barriers to adoption. In contrast, SilverLine

does not modify the cloud.

DACC (Ruj et al., 2011) adopts distributed Key Distribution Centers (KDCs) and de-

centralized attribute-based encryption to provide distributed access control in clouds. Cloud-

Police (Popa et al., 2010) proposes an extra access control layer within the hypervisors at

end-hosts. These works prevent unauthorized access to the cloud and its resources, but

do not address the problem of authorized users performing operations that (intentionally

or unintentionally) violate data confidentiality. Cloudtracker (Baig et al., 2013) performs

side-channel detection from the VM layer to identify dangerous job behavior that malicious

users could abuse to infer private information about co-located jobs. SilverLine complements

these works by securing explicit information flows introduced by authorized users through

non-side channels.

A long history of works mitigate application-level security breaches and intrusions by

guarding the application-OS boundary, intercepting and filtering the application’s access to

OS-level resources (e.g., Janus (Goldberg et al., 1996), MAPbox (Acharya and Raje, 2000),

and BlueBox (Chari and Cheng, 2003)). Effectively applying this sandboxing approach to

cloud jobs is challenging because clouds introduce extra layers of infrastructure below the OS

that have the effect of conflating permissible and impermissible operations at the OS level.

For example, a job’s request to write to a particular Hadoop Distributed File System (HDFS)

object may only be exposed to the OS as a write to a much larger, OS-level file object that

combines many HDFS objects. Monitoring at this level is therefore too coarse-grained to

properly enforce many policies of interest.

SilverLine deploys IRMs (Schneider, 2000) to constrain untrusted cloud jobs. Prior re-

search has shown that IRMs are more powerful than external execution monitors (Hamlen

et al., 2006b; Ligatti et al., 2009), in part because they can observe and restrict fine-grained

program behaviors that are difficult or impossible to observe by monitors implemented out-

side the user code. Extensive prior work has examined the problem of automatically in-lining
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secure policy enforcement programming into binary programs for which source code is un-

available (e.g., Erlingsson and Schneider, 1999; Hamlen et al., 2006a; Ligatti, 2006; Hamlen,

2006; Ligatti et al., 2009). One widely used technique is to express the IRM’s programming

as aspects in an AOP language (Kiczales et al., 1997), and apply aspect-weaving to in-line

it into binary programs (Bauer et al., 2005; Chen and Roşu, 2005). This is the approach

employed by SilverLine.

Subsequent research has proved that such in-lining can secure untrusted mobile code

even when the code was crafted by a malicious adversary that knows all implementation

details of the IRM in advance (Hamlen et al., 2006a; Aktug et al., 2008; Hamlen et al.,

2012). In essence, the IRM implementation carefully leverages object encapsulation, control-

flow safety, and type-safety properties of the binary language in which the mobile code is

expressed, to guarantee that the surrounding untrusted code into which the IRM is in-lined

cannot corrupt or circumvent the IRM’s security programming at runtime.

Hamlen et al. (Hamlen et al., 2012) propose a framework to enforce security policies for

cloud data management, where they discuss different possible approaches including leverag-

ing IRMs. SilverLine is the continuation of that research initiative, and offers a full design,

implementation, and evaluation in a realistic cloud environment.



CHAPTER 8

CONCLUSION

Enormous progress in hardware, networking, middleware, and virtual machine technologies

has led to an emergence of new, globally distributed computing platforms that provide

computation facilities and storage as services accessible from anywhere via the Internet.

At the fore of this movement, cloud computing (Amazon, 2013; Microsoft, 2013; Apache,

2013) has been widely heralded as a new, promising platform for delivering information

infrastructure and resources as IT services (Buyya et al., 2009; Weiss, 2007). Customers can

access these services in a pay-as-you-go fashion while saving huge capital investment in their

own IT infrastructure (Armbrust et al., 2009). Thus, cloud computing is now a pervasive

presence of enormous importance to the future of e-commerce.

However, there are many challenges facing cloud computing to be widely deployed and

used—the major one being security, which has been a vast research area in recent years.

One primary concern is trust management in clouds.

Existing cloud computing platform implementations place centralized universal trust over

all the cloud nodes that magnifies the concerns of data and computation integrity and se-

curity. This dissertation emphasizes decentralization of this trust relationship in clouds to

overcome these major concerns for cloud users, and proposes paradigms to establish it. In

this chapter, I conclude my dissertation with some future directions, for each of our estab-

lished frameworks.

8.1 Hatman

Hatman decentralizes trust using replication and extends Hadoop clouds with reputation-

based trust management of slave data nodes based on EigenTrust (Kamvar et al., 2003).

108



109

To obtain high scalability, all trust management computations are formulated as distributed

cloud computations. This leverages the considerable computing power of the cloud to im-

prove the data integrity of cloud computations. Experiments show that Hatman consistently

obtains over 90% reliability after just 100 jobs even when 25% of the network is malicious,

and scales extremely well with increased job replication rates.

Although our implementation augments a full-scale, production-level cloud system, our

evaluation is preliminary. In future work we plan to extend our analysis to consider more

sophisticated data integrity attacks (e.g., malicious collectives) against larger clouds. We

also plan to investigate the impact of job non-determinacy on integrity attestations based

on consistency-checking.

8.2 AnonymousCloud

AnonymousCloud distributes trust by dissociating ownership information from the submitted

jobs to clouds and improves data privacy in the cloud by decoupling private data content

from metadata concerning its provenance and semantics. Our system, AnonymousCloud,

employs Tor onion routing inside cloud providers for customers to anonymously communicate

computations and data to the system. An anonymous authentication system based on public-

key cryptography facilitates billing of anonymous customers without linking their private

data to their identities. Simulation results demonstrate that AnonymousCloud provides

superior data ownership privacy even when a large percentage of the cloud is malicious.

For our future research we consider adding incentive-based congestion control to re-

duce the computational overhead of long Tor circuits, and cover traffic for defense against

end-to-end timing attacks. In addition, greater transparency of internal cloud resources is

recommended as a means of generating greater consumer confidence in cloud systems.



110

8.3 Penny

Penny decentralizes trust by distributing clouds master nodes trust among many peers. It

efficiently supports global trust labels, data integrity labels, and data confidentiality labels in

a fully decentralized, structured, peer-to-peer network. Global labeling assures convergence

for all security queries, while decentralization avoids centralized points of failure typically

associated with centralized label servers. Its reputation management system applies and

extends EigenTrust (Kamvar et al., 2003), distributed hash tabling based on Chord (Stoica

et al., 2001), and anonymizing tunnels based on Tarzan (Chaum and van Heyst, 1991; Freed-

man et al., 2002) or SurePath (Zhu and Hu, 2008). The security labeling scheme preserves

the efficiency of network operations; lookup cost including label retrieval is O(logN + k),

where N is the network size and k is a constant replication factor.

We developed a Penny client in Java and tested it under eight attack simulations. The

results illustrate Penny’s efficiency and reliability over realistic network operations, including

high dynamic churn; object publications, lookups, and downloads; and regular reputation

maintenance via the Secure EigenTrust algorithm. The results also demonstrate the robust-

ness of Penny in the presence of malicious agents. We obtain extremely high average success

rates for all experiments even when 20% of the network is malicious. Experiments show that

success rates remain high even with relatively complex publish protocols, such as those used

to manage RDF data.

Penny is one contribution to the larger research question of how to combine anonymity

with reputation-based trust management. Anonymity and reputation-based trust are often at

odds because it is difficult to divulge an agent’s reputation without also divulging its identity.

Penny accomplishes this by decoupling object-owner information through a cryptographically

protected layer of indirection.

Our implementation and analysis did not consider attacks upon the P2P network overlay

itself, such as denial of service, message misrouting, message tampering, or traffic pattern
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analysis. Using trust values to change the routing structure (so as to avoid routing messages

through malicious agents) is an interesting and active area of research that might address

these vulnerabilities (cf., Hamlen and Hamlen, 2012). We intend to consider such attacks in

future work.

Future research should also consider how to enforce information flow policies based on

Penny’s integrity and confidentiality labeling system. For example, Penny’s publish and

request protocols might be augmented with security checks that block the dissemination of

data items whose integrity labels lie below a certain threshold. This would have the effect of

censoring known malware from the network. One might also enforce a corresponding confi-

dentiality policy that prohibits low-trust agents from obtaining high confidentiality data, but

this is a more difficult research challenge. In order to prevent future confidentiality violations

the trust management system must be informed of past confidentiality violations, but it is

unclear how to ensure that such violations get reported (since typically the only witnesses are

the malicious agents involved in leaking the data). Enforcing strong confidentiality policies

in P2P networks therefore remains an interesting open problem.

8.4 CloudCover

CloudCover is a novel approach to SECaaS that that distributes trust on the user side and

allows Java computations executed in untrusted environments to be validated by commodity

data processing clouds. Conceptually, it realizes proof-carrying computations as checkpoint

chains. Generation and validation of such proofs is possible with relatively minor changes

to existing Java software due to the insight that all Java programs already carry a notion

of checkpoint equality encoded in their object-equality implementations. This serves as a

computation integrity contract that can be validated by a trusted third party. The validation

algorithm is massively parallelizable even when the original computation is largely serial,
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and can be spot-checked for even more efficient validation of probabilistic (yet quantifiable)

integrity guarantees.

We demonstrate the feasibility of CloudCover’s approach by implementing it and eval-

uating it on a real-world architecture: Hadoop MapReduce. Experimental results indicate

that relatively few modifications to existing Java software are needed to add proof-carrying

capabilities, and that validation services have a natural implementation as MapReduce jobs.

Our current implementation instruments Java programs with proof-carrying powers semi-

manually. Future work should consider automated, binary-level approaches for doing so. In

addition, our preliminary experiments consider only small-scale clouds, simple Java compu-

tations, and clients consisting of desktop machines. In the future, we intend to scale our

work to larger scenarios and handheld devices, such as smart phones.

Applying our approach to other languages requires a means of generating checkpoints

that can be compared for semantic equivalence. Managed, object-oriented, bytecode lan-

guages, such as Java, .NET, and ActionScript, facilitate such comparison through built-in

class methods that decide object-equality. Native codes that realize checkpoints as process

memory images admit such certification only if the images can be made insensitive to low-

level hardware details that differ between the untrusted host and the trusted checker. Future

work should investigate the feasibility of extending our work to such domains.

8.5 SilverLine

SilverLine, again decentralizing trust on user side and moving the trust to the checker, is

the first cloud information flow enforcement framework whose implementation makes no

alteration to the cloud infrastructure, and that is completely transparent to job authors—

requiring no change to job development practices or API usage. This makes it easily im-

plementable and adaptable to real-world clouds, since the cloud and the enforcement can
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be maintained completely separately and orthogonally. It achieves this by realizing the en-

forcement as an IRM that is in-lined into untrusted binary jobs at the cloud’s edge. The

resulting jobs self-monitor their accesses and collectively maintain a distributed information

flow graph within the cloud, which tracks the history of flows and prohibits policy-violating

operations. Well-established IRM design methodology was applied to secure the IRM against

attacks from the code into which it is in-lined, protecting it even from threats that know all

the IRM’s implementation details.

We demonstrated the feasibility of SilverLine by implementing and evaluating it in a real

cloud architecture: Hadoop MapReduce. The popular AOP language AspectJ is leveraged

to elegantly formulate and instantiate IRMs within the Hadoop architecture. Experimental

results illustrate the efficiency and scalability of SilverLine with low overhead.

Our present prototype is limited to enforcement of mandatory, role-based, access controls

of explicit information flows between principals. Future work should examine the applica-

bility of our approach to enforce larger, more expressive policy classes and policy languages.

There are also many engineering challenges that should be investigated to optimize the ap-

proach for large-scale clouds. A prominent one is the question of how best to store and

maintain global security state (e.g., the IFG) within the cloud without introducing bottle-

necks for massive parallelism.

Past work has shown that the security of IRM frameworks can be strengthened by in-

troducing a formal verification step that removes the significant complexity of the binary-

rewriter from the trusted computing base (Hamlen et al., 2006a; Aktug et al., 2008; Hamlen

et al., 2012). The verification step applies type-checking, contract-checking, or model-

checking to the rewritten job code to automatically and independently certify that the self-

monitoring job is incapable of violating the security policy when executed (i.e., the IRM

precludes all possible violations). The verification algorithm’s implementation is typically

much smaller than the code-rewriting infrastructure (because it performs no code-generation
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and conservatively rejects programs whose safety is unclear), and is therefore viewed as more

trustworthy. In future work we plan to investigate the feasibility of such verification for val-

idating IRMs in the cloud.
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