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Data stream classification for intrusion detection poses at least three major challenges. First, these data
streams are typically infinite-length, making traditional multipass learning algorithms inapplicable. Second,
they exhibit significant concept-drift as attackers react and adapt to defenses. Third, for data streams that
do not have any fixed feature set, such as text streams, an additional feature extraction and selection task
must be performed. If the number of candidate features is too large, then traditional feature extraction
techniques fail.

In order to address the first two challenges, this article proposes a multipartition, multichunk ensemble
classifier in which a collection of v classifiers is trained from r consecutive data chunks using v-fold partition-
ing of the data, yielding an ensemble of such classifiers. This multipartition, multichunk ensemble technique
significantly reduces classification error compared to existing single-partition, single-chunk ensemble ap-
proaches, wherein a single data chunk is used to train each classifier. To address the third challenge, a
feature extraction and selection technique is proposed for data streams that do not have any fixed feature
set. The technique’s scalability is demonstrated through an implementation for the Hadoop MapReduce
cloud computing architecture. Both theoretical and empirical evidence demonstrate its effectiveness over
other state-of-the-art stream classification techniques on synthetic data, real botnet traffic, and malicious
executables.
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1. INTRODUCTION

Malware is a potent vehicle for many successful cyber attacks every year, including
data and identity theft, system and data corruption, and denial of service; it therefore
constitutes a significant security threat to many individuals and organizations. The
average direct malware cost damages worldwide per year from 1999 to 2006 have been
estimated at $14 billion USD [Computer Economics, Inc. 2007]. This includes labor
costs for analyzing, repairing, and disinfecting systems, productivity losses, revenue
losses due to system loss or degraded performance, and other costs directly incurred
as the result of the attack. However, the direct cost does not include the prevention
cost, such as antivirus software, hardware, and IT security staff salary, etc. Aside from
these monetary losses, individuals and organizations also suffer identity theft, data
theft, and other intangible losses due to successful attacks.

Malware includes viruses, worms, Trojan horses, time and logic bombs, botnets,
and spyware. A number of techniques have been devised by researchers to counter
these attacks; however, the more successful the researchers become in detecting and
preventing the attacks, the more sophisticated malicious code appears in the wild. Thus,
the arms race between malware authors and malware defenders continues to escalate.
One popular technique applied by the antivirus community to detect malicious code is
signature detection. This technique matches untrusted executables against a unique
telltale string or byte pattern known as a signature, which is used as an identifier
for a particular malicious code. Although signature detection techniques are widely
used, they are not effective against zero-day attacks (new malicious code), polymorphic
attacks (different encryptions of the same binary), or metamorphic attacks (different
code for the same functionality) [Crandall et al. 2005]. There has therefore been a
growing need for fast, automated, and efficient detection techniques that are robust
to these attacks. This article describes a data mining technique that is dedicated to
automated generation of signatures to defend against these kinds of attacks.

1.1. Malware Detection as a Data Stream Classification Problem

The problem of detecting malware using data mining [Schultz et al. 2001; Kolter and
Maloof 2004; Masud et al. 2008a] involves classifying each executable as either benign
or malicious. Most past work has approached the problem as a static data classification
problem, where the classification model is trained with fixed training data. However,
the escalating rate of malware evolution and innovation is not well suited to static
training. Detection of continuously evolving malware is better treated as a data stream
classification problem. In this paradigm, the data stream is a sequence of executa-
bles in which each data point is one executable. The stream is infinite-length. It also
observes concept-drift as attackers relentlessly develop new techniques to avoid detec-
tion, changing the characteristics of the malicious code. Similarly, the characteristics
of benign executables change with the evolution of compilers and operating systems.

Data stream classification is a major area of active research in the data mining
community, and requires surmounting at least three challenges: First, the storage and
maintenance of potentially unbounded historical data in an infinite-length, concept-
drifting stream for training purposes is infeasible. Second, the classification model
must be adapted continuously to cope with concept-drift. Third, if there is no predefined
feature space for the data points in the stream, new features with high discriminating
power must be selected and extracted as the stream evolves, which we call feature
evolution.

Solutions to the first two problems are related. Concept-drift necessitates refine-
ment of the hypothesis to accommodate the new concept; most of the old data must
be discarded from the training set. Therefore, one of the main issues in mining
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concept-drifting data streams is the selection of training instances adequate to learn
the evolving concept. Solving the third problem requires a feature selection process
that is ongoing, since new and more powerful features are likely to emerge and old
features are likely to become less dominant as the concept evolves. If the feature space
is large, then the running time and memory requirements for feature extraction and
selection becomes a bottleneck for the data stream classification system.

One approach to addressing concept-drift is to select and store the training data that
are most consistent with the current concept [Fan 2004]. Other approaches, such as
Very Fast Decision Trees (VFDTs) [Domingos and Hulten 2000], update the existing
classification model when new data appear. However, past work has shown that en-
semble techniques are often more robust for handling unexpected changes and concept-
drifts [Wang et al. 2003; Scholz and Klinkenberg 2005; Kolter and Maloof 2005]. These
maintain an ensemble of classifiers and update the ensemble when new data appear.

We propose a multipartition, multichunk ensemble classification algorithm that gen-
eralizes existing ensemble methods. The generalization leads to significantly improved
classification accuracy relative to existing single-partition, single-chunk ensemble ap-
proaches when tested on real-world data streams. The ensemble in our approach con-
sists of Kv classifiers, where K is a constant and v is the number of partitions, to be
explained shortly.

Our approach divides the data stream into equal sized chunks. The chunk size is
chosen so that all data in each chunk fits into the main memory. Each chunk, when
labeled, is used to train classifiers. Whenever a new data chunk is labeled, the ensemble
is updated as follows. We take the r most recent labeled consecutive data chunks, divide
these r chunks into v partitions, and train a classifier with each partition. Therefore,
v classifiers are trained using the r consecutive chunks. We then update the ensemble
by choosing the best Kv classifiers (based on accuracy) among the newly trained v
classifiers and the existing Kv classifiers. Thus, the total number of classifiers in the
ensemble remains constant. Our approach is therefore parameterized by the number
of partitions v, the number of chunks r, and the ensemble size K.

Our approach does not assume that new data points appearing in the stream are
immediately labeled. Instead, it defers the ensemble updating process until labels
for the data points in the latest data chunk become available. In the meantime, new
unlabeled data continue to be classified using the current ensemble. Thus, the approach
is well suited to applications in which misclassifications solicit corrected labels from
an expert user or other source. For example, consider the online credit card fraud
detection problem. When a new credit card transaction takes place, its class (fraud or
authentic) is predicted using the current ensemble. Suppose a fraudulent transaction
is misclassified as authentic. When the customer receives the bank statement, he
identifies this error and reports it to the authority. In this way, the actual labels of the
data points are obtained and the ensemble is updated accordingly.

1.2. Cloud Computing for Malware Detection

If the feature space of the data points is not fixed, a subproblem of the classification
problem is the extraction and selection of features that describe each data point. As
in prior work (e.g., Kolter and Maloof [2004]), we use binary n-grams as features for
malware detection. However, since the total number of possible n-grams is prohibitively
large, we judiciously select n-grams that have the greatest discriminatory power. This
selection process is ongoing; as the stream progresses, newer n-grams appear that
dominate the older n-grams. These newer n-grams replace the old in our model in order
to identify the best features for a particular period.

Naive implementation of the feature extraction and selection process can be both
time- and storage-intensive for large datasets. For example, our previous work [Masud

ACM Transactions on Management Information Systems, Vol. 2, No. 3, Article 16, Publication date: October 2011.



TMIS0203-16 ACM-TRANSACTION September 22, 2011 12:6

16:4 M. M. Masud et al.

et al. 2008a] extracted roughly a quarter billion n-grams from a corpus of only 3500
executables. This feature extraction process required extensive virtual memory (with
associated performance overhead), since not all of these features could be stored in
main memory. Extraction and selection required about 2 hours of computation and
many gigabytes of disk space for a machine with a quad-core processor and 12GB of
memory. This is despite the use of a purely static dataset; when the dataset is a dynamic
stream, extraction and selection must recur, resulting in a major bottleneck. In this
article we consider a much larger dataset of 105 thousand executables for which our
previous approach is insufficient.

We therefore propose a scalable feature selection and extraction solution that lever-
ages a cloud computing framework [Dean and Ghemawat 2008]. We show that depend-
ing on the availability of cluster nodes, the running time for feature extraction and
selection can be reduced by a factor of m, where m is the number of nodes in the cloud
cluster. The nodes are machines with inexpensive commodity hardware. Therefore, the
solution is also cost effective as high-end computing machines are not required.

1.3. Contributions and Organization of the Article

Our contributions can therefore be summarized as follows. We propose a generalized
multipartition, multichunk ensemble technique that significantly reduces the expected
classification error over existing single-partition, single-chunk ensemble methods. A
theoretical analysis justifies the effectiveness of the approach. We then formulate the
malware detection problem as a data stream classification problem and identify draw-
backs of traditional malicious code detection techniques relative to our data mining
approach. We propose a scalable and cost-effective solution to this problem using a
cloud computing framework. Finally, we apply our technique to synthetically gener-
ated data as well as real botnet traffic and real malicious executables, achieving better
detection accuracy than other stream data classification techniques. The results show
that our proposed ensemble technique constitutes a powerful tool for intrusion detec-
tion based on data stream classification.

The rest of the article is organized as follows: Section 2 discusses related works.
Section 3 discusses the classification algorithm and proves its effectiveness analytically.
Section 4 then describes the feature extraction and selection technique using cloud
computing for malware detection, and Section 5 discusses data collection, experimental
setup, evaluation techniques, and results. Section 6 discusses several issues related to
our approach, and finally, Section 7 summarizes our conclusions.

2. RELATED WORK

Our work is related to both malware detection and stream mining. Both are discussed
in this section.

Traditional signature-based malware detectors identify malware by scanning un-
trusted binaries for distinguishing byte sequences or features. Features unique to mal-
ware are maintained in a signature database, which must be continually updated as
new malware is discovered and analyzed. Traditionally, signature databases have been
manually derived, updated, and disseminated by human experts as new malware ap-
pears and is analyzed. However, the escalating rate of new malware appearances and
the advent of self-mutating, polymorphic malware over the past decade have made
manual signature updating less practical. This has led to the development of auto-
mated data mining techniques for malware detection (e.g., Kolter and Maloof [2004],
Schultz et al. [2001], Masud et al. [2008a], and Hamlen et al. [2009]) that are capable
of automatically inferring signatures for previously unseen malware.

Data-mining-based approaches analyze the content of an executable and classify
it as malware if a certain combination of features are found (or not found) in the
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executable. These malware detectors are first trained so that they can generalize the
distinction between malicious and benign executables, and thus detect future instances
of malware. The training process involves feature extraction and model building using
these features. Data-mining-based malware detectors differ mainly on how the features
are extracted and which machine learning technique is used to build the model. The
performance of these techniques largely depends on the quality of the features that are
extracted.

Schultz et al. [2001] extract DLL call information (using GNU binutils) and charac-
ter strings (using GNU strings) from the headers of Windows PE executables, as well
as 2-byte sequences from the executable content. The DLL calls, strings, and bytes are
used as features to train models. Models are trained using two different machine learn-
ing techniques, RIPPER [Cohen 1996] and Naive Bayes (NB) [Michie et al. 1994], to
compare their relative performances. Kolter and Maloof [2004] extract binary n-gram
features from executables and apply them to different classification methods, such as k-
Nearest Neighbor (KNN) [Aha et al. 1991], NB, Support Vector Machines (SVM) [Boser
et al. 1992], decision trees [Quinlan 2003], and boosting [Freund and Schapire 1996].
Boosting is applied in combination with various other learning algorithms to obtain im-
proved models (e.g., boosted decision trees). Our previous work on data-mining-based
malware detection [Masud et al. 2008a] extracts binary n-grams from the executable,
assembly instruction sequences from the disassembled executables, and DLL call in-
formation from the program headers. The classification models used in this work are
SVM, decision tree, NB, boosted decision tree, and boosted NB.

Hamsa [Li et al. 2006] and Polygraph [Newsome et al. 2005] apply a simple form
of data mining to generate worm signatures automatically using binary n-grams as
features. Both identify a collection of n-grams as a worm signature if they appear only
in malicious binaries (i.e., positive samples) and never in benign binaries. This differs
from the traditional data mining approaches already discussed (including ours) in two
significant respects: First, Polygraph and Hamsa limit their attention to n-grams that
appear only in the malicious pool, whereas traditional data mining techniques also
consider n-grams that appear in the benign pool to improve the classification accuracy.
Second, Polygraph and Hamsa define signature matches as simply the presence of a
set of n-grams, whereas traditional data mining approaches build classification models
that match samples based on both the presence and absence of features. Traditional
data mining approaches therefore generalize the approaches of Polygraph and Hamsa,
with corresponding increases in power.

Almost all past work has approached the malware detection problem as a static data
classification problem in which the classification model is trained with fixed training
data. However, the rapid emergence of new types of malware and new obfuscation
strategies adopted by malware authors introduces a dynamic component to the problem
that violates the static paradigm. We therefore argue that effective malware detection
must be increasingly treated as a data stream classification problem in order to keep
pace with attacks.

Many existing data stream classification techniques target infinite-length streams
that exhibit concept-drift (e.g., Aggarwal et al. [2006], Wang et al. [2003], Yang et al.
[2005], Kolter and Maloof [2005], Hulten et al. [2001], Fan [2004], Gao et al. [2007],
Hashemi et al. [2009], and Zhang et al. [2009]). All of these techniques adopt a one-pass
incremental update approach, but with differing approaches to the incremental updat-
ing mechanism. Most can be grouped into two main classes: single-model incremental
approaches and hybrid batch-incremental approaches.

Single-model incremental updating involves dynamically updating a single model
with each new training instance. For example, decision tree models can be incre-
mentally updated with incoming data [Hulten et al. 2001]. In contrast, hybrid
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batch-incremental approaches build each model from a batch of training data using
a traditional batch learning technique. Older models are then periodically replaced
by newer models as the concept drifts [Wang et al. 2003; Bifet et al. 2009; Yang et al.
2005; Fan 2004; Gao et al. 2007]. Some of these hybrid approaches use a single model
to classify the unlabeled data (e.g., Yang et al. [2005] and Chen et al. [2008]) while
others use an ensemble of models (e.g., Wang et al. [2003] and Scholz and Klinkenberg
[2005]). Hybrid approaches have the advantage that model updates are typically far
simpler than in single-model approaches; for example, classifiers in the ensemble
can simply be removed or replaced. However, other techniques that combine the two
approaches by incrementally updating the classifiers within the ensemble can be more
complex [Kolter and Maloof 2005].

Accuracy Weighted classifier Ensembles (AWE) [Wang et al. 2003; Scholz and
Klinkenberg 2005] are an important category of hybrid-incremental updating ensemble
classifiers that use weighted majority voting for classification. These divide the stream
into equal-sized chunks, and each chunk is used to train a classification model. An
ensemble of K such models classifies the unlabeled data. Each time a new data chunk
is labeled, a new classifier is trained from that chunk. This classifier replaces one of the
existing classifiers in the ensemble. The replacement victim is chosen by evaluating
the accuracy of each classifier on the latest training chunk. These ensemble approaches
have the advantage that they can be built more efficiently than a continually updated
single model, and they observe higher accuracy than their single-model counterparts
[Tumer and Ghosh 1996].

Our ensemble approach is most closely related to AWE, but with a number of sig-
nificant differences. First, we apply multipartitioning of the training data to build v
classifiers from that training data. Second, the training data consists of » consecutive
data chunks (i.e., a multichunk approach) rather than from a single chunk. We prove
both analytically (in Section 3.2) and empirically (in Section 5.4) that both of these en-
hancements, that is, multipartitioning and multichunk, significantly reduces ensemble
classification error. Third, when we update the ensemble, v classifiers in the ensemble
are replaced by v newly trained classifiers. The v classifiers that are replaced may come
from different chunks; thus, although some classifiers from a chunk may have been
removed, other classifiers from that chunk may still remain in the ensemble. This dif-
fers from AWE, in which removal of a classifier means total removal of the knowledge
obtained from one whole chunk. Our replacement strategy also contributes to error
reduction, as discussed in Section 5.4. Finally, we use simple majority voting rather
than weighted voting, which is more suitable for data streams, as shown in Gao et al.
[2007]. Thus, our multipartition, multichunk ensemble approach is a more generalized
and efficient form of that implemented by AWE.

Our proposed work extends our previously published work [Masud et al. 2009]. Most
existing data stream classification techniques, including our previous work, assumes
that the feature space of the data points in the stream is fixed. However, in some
cases, such as text data, this assumption is not valid. For example, when features are
words, the feature space cannot be fully determined at the start of the stream since new
words appear frequently. In addition, it is likely that much of this large lexicon of words
has low discriminatory power, and is therefore best omitted from the feature space. It
is therefore more effective and efficient to select a subset of the candidate features
for each data point. This feature selection must occur incrementally as newer, more
discriminating candidate features arise and older features become outdated. Therefore,
feature extraction and selection should be an integral part of data stream classification.

In this article, we propose an efficient and scalable feature extraction and selection
technique using a cloud computing framework [Zhao et al. 2009; Dean and Ghemawat
2008]. This approach supersedes our previous work in that it considers the real
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last labeled
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data stream

Dy Dyt D,

Merge, shuffle, and
partition into v
equal parts

v newly trained classifiers A" = {A},..., A"}
(where A7 is trained from D — d;)

Current ensemble: A = {Ay, As,..., Ay}
New ensemble: best Kv classifiers in A™ U A

Fig. 1. Building an ensemble from data chunks.

challenges in data stream classification that occur when the feature space cannot be
predetermined. This facilitates application of our technique to the detection of real
malicious executables from a large, evolving dataset, showing that it can detect newer
varieties of malware as malware instances evolve over time.

3. TECHNICAL APPROACH

Our Extended, MultiPartition, multi-Chunk (EMPC) ensemble learning approach
maintains an ensemble A = {A;, Ay, ..., Ag,} of the most recent, best Kv classifiers.
Each time a new data chunk D, arrives, it tests the data chunk with the ensemble
A. The ensemble is updated once chunk D, is labeled. The classification process uses
simple majority voting.

3.1. Ensemble Construction and Updating

The ensemble construction and updating process is illustrated in Figure 1 and sum-
marized in Algorithm 1.

Lines 1-3 of the algorithm compute the error of each classifier A; € A on chunk
D,, where D, is the most recent data chunk that has been labeled. Let D be the data
of the most recently labeled r data chunks, including D,. Line 5 randomly partitions
D into v equal parts {dy, ..., d,} such that all the parts have roughly the same class
distributions.

Lines 6-9 train a new batch of v classifiers, where each classifier A? is trained with
dataset D — d;. The error of each classifier A7 € A" is computed by testing it on its
corresponding test data d;. Finally, line 10 selects the best Kv classifiers from the
Kv+v classifiers in A”U A based on the errors of each classifier computed in lines 2 and
8. Note that any subset of the nth batch of v classifiers may be selected for inclusion in
the new ensemble.

3.2. Error Reduction Analysis

As explained in Algorithm 1, we build an ensemble A of Kv classifiers. A test instance
x is classified using a majority vote of the classifiers in the ensemble. We use simple
majority voting rather than weighted majority voting (refer to Wang et al. [2003]),
since simple majority voting has been theoretically proven the optimal choice for data
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ALGORITHM 1: Updating the classifier ensemble

Input: {D, ,,1,..., D,}: the r most recently labeled data chunks
A: the current ensemble of best Kv classifiers
Output: an updated ensemble A
1: for each classifier A; € Ado
: e(A;) < error of A; on D, // test and compute error
: end for
1 D« U

2

3

4 Jj=n— r+1DJ

5: Partition D into equal parts {d;, ds, ..., d,}

6: for j =1tovdo

7. A < newly trained classifier from data D — dj;

8:  e(A}) < error of A} on d; // test and compute error

9: end for

10: A < best Kv classifiers from A" U A based on computed error e(.)

streams [Gao et al. 2007]. Weighted voting can be problematic in these contexts because
it assumes that the distribution of training and test data are the same. However, in data
streams, this assumption is violated because of concept-drift. Simple majority voting
is therefore a better alternative. Our experiments confirm this in practice, obtaining
better results with simple rather than weighted majority voting.

The following argument shows that EMPC can further reduce the expected error in
classifying concept-drifting data streams compared to Single-Partition, single-Chunk
(SPC) approaches, which use only one data chunk for training a single classifier (i.e.,
r = v = 1). Intuitively, there are two main reasons for the error reduction. First, the
training data per classifier is increased by introducing the multichunk concept. Larger
training data naturally leads to better trained model, reducing the error. Second, rather
than training only one model from the training data, we partition the data into v
partitions, and train one model from each partition. This further reduces error because
the mean expected error of an ensemble of v classifiers is theoretically v times lower
than that of a single classifier [Tumer and Ghosh 1996]. Therefore, both the multichunk
and multipartition strategy contribute to error reduction.

Given an unlabeled test instance x, the posterior probability distribution of class a is
plalx). A classifier is trained to learn a function f“(-) that approximates this posterior
probability

f(x) = plalx) + g% + n(x), (1)

where B% is the bias of the classifier, and n%(x) is the variance of the classifier given
input x [Tumer and Ghosh 1996]. These biases and variances are the added error
beyond the Bayes error. We limit our attention to the variance term because we would
like to analyze the error introduced by training the classifiers on different data chunks.
(The bias may differ with varying classifiers if they are trained with different learning
algorithms, but in our case the same learning algorithm is used in different data
chunks.)
The expected error of a classifier is given by

o2
Err = ”T(x) (2)

where G;i(x) is the variance of %(x), and s is independent of the learned classifier [Tumer

and Ghosh 1996]. Let C = {C4, ..., Ck} be an ensemble of K classifiers, where each
classifier C; is trained from a single data chunk (i.e., C is an SPC ensemble). If we
average the outputs of the classifiers in a K-classifier ensemble, then the ensemble
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output f§ becomes

1 K
& 2 16,0 = plal) + (o) (3)

where f¢ is the output of the ensemble C, /¢ (x) is the output of the ith classifier C;,
and 7¢(x) is the average error of all classifiers, given by

1 K
g = % ; ng (x). (4)

Here, ¢, (x) is the added error of the ith classifier in the ensemble. Assuming the error
variances are independent, the variance of n¢,(x) is given by

e = el Z Oy ) = K T ) (5)

where 031 () 18 the variance of 7¢ (x), and 6772,1 (v 18 the common variance. In order to
c; i K
. . . 2 2
simplify the notation, we denote T3 (@) A8 00, ()

Let A= {A;, A, ..., Ag,} be the ensemble of Kv classifiers, where each classifier A;
is trained using r consecutive data chunks (i.e., the EMPC approach). The following
lemma proves that EMPC reduces error over SPC by a factor of rv when the outputs of
the classifiers in the ensemble are independent.

LEmmA 1. Let 0(27(36) be the error variance of SPC. If there is no concept-drift, and the

errors of the classifiers in the ensemble A are independent, then the error variance of
EMPC is a fraction (rv)~! of that of SPC.

1
2 2
OA) = E"C(x) (6)

Proor. Each classifier A; € Ais trained on r consecutive data chunks. If there is no
concept-drift, then a classifier trained on r consecutive chunks may reduce the error
of the single classifier trained on a single chunk by a factor of r [Wang et al. 2003]. It
follows that

r+i—1

1
2 _ 2
Th = 3 Z ¢, ) (7

where o2 A.(v) 18 the error variance of classifier A; trained using data Ur“ ' D;, and crgj(x)
is the error variance of C;, trained using a single data chunk D;. Combining Egs. (5)
and (7) and simplifying, we obtain

1 Kv 1 r+i—1

2 _ - 2
OAx) = K202 r2 Z GCj(x) ’

i=1 Jj=i
1 Kv 1r+i—1 )
= Ko > - 2w |-
i=1 Jj=i

ACM Transactions on Management Information Systems, Vol. 2, No. 3, Article 16, Publication date: October 2011.



TMIS0203-16 ACM-TRANSACTION September 22, 2011 12:6

16:10 M. M. Masud et al.

1 Kv L, 1 1 Kv L,
~ K2 i:ZIUCim ~ Krv \Kv izzlaci(") ’

1 1,
= K_N}Gc(x) = E"cu)v (8)

- 2 . . 2 . . . - 2 .
where 6, ., is the common variance of 9C,x) for j € [i,i +r —1], and 6, is the common
variance of c'rg(x) fori e [1,Kv]. O

Although it may appear from Lemma 1 that by making r arbitrarily large, error can
be made arbitrarily small, this is not true in practice because of concept-drift. We will
elaborate this issue in Lemma 3.

Lemma 1 does not consider the effects of possible correlation among the classifiers
in the ensemble. Such correlations are potentially significant in our approach because
each set of v classifiers is trained from r consecutive data chunks. As a result, each
pair of these v classifiers has overlapping training data. This can result in considerable
correlations between the classifiers, which must be taken into consideration in any
realistic analysis of the expected error reduction of the system. The following lemma
accounts for these effects by introducing a mean correlation term § to the analysis of
Lemma 1.

LEmMMA 2. Let ag(x) be the error variance of SPC. If there is no concept-drift, then the
error variance of EMPC is a fraction (v — 1)/(rv) of that of SPC, where v > 1.
2 v—1,
OAw) = TO—C(x) ©

Proor. The error variance of ensemble A, given some mean correlation § of error
among the classifiers in the ensemble, is

1+68(Kv—1)\ _
i = <T> T A (10)
where 53\@) is the common variance of ai e Mean correlation § is given by
1 Kv
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where corr(n,,, n;) is the correlation between the errors of classifiers A,, and A; [Tumer
and Ghosh 1996].

To simplify the computation of error correlation between A,, and A;, we assume that
if they are trained with overlapping data then corr(n,,, ;) = 1, and if they are trained
with disjoint data, then corr(n,,, n;) = 0. Given this assumption, the correlation between
A,, and A; can be computed as follows.

=2 if A, A €A

corr(nm, n1) = { v—1 (12)

0 otherwise

That is, the error correlation between classifiers A,, and A; is nonzero only if they are
in the same batch of classifiers A'. If A,, and A; are from the same batch, they have
v — 2 partitions of training data in common. This is because our algorithm trains each
classifier using v — 1 partitions of training data, and each batch contains v partitions
in total. However, if the classifiers are not from the same batch, they do not have any
common training data.
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In the worst case, all v classifiers of the ith batch will remain in the ensemble A.
This worst case is probably infrequent, since the ensemble updating algorithm allows
some classifiers in the ith batch to be replaced while others remain in the ensemble.
However, in the worst case the ensemble is updated each time by a replacement of a
whole batch of v classifiers by a new batch of v classifiers. In this case, each classifier
will be correlated with v — 1 classifiers. The mean correlation therefore becomes

1 v—2 v—2
§<—— Kov—1)—= = .
T I TR gl e |

Substituting this bound for § into Eq. (10), and following logic similar to that used in
the proof of Lemma 1, we obtain

2 (1+KU1;_21(KU_1)) _2

Opw = Ko O Atx)

(13)
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Now first using Eq. (7) and then (8) we can deduce

Kv r+i—-1
v-1 1 1
2
Bo Kol |72 2 %w
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= 14
rv OC(x) (14)

O

For example, if v = 2 and r = 2 then we anticipate an error reduction by a factor of
approximately 4.

Lemma 2 accounts for correlation between the classifiers in each ensemble, but it
does not account for concept-drift in the data stream. In order to analyze error in the
presence of concept-drift, we must introduce a new term for the magnitude of drift.

Definition 1. The magnitude of drift p; is the maximum error introduced to a
classifier due to concept-drift. That is, every time a new data chunk appears, the error
variance of a classifier is incremented p; times due to concept-drift.

For example, let D; (with j € [i,i4+r—1]) be a data chunk in a window of r of consec-
utive data chunks {D;, ..., D;;,_1}, and let C; be the classifier trained with data chunk

D;. In addition, let o ) be the error variance of C; in the absence of concept-drift. The
J
actual error variance 6gj(x) of classifier C; in the presence of concept-drift is then given
by
662‘,-(90 =1+ pd)(”’*l)*jagj(x). (15)
In other words, 631_ () 18 the actual error variance of the jth classifier C; in the presence

of concept-drift when the last data chunk D; . ; in the window appears. The following
lemma generalizes the results of Lemma 2 to account for such concept-drift.

LEmMA 3. Let 6?«@) be the error variance of EMPC in the presence of concept-drift, let
Ucz*(x) be the error variance of SPC, and let py be magnitude of drift given by Definition 1.
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Error variance 6y, is bounded by
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Proor. Replacing agj () With 6&_ () in Eq. (8) and using Eq. (15) and Lemma 2, we get
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Therefore, we expect a reduction of error provided that
-1 -1

rv

That is, the ratio Er of EMPC error to SPC error in the presence of concept-drift must
be no greater than 1. As we increase r and v, the relative error therefore decreases up
to a certain threshold, after which it flattens or increases. We next empirically seek
ideal values of r and v for reducing error in the presence of concept-drift.

3.3. Empirical Error Reduction

For a given partition size v, increasing the window size r only yields reduced error
up to a certain point. After that, increasing r actually hurts the performance of our
algorithm, because inequality (18) is violated. The upper bound of r depends on the
magnitude of drift pg.

Figure 2 shows the relative error Er for v = 2, and different values of pg4, for in-
creasing r. It is clear from the graph that for lower values of pg, increasing r reduces
the relative error by a greater margin. However, in all cases after r exceeds a certain
threshold, Er becomes greater than one.

Although it may not be possible to know the actual value of p; from the data, we may
determine the optimal value of r experimentally. In our experiments, we found that
for smaller chunk sizes, higher values of r work better, and vice versa. However, the
best performance-cost trade-off is found for »r = 2 or r = 3. We have used r = 2 in our
experiments. Similarly, the upper bound of v can be derived from inequality (18) for a
fixed value of r. It should be noted that if v is increased, running time also increases.
From our experiments, we obtained the best performance-cost trade-off for v = 5.
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Fig. 2. Error reduction by increasing r and v.

3.4. Time Complexity of EMPC

The time complexity of the algorithm is O(vn(Ks + f(rs))), where n is the total number
of data chunks, s is the size of each chunk, and f(z) is the time required to build
a classifier on a training data of size z. Since v is constant, the complexity becomes
O(n(Ks + f(rs))). This is at most a constant factor rv slower than the closest related
work [Wang et al. 2003], but with the advantage of significantly reduced error.

4. MALICIOUS CODE DETECTION

Malware is a major source of cyber attacks. Some malware varieties are purely static;
each instance is an exact copy of the instance that propagated it. These are relatively
easy to detect and filter once a single instance has been identified. However, a much
more significant body of current-day malware is polymorphic. Polymorphic malware
self-modifies during propagation so that each instance has a unique syntax but carries
a semantically identical malicious payload.

The antivirus community invests significant effort and manpower toward devising,
automating, and deploying algorithms that detect particular malware instances and
polymorphic malware families that have been identified and analyzed by human ex-
perts. This has led to an escalating arms race between malware authors and antiviral
defenders, in which each camp seeks to develop offenses and defenses that counter the
recent advances of the other. With the increasing ease of malware development and the
exponential growth of malware variants, many believe that this race will ultimately
prove to be a losing battle for the defenders.

The malicious code detection problem can be modeled as a data mining problem for a
stream having both infinite length and concept-drift. Concept-drift occurs as polymor-
phic malware mutates, and as attackers and defenders introduce new technologies to
the arms race. This conceptualization invites application of our stream classification
technique to automate the detection of new malicious executables.

Feature extraction using n-gram analysis involves extracting all possible n-grams
from the given dataset (training set), and selecting the best n-grams among them. Each
such n-gram is a feature. That is, an n-gram is a sequence of n bytes. Before extracting
n-grams, we preprocess the binary executables by converting them to hexdump files.
Here, the granularity level is one byte. We apply the UNIX hexdump utility to convert
the binary executable files into text files (hexdump files) containing the hexadecimal
numbers corresponding to each byte of the binary. This process is performed to ensure
safe and easy portability of the binary executables. In a nondistributed framework,
the feature extraction process consists of two phases: feature extraction and feature
selection, described shortly. Our cloud computing variant of this traditional technique
is presented in Section 4.2.
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4.1. Nondistributed Feature Extraction and Selection

In a nondistributed setting, feature extraction proceeds as follows. Each hexdump file
is scanned by sliding an n-byte window over its content. Each n-byte sequence that
appears in the window is an n-gram. For each n-gram g, we tally the total number ¢, of
file instances in which g appears, as well as the total number p, < ¢, of these that are
positive (i.e., malicious executables).

This involves maintaining a hash table T of all n-grams encountered so far. If g is
not found in T, then g is added to T' with counts ¢, = 1 and p; € {0, 1} depending
on whether the current file has a negative or positive class label. If g is already in T,
then ¢, is incremented and p; is conditionally incremented depending on the file’s label.
When all hexdump files have been scanned, T' contains all the unique n-grams in the
dataset along with their frequencies in the positive instances and in total.

It is not always practical to use all n-gram features extracted from all the files
corresponding to the current chunk. The exponential number of such n-grams may
introduce unacceptable memory overhead, slow the training process, or confuse the
classifier with large numbers of noisy, redundant, or irrelevant features. To avoid these
pitfalls, candidate n-gram features must be sorted according to a selection criterion so
that only the best ones are selected.

We choose information gain as the selection criterion, because it is one of the most
effective criteria used in literature for selecting the best features. Information gain can
be defined as a measure of the effectiveness of an attribute (i.e., feature) for classifying
the training data. If we split the training data based on the values of this attribute,
then information gain measures the expected reduction in entropy after the split. The
more an attribute reduces entropy in the training data, the better that attribute is for
classifying the data.

Given an instance set I with positive instances P C I, and an attribute R: I — V
that maps instances to values, the information gain is given by

Ir,
GR)=H(p.t) - 'ti'H(uRv NP, |Ir,)), (19)
veV

where p = |P| is the total number of positive instances, ¢ = |I| is the total size of the
instance set, Ir, = {{ € I | R(i) = v} is the set of instances in which attribute R has
value v, and entropy H is given by the formula

H(x,y):—flogQ (£>—y_x10g2 <y—x>. (20)
Yy Yy Yy Yy

In the context of malware detection, we consider each n-gram g to be an attribute
R; : I — {0, 1} that maps each instance ¢ € I to 1if g is present in i and to 0 otherwise.
Thus, |Ir,1] = ¢, is the total number of instances that contain g, and |Igo| = ¢ — ¢, is
the total number that do not. Likewise, |Ig,1 N P| = p; is the total number of positive
instances that contain g, and |Ir,0N P| = p— p, is the total number of positive instances
that do not. Substituting these formulas into Eqs. (19) and (20) we obtain

t,
; EH(p — pg.t —ty).

t,
G(Ry) = H(p, t) — ?gH(pg, ty) —
We henceforth write
G(pga tg, P t) = G(Rg) (21)

The feature set can therefore be pruned by selecting the S features with greatest
information gain G(R,) based on the preceding. This can be efficiently accomplished
with a min-heap data structure of size S that stores the S best features seen so far,
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keyed by information gain. As new features are considered, their information gains are
compared against the heap’s root. If the gain of the new feature is greater than that of
the root, the root is discarded and the new feature inserted into the heap. Otherwise
the new feature is discarded and feature selection continues.

4.2. Distributed Feature Extraction and Selection

There are several drawbacks related to the nondistributed feature extraction and se-
lection approach just described.

—The total number of extracted n-gram features might be very large. For example, the
total number of 4-grams in one chunk is around 200 million. It might not be possible
to store all of them in main memory. One obvious solution is to store the n-grams in a
disk file, but this introduces unacceptable overhead due to the cost of disk read/write
operations.

—If colliding features in hash table T are not sorted, then a linear search is required
for each scanned n-gram during feature extraction to test whether it is already in
T. If they are sorted, then the linear search is required during insertion. In either
case, the time to extract all n-grams is worst case quadratic in the total number N
of n-grams in each chunk, an impractical amount of time when N a 108.

—Similarly, the nondistributed feature selection process requires a sort of the n-grams
in each chunk. In general, this requires O(N log N) time, which is impractical when
N is large.

In order to efficiently and effectively tackle the drawbacks of the nondistributed feature
extraction and selection approach, we leverage the power of cloud computing. This
allows feature extraction, n-gram sorting, and feature selection to be performed in
parallel, utilizing the Hadoop MapReduce framework.

MapReduce [Dean and Ghemawat 2008] is an increasingly popular distributed pro-
gramming paradigm used in cloud computing environments. The model processes large
datasets in parallel, distributing the workload across many nodes (machines) in a
share-nothing fashion. The main focus is to simplify the processing of large datasets
using inexpensive cluster computers. Another objective is ease of usability with both
load balancing and fault tolerance.

MapReduce is named for its two primary functions. The Map function breaks jobs
down into subtasks to be distributed to available nodes, whereas its dual, Reduce, aggre-
gates the results of completed subtasks. We will henceforth refer to nodes performing
these functions as mappers and reducers, respectively. The details of the MapReduce
process for n-gram feature extraction and selection are explained in the Appendix. In
this section, we give a high-level overview of the approach.

Each training chunk containing N training files are used to extract the n-grams.
These training files are first distributed among m nodes (machines) by the Hadoop
Distributed File System (HDFS) (Figure 3, step 1). Quantity m is selected by HDFS
depending on system availability. Each node then independently extracts n-grams from
the subset of training files supplied to the node using the technique discussed in
Section 4.1 (Figure 3, step 2). When all nodes finish their jobs, the n-grams extracted
from each node are collated (Figure 3, step 3).

For example, suppose Node 1 observes n-gram abc in one positive instance (i.e., a
malicious training file) while Node 2 observes it in a negative (i.e., benign) instance.
This is denoted by pairs (abc, +) and (abc, —) under Nodes 1 and 2 (respectively) in
Figure 3. When the n-grams are combined, the labels of instances containing identical
n-grams are aggregated. Therefore, the aggregated pair for abc is (abc, +—).

The combined n-grams are distributed to q reducers (with ¢ chosen by HDFS based
on system availability). Each reducer first tallies the aggregated labels to obtain a
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Fig. 3. Feature extraction with Hadoop Map.
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Fig. 4. Feature selection with Hadoop Reduce.

positive count and a total count. In the case of n-gram abc, we obtain tallies of pyp. = 1
and t,. = 2. The reducer uses these tallies to choose the best S n-grams (based on
Eq. (21)) from the subset of n-grams supplied to the node (Figure 4, step 5). This can
be done efficiently using a min-heap of size S; the process requires O(W log S) time,
where W is the total number of n-grams supplied to each reducer. In contrast, the
nondistributed version requires O(W log W) time. Thus, from the ¢ reducer nodes, we
obtain ¢S n-grams.

From these, we again select the best S by running another round of the MapReduce
cycle in which the Map phase does nothing but the Reduce phase performs feature
selection using only one node (Figure 4, step 6). Each feature in a feature set is binary;
its value is 1 if it is present in a given instance (i.e., executable) and 0 otherwise. For
each training or testing instance, we compute the feature vector whose bits consist of
the feature values of the corresponding feature set. These feature vectors are used by
the classifiers for training and testing.
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5. EXPERIMENTS

We evaluated our approach on synthetic data, botnet traffic generated in a controlled
environment, and a malware dataset. The results of the experiments are compared
with several baseline methods.

5.1. Datasets

5.1.1. Synthetic Dataset. To generate synthetic data with a drifting concept, we use
a moving hyperplane, given by Z?:l a;x; = ag [Wang et al. 2003]. If Z?Zl ax; < ap,
then an example is negative; otherwise it is positive. Each example is a randomly
generated d-dimensional vector {xi,...,x4}, where x; € [0, 1]. Weights {ai,...,a4}
are also randomly initialized with a real number in the range [0, 1]. The value of
ao is adjusted so that roughly the same number of positive and negative examples
are generated. This can be done by choosing ay = %Zle a;. We also introduce noise

randomly by switching the labels of p percent of the examples, where p = 5 in our
experiments.

There are several parameters that simulate concept-drift. We use parameters iden-
tical to those in [Wang et al. 2003]. In total, we generate 250,000 records and four dif-
ferent datasets having chunk sizes 250, 500, 750, and 1000, respectively. Each dataset
has 50% positive instances and 50% negative.

5.1.2. Botnet Dataset. Botnets are networks of compromised hosts known as bots, all un-
der the control of a human attacker known as the botmaster [Barford and Yegneswaran
2006]. The botmaster can issue commands to the bots to perform malicious actions, such
as launching DDoS attacks, spamming, spying, and so on. Botnets are widely regarded
as an enormous emerging threat to the internet community. Many cutting-edge bot-
nets apply Peer-to-Peer (P2P) technology to reliably and covertly communicate as the
botnet topology evolves. These botnets are distributed and small, making them more
difficult to detect and destroy. Examples of P2P bots include Nugache [Lemos 2006],
Sinit [Stewart 2003], and Trojan.Peacomm [Grizzard et al. 2007].

Botnet traffic can be viewed as a data stream having both infinite length and concept-
drift. Concept-drift occurs as the bot undertakes new malicious missions or adopts dif-
fering communication strategies in response to new botmaster instructions. We there-
fore consider our stream classification technique to be well suited to detecting P2P
botnet traffic.

We generate real P2P botnet traffic in a controlled environment using the Nugache
P2P bot [Lemos 2006]. The details of the feature extraction process are discussed
in Masud et al. [2008b]. There are 81 continuous attributes in total. The whole dataset
consists of 30,000 records, representing one week’s worth of network traffic. We gener-
ate four different datasets having chunk sizes of 30 minutes, 60 minutes, 90 minutes,
and 120 minutes, respectively. Each dataset has 25% positive (botnet traffic) instances
and 75% negative (benign traffic).

5.1.3. Malware Dataset. We extract a total of 38,694 benign executables from differ-
ent Windows machines, and a total of 66,694 malicious executables collected from an
online malware repository [VX Heavens 2010], which contains a large collection of ma-
licious executables (viruses, worms, trojans, and back-doors). The benign executables
include various applications found at the Windows installation folder, as well as other
executables in the default program installation directory.

We select only the Win32 Portable Executables (PE) in both cases. Experiments with
the ELF executables are a potential direction of future work. The collected 105,388
files (benign and malicious) form a data stream of 130 chunks, each consisting of 2000
instances (executable files). The stream order was chosen by sorting the malware by
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version and discovery date, simulating the evolving nature of Internet malware. Each
chunk has 1500 benign executables (75% negative) and 500 malicious executables (25%
positive). The feature extraction and selection process for this dataset is described in
Sections 4.1-4.2.

Note that all these datasets are dynamic in nature. Their unbounded (potentially
infinite-length) size puts them beyond the scope of purely static classification frame-
works. The synthetic data also exhibits concept-drift. Although it is not possible to
accurately determine whether the real datasets have concept-drift, theoretically the
stream of executables should exhibit concept-drift when observed over a long period of
time (see Section 1). The malware data exhibits feature evolution as evidenced by the
differing set of distinguishing features identified for each chunk.

5.2. Baseline Methods

For classification, we use the Weka machine learning open-source package [Hall et al.
2009]. We apply two different classifiers: J48 decision tree and Ripper. We then compare
each of the following baseline techniques to our EMPC algorithm.

BestK. This is a single-partition, single-chunk (SPC) ensemble approach, where an
ensemble of the best K classifiers is used. The ensemble is created by storing all the
classifiers seen so far, and selecting the best K based on expected error on the most
recent training chunk. An instance is tested using simple majority voting.

Last. In this case, we only keep the classifier trained on the most recent training
chunk. This can be considered an SPC approach with K = 1.

AWE. This is the SPC method implemented using Accuracy-Weighted classifier En-
sembles [Wang et al. 2003]. It builds an ensemble of K models, where each model is
trained from one data chunk. The ensemble is updated as follows. Let C, be the clas-
sifier built on the most recent training chunk. From the existing K models and the
newest model C,, the K best models are selected based on their error on the most
recent training chunk. Selection is based on weighted voting where the weight of each

model is inversely proportional to the error of the model on the most recent training
chunk.

All. This SPC uses an ensemble of all the classifiers seen so far. The new data chunk
is tested with this ensemble by simple voting among the classifiers. Since this is an
SPC approach, each classifier is trained from only one data chunk.

As mentioned in Section 3.3, we obtain the optimal values of r and v to be between
2 and 3, and between 3 and 5, respectively, for most datasets. Unless mentioned other-
wise, we use r = 2 and v = 5 in our experiments. To obtain a fair comparison, we use
the same value for K (ensemble size) in EMPC and all baseline techniques.

5.3. Hadoop Distributed System Setup

The distributed system on which we performed our experiments consists of a cluster
of ten nodes. Each node has the same hardware configuration: an Intel Pentium IV
2.8 GHz processor, 4GB main memory, and 640GB hard disk space. The software en-
vironment consists of a Ubuntu 9.10 operating system, the Hadoop-0.20.1 distributed
computing platform, the JDK 1.6 Java development platform, and a 100MB LAN net-
work link.

5.4. Performance Study

In this section we compare the results of all five techniques: EMPC, AWE, BestK, All,
and Last. As each new data chunk appears, we test each ensemble/classifier on the
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Fig. 5. Error rates for synthetic data.
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Fig. 6. Error rates for botnet data.

new data and update its accuracy, false positive rate, and false negative rate. In all
the results shown here we fix the parameter values of v = 5 and r = 2, and the base
learner is a decision tree unless stated otherwise.

Figure 5(a) shows the error rates for different ensemble sizes K, averaged over four
different chunk sizes on synthetic data. It is evident that EMPC has the lowest error
among all approaches. The accuracy does not improve much after K = 8. Methods AWE
and BestK also show similar characteristics. Methods All and Last do not depend on
K, so their error rates remain the same for any K.

Figure 5(b) shows the error rates for four different chunk sizes of each method
averaged over different ensemble sizes K on synthetic data. Again, EMPC has the
lowest error of all. The error of EMPC is also lower for larger chunk sizes, since these
provide more training data for each classifier.

Figure 6(a) shows the error rates for botnet data over different ensemble sizes K
averaged over four different chunk sizes. Figure 6(b) shows the error rates for the
same data over four different chunk sizes averaged over the different ensemble sizes
K. In all cases, EMPC has the lowest error rate among all approaches.

Figure 7(a) shows the error rates for different ensemble sizes K on malware data.
EMPC outperforms all other methods and reaches the lowest error rate when K = 3.
Figure 7(b) shows the error rates for the same data over different feature set sizes.
EMPC outperforms all other methods and reaches the lowest error rate when the
feature size is 2000.

Tables (a) and (b) of Table I report the error rates for decision tree and Ripper
learning algorithms, respectively, on synthetic data for different ensemble sizes K and
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Fig. 7. Error rates for malware data.

Table I. Error Rates on Synthetic Data

(a) Decision tree

size EMPC AWE BestKk EMPC AWE BestKk EMPC AWE BestK All - Last
250 19.3 26.8 26.9 17.3 26.5 22.1 16.2 26.1 195 292 268
500 114 14.8 14.7 10.6 13.2 12.4 10.2 12.4 11.3 11.3 147
750 11.1 13.9 13.9 10.6 12.1 11.9 10.3 11.3 11.2 158 13.8
1000 114 14.3 14.3 10.7 12.8 12.2 10.3 11.9 11.4 126 14.1

(b) Ripper
Chunk K=2 K=6 K=38

size EMPC AWE BestKk EMPC AWE BestKk EMPC AWE BestK Al Last
250 19.2 26.5 26.0 17.6 26.2 22.4 16.8 25.9 209 304 263
500 11.5 14.2 13.9 10.8 13.0 12.3 10.5 12.5 115 116 14.1
750 11.0 13.4 13.3 10.6 12.1 12.0 10.5 115 11.5 157 133
1000 11.1 13.8 13.7 10.6 12.5 12.3 10.2 11.9 11.8 126 13.6

Table II. Error Rates on Malware Data Using Decision Tree

Feature K=3 K=5 K=8 Last
set size EMPC AWE BestKk EMPC AWE BestKk EMPC AWE BestK

500 3.88 4.37 4.84 3.96 4.40 5.07 4.08 4.35 5.36 441
1000 3.02 3.90 4.06 3.09 4.05 4.35 3.21 4.34 4.95 3.95
2000 2.79 3.62 3.80 3.15 3.72 4.05 3.36 3.95 4.30 3.69
3000 2.96 3.46 3.46 3.20 3.41 3.34 3.31 3.58 3.64 3.45

chunk sizes. In all tables, we see that EMPC has the lowest error rate for all ensemble
sizes (shown in bold).

Table I reports the error rates for malware data over different ensemble sizes K and
feature set sizes. Once again, EMPC has the lowest overall error rate for all values of
K and feature set size (shown in bold).

Figure 8 shows the sensitivity of parameter r on the EMPC error rates and runtimes
over synthetic data. Figure 8(a) shows the error rates over different values of r for
fixed parameters v = 5 and K = 8. The highest reduction in error rate occurs when
r is increased from 1 to 2. Note that »r = 1 means single-chunk training. We observe
no significant reduction in error rate for higher values of r, which follows from our
analysis of parameter r on concept-drifting data in Section 3.3. However, the runtime
keeps increasing, as shown in Figure 8(b). The best trade-off between runtime and
error therefore occurs for r = 2.
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Figure 9 shows a similar trend for parameter v. Note that v = 1 (i.e., a single partition
ensemble) is the base case, and v > 1 is the multipartition ensemble approach. We
observe no significant improvement after v = 5, although the runtime keeps increasing.
This result is also consistent with our analysis of the upper bounds of v, explained in
Section 3.3. We choose v = 5 as the best trade-off between time and error.

Figure 10(a) shows the total running times of different methods on synthetic data
for K = 8, v = 5 and r = 2. Note that the runtime of EMPC is within 5 times of that
of AWE. This supports our complexity analysis in Section 3.4, which concludes that
the runtime of EMPC is at most rv times that of AWE. The runtimes of EMPC on
botnet data shown in Figure 10(b) have similar characteristics. All runtimes shown
in Figure 10 include both training and testing time. Although the total training time
of EMPC is higher than that of AWE, the total testing times are almost the same for
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Table Ill. Error Comparison for Fixed Ensemble Size
J48 Ripper

Chunk
size EMPC AWE EMPC AWE
(K=2) (K=10) (K=2) (K=10)
250 19.9 26.1 21.0 26.1
500 11.7 12.5 12.2 12.6
1000 11.4 12.5 11.8 13.0

both techniques. Considering that training can be done offline, we conclude that both
these techniques have comparable runtime performances in classifying data streams.
However, EMPC affords users the additional flexibility of choosing between better
performance or shorter training times by varying parameters r and v.

Figure 11(a) shows the total training and testing runtimes of each method (excluding
the extraction time) on the malware dataset for K = 3, v = 5, and r = 2. Although the
total training time of EMPC is higher than other techniques, the total testing times do
not differ that much across all techniques. Once again, the user may tune v and r to
trade lower accuracy for faster runtimes if necessary, but only up to a point. Increasing
v and r beyond their optimal values does not yield any further accuracy improvement.
For example, in this experiment, we observed that with v = 5 and r = 2 we received
the best results.

Figure 11(b) shows the total feature extraction and selection runtimes for the cloud-
based, distributed approach discussed in Section 4.2. When the number of nodes is 1, the
results are for the single-machine (nondistributed) approach discussed in Section 4.1.
It is evident that the time is linearly decreasing when we utilize more machines (nodes)
in the cloud. For example, when 2 and 6 nodes are used, feature extraction and selection
time are 110 minutes and 45 minutes, respectively. Therefore, utilizing ten nodes or
more dramatically improves the running time.

In Table III we also report the results of using equal numbers of classifiers in EMPC
and AWE by setting K = 10 in AWE, and K = 2, v = 5, and r = 1 in EMPC. We observe
that the error rate of EMPC is lower than that of AWE in all chunk sizes. For example,
using decision trees with chunk size 250, EMPC’s error rate is 19.9%, whereas that of
AWE is 26.1%.

Two important conclusions follow from this result. First, we see that merely increas-
ing the ensemble size of AWE by a factor of v (making it equal to Kv) does not suffice
to reduce its error rate to that of EMPC. Second, even if we use the same training set
size for both methods (i.e., r = 1), EMPC’s error rate still remains lower.
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6. DISCUSSION

Our work considers a feature space consisting of purely syntactic features: binary
n-grams drawn from executable code segments, static data segments, headers, and
all other content of untrusted files. Higher-level structural features such as call- and
control-flow graphs, and dynamic features such as runtime traces, are beyond our
current scope. Nevertheless, n-gram features have been observed to have very high
discriminatory power for malware detection, as demonstrated by a large body of prior
work (see Section 2) as well as our experiments (see Section 5.4). This is in part because
n-gram sets that span the entire binary file content, including headers and data tables,
capture important low-level structural details that are often abstracted away by higher-
level representations. For example, malware often contains hand-written assembly
code that has been assembled and linked using nonstandard tools. This allows attackers
to implement binary obfuscations and low-level exploits not available from higher-level
source languages and standard compilers. As a result, malware often contains unusual
instruction encodings, header structures, and link tables whose abnormalities can only
be seen at the raw binary level, not in assembly code listings, control-flow graphs,
or system API call traces. Expanding the feature space to include these additional
higher-level features requires an efficient and reliable method of harvesting them and
assessing their relative discriminatory power during feature selection, and is reserved
as a subject of future work.

The empirical results reported in Section 5.4 confirm the analysis presented in
Section 3 that shows that multipartition, multichunk approaches should perform bet-
ter than single-chunk, single-partition approaches. Intuitively, a classifier trained on
multiple chunks should have better prediction accuracy than a classifier trained on a
single chunk because of the larger training data. Furthermore, if more than one clas-
sifier is trained by multipartitioning the training data, the prediction accuracy of the
resulting ensemble of classifiers should be higher than a single classifier trained from
the same training data because of the error reduction power of an ensemble over single
classifier. In addition, the accuracy advantages of EMPC can be traced to two impor-
tant differences between our work and that of AWE. First, when a classifier is removed
during ensemble updating in AWE, all information obtained from the corresponding
chunk is forgotten; but in EMPC, one or more classifiers from an earlier chunk may
survive. Thus, EMPC ensemble updating tends to retain more information than that
of AWE, leading to a better ensemble. Second, AWE requires at least Kv data chunks,
whereas EMPC requires at least K + r — 1 data chunks to obtain Kv classifiers. Thus,
AWE tends to keep much older classifiers in the ensemble than EMPC, leading to some
outdated classifiers that can have a negative effect on the classification accuracy.

However, the higher accuracy comes with an increased cost in running time. Theoret-
ically, EMPC is at most rv times slower than AWE, its closest competitor in accuracy
(Section 3.4). This is also evident in the empirical evaluation (Section 5.4), which
shows that the running time of EMPC is within 5 times that of AWE (for r = 2 and
v = 5). However, some optimizations can be adopted to reduce the runtime cost. First,
parallelization of training for each partition can be easily implemented, reducing the
training time by a factor of v. Second, classification by each model in the ensemble
can also be done in parallel, thereby reducing the classification time by a factor of Kv.
Therefore, parallelization of training and classification should reduce the running time
at least by a factor of v, making the runtime close to that of AWE. Alternatively, if par-
allelization is not available, parameters v and r can be lowered to sacrifice prediction
accuracy for lower runtime cost. In this case, the desired balance between runtime and
prediction accuracy can be obtained by evaluating the first few chunks of the stream
with different values of v and r and choosing the most suitable values.
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7. CONCLUSION

Many intrusion detection problems can be formulated as classification problems for
infinite-length, concept-drifting data streams. Concept-drift occurs in these streams as
attackers react and adapt to defenses. We formulated both malicious code detection
and botnet traffic detection as such problems, and introduced EMPC, a novel ensem-
ble learning technique for automated classification of infinite-length, concept-drifting
streams. Applying EMPC to real data streams obtained from polymorphic malware
and botnet traffic samples yielded better detection accuracies than other stream data
classification techniques. This shows that the approach is useful and effective for both
intrusion detection and more general data stream classification.

EMPC uses generalized, multipartition, multichunk ensemble learning. Both the-
oretical and empirical evaluation of the technique show that it significantly reduces
the expected classification error over existing single-partition, single-chunk ensemble
methods. Moreover, we show that EMPC can be elegantly implemented in a cloud
computing framework based on MapReduce [Dean and Ghemawat 2008]. The result is
a low-cost, scalable stream classification framework with high classification accuracy
and low runtime overhead.

At least two extensions to our technique offer promising directions of future work.
First, our current feature selection procedure limits its attention to the best S fea-
tures based on information gain as the selection criterion. The classification accuracy
could potentially be improved by leveraging recent work on supervised dimensionality
reduction techniques [Rish et al. 2008; Sajama and Orlitsky 2005] for improved fea-
ture selection. Second, the runtime performance of our approach could be improved
by exploiting additional parallelism available in the cloud computing architecture.
For example, the classifiers of an ensemble could be run in parallel as mappers in a
MapReduce framework, with reducers that aggregate the results for voting. Similarly,
the candidate classifiers for the next ensemble could be trained and evaluated in par-
allel. Reformulating the ensemble components of the system in this way could lead
to significantly shortened processing times, and hence opportunities to devote more
processing time to classification for improved accuracy.

APPENDIX

We used the open-source Hadoop MapReduce framework by Apache [2010] to imple-
ment our experiments. We here provide some of the algorithmic details of the Hadoop
MapReduce feature extraction and selection algorithm described at a high level in
Section 4.

The Map function in a MapReduce framework takes a key-value pair as input and
yields a list of intermediate key-value pairs for each.

Map : (MKey x MVal) — (RKey x RVal)*

All the Map tasks are processed in parallel by each node in the cluster without sharing
data with other nodes. Hadoop collates the output of the Map tasks by grouping each
set of intermediate values V C RVaul that share a common intermediate key 2 € RKey.
The resulting collated pairs (k, V') are then streamed to Reduce nodes. Each reducer in a
Hadoop MapReduce framework therefore receives a list of multiple (%, V') pairs, issued
by Hadoop one at a time in an iterative fashion. Reduce can therefore be understood
as a function having signature

Reduce : (RKey x RVal*)* — Val.
Codomain Val is the type of the final results of the MapReduce cycle.
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In our framework, Map keys (MKey) are binary file identifiers (e.g., filenames), and
Map values (MVal) are the file contents in bytes. Reduce keys (RKey) are n-gram
features, and their corresponding values (RVal) are the class labels of the file instances
whence they were found. Algorithm 2 shows the feature extraction procedure that Map
nodes use to map the former to the latter.

ALGORITHM 2: Map(file_id, bytes)

Input: file file_id with content bytes
Output: list of pairs (g, ), where g is an n-gram and [ is file_id’s label
T <@
: for all n-grams g in bytes do
T < T U{(g, labelof(file_id))}
end for
: for all (g,1) e T do
print (g,])
end for

NPk wh e

ALGORITHM 3: Reduce, (F)

Input: list F of (g, L) pairs, where g is an n-gram and L is a list of class labels; total size ¢ of
original instance set; total number p of positive instances
Output: S pairs (g, 1), where i is the information gain of n-gram g
1: heap Ak /* empty min-heap */
2: for all (g, L) in F do

3: <0

4: p <0

5. foralllin L do
6: t <<t +1

7: if [ = + then
8: p<p+1
9: end if

10: end for

11: i < G(p,t, p.t) /* see Equation 21 */
12:  if h.size < S then

13: h.insert(ig)

14:  elseif (h.root < i) then
15: h.replace(h.root, i)
16: end if

17: end for

18: for all i, in A do
19: print (g,7)
20: end for

Lines 5-10 of Algorithm 3 tally the class labels reported by Map to obtain pos-
itive and negative instance counts for each n-gram. These form a basis for com-
puting the information gain of each n-gram in line 11, as described in Section 4.
Lines 12-16 use a min-heap data structure A to filter all but the best S features as
evaluated by information gain. The final best S features encountered are returned by
lines 18-20.

The g reducers in the Hadoop system therefore yield a total of ¢S candidate fea-
tures and their information gains. These are streamed to a second reducer that simply
implements the last half of Algorithm 3 to select the best S features.
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