
Knowl Inf Syst
DOI 10.1007/s10115-011-0447-8

REGULAR PAPER

Facing the reality of data stream classification:
coping with scarcity of labeled data

Mohammad M. Masud · Clay Woolam · Jing Gao ·
Latifur Khan · Jiawei Han · Kevin W. Hamlen ·
Nikunj C. Oza

Received: 6 May 2009 / Revised: 26 April 2011 / Accepted: 22 October 2011
© Springer-Verlag London Limited 2011

Abstract Recent approaches for classifying data streams are mostly based on supervised
learning algorithms, which can only be trained with labeled data. Manual labeling of data
is both costly and time consuming. Therefore, in a real streaming environment where large
volumes of data appear at a high speed, only a small fraction of the data can be labeled.
Thus, only a limited number of instances will be available for training and updating the
classification models, leading to poorly trained classifiers. We apply a novel technique to
overcome this problem by utilizing both unlabeled and labeled instances to train and update
the classification model. Each classification model is built as a collection of micro-clusters
using semi-supervised clustering, and an ensemble of these models is used to classify unla-
beled data. Empirical evaluation of both synthetic and real data reveals that our approach
outperforms state-of-the-art stream classification algorithms that use ten times more labeled
data than our approach.

Keywords Data stream classification · Semi-supervised clustering · Ensemble
classification · Concept drift

1 Introduction

Data stream classification is a challenging problem because of two important properties of the
stream: its infinite length and evolving nature. There are mainly two categories of evolution,

M. M. Masud (B) · C. Woolam · L. Khan · K. W. Hamlen
Department of Computer Science, University of Texas at Dallas,
Richardson, TX 75080, USA
e-mail: mehedy@utdallas.edu

J. Gao · J. Han
Department of Computer Science, University of Illinois at Urbana Champaign,
Urbana, IL 61801, USA

N. C. Oza
Intelligent Systems Division, NASA Ames Research Center,
Moffett Field, CA 94035, USA

123

M. Masud et al.

namely, concept drift and concept evolution. Informally, concept drift occurs when the class
labels of a set of examples change over time [26]. Concept evolution occurs when a new
class emerges in the stream [32]. However, both concept drift and concept evolution may
also occur simultaneously. In any case, the challenge is to build a classification model that
is consistent with the current concept. Most of the existing data stream classification tech-
niques [2,10,15,17,21,25,34,38,41] are based on supervised learning algorithms. Therefore,
the amount of labeled data in the stream affects the quality of the learned model. Manual
labeling of data is often costly and time consuming, so in an streaming environment, where
data appear at a high speed, it is not always possible to manually label all the data as soon
as they arrive. Thus, in practice, only a small fraction of the stream can be labeled by human
experts. Traditional stream classification algorithms have very few instances with which to
update their models in such circumstances, leading to poor classifiers. Our proposed approach
utilizes both labeled and unlabeled data for training and addresses this limited labeled data
problem of the supervised learning techniques.

For example, suppose an organization receives flight reports as text documents from all
over the world, at a rate of 1,000 reports per day. The documents have categories: “normal”,
“minor mechanical problem”, “minor weather problem”, “major mechanical problem”, and
so on. The system generates time sensitive warning messages that are sent to aviation author-
ities for proper action based on the document category. Important decision-making actions
such as flight planning, resource allocation, and personnel assignment are affected by these
warnings. Timely delivery of these warnings is critical to avoid both financial loss and cus-
tomer dissatisfaction. The trained domain experts can only read and label 100 of the 1,000
reports each day. We would like to create an automated stream document classification sys-
tem so that all 1,000 documents can be classified each day. One option is to train a purely
supervised learner using our 100 labeled data points. Another option is to wait to train the
supervised learner after 1,000 points are labeled. Neither of these scenarios are ideal. In the
former, our learner is trained with too few points. In the latter, we have to wait 10 days for
each labeled batch and may have an outdated model by that time.

To address these difficulties, we propose an algorithm that updates the existing classifica-
tion model utilizing the available 100 labeled and 900 unlabeled instances, while achieving
the same or better classification accuracy than a classification model that is updated using
1,000 labeled instances. Our approach uses semi-supervised learning to realize practical,
realistic, and cost-effective data stream classification under these conditions. Henceforth, we
refer to data streams as partially labeled when only a fraction of their instances are labeled,
and completely labeled when all instances are labeled.

Semi-supervised learning of data streams is challenging for several reasons. First, the data
stream is virtually infinite, and therefore, the learning must be incremental. We address this
problem by following a hybrid batch-incremental technique, dividing the stream data into
equal-sized chunks so that each chunk can be stored in main memory. When P% of instances
in a data chunk have been labeled, we train one classifier from that chunk. We maintain an
ensemble of L such classifiers to classify the unlabeled data using majority voting. Keeping
the number of classifiers in the ensemble constant allows us to elegantly address the infinite
length problem. Second, in order to cope with concept drift, the semi-supervised learner must
adapt to changes in the stream. This is accomplished by updating the ensemble by choosing
the best L models from the L+1 models (the previous L models plus the new model), based
on their individual accuracies over the labeled training data of the new data chunk. Finally,
because of concept evolution, new classes arrive in the stream, which requires updating the
existing model with the new class label information. We address this problem by refining the
existing models in the ensemble whenever a new class of data evolves in the stream.

123

Facing the reality of data stream classification

One of the main technical merits of the proposed framework lies in building a classifier
using semi-supervised learning. In brief, we apply constraint-based, semi-supervised clus-
tering to create K clusters [31] and split them into homogeneous clusters (pure clusters) that
contain only unlabeled instances, or only labeled instances from a single class. We maintain
a summary of each pure cluster (e.g., the centroid, number of data points, etc.) as a micro-
cluster and discard all the raw data points in order to save memory and achieve faster running
time. Finally, we apply a label propagation technique [39] on the micro-clusters to label the
unlabeled micro-clusters. These micro-clusters act as a classification model. The power of
the semi-supervised learning lies in utilizing both labeled and unlabeled data for building
a model. In a typical supervised data stream learning scenario, most of the unlabeled data
are discarded (not used for training) and are therefore wasted. However, semi-supervised
learning can utilize most of the unlabeled data to improve the quality of the learned model.
Therefore, the proposed framework is more applicable to real world data stream classification
problems than are existing supervised frameworks.

The major contributions of the work can be summarized as follows. First, we propose an
efficient semi-supervised clustering algorithm based on cluster-impurity measure. Second,
we apply our technique to classify evolving data streams. To our knowledge, there are no
stream data classification algorithms that apply semi-supervised clustering. Third, we pro-
vide a solution to the more practical problem of stream classification when labeled data are
scarce. We show that our approach, using only 10% labeled training data, achieves better
classification accuracy in real world data sets than other stream classification approaches that
use 100% labeled training data. We believe that the proposed method provides a promising,
powerful, and practical technique to the stream classification problem in general.

The rest of the paper is organized as follows: Sect. 2 discusses related work, Sect. 3 pro-
vides an overview of the classification process, Sect. 4 describes the theoretical background
and the implementation of the semi-supervised clustering, Sect. 5 discusses the ensemble
classification and ensemble updating process with micro-clusters, Sect. 6 discusses data set
and experimental setup, and evaluation of our approach, Sect. 7 discusses our findings, and
Sect. 8 concludes with suggestions for future work.

2 Related work

Our work is related to both semi-supervised clustering and stream classification techniques.
We briefly discuss both approaches.

Semi-supervised clustering techniques utilize a small amount of knowledge available in the
form of pairwise constraints (must-link, cannot-link), or class labels of the data points. Semi-
supervised clustering techniques can be subdivided into two categories [6]: constraint based
and distance based. Constraint-based approaches (e.g., [4,12,37]) try to cluster the data points
without violating the given constraints. Distance-based techniques (e.g., [11,19,24,40]) use
a specific distance metric or similarity measure (e.g., Euclidean distance), but the distance
metric is parameterized so that it can be adjusted to satisfy the given constraints. Some recent
approaches for semi-supervised clustering integrate the search-based and constraint-based
techniques into a unified framework by applying pairwise constraints atop the unsupervised
K -means clustering technique, and formulating a constrained K -means clustering prob-
lem [5,6,9]. These approaches usually apply the expectation-maximization (E-M) technique
to solve the constrained clustering problem.

Our approach follows the constraint-based approach but differs from past constraint-based
approaches. Most constraint-based approaches use pair-wise constraints (e.g., [9], whereas

123

M. Masud et al.

we utilize a cluster-impurity measure based on the limited labeled data contained in each
cluster [31]. If pair-wise constraints are used then the running time per E–M step is quadratic
in total number of labeled points, whereas the running time is linear if impurity measures are
used. Impurity measures are therefore more practical for classifying high-speed stream data.
Basu et al. [4] use neither pair-wise constraints nor cluster-impurity measures. Demiriz et al.
[12] use a cluster-impurity measure but apply expensive genetic algorithms and must adjust
weights given to different components of the clustering objective function in order to obtain
good clusters. In contrast, we apply E-M and do not need to tune parameters to get a better
objective function. Furthermore, we use a compound impurity measure rather than the simple
impurity measures used in [12]. To our knowledge, no other work applies a semi-supervised
clustering technique to classify stream data.

Data stream mining has gained popularity in the past decade due to the overwhelming rate
of data generated everyday in different applications. Two major thrusts in data stream mining
are clustering and classification. There are many approaches in data stream clustering, which
mainly focus on creating and updating clusters in an online fashion [42]. The micro-cluster-
ing technique for online clustering has been widely used [3,27]. However, these clustering
techniques are unsupervised, but our approach applies a semi-supervised clustering technique
as discussed above.

There have been many works in stream data classification. Data stream classification tech-
niques can be categorized as single-model versus ensemble,and as supervised techniques
requiring completely labeled training data versus those that require only partially labeled
training data. Some single-model classification techniques incrementally update their model
when new data arrives [14,21]. However, these techniques require complex operations to
update the internal structure of the model and in most cases use only recent data to update the
model. Thus, contributions of historical data are forgotten at a constant rate even if some of
the historical data are consistent with the current concept. This can adversely affect the pre-
diction accuracy of the refined model. Several ensemble techniques for stream data mining
have been proposed [15,17,18,22,25,38]. These ensemble approaches have the advantage
that they can be more efficiently built than updating a single model and they observe higher
accuracy than their single-model counterparts [35]. Our approach is an ensemble approach.

Supervised techniques for data stream classification require that the training data be com-
pletely labeled. Many approaches (e.g., [21,25,38,45]) assume that the true labels of data
points become available immediately after classification. In other words, they require that
all instances in the stream be labeled eventually. However, some other approaches (e.g.,
[1,2]) assume two logical streams, where one stream contains only labeled instances and the
other contains only unlabeled instances. The labeled stream is used to update the existing
model, and the model is used to classify the unlabeled stream. Therefore, although they are
supervised approaches, they do not require that all the instances in the stream be labeled.
Some other supervised approaches (e.g., [28]) consider the labeling delay by analyzing IBk
classifier performance under different delay values and classifier update strategies.

Since data labeling is costly and time consuming, some techniques have been proposed that
are not based on supervised learning, and that try to minimize the labeling cost by utilizing
small amount of labeled data. There are different approaches that fall into this category, such
as active learning [16,46], positive unlabeled (PU) learning [30,44], and semi-supervised
learning [29,31]. Active learning techniques selectively choose a small number of unlabeled
data for labeling and use those labels to update the existing classification model. Active
learning techniques are useful since they require few labeled instances for training. How-
ever, choosing a proper threshold for the labeling decision (i.e., whether an instance should
be labeled) is a major challenge for these techniques. Furthermore, these techniques cannot

123

Facing the reality of data stream classification

use unlabeled data for training, whereas semi-supervised learning approaches can. PU learn-
ing approaches use only labeled, positive instances along with some unlabeled instances to
update the classifier. These approaches are only applicable to binary classification problems.
Semi-supervised learning techniques capitalize on a few labeled instances and use a large
amount of unlabeled instances to train a classification model.

Our proposed approach is a semi-supervised approach. It is applicable to multi-class clas-
sification problems. The main difference between these techniques and the active learning
approaches is that the semi-supervised approaches do not require selective labeling, and
therefore, do not need a threshold for deciding whether an instance should be labeled. In
the technique proposed here, the data points that need to be labeled may be chosen ran-
domly. Furthermore, semi-supervised approaches can also utilize unlabeled training data for
improving the quality of the learned model.

Our current work is an extension of two previous works [31,39]. In this paper, we describe
our technique more elaborately and provide detailed understanding and theoretical analysis
of the proposed framework. We have also enriched the experimental results by adding three
more datasets beyond those reported in [31]. Furthermore, we run more rigorous experiments,
such as parameter sensitivity, running time analysis, as well as contribution of different com-
ponents of the proposed technique, and report in-depth analysis and justification of the results.

3 Top level description

We begin by informally defining the data stream classification problem. We assume that data
arrive in chunks, as follows:

D1 = x1, . . . , xS

D2 = xS+1, . . . , x2S

...

Dn = x(n−1)S+1, . . . , xnS

where xi is the i th instance in the stream, S is the chunk size, Di is the i th data chunk, and Dn

is the latest data chunk. Assuming that the class labels of all the instances in Dn are unknown,
the problem is to predict their class labels. Let yi and ŷi be the actual and predicted class
labels of xi , respectively. If ŷi = yi , then the prediction is correct; otherwise it is incorrect.
The goal is to minimize the prediction error.

Table 1 explains the terms and symbols that are used throughout the paper. The high-level
architecture of our Realistic Stream Classifier (ReaSC) is depicted in Fig. 1.

We train a classification model from a data chunk Di as soon as P% (P � 100) randomly
chosen instances from the chunk have been labeled by an independent labeling mechanism
(e.g., human experts). This assumption is less strict than other stream classification tech-
niques, such as [38], which assumes that all the instances of Di are labeled before it can be
used to train a model. We build the initial ensemble M from L models = {M1, ...,M L } using
the first L data chunks, where Mi is trained from chunk Di . Algorithm 1 (below) is then
applied to each new incoming chunk.

The main steps are as follows:

1. Classification: The existing ensemble is used to predict the labels of each instance in
Dn using a classification function and majority voting (Sect. 5.1). As soon as Dn has
been partially labeled, the following steps are performed.

123

M. Masud et al.

Table 1 Symbols and terms

S: Chunk size L: Ensemble size
C : Number of classes in the stream Di : A data chunk
K : Number of initial clusters per chunk (before splitting)
K̂ : Number of micro-clusters per model (K̂ ≤ (C + 1)K)
P: Percentage of labeled data in each chunk
M : The ensemble of models {M1,...,M L }
Mi : The i th model in the ensemble = the set of micro-clusters {ψ i

1,...,ψ i
K̂ }

ψ i
j : The j th micro-cluster in the i th model

Labeled instance: An instance that has been correctly labeled by an independent labeling mechanism
(e.g., a domain expert)
Partially labeled chunk: A data chunk having at least P% labeled instances
Completely labeled chunk: A data chunk having 100% labeled instances

Fig. 1 Overview of ReaSC

Algorithm 1 ReaSC
Input: Dn : Latest data chunk

M : current ensemble of L models {M1, ...,M L }
Output: Updated ensemble M
1: for all xi ∈ Dn do ŷi ← Classify(M ,xi) (Sect. 5.1)
2: When P% instances in Dn are labeled
3: M ′ ← Train(Dn) (Sect. 4) /* */ Build a new model M ′
4: M ← Refine-Ensemble(M,M ′) (Sect. 5.2)
5: M ← Update-Ensemble(M,M ′, Dn) (Sect. 5.3)
6: return M

2. Training: Training occurs by applying semi-supervised clustering on the partially
labeled training data to build K clusters (Sect. 4). The semi-supervised clustering is
based on the E-M algorithm, which locally minimizes an objective function. The clusters
are then split into pure clusters, where a pure cluster contains only unlabeled datapoints
or labeled datapoints of only one class. The summary of each pure cluster is then saved
as a micro-cluster. We combine this set of micro-clusters with the labeled micro-clusters
(micro-clusters that correspond to manually labeled instances) from the last r contigu-
ous chunks. Finally, we apply a label propagation technique to propagate labels from the
labeled micro-clusters to the unlabeled micro-clusters. This yields a new classification
model M ′ that can be used to classify unlabeled data.

123

Facing the reality of data stream classification

Table 2 An example of ReaSC actions with stream progression

Arrival of chunk Action(s)

Stream progression
D1 —
D2 M1 ← Train(D1)
.
.
.

.

.

.

DL+1 M L ← Train(DL), Initial model M = {M1, ...,M L }
∀x j ∈ DL+1 ŷ j ← Classifiy(M ,x j)

DL+2 M ′ ← Train(DL+1)
M ← Refine-Ensemble(M ,M ′)
M ← Update-Ensemble(M ,M ′,DL+1)
∀x j ∈ DL+2 ŷ j ← Classifiy(M ,x j)

.

.

.
.
.
.

DL+i M ′ ← Train(DL+i−1)
M ← Refine-Ensemble(M ,M ′)
M ← Update-Ensemble(M ,M ′,DL+i−1)
∀x j ∈ DL+i ŷ j ← Classifiy(M ,x j)

.

.

.
.
.
.

3. Ensemble refinement: In this step, M ′ is used to refine the existing ensemble of models
(Sect. 5.2), if required. Refinement is required if M ′ contains some data of a particular
class c, but no model in the ensemble M contains any data of that class. This situation
may occur because of concept evolution. In this case, the existing ensemble M does not
have any knowledge of class c, so it must be refined to classify instances of this class.
Refinement occurs by injecting micro-clusters of M ′, which contains labeled instances
of class c, into the existing models of the ensemble.

4. Ensemble update: In this step, we select the best L models from the L+1 models of
M ∪ {M ′} based on their accuracies on the labeled instances of Dn (Sect. 5.3). These L
best models comprise the new ensemble. The ensemble technique helps the system to
cope with concept drift.

Table 2 illustrates a schematic example of ReaSC. In this example, we assume that P% of
data chunk Di is labeled by the time chunk Di+1 arrives. The initial ensemble is built with
the first L chunks. Then, the ensemble is used to classify the latest chunk (DL+1). Arrival of
each following chunk DL+i (i > 1) evokes the following sequence of operations:

(i) Train a new model M ′ using chunk DL+i−1, which been partially labeled by the arrival
of chunk DL+i .

(ii) Refine the existing ensemble M using the new model M ′.
(iii) Update the ensemble M by choosing the best L models from M ∪ {M ′}.
(iv) Classify each instance in DL+i using ensemble M .

4 Training with limited labeled data

As mentioned earlier, we train a classification model from each partially labeled data chunk.
The classification model is a collection of K micro-clusters obtained using semi-supervised

123

M. Masud et al.

clustering and label propagation. Training consists of four basic steps: semi-supervised clus-
tering, cluster splitting, label propagation, and storing the cluster summaries as micro-clusters.

4.1 Semi-supervised clustering

In the semi-supervised clustering setting, we are given a set of m data points X =
{x1, . . . , xl, xl+1, . . . , xm}, where the first l instances are labeled and the remaining instances
are unlabeled. We assign the class label yi = 0 for each unlabeled instance xi, i > l. We
are to create K clusters, maintaining the constraint that all points in the same cluster have
the same class label. We restrict the value of parameter K to be greater than the number of
classes C , since intuitively there should be at least one cluster for each class of data. We will
first re-examine the unsupervised K-means clustering in Sect. 4.1.1 and then propose a new
semi-supervised clustering technique using cluster-impurity minimization in Sect. 4.1.2.

4.1.1 Unsupervised K -means clustering

The unsupervised K -means clustering creates K -partitions of the data points based on
the only available information—the similarity/dispersion measure among the data points.
The objective is to minimize the sum of dispersion between each data point and its cor-
responding cluster centroid (i.e., intra-cluster dispersion). Given m unlabeled data points
X = {x1, x2, . . . , xm}, K -means creates K -partitions {X1, ...,XK } of X , minimizing objec-
tive function

OKmeans =
K∑

i=1

∑

x∈Xi

||x − ui ||2 (1)

where ui is the centroid of cluster i , and ||x − ui || is the Euclidean distance between x and
ui .

4.1.2 K -means clustering with cluster-impurity minimization

Given a limited amount of labeled data, the goal of K -means with minimization of cluster
impurity (MCI-Kmeans) is to minimize the intra-cluster dispersion (same as unsupervised
K -means) while minimizing the impurity of each cluster. A cluster is completely pure if it
contains only unlabeled instances or labeled instances from only one class. Thus, the objec-
tive function should penalize each cluster for impurity. The general form of the objective
function is as follows:

OMCIKmeans =
K∑

i=1

∑

x∈Xi

||x − ui ||2 +
K∑

i=1

Wi Impi (2)

where Wi is the weight associated with cluster i and Impi is the impurity of cluster i . In
order to ensure that both the intra-cluster dispersion and cluster impurity are given the same
importance, the weight associated with each cluster should be adjusted properly. In addition,
we wish to penalize each data point that contributes to the impurity of the cluster. So, the
weight associated with each cluster is chosen to be

Wi = |Xi |D̄Xi (3)

where Xi is the set of data points in cluster i and D̄Xi is the average dispersion of each of
these points from the cluster centroid. Thus, each instance contributes to the total penalty,

123

Facing the reality of data stream classification

which equals the cluster impurity multiplied by the average dispersion of the data points from
the centroid. We observe that Eq. 3 is equivalent to the sum of dispersions of all the instances
from the cluster centroid. That is, we may rewrite Eq. 3 as:

Wi =
∑

x∈Xi

||x − ui ||2

Substituting this formula for Wi into Eq. 2 yields

OMCIKmeans =
K∑

i=1

∑

x∈Xi

||x − ui ||2 +
K∑

i=1

∑

x∈Xi

||x − ui ||2Impi

=
K∑

i=1

∑

x∈Xi

||x − ui ||2(1+ Impi) (4)

Impurity measures: Equation 4 should be applicable to any impurity measure in general.
Entropy and Gini index are most commonly used impurity measures. We use the following
impurity measure: Impi = ADCi Enti , where ADCi is the aggregated dissimilarity count
of cluster i and Enti is the entropy of cluster i . The reason for using this impurity measure
will be explained shortly. In order to understand ADCi , we must first define the dissimilarity
count.

Definition 1 (Dissimilarity count) Let x be a data point having class label y, and x belongs
to cluster i . The dissimilarity count DCi (x, y) of x is the total number of instances in that
cluster having class label other than y. Formally, we define

DCi (x, y) = |Xi | − |Xi (y)| (5)

where Xi (y) is the set of instances in cluster i having class label y.

Recall that unlabeled instances are assumed to have class label 0. Note that DCi (x, y) can
be computed in constant time if we maintain an integer vector to store the counts |Xi (c)|,
c ∈ {0, 1, ..,C}. The aggregated dissimilarity count ADCi is the sum of the dissimilarity
counts of all the points in cluster i :

ADCi =
∑

x∈Xi

DCi (x, y). (6)

The entropy of a cluster i is computed as

Enti =
C∑

c=0

(−pi
c log(pi

c))

where pi
c is the prior probability of class c:

pi
c =
|Xi (c)|
|Xi | . (7)

The use of Enti in the objective function ensures that clusters with higher entropy are penal-
ized more. However, if only Enti had been used as the impurity measure, then each point
in the same cluster would have received the same penalty. But we want to favor the points
belonging to the majority class in a cluster and disfavor the points belonging to the minor-
ity classes. This punishment/reward scheme forces more points of the majority class to be
moved into the cluster, and more points of the minority classes to be moved out of the cluster.

123

M. Masud et al.

To improve the purity of the clusters in this way, we introduce ADCi into the equation. The
combination of ADCi and Enti is now called the compound impurity measure since it can be
shown that ADCi is proportional to the Gini index of cluster i . Following Eq. 6, we obtain

ADCi =
∑

x∈Xi

DCi (x, y) =
C∑

c=0

∑

x∈Xi (c)

DCi (x, y)

=
C∑

c=0

∑

x∈Xi (c)

(|Xi | − |Xi (c)|) (using Eq. 5)

=
C∑

c=0

|Xi (c)| (|Xi | − |Xi (c)|) = |Xi |2
C∑

c=0

(Xi (c)

Xi

) (
1− Xi (c)

Xi

)

= |Xi |2
C∑

c=0

pi
c(1− pi

c) (using Eq. 7)

= |Xi |2
(

1−
C∑

c=0

(pi
c)

2

)
= |Xi |2Ginii

where Ginii is the Gini index of cluster i .

Optimizing the objective function with E-M. The problem of minimizing Eq. 4 is an incom-
plete-data problem because the cluster labels and the centroids are all unknown. The common
solution to this problem is to apply E-M [13]. The E-M algorithm consists of three basic steps:
initialization, E-step, and M-step. Each of them is discussed below.

Initialization with proportionate cluster distribution. For each class c appearing in the data,
we initialize kc ≤ K centroids by choosing kc points from the labeled data of class c. The ratio
of kc to K is chosen to be equal to the ratio of the number of labeled points having class label
c to the total number of labeled points in the dataset. That is, kc = K |L(c)||L| , c ∈ {1, ...,C},
where L is the set of all labeled points in X , and L(c) is the subset of points in L belonging to
class c. We observed in our experiments that this initialization works better than initializing
equal number of centroids of each class. This is because if we initialize the same number
of centroids from each class, then larger classes (i.e., classes having more instances) tend to
create larger and sparser clusters, which leads to poorer classification model.

Let there be ηc labeled points of class c in the dataset. If ηc > kc, then we choose kc cen-
troids from ηc points using the farthest-first traversal heuristic [20]. To apply this heuristic,
we first initialize a visited set of points with a randomly chosen point having class label c.
At each iteration, we find a point x j of class c that maximizes the minimum distance from
all points in the visited set and add it to the visited set. This process continues until we have
kc points in the set. If ηc < kc, then we choose remaining centroids randomly from the unla-
beled points. After initialization, the E-Step and M-Step are iterated until the convergence
condition is fulfilled.

E-Step. In the E-Step, we assign each data point x to a cluster i such that its contribution
to the global objective function, OMCIKeans(x), is minimized:

OMCIKeans(x) = ||x − ui ||2(1+ Enti DCi (x, y)) (8)

123

Facing the reality of data stream classification

Note that the value of the global objective function OMCIKeans depends on the order in which
the labeled points are assigned to clusters. It is computationally intractable to try all possible
orderings and choose the best one. However, there are some heuristic approaches that approx-
imate the optimal solution. We follow the iterative conditional mode (ICM) algorithm [8].
This is implemented as follows: At each iteration of ICM, we first randomly order the points.
Then, we assign the points (in that order) to the cluster i that minimizes OMCIKeans(x). This is
continued until no point changes its cluster in successive iterations, which indicates conver-
gence. ICM is guaranteed to converge [8]. The E-step completes after termination of ICM,
and the algorithm moves to the M-step.

M-Step. In the M-Step, we re-compute each cluster centroid by averaging all the points in
that cluster:

ui =
∑

x∈Xi
x

|Xi | (9)

After performing this step, the convergence condition is checked. If fulfilled, the procedure
terminates, otherwise another iteration of E-Step and M-Step is performed.

4.2 Splitting clusters into pure clusters

Although most of the clusters constructed in the previous step are made as pure as possible,
some of them may contain instances from a mixture of classes or may contain a mixture of
labeled and unlabeled instances. The clusters are therefore split into pure clusters so that each
pure cluster contains only unlabeled instances or only labeled instances from a single class.
This is done by creating C+1 groups of instances of the cluster—one group per class plus
one group for the unlabeled instances—and considering each group as a pure cluster. At this
point, the reader may ask whether we could create the pure clusters in one step using K -means
clustering separately for each class and for the unlabeled data in a supervised fashion rather
than creating them in two steps—i.e., via semi-supervised clustering and splitting. The reason
for this two-step process is that when limited amount of labels are available, semi-supervi-
sion is usually more useful than full supervision. It is likely that supervised K -means would
create low quality, less dense, or more scattered clusters than semi-supervised clustering. The
resulting cluster representatives (micro-clusters) would have less precision in representing
the corresponding data points. As a result, the label propagation may also perform poorly.

Splitting is done as follows. Suppose Hi is a cluster.

Case I: Hi contains only unlabeled instances or only labeled instances from a single
class. No splitting is necessary since the cluster is already pure.

Case II: Hi contains both labeled and unlabeled instances, and/or labeled instances
from more than one class. For each class, we create a cluster with the instances
of that class. If Hi contains unlabeled instances, then another cluster is created
with those unlabeled instances.

The resulting pure clusters contain only unlabeled instances or labeled instances from a single
class. The total number of pure clusters will be at most (C + 1)K = K̂ , which is a constant.
However, in practice, we find that K̂ is almost the same as K . This is because in practice
most of the macro-clusters are purely homogeneous and need not be split.

Splitting pure, unlabeled clusters. The pure, unlabeled clusters may be further split into
smaller clusters. This is because, if the instances of a pure unlabeled cluster actually come

123

M. Masud et al.

from different classes, then this cluster will have a negative effect on the label propagation.
However, there is no way to accurately know the real labels of the unlabeled instances. So,
we use the predicted labels of those instances that were obtained when the instances were
classified using the ensemble. Therefore, the pure unlabeled micro-clusters are split into
smaller clusters based on the predicted labels of the unlabeled instances. Note that cluster
splitting may create clusters of different sizes. However, this does not affect classification
quality since the classification function (Sect. 5.1) considers cluster size; i.e., smaller clusters
have less weight and vice versa.

4.3 Storing the cluster summaries

After building and splitting the clusters, we create a summary of the statistics of the data
points belonging to each cluster. The summary contains (i) the total number of points N , (ii)
the total number of labeled points Lt, (iii) the class label y ∈ {1, ...,C} of the instances in the
cluster or 0 if the instances are unlabeled, and (iv) the centroidμ of the cluster. Ifψi represents
a micro-cluster then ψi (N) represents the number of instances in the micro-cluster, ψi (μ)

represents the centroid, and so on. This summary is hence referred to as a micro-cluster.
After creating the micro-clusters, we discard the raw data points.

4.4 Label propagation

We combine all the labeled micro-clusters from the last r contiguous chunks with the micro-
clusters obtained using the technique discussed above. The default value of r is 3 [39]. Since
most micro-clusters are unlabeled, label propagation is applied to provide appropriate labels
to all the micro-clusters. We follow the label spreading technique of Zhou et al. [43]. This
approach first creates an affinity matrix based on some similarity metric from the given data
points.

W i, j = e
−

(||xi−x j ||
2σ2

)

(10)

where xi and x j are two data points in the dataset. The affinity matrix constructs a fully
connected graph where each data point represents a vertex and W i, j represents the weight
of the edge between the vertices xi and x j . We modify the Gaussian kernel affinity equation
for micro-clusters as follows:

W i, j = e
−

(||ψi (μ)−ψ j (μ)||
2σ2

)

ψ j (N) (11)

where ψi and ψ j are two micro-clusters, ψi (μ) is the centroid of ψi , and ψ j (N) is the
number of data points in ψ j . The intuition behind this modification is as follows. Weight
W i, j is the edge weight of the directed edge between micro-clusters ψi andψ j . During label
propagation, the weights of the neighbors of a micro-cluster partially determine the label of
that micro-cluster. Thus, the larger the weight, the greater the influence of its neighbors in
determining its label. In case of a single data point, as opposed to micro-clusters, the affinity
matrix only depends on the similarity between the two points. In case of micro-clusters, sta-
tistic ψ(N) should also be considered for each micro-cluster ψ , because each micro-cluster
ψ j actually represents ψ j (N) single data points. The influence of ψ j on ψi should therefore
be ψ j (N) times the influence of a single data point, and vice versa. It should be noted that
the diagonal entries of the affinity matrix W i,i should be zero.

123

Facing the reality of data stream classification

After constructing the affinity matrix, the label spreading algorithm of Zhou et al. [43] is
applied. First, the vector of labels is initialized:

Y (0) = (y1, . . . , yl , 0, 0, . . . , 0) (12)

where yi is the class label of the i th micro-cluster and 0 is the class label for the unlabeled
micro-clusters. In each iteration of the algorithm, the label of a micro-cluster is determined
using a linear combination of its initial label, its current label, and the labels of its neighbors:

Y (t+1) = αLY (t) + (1− α)Y (0) (13)

where α is a constant between 0 and 1, and L is the normalized graph Laplacian of W . We use
σ = 0.25, and α = 0.99 in our experiments, which is the suggested value according to [39].
The algorithm terminates when no micro-cluster changes its label in successive iterations. For
binary classification problems, the label value yi associated with each labeled micro-cluster
ψi is initialized with either −1 or +1 and that of each unlabeled micro-cluster is initialized
with 0. When the algorithm terminates, the label of a micro-cluster is obtained from the sign
of y. For multi-class problems, yi is a vector having one value in interval [0, 1] for each
class. For unlabeled ψi , the vector initially contains all zeros. For a labeled ψi belonging to
class c, yi [c] is set to 1 and yi [j] is set to 0 for all other classes j 	= c. When the algorithm
terminates, the label of a micro-cluster is chosen to be the class having the maximum value
in the vector yi . These K̂ micro-clusters are used as a classification model to classify future
data. The next section discusses the ensemble updating and classification techniques.

5 Ensemble classification

The ensemble consists of L models, where each model is trained with a partially labeled data
chunk according to Sect. 4. The initial ensemble consists of the first L models trained with the
first L chunks in the stream. The ensemble is used to classify future unlabeled instances. The
ensemble additionally undergoes several modifications in each successive chunks to keep it
current with the most recent concept.

5.1 Classification

The classification function uses an inductive label propagation technique. In order to classify
an unlabeled data point x with a model Mi , we use the following formula [7]

ŷ =
∑

j W�(x, ψ j)ŷ j∑
j W�(x, ψ j)+ ε (14)

where x is the test point, theψ j ’s are the pseudo-points in the model, W� is the function that
generated matrix W on � = {ψ1, ..., ψK̂ }, and ε is a small smoothing constant to prevent
the denominator from being zero.

This equation is designed for binary classification. It can also be applied to multi-class
classification if ŷ is considered as a vector of C values in interval [0, 1], where C is the
total number of classes. The predicted class will be the class whose corresponding value
is maximal in ŷ. The inductive rule was designed to classify a test instance using a single
model. In order to classify a test instance using the ensemble, we compute ŷ for each model
Mi ∈ M separately and then sum all of the ŷ vectors. The maximum value in this vector sum
becomes the predicted class.

123

M. Masud et al.

5.2 Ensemble refinement

After a new model M ′ has been trained with a partially labeled data chunk, the existing
ensemble M is refined with this model (Algorithm 1, line 3). Refinement is done if the latest
partially labeled data chunk Dn contains a class c that is absent in all models of the ensemble
M . This is possible if either a completely new class appears in the stream or an old class
re-appears that has been absent in the stream for a long time. Both of these happen because
of concept evolution, and the class c is therefore termed an evolved class. Note that there
may be more than one evolved classes in the stream. If there is any evolved class, M must be
refined so that it can correctly classify future instances of that class. Algorithm 1 describes
how the existing model is refined.

Algorithm 2 Refine-Ensemble

Input: M : current ensemble of L models {M1, ...,M L }
M ′: the new model built from the new data chunk Dn

Output: Refined ensemble M
1: if Need-to-refine(M) = false then return M
2: for each labeled micro-cluster ψ j ∈ M ′ do
3: if ψ j (y) (the class label of ψ j) is an evolved class then
4: for each model Mi ∈ M do
5: Q← the closest pair of micro-clusters in Mi having the same class label
6: if Q 	= null and |Mi | ≥ K then Merge the pair of micro-clusters in Q
7: Mi ← Mi ∪ ψ j /* Injection */
8: end for
9: end if
10: end for
11: return M

The Refine-Ensemble algorithm. Algorithm 1 starts (line 1) by checking whether ensemble
refinement is needed. This can be done in constant time by keeping a boolean vector V of
size C per model and setting V [c] ← true during training if there is any labeled training
instance from class c. Function Need-to-refine(M) checks whether there is any class c such
that V [c] is false for all models Mi ∈ M , but true for M ′. If there is such a class c, then
c is an evolved class so refinement is necessary. In that case, the algorithm looks into each
micro-cluster ψ j of the new model M ′ (line 2). If the class label of ψ j is an evolved class
(line 3), then we do the following.

For each model Mi ∈ M , we inject micro-cluster ψ j into Mi (line 7). Injection means
addingψ j to model Mi . Before injectingψ j , we try to merge the closest pair of micro-clusters
in Mi having the same class label (line 6). This is done to keep the number of micro-clusters
in each model constant. However, merging is done only if both the following conditions are
satisfied: (i) there exist a pair of micro-clusters having the same class label, and (ii) the total
number of micro-clusters |Mi | is greater than or equal to K . Note that condition (i) fails if
|Mi | ≤ C . This happens if either |Mi | < K or K ≤ C . Condition (ii) fails if |Mi | < K . Thus,
merging is not performed if |Mi | < K or K ≤ C . The first special case |Mi | < K occurs
because of deleting micro-clusters (see the last paragraph of this subsection on micro-cluster
deletion). We allow |Mi | to be incremented after injection in this case. The second special
case K ≤ C occurs because of concept evolution, i.e., as a result of new classes appearing
in the stream. This cannot be allowed since K > C must be maintained (see Sect. 4). In

123

Facing the reality of data stream classification

this case, we not only increment |Mi | with injection but also increment K (not shown in the
algorithm) to maintain the K > C relationship.

The reasoning behind the refinement is as follows. Since no model in ensemble M has
knowledge of an evolved class c, the models will certainly misclassify any data belonging to
the class. By injecting micro-clusters of class c, we introduce some data from this class into
the models, which reduces their misclassification rate. It is obvious that when more training
instances are provided to a model, its classification error is more likely to decrease. How-
ever, if the same set of micro-clusters are injected in all the models, the correlation among
the models may increase, resulting in reduced prediction accuracy of the ensemble. If the
errors of the models in an L-model ensemble are independent, then the added error (i.e., the
error in addition to Bayes error) of the ensemble is 1/L times the added error of a single
model [35]. However, the ensemble error may be higher if there is correlation among the
errors of the models. Even if correlation is introduced by injecting the micro-clusters, the
following lemma (Lemma 1) shows that under certain conditions, the overall added error
of the ensemble is reduced after injection. The lemma is based on the assumption that after
injection, single model error monotonically decreases with increasing prior probability of
class c. In other words, we assume that there is a continuous monotonic decreasing function
f : [0, 1] → [0, 1] such that

E = f (γc)E0 (15)

where E0 and E are the single model errors before and after injection (respectively), and γc

is the prior probability of class c. Observe that f (0) = 1, since γc = 0 means class c has
not appeared at all and therefore no injection has been made. Lemma 1 quantifies an upper
bound of the function that is necessary for ensemble error reduction.

Lemma 1 Let c be an evolved class, E0
M and EM be the added errors of the ensemble before

and after injection (respectively), E0 and E be the added errors of a single model before and
after injection (respectively), and γc be the prior probability of class c. The injection process
will reduce the added error of the ensemble provided that

f (γc) ≤ 1

1+ γ 2
c (L − 1)

.

where L is the ensemble size.

Proof According to [35],

EM = E 1+ δ(L − 1)

L
(16)

where L is the total number of models in the ensemble, and δ is the mean correlation among
the models, given by:

δ =
C∑

i=1

γiδi (17)

where γi is the prior probability of class i and δi is the mean correlation associated with class
i , given by:

δi = 1

L(L − 1)

L∑

m=1

∑

l 	=m

Corr(ηm
i , η

l
i) (18)

123

M. Masud et al.

where Corr(ηm
i , η

l
i) is the correlation between the error ηm

i of model m and the error ηl
i of

model l. For simplicity, we assume that the correlation between two models is proportional
to the number of instances that are common to both these models. That is, the correlation is
1 if they have all instances in common, and 0 if they have no instances in common. Thus,
before injection, the correlation between any pair of models is zero (since the models are
trained using disjoint training data). As a result,

E0
M =

E0

L
(19)

After injection, some instances of class c may be common among a pair of models, leading
to δc ≥ 0, where c is the evolved class.

Consider a pair of models m and l whose prior probabilities of class c are γm
c and γ l

c ,
respectively, after injection. So, the correlation between m and l reduces to:

Corr(ηm
c , η

l
c) = 1

2 (γ
m
c + γ l

c)

Substituting this value into Eq. 18, we obtain

δc = 1

L(L − 1)

1

2

L∑

m=1

∑

l 	=m

(γm
c + γ l

c)

= 1

L(L − 1)

1

2
2(L − 1)

L∑

m=1

γm
c =

1

L

L∑

m=1

γm
c = γ̄c (20)

where γ̄c is the mean prior probability of class c in each model. Note that the mean prior
probability γ̄c represents the actual prior probability γc, so they can be used interchangeably.
Substituting this value of δi in Eq. 17 yields

δ =
C∑

i=1

γiδi = γcδc +
C∑

i=1,i 	=c

γiδi = (γc)
2 + 0 = (γc)

2

since δi = 0 for all non-evolved classes (since no instance of those classes is common
between any pair of models). Substituting this value of δ into Eq. 16, we obtain

EM = E 1+ γc
2(L − 1)

L

= f (γc)E0 1+ γc
2(L − 1)

L
(using Eq. 15)

= E0

L
f (γc)(1+ γc

2(L − 1))

= E0
M f (γc)(1+ γc

2(L − 1)) (using Eq. 19)

We will therefore have an error reduction provided that EM ≤ E0
M , which leads to:

f (γc)(1+ γ 2
c (L − 1)) ≤ 1

f (γc) ≤ 1

1+ γ 2
c (L − 1)

(21)

�

123

Facing the reality of data stream classification

From Lemma 1, we infer that function f becomes more restricted as γc or L increase. For
example, for γc = 0.5, if L = 10 then f (γc) ≤ 0.31, meaning that E ≤ 0.31E0 is required
for error reduction. For the same value of γc, if L = 2 then E ≤ 0.8E0 is required for error
reduction. However, in our experiments, we always observe error reduction after injection,
i.e., Eq. 21 has always been satisfied. Still, we recommend that the value of L be kept within
10 for minimizing the risk of violating Eq. 21.

Micro-cluster deletion. In order to improve the classification accuracy of a classifier Mi ,
we occasionally remove micro-clusters that may have negative effect on the classification
accuracy. For each micro-cluster ψ ∈ Mi , we maintain the accuracy of ψ as A(ψ). A(ψ) is
the percentage of manually labeled instances for which ψ is a nearest neighbor and whose
class label is the same as that of ψ . If for any labeled instance x , its nearest micro-cluster
ψ has a different class label than x , then A(ψ) drops. This statistic helps determine whether
any micro-cluster has been wrongly labeled by the label propagation, or if the micro-clus-
ter has become outdated because of concept drift. In general, we delete ψ if A(ψ) drops
below 70%.

5.3 Ensemble update

After the refinement, the ensemble is updated to adapt to the concept drift in the stream. This
is done as follows. We have now L+1 models—L models from the ensemble plus the newly
trained model M ′. One of these L+1 models is discarded, and the rest of them comprise the
new ensemble. The discarded victim is chosen by evaluating the accuracy of each of these
L+1 models on the labeled instances in the training data Dn . The model having the worst
accuracy is discarded.

5.4 Time complexity

The ensemble training process consists of four main steps: (1) creating clusters using E-M,
(2) splitting clusters and label propagation, (3) refining the ensemble, and (4) updating the
ensemble. Step 2 requires O(K̂ 3L) time, and Step 3 requires O(K̂ L(P/100)S) time, where
P is the percentage of labeled data (P ≤ 100) in the chunk and S is the chunk size. Step 1
(E-M) requires O(KSIicm Iem) time, where Iicm is the average number of ICM iterations per
E-step and Iem is the total number of E-M iterations.

Although it is not possible to find the exact values of Iicm and Iem analytically, we obtain
an approximation by observation. We observe from our experiments that Iem depends only
on the chunk size S, and Iicm is constant (Iicm ≈ 2) for any dataset. On average, a data chunk
having 1,000 instances requires 10 E-M iterations to converge. This increases sub-linearly
with chunk size. For example, a 2,000 instance chunk requires 14 E-M iterations and so on.
There are several reasons for this fast convergence of E-M, including: (1) proportionate initial
seed selection from the labeled data using farthest-fast traversal, and (2) using the compound
impurity measure in the objective function.

Therefore, the overall time complexity of the ensemble training process of ReaSC is
O(K̂ 3L + K̂ L(P/100)S + K S g(S)), where g is a sub-linear function. This complexity
is almost linear in S for a moderate chunk size. The time complexity of ensemble clas-
sification is O(K̂ L S), which is also linear in S for a fixed value of K̂ and L . Note that
K is the number of initial clusters built from each chunk using semi-supervised cluster-
ing, and K̂ is the number of total micro-clusters obtained by splitting the clusters into pure
clusters.

123

M. Masud et al.

6 Experiments

In this section, we discuss the data sets used in the experiments, the system setup, and the
results.

6.1 Dataset

We apply our technique on two synthetic and two real datasets. The synthetic datasets we
generate both simulate concept drift, but one simulates concept evolution, as well. One of the
two real datasets is the 10% version of the KDD cup 1999 intrusion detection dataset [23]. The
other one is the aviation safety reporting systems (ASRS) dataset obtained from NASA [33].
All of these datasets are discussed in the following paragraphs.

Concept drifting synthetic dataset (SynD). We use this dataset in order to show that our
approach can handle concept drift. SynD data are generated using a moving hyperplane
technique. The equation of a hyperplane is as follows:

d∑

i=1

ai xi = a0.

where d is the total number of dimensions, ai is the weight associated with dimension i ,
and xi is the value of i th dimension of a datapoint x . If

∑d
i=1 ai xi ≤ a0, then an example

is considered negative, otherwise it is considered positive. Each instance is a randomly gen-
erated d-dimensional vector {x1, ..., xd }, where xi ∈ [0, 1]. Weights {a1, ..., ad } are also
randomly initialized with a real number in the range [0,1]. The value of a0 is adjusted so that
roughly the same number of positive and negative examples are generated. This can be done
by choosing a0 = 1

2

∑d
i=1 ai . We also introduce noise randomly by switching the labels of

p% of the examples, where p = 5 in our experiments.
There are several parameters that simulate concept drift. Parameter m specifies the percent

of total dimensions whose weights change, and it is set to 20%. Parameter t specifies the
magnitude of the change in every N examples. In our experiments, t varies from 0.1 to 1.0,
and N = 1, 000. For all i ∈ {1, . . . , d}, si specifies the direction of change for each weight.
Weights change continuously; ai is adjusted by si t/N after each example is generated. There
is a possibility of r% that the change would reverse direction after every N examples are
generated. In our experiments, r is 10%. We generate a total of 250,000 instances and divide
them into equal-sized chunks.

Concept drifting with concept-evolving synthetic dataset (SynDE). The SynDE dataset sim-
ulates both concept drift and concept evolution. That is, new classes appear in the stream, old
classes disappear, and the concept for each class gradually changes over time. The dataset
size varies from 100 to 1,000 K points, the number of class labels varies from 5 to 40, and
data dimensions vary from 20 to 80. Data points belonging to each class are generated by
following a normal distribution having different mean (−5.0 to +5.0) and variance (0.5–6)
for different classes. That is, each class is assigned a different mean and variance for the
feature vector. In order to simulate the evolving nature of data streams, the prior probabilities
of different classes are varied with time. This causes some classes to appear and other classes
to disappear at different times in the stream history. In order to simulate the drifting nature
of the concepts, the mean values for the feature vector for each class are gradually changed
in a way similar to the SynD dataset. We name the different synthetic datasets using the

123

Facing the reality of data stream classification

syntax 〈size〉C〈# of classes〉D〈# of dimensions〉. For example, dataset 300KC5D20 has 300
K points, 5 classes, and 20 dimensions.

KDDCup 99 network intrusion detection real dataset (KDD). This dataset contains TCP
connection records extracted from LAN network traffic at MIT Lincoln Labs over a period
of two weeks. We have used the 10% version of the dataset, which is more concentrated than
the full version. Here, different classes appear and disappear frequently. Each instance in the
dataset refers to either to a normal connection or an attack. There are 22 types of attacks, such
as buffer-overflow, portsweep, guess-passwd, neptune, rootkit, smurf, spy, etc. So, there are
23 different classes of data, most of which are normal. Each record consists of 42 attributes,
such as connection duration, the number bytes transmitted, number of root accesses, etc. We
use only the 34 continuous attributes and remove the categorical attributes.

Aviation safety reporting systems real dataset (ASRS). This dataset contains around 150,000
text documents. Each document is a report corresponding to a flight anomaly. There are a
total of 55 anomalies, such as “aircraft equipment problem : critical”, “aircraft equipment
problem : less severe”, “inflight encounter : birds”, “inflight encounter : skydivers”, “main-
tenance problem : improper documentation” etc. Each of these anomalies is considered a
class. These documents represent a data stream since the dataset contains the reports in order
of their creation time and new reports are added on a regular basis.

We perform several preprocessing steps on this dataset. First, we discard the classes that
contain very few (less than 100) documents. We choose 21 classes among the 55, which
reduced the total number of selected documents to 125,799. Second, we extract word fea-
tures from this corpus and select the best 1,000 features based on information gain. Then,
each document is transformed into a binary feature vector, where the value corresponding to
a feature is 1 if the feature (i.e., word) is present, or 0 if it is not present in the document.
The instances in the dataset are multi-label, meaning that an instance may have more than
one class label. We transform the multi-label classification problem into 21 separate binary
classification problems by generating 21 different datasets from the original dataset, one for
each class. The dataset for the i th class is generated by marking the instances belonging to
class i as positive, and all other instances as negative. When reporting the accuracy, we report
the average accuracy of the 21 datasets.

6.2 Experimental setup

Hardware and software. We implement the algorithms in Java. The experiments were run
on a Windows-based Intel P-IV machine with 2GB of memory and a 3 GHz dual processor
CPU.

Parameter settings The default parameter settings are as follows, unless stated otherwise: (i)
the number of micro-clusters K = 50 for all datasets; (ii) the chunk size S = 1,600 records
for real datasets, and S = 1,000 records for synthetic datasets; and (iii) the ensemble size
L = 6 for all datasets.

Baseline method To evaluate our algorithm, we compare it with On Demand Stream
(OnDS) [2]. OnDS also uses a cluster-based classification model. The classification tech-
nique is based on the k-NN technique, which is similar to ours. Because of these similarities,
we use OnDS as the baseline technique for comparison. However, there are two main differ-
ences between OnDS and ReaSC. First, OnDS uses a supervised learning technique, whereas

123

M. Masud et al.

 70

 75

 80

 85

 50 100 150 200 250

C
um

ul
at

iv
e

ac
cu

ra
cy

(%
)

Chunk No

OnDS(100% labeled data)
ReaSC(10% labeled data)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate

OnDS(100% labeled data)
(AUC=0.805)

ReaSC(10% labeled data)
(AUC=0.889)

(b)

Fig. 2 Cumulative accuracy (a) and ROC curve (b) for SynD dataset

ReaSC uses semi-supervised technique. Second, OnDS saves historical snapshots and uses
them for classification, whereas ReaSC uses a fixed-sized ensemble for classification. We
use the default values of all parameters of OnDS, with a buffer size and stream speed of
1,600 and 80 (respectively) for real datasets, and 1,000 and 200 (respectively) for synthetic
datasets, as proposed by the authors. Since OnDS assumes two separate streams, one labeled
and the other unlabeled, we also apply the same assumption for ReaSC for a fair comparison.
This is done by considering each even instance of a stream as a training instance and each
odd instance as a test instance.

When training ReaSC, we assume that only 10% of randomly chosen instances in a train-
ing chunk have labels (i.e., P = 10), whereas for training OnDS, 100% instances in the
training chunk are assumed to have labels. Thus, if there are 100 data points in a training
chunk, then OnDS has 100 labeled training data points, but ReaSC has only 10 labeled and 90
unlabeled training instances. Also, for a fair comparison, the chunk size of ReaSC is always
kept equal to the buffer size of OnDS. Note that P is not a parameter of ReaSC, rather, it
is a threshold assigned by the user based on the system resources available for labeling data
points.

Evaluation. For comparison with baseline: For each competing approach, we use the first
warm-up chunks to build the initial classification model, which can be thought of as an warm-
up period. From the warm-up + 1st chunk onward, we use each even instance in the chunk
to update the model and test the model against each odd instance (i.e., test instance) in the
chunk. Each method is run 20 times on each dataset, and the average result is reported. We
use warm-up=3 for all datasets.

Evaluation other than comparison: For scalability test (Sect. 6.5), parameter sensitivity
(Sect. 6.6), impact of unlabeled data and different components (Sect. 6.4), we apply the
usual setting of ReaSC as discussed in Sect. 3 (i.e., single stream).

6.3 Comparison with baseline methods

Figures 2a, 3, 4, 5b compare the accuracies and receiver operating characteristic (ROC)
curves for each dataset. Each of these graphs is generated by averaging 20 runs for each
method for the same parameter settings.

123

Facing the reality of data stream classification

 86

 88

 90

 92

 94

 50 100 150 200 250

C
um

ul
at

iv
e

ac
cu

ra
cy

(%
)

Chunk No

OnDS(100% labeled data)
ReaSC(10% labeled data)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate

OnDS(100% labeled data)
(AUC=0.985)

ReaSC(10% labeled data)
(AUC=0.986)

(b)

Fig. 3 Cumulative accuracy (a) and ROC curve (b) for SynDE dataset

Figure 2a shows the cumulative accuracies of each competing method for each chunk on
SynD dataset. In this figure, the X -axis represents the chunk number and the Y -axis repre-
sents the accuracy of a particular method from the beginning of the stream. For example, in
Fig. 2a at chunk 250 (X = 250), the Y values for ReaSC and OnDS represent the cumulative
accuracies of ReaSC and OnDS from the beginning of the stream to chunk 250, which are
81.7 and 73.1%, respectively. This curve shows that as the stream progresses, accuracy of
OnDS declines. This is because OnDS is not capable of handling concept drift properly.
Figure 2b shows the ROC curves for SynD dataset. The area under the ROC curve (AUC) is
higher for a better classifier. The AUCs for each ROC curve is reported in each graph. For
the SynD dataset, AUC of ReaSC is almost 9% higher than that of OnDS.

Figure 3a shows the chunk number versus cumulative accuracy for the SynDE dataset
(250KC10D20). The ROC curves on this dataset are shown in Fig. 3b. Figure 4a, b show
the chunk number versus the cumulative accuracy and the ROC curves for the KDD dataset.
The KDD dataset has a lot of concept evolution, almost all of which occurs within the first
120 chunks. The accuracy of OnDS is 2–8% lower than ReaSC in this region. This shows
that ReaSC handles concept evolution better than OnDS in real data in addition to synthetic
data. The ROC curves shown in Fig. 4b also reflect the performances of these two methods.
The AUC of ReaSC is found to be 5% higher than OnDS. Finally, Figures 5a, b show the
accuracy and ROC curves for the ASRS dataset. Recall that these graphs are generated by
averaging the accuracies and ROC curves from 21 individual binary classification results.
Again, ReaSC achieves 5% or higher accuracy than OnDS in all stream positions. In addition,
the AUC of ReaSC in this dataset is about 8% higher than that of OnDS.

Again, recall that in all these experiments OnDS uses 10 times more labeled data for train-
ing than ReaSC. Nevertheless, ReaSC outperforms OnDS in all datasets, both in accuracy
and AUC. The reasoning for the better performance of ReaSC is explained in more detail in
Sect. 7.

6.4 Impact of unlabeled training data and different components of ReaSC

ReaSC utilizes a small amount of labeled data and a large amount of unlabeled data for
training. The power of semi-supervised learning comes from the ability of ReaSC to utilize
this unlabeled training data. Figure 6 reports this fact. In this figure, the accuracy on SynD

123

M. Masud et al.

 85

 90

 95

 100

 50 100 150 200 250

C
um

ul
at

iv
e

ac
cu

ra
cy

(%
)

Chunk No

OnDS(100% labeled data)
ReaSC(10% labeled data)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate

OnDS(100% labeled data)
(AUC=0.824)

ReaSC(10% labeled data)
(AUC=0.870)

(b)

Fig. 4 Cumulative accuracy (a) and ROC curve (b) for KDD dataset

 80

 85

 90

 95

 10 20 30 40 50 60 70

C
um

ul
at

iv
e

ac
cu

ra
cy

(%
)

Chunk No

OnDS(100% labeled data)
ReaSC(10% labeled data)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate

OnDS(100% labeled data)
(AUC=0.798)

ReaSC(10% labeled data)
(AUC=0.875)

(b)

Fig. 5 Cumulative accuracy (a) and ROC curve (b) for ASRS dataset

dataset is reported for different amounts of unlabeled training data for different percentages
of labeled training data. Here, the chunk size is 1,000. For example, when 10% labeled data
(i.e., 100 labeled data instances per chunk) are used for training, we observe that increasing
the number of unlabeled training data instances from 10 to 200 increases the overall accuracy
from 73 to 80%, which is a 7% improvement. Further increasing the amount of unlabeled
data also improves the accuracy, but at a slower rate. If all 900 unlabeled data are used, the
accuracy becomes 82%. This trend is also observed for other percentages of labeled training
data (e.g., 15, 20% etc.), and also in other datasets. The reason for this improvement is that
the proposed semi-supervised approach is able to learn from both labeled and unlabeled data.
If we add more unlabeled data for training, the learner is equipped with more information
and able to build a better classification model.

Note that there are different components of ReaSC, such as label propagation, ensemble
framework, and ensemble refinement. The following results highlight the contribution of
these three components to the overall accuracy of ReaSC. Figure 7a, b show the contribu-
tion of these components in the SynDE and KDD datasets, respectively. For example, in the

123

Facing the reality of data stream classification

Fig. 6 Impact of unlabeled
training data

 70

 75

 80

 85

 10 100 200 400 600 800

A
cc

ur
ac

y

Number of unlabeled training data

Labeled=10%
Labeled=15%
Labeled=20%

 70

 80

 90

 50 100 150 200 250

C
um

ul
at

iv
e

A
cc

ur
ac

y

Chunk No

ReaSC
ReaSC w/o LP

ReaSC w/o Ensemble
ReaSC w/o Refinement

(a)

 90

 95

 100

 50 100 150 200 250

C
um

ul
at

iv
e

A
cc

ur
ac

y

Chunk No

ReaSC
ReaSC w/o LP

ReaSC w/o Ensemble
ReaSC w/o Refinement

(b)

Fig. 7 Accuracy of ReaSC with and without different components a SynDE dataset and b KDD dataset

KDD dataset (Fig. 7b), the curve labeled “ReaSC” represents the combined approach with all
components, the one labeled “ReaSC w/o LP” represents ReaSC without the label propaga-
tion component, that labeled “ReaSC w/o Ensemble” represents ReaSC with a single-model
approach (L = 1), and that labeled “ReaSC w/o Refinement” represents ReaSC without the
ensemble refinement function. It is obvious from the graphs that each component has some
significant contribution to the combined accuracy. For example, “ReaSC w/o LP” has about
2 and 6% less accuracy than ReaSC in the KDD and SynDE datasets, respectively. Similarly,
the ensemble refinement function also contributes 2% or more to the overall accuracy.

6.5 Running times, scalability, and memory requirement

Table 3 compares the running times and classification speeds between ReaSC and OnDS.
The columns headed by “Time (s/1,000 pts)” report the total running times (training plus
testing) in seconds per thousand points of each of these methods.

123

M. Masud et al.

Table 3 Comparison of running time (excluding labeling time) and classification speed between OnDS (with
100% labeled data) and ReaSC (with 10% labeled data)

Dataset Time (s/1,000 pts) Classification speed (pts/s)

OnDS ReaSC OnDS ReaSC
(100% labeled) (10% labeled) (100% labeled) (10% labeled)

SynD 0.67 0.41 798 2,122
SynDE 1.16 0.47 471 2,045
KDD 1.78 0.83 296 2,762
ASRS 23.00 12.08 23 91

Table 4 Comparison of running time including labeling time for real datasets

Dataset Labeling time (s/1,000 pts) Total time (s/1,000 pts)

OnDS ReaSC OnDS ReaSC
(100% labeled) (10% labeled) (100% labeled) (10% labeled)

KDD 1,000 100 1,001.78 100.83
ASRS 60,000 6,000 60,023.00 6,012.08

Note that these running times do not consider the data labeling time, which is an essential
part of classifier training and a major bottleneck for OnDS, to be explained shortly. The col-
umns headed by “classification speed (pts/s)” report classification (testing) speed of each of
these methods in points per second. The total running times of ReaSC are lower than OnDS
in all datasets. It is worth mentioning that the dimensions of the datasets are in increasing
order (SynD = 10, SynDE = 20, KDD = 34, and ASRS = 1,000), as are the running times.

Running times of both OnDS and ReaSC appear to grow linearly with increasing dimen-
sionality and class labels; however, Table 3 shows that the running time of OnDS grows at
a greater rate than that of ReaSC. This is because there is a classification overhead asso-
ciated with OnDS that increases with stream length, data dimension, and number of class
labels. OnDS keeps snapshots of the micro-clusters for different time-stamps in stream his-
tory. When classification is needed, OnDS needs to find the best time horizon by searching
through the saved snapshots. This searching time is directly related with the data dimension,
number of class labels, and stream length. This overhead is not present in ReaSC. As a result,
OnDS takes relatively higher time on higher dimensions and larger datasets than ReaSC.
Classification speed of OnDS is also much lower than ReaSC for the same reason, as shown
in the table.

If we include data labeling time, we get a more realistic picture of the total running time.
Suppose the labeling time for each data point for KDD dataset is 1 s, and the same for ASRS
dataset is 60 s. In fact, real annotation times would be much higher for any text dataset [36].
Table 4 shows the comparison. The labeling time for OnDS is 10 times higher than that of
ReaSC, since OnDS requires 1,000 labels for every 1,000 instances, whereas ReaSC requires
only 200 labels for the same chunk. The net effect is that ReaSC is 10 times faster than OnDS
in both datasets.

In Figure 8, we report the scalability of ReaSC on high-dimensional and multi-class Syn-
DE data. This graph reports the running times of ReaSC for different dimensions (20–60)
of synthetic data with different numbers of classes (10–40). Each of these synthetic datasets
has 250 K points. For example, for C = 10, and D = 20, the running time is 431 seconds,
and it increases linearly with the number of classes in the data. On the other hand, for a

123

Facing the reality of data stream classification

Fig. 8 Running times on
different datasets having higher
dimensions D and number of
classes C

 400

 500

 600

 700

 800

 900

 1000

 10 20 30 40

T
im

e(
se

co
nd

s)

C

D=20
D=40
D=60

particular value of C , the running time increases very slowly (linearly) with increasing the
number of dimensions in the data. For example, for C = 10, running times for 20, 40, and 60
dimensions are 431, 472, and 522 s, respectively. Thus, we may conclude that ReaSC scales
linearly to higher dimensionality and class labels.

The memory requirement for ReaSC is O(DK L), whereas that of OnDS is O(DQ log(N)),
where N is the total length of the stream, Q is the total number of micro-clusters saved per
frame, and log(N) is the total number of frames [2]. A frame in OnDS refers to a set of
saved snapshots, and a snapshot is a set of micro-clusters. In general, Q > K L , and there-
fore, ReaSC requires less memory than OnDS. Besides, the memory requirement of ReaSC
is independent of the stream length as D, K , L all are independent of the stream length,
whereas that of OnDS grows with stream length (because of the log(N) term). For example,
for the ASRS dataset (D = 1, 000), ReaSC requires less than 10MB memory, whereas OnDS
requires approximately 700 MB memory.

6.6 Sensitivity to parameters

All the following results are obtained using a SynDE dataset (250KC10D20). Figure 9 shows
how accuracy varies with chunk size S and the percentage P of labeled instances in each
chunk. It is obvious that higher values of P leads to better classification accuracy since each
model is better trained. For any particular chunk size, the improvement gradually diminishes
as P approaches to 100. For example, a stream with P = 10 has 5 times more labeled data
than the one with P = 2. As a result, there is a rapid accuracy improvement from P = 2 to
P = 10. But a stream with P = 75 has only 1.5 times more labeled data than a stream with
P = 50, so the accuracy improvement in this case is much less than in the former case. We
also observe higher accuracy for larger chunk sizes. This is because as chunk size increases,
each model gets trained with more data, which leads to a better classification accuracy. This
improvement also diminishes gradually because of concept drift. According to [38], if there
is concept drift in the data, then a larger chunk contains more outdated points, canceling out
any improvement expected to be gained by increasing the training set size.

Figure 10a shows how classification accuracy varies for ReaSC with the number of micro-
clusters K . We observe that higher values of K lead to better classification accuracies.

123

M. Masud et al.

Fig. 9 Sensitivity to chunk size
S for different percentages P of
labeled data

 70

 75

 80

 85

 90

 95

 100

 20 40 60 80 100

A
cc

ur
ac

y(
%

)

P

S=500
S=1000
S=2000

 50

 60

 70

 80

 90

 100

 20 40 60 80 100

A
cc

ur
ac

y(
%

)

K

(a)

 80

 84

 88

 92

 1 2 4 6 8 10 12

A
cc

ur
ac

y(
%

)

L

(b)

Fig. 10 Sensitivity to number of clusters K (a) and ensemble size L (b)

This happens because when K is larger, smaller and more compact clusters are formed,
which contributes to a better ground for label propagation and classification. However, there
is no significant improvement after K = 50 for this dataset, where C = 10. It should be
noted that K should always be much larger than C . Experimental results suggests that K
should be between 2C and 5C for best performance.

Figure 10b shows the effect of accuracy on ensemble size L . Ideally, increasing the ensem-
ble size helps to reduce error [35]. Significant improvement is achieved by increasing the
ensemble size from 1 (i.e., single classifier) to 2. After that, the improvement diminishes
gradually. Increasing the ensemble size also increases the classification time and causes
correlation among the classifiers to increase in the event of concept evolution, diminishing
the improvement intended by the ensemble. A reasonable value should therefore be chosen
depending on the specific requirements of the system.

123

Facing the reality of data stream classification

7 Discussion

The above results show that ReaSC outperforms OnDS in all tested datasets. There are two
main reasons behind this. First, ReaSC considers both the dispersion and impurity measures
in building clusters, but OnDS considers only purity, since it applies a K -means algorithm to
each class separately. In addition, ReaSC uses proportionate initialization so that more clus-
ters are formed for the larger classes (i.e., classes having more instances), whereas OnDS
builds an equal number of clusters for each class, so clusters belonging to larger classes
tend to be bigger (and more sparse). Thus, the clusters of ReaSC are likely to be more com-
pact than those of the OnDS. This results in a better classification model for ReaSC. Second,
ReaSC applies ensemble classification rather than the horizon fitting technique used in OnDS.
Horizon fitting selects a horizon of training data from the stream that corresponds to a var-
iable-length window of the most recent (contiguous) data chunks. It is possible that one or
more chunks in that window have been outdated, resulting in a less accurate classification
model. This is because the set of training data that is the best representative of the current
concept are not necessarily contiguous. In contrast, ReaSC always keeps the best training
data (i.e., models) that are not necessarily contiguous. The ensemble approach is therefore
more flexible in retaining the most up-to-date set of training data, resulting in a more accurate
classification model.

It would be interesting to compare ReaSC with some other baseline approaches. First,
consider a single combined model that contains all the K L clusters in ensemble M . We
argue that this combined model is no better than the ensemble of models because our analy-
sis shows that increasing the number of clusters beyond a certain threshold (e.g., 100) does
not improve classification accuracy. Since K is chosen to be close to this threshold, it is
most likely that we would not get a better model out of the K L clusters. Second, consider
a single model having K clusters (not exceeding the threshold) built from L data chunks.
Increasing the training set size would most likely improve classification accuracy. However,
in the presence of concept drift, it can be shown that a single model built from L consecutive
data chunks has a prediction error no less than an ensemble of L models, each built on a
single data chunk [38]. This also follows from our experimental results that a single model
built on L chunks has 5–10% worse accuracy than ReaSC and is at least L times slower than
ReaSC.

8 Conclusion

We address a more realistic problem of stream mining: training with a limited amount of
labeled data. Our technique is a more practical approach to the stream classification problem
than many prior work since it requires less labeled data, saving much time and cost that would
be otherwise required to manually label the data.

We propose and implement a semi-supervised, clustering-based stream classification algo-
rithm to solve this limited labeled data problem. We show that our approach can achieve
comparable performance by utilizing a limited amount of labeled data and large amount
of unlabeled data. We evaluated our technique on two synthetically generated datasets and
two real datasets and achieved better classification accuracies than state-of-the-art stream
classification approaches in all datasets.

In future work, we would like to incorporate feature weighting and distance learning in
the semi-supervised clustering, which should lead to a better classification model. We would
also like to apply our technique to classify other real stream data.

123

M. Masud et al.

Acknowledgments This material is based upon work supported by NASA under Award No. NNX08AC35A
and the Air Force of Scientific Research (AFOSR) under Award No. FA9550-08-1-0260.

References

1. Aggarwal CC (2009) On classification and segmentation of massive audio data streams. Knowl Inf Syst
20:137–156

2. Aggarwal CC, Han J, Wang J, Yu PS (2006) A framework for on-demand classification of evolving data
streams. IEEE Trans Knowl Data Eng 18(5):577–589

3. Aggarwal CC, Yu PS (2010) On clustering massive text and categorical data streams. Knowl Inf Syst
24:171–196

4. Basu S, Banerjee A, Mooney RJ (2002) Semi-supervised clustering by seeding. In: Procedings of nine-
teenth international conference on machine learning (ICML), Sydney, Australia, pp 19–26

5. Basu S, Banerjee A, Mooney RJ (2004) Active semi-supervision for pairwise constrained clustering. In:
Proceedings of SIAM international conference on data mining (SDM), Lake Buena Vista, FL, pp 333–344

6. Basu S, Bilenko M, Banerjee A, Mooney RJ (2006) Probabilistic semi-supervised clustering with con-
straints’. In: Chapelle O, Schoelkopf B, Zien A (eds) Semi-supervised learning. pp 73–102

7. Bengio Y, Delalleau O, Le Roux N (2006) Label propagation and quadratic criterion. In: Chapelle O,
Schölkopf B, Zien ASemi-Supervised Learning. MIT Press, Cambridge pp 193–216

8. Besag J (1986) On the statistical analysis of dirty pictures. J R Stat Soc Ser B (Methodological) 48(3):259–
302

9. Bilenko M, Basu S, Mooney RJ (2004) Integrating constraints and metric learning in semi-supervised
clustering. In: Proceedings of 21st international conference on machine learning (ICML), Banff, Canada,
pp 81–88

10. Chen S, Wang H, Zhou S, Yu P (2008) Stop chasing trends: discovering high order models in evolving
data. In: Proceedings of ICDE, pp 923–932

11. Cohn D, Caruana R, McCallum A (2003) Semi-supervised clustering with user feedback. Technical report
TR2003-1892, Cornell University

12. Demiriz A, Bennett KP, Embrechts MJ (1999) Semi-supervised clustering using genetic algorithms. In:
Artificial neural networks in engineering (ANNIE-99). ASME Press, pp 809–814

13. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the em algo-
rithm. J R Stat Soc B 39:1–38

14. Domingos P, Hulten G (2000) Mining high-speed data streams. In: Proceedings of ACM SIGKDD inter-
national conference on knowledge discovery and data mining KDD. ACM Press, Boston MA, USA, pp
71–80

15. Fan W (2004) Systematic data selection to mine concept-drifting data streams. In: Proceedings of ACM
SIGKDD international conference on knowledge discovery and data mining (KDD), Seattle, WA, USA,
pp 128–137

16. Fan W, an Huang Y, Wang H, Yu PS (2004) Active mining of data streams. In: Proceedings of SDM ’04’.
pp 457–461

17. Gao J, Fan W, Han J (2007) On appropriate assumptions to mine data streams. In: Proceedings of seventh
IEEE international conference on data mining (ICDM), Omaha, NE, USA, pp 143–152

18. Grossi V, Turini F (2011) Stream mining: a novel architecture for ensemble-based classification in pre-
prints. knowl Inf Syst

19. Halkidi M, Gunopulos D, Kumar N, Vazirgiannis M, Domeniconi C (2005) A framework for semi-
supervised learning based on subjective and objective clustering criteria. In: Proceedings of fifth IEEE
international conference on data mining (ICDM), Houston, Texas, USA, pp 637–640

20. Hochbaum D, Shmoys D (1985) A best possible heuristic for the k-center problem. Math Oper Res
10(2):180–184

21. Hulten G, Spencer L, Domingos P (2001) Mining time-changing data streams. In: Proceedings of seventh
ACM SIGKDD international conference on Knowledge discovery and data mining (KDD), San Francisco,
CA, USA, pp 97–106

22. Katakis I, Tsoumakas G, Vlahavas I (2010) Tracking recurring contexts using ensemble classifiers: an
application to email filtering. Knowl Inf Syst 22:371–391

23. KDD Cup 1999 Intrusion Detection Dataset (n.d.) http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.
html.

123

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Facing the reality of data stream classification

24. Klein D, Kamvar SD, Manning CD (2002) From instance-level constraints to space-level constraints:
making the most of prior knowledge in data clustering. In: Proceedigs of 19th international conference
on machine learning (ICML). Morgan Kaufmann Publishers Inc., Sydney, pp 307–314

25. Kolter J, Maloof M (2005) Using additive expert ensembles to cope with concept drift. In: Proceedings
of international conference on machine learning (ICML), Bonn, Germany, pp 449–456

26. Kolter JZ, Maloof MA (2007) Dynamic weighted majority: an ensemble method for drifting concepts. J
Mach Learn Res 8:2755–2790

27. Kranen P, Assent I, Baldauf C, Seidl T (2010) The clustree: indexing micro-clusters for anytime stream
mining. Knowl Inf Syst (In preprints)

28. Kuncheva LI, Sánchez JS (2008) Nearest neighbour classifiers for streaming data with delayed labelling.
In: ‘ICDM’. pp 869–874

29. Li P, Wu X, Hu X (2010) Learning from concept drifting data streams with unlabeled data. In: ‘AAAI’.
pp 1945–1946

30. Li X, Yu PS, Liu B, Ng SK (2009) Positive unlabeled learning for data stream classification. In: ‘SDM’.
pp 257–268

31. Masud MM, Gao J, Khan L, Han J, Thuraisingham B (2008) A practical approach to classify evolving
data streams: training with limited amount of labeled data. In: Proceedings if international conference on
data mining (ICDM), Pisa, Italy, pp 929–934

32. Masud MM, Gao J, Khan L, Han J, Thuraisingham BM (2009) Integrating novel class detection with
classification for concept-drifting data streams. In: ECML PKDD ’09, Vol. II. pp. 79–94

33. NASA Aviation Safety Reporting System (n.d.) http://akama.arc.nasa.gov/ASRSDBOnline/Query
Wizard_Begin.aspx

34. Scholz M, Klinkenberg R (2005) An ensemble classifier for drifting concepts. In: Proceedings of second
international workshop on knowledge discovery in data streams (IWKDDS), Porto, Portugal, pp 53–64

35. Tumer K, Ghosh J (1996) Error correlation and error reduction in ensemble classifiers. Connect Sci
8(304):385–403

36. van Huyssteen GB, Puttkammer MJ, Pilon S, Groenewald HJ (2007) Using machine learning to annotate
data for nlp tasks semi-automatically. In: Proceedings of computer-aided language processing (CALP’07)

37. Wagsta K, Cardie C, Schroedl S (2001) Constrained k-means clustering with background knowledge.
In: Proceedings of 18th international conference on machine learning (ICML), Morgan Kaufmann,
Williamstown, MA, USA, pp 577–584

38. Wang H, Fan W, Yu PS, Han J (2003) Mining concept-drifting data streams using ensemble classifiers. In:
Proceedings of ninth ACM SIGKDD international conference on knowledge discovery and data mining.
ACM, Washington, DC, pp c226–c235

39. Woolam C, Masud MM, Khan L (2009) Lacking labels in the stream: classifying evolving stream data
with few labels. In: Proceedings of international symposium on methodologies for intelligent systems
(ISMIS), Prague, Czech Republic, pp 552–562

40. Xing EP, Ng AY, Jordan MI, Russell S (2003) Distance metric learning, with application to clustering with
side-information. In: Advances in neural information processing systems vol 15. MIT Press, pp 505–512

41. Yang Y, Wu X, Zhu X (2005) Combining proactive and reactive predictions for data streams. In: Proceedigs
of KDD. pp 710–715

42. Zhou A, Cao F, Qian W, Jin C (2008) Tracking clusters in evolving data streams over sliding windows.
Knowl Inf Syst 15:181–214

43. Zhou D, Bousquet O, Lal TN, Weston J, Olkopf BS (2004) Learning with local and global consistency.
In: Advances in neural information processing systems, vol 16. MIT Press, pp 321–328

44. Zhu X, Ding W, Yu P, Zhang C (2010) One-class learning and concept summarization for data streams.
Knowl Inf Syst 1–31

45. Zhu X, Wu X, Yang Y (2006) Effective classification of noisy data streams with attribute-oriented dynamic
classifier selection. Knowl Inf Syst 9:339–363

46. Zhu X, Zhang P, Lin X, Shi Y (2007) Active learning from data streams. In: Proceedings of ICDM ’07’,
pp 757–762

123

http://akama.arc.nasa.gov/ASRSDBOnline/QueryWizard_Begin.aspx
http://akama.arc.nasa.gov/ASRSDBOnline/QueryWizard_Begin.aspx

M. Masud et al.

Author Biographies

Mohammad M. Masud is a Post Doctoral Fellow at the University
of Texas at Dallas (UTD). He received his PhD degree from UTD in
December 2009. He graduated from Bangladesh University of Engi-
neering and Technology with MS and BS in Computer Science and
Engineering degree in 2004, and 2001, respectively. His research inter-
ests are in data stream mining, machine learning, and intrusion detec-
tion using data mining. His recent research focuses on developing data
mining techniques to classify data streams. He has published more
than 25 research papers in journals including IEEE Transactions on
Knowledge and Data Engineering (TKDE) and peer reviewed confer-
ences including ICDM, ECML/PKDD, and PAKDD. He is an invited
reviewer of a number of journals including IEEE TKDE and Informa-
tion Systems Frontier (ISF) journal. He also served as a PC member
of several conferences and workshops including WWW 2011 confer-
ence, SigKDD Workshop 2010 (StreamKDD), and ICDM Workshop
2011 (DDDM). He is a professional member of ACM and IEEE.

Clay Woolam received a Master’s degree in Computer Science and
a Bachelors degree in Electrical Engineering from the University of
Texas at Dallas. He is an engineer at InboxQ in San Francisco.

Jing Gao, www.ews.uiuc.edu/~jinggao3 received the BE and ME
degrees, both in Computer Science from Harbin Institute of Technol-
ogy, China, in 2002 and 2004, respectively. She is currently working
toward the PhD degree in the Department of Computer Science, Uni-
versity of Illinois at Urbana Champaign. She is broadly interested in
data and information analysis with a focus on data mining and machine
learning. In particular, her research interests include ensemble methods,
transfer learning, mining data streams, and anomaly detection. She has
published more than 20 papers in refereed journals and conferences,
including KDD, NIPS, ICDCS, ICDM, and SDM conferences.

123

www.ews.uiuc.edu/~jinggao3

Facing the reality of data stream classification

Latifur Khan is currently an Associate Professor in the Computer
Science department at the University of Texas at Dallas (UTD), where
he has taught and conducted research since September 2000. He
received his PhD and MS degrees in Computer Science from the Uni-
versity of Southern California, in August of 2000, and December of
1996, respectively. He obtained his BSc degree in Computer Science
and Engineering from Bangladesh University of Engineering and Tech-
nology, Dhaka, Bangladesh in November of 1993. His research work
is supported by grants from NASA, the Air Force Office of Scien-
tific Research (AFOSR), National Science Foundation (NSF), IARPA,
Raytheon, Alcatel, and the SUN Academic Equipment Grant program.
In addition, Dr Khan is the director of the UTD Data Mining/Data-
base Laboratory, which is the primary center of research related to
data mining, and image/video annotation at University of Texas-Dal-
las. Dr Khan’s research areas cover data mining, multimedia informa-
tion management, semantic web, and database systems with the pri-

mary focus on first three research disciplines. He has served as a committee member in numerous prestigious
conferences, symposiums, and workshops including the ACM SIGKDD Conference. Dr Khan has published
over 130 papers in journals and conferences.

Jiawei Han is a Professor of Computer Science at the University
of Illinois. He has been researching into data mining, information
network analysis, and database systems, with over 500 publications.
He is the founding Editor-in-Chief of ACM Transactions on Knowl-
edge Discovery from Data (TKDD) and on the editorial boards of
several other journals. Jiawei has received IBM Faculty Awards, HP
Innovation Awards, ACM SIGKDD Innovation Award (2004), IEEE
Computer Society Technical Achievement Award (2005), and IEEE
W. Wallace McDowell Award (2009). He is a Fellow of ACM and
IEEE. He is currently the Director of Information Network Academic
Research Center (INARC) supported by the Network Science-Collabo-
rative Technology Alliance (NS-CTA) program of U.S. Army Research
Lab. His book “Data Mining: Concepts and Techniques” (Morgan Ka-
ufmann) has been used worldwide as a textbook.

Kevin W. Hamlen is an assistant professor in the computer science
department at the University of Texas at Dallas. He received his PhD
and MS degrees from Cornell University and his BS from Carnegie
Mellon. His current work on language-based security investigates the
use of stream mining for automated, directed malware mutation. Other
research interests include automated mobile code certification, software
fault isolation, virtual machines, and cloud computing security. He is
the recipient of a 2008 AFOSR Young Investigator Award for research
on certifying in-lined reference monitors.

123

M. Masud et al.

Nikunj C. Oza received his BS in Mathematics with Computer Sci-
ence from the Massachusetts Institute of Technology (MIT) in 1994.
He received his MS (in 1998) and PhD (in 2001) in Computer Sci-
ence from the University of California at Berkeley. He then joined
NASA Ames Research Center and is a member of their Intelligent Data
Understanding (IDU) group. He leads of a team applying data mining
to the problem of health management for aerospace vehicles. His 40+
research papers represent his research interests that include machine
learning (especially ensemble learning and online learning), data min-
ing, fault detection, integration of machine learning with automated
planning and other areas of Artificial Intelligence, and their applica-
tions to Aeronautics and Earth Science. He received the 2007 Arch T.
Colwell Award in 2007 for co-authoring one of the five most innova-
tive technical papers selected out of over 3300 SAE technical papers
published in 2005.

123

	Facing the reality of data stream classification: coping with scarcity of labeled data
	Abstract
	1 Introduction
	2 Related work
	3 Top level description
	4 Training with limited labeled data
	4.1 Semi-supervised clustering
	4.1.1 Unsupervised K-means clustering
	4.1.2 K-means clustering with cluster-impurity minimization

	4.2 Splitting clusters into pure clusters
	4.3 Storing the cluster summaries
	4.4 Label propagation

	5 Ensemble classification
	5.1 Classification
	5.2 Ensemble refinement
	5.3 Ensemble update
	5.4 Time complexity

	6 Experiments
	6.1 Dataset
	6.2 Experimental setup
	6.3 Comparison with baseline methods
	6.4 Impact of unlabeled training data and different components of ReaSC
	6.5 Running times, scalability, and memory requirement
	6.6 Sensitivity to parameters

	7 Discussion
	8 Conclusion
	Acknowledgments
	References

