
Certified In-lined Reference Monitoring on .NET∗

Kevin W. Hamlen
Cornell University

Greg Morrisett
Harvard University

Fred B. Schneider
Cornell University

November 16, 2005

Abstract

Mobile is an extension of the .NET Common Intermediate Lan-
guage that supports certified In-Lined Reference Monitoring. Mobile
programs have the useful property that if they are well-typed with re-
spect to a declared security policy, then they are guaranteed not to
violate that security policy when executed. Thus, when an In-Lined
Reference Monitor (IRM) is expressed in Mobile, it can be certified by
a simple type-checker to eliminate the need to trust the producer of
the IRM.

Security policies in Mobile are declarative, can involve unbounded
collections of objects allocated at runtime, and can regard infinite-
length histories of security events exhibited by those objects. Our
prototype implementation of Mobile enforces properties expressed
by finite-state security automata—one automaton for each security-
relevant object, and can type-check Mobile programs in the presence
of exceptions, finalizers, concurrency, and non-termination. Executing
Mobile programs requires no change to existing .NET virtual machine
implementations, since Mobile programs consist of normal managed
CIL code with extra typing annotations stored in .NET attributes.

1 Introduction

Language-based approaches to computer security have employed two major
strategies for enforcing security policies over untrusted programs.

• Low-level type systems, such as those used in Java bytecode [17], .NET
CIL [7], and TAL for x86 [19], can enforce important program invari-
ants such as memory safety and control safety, which dictate that

∗Supported in part by AFOSR grant F49620-03-1-0156, National Science Foundation
Grants 0430161 and CCF-0424422 (TRUST), ONR Grant N00014-01-1-0968, and a grant
from Intel Corporation. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of these organizations or the U.S. Government.

1

programs must access and transfer control only to certain suitable
memory addresses throughout their executions. Proof-Carrying Code
(PCC) [20] generalizes the type-safety approach by providing an ex-
plicit proof of safety in first-order logic.

• Execution Monitoring technologies such as Java and .NET stack in-
spection [12] [17, II.22.11], SASI [9], Polymer [1], and Naccio [10], use
runtime checks to enforce temporal properties that can depend on the
history of the program’s execution. For example, SASI Java was used
to enforce the policy that no program may access the network after it
reads from a file [8]. For efficiency, execution monitors are often im-
plemented as In-lined Reference Monitors (IRM’s) [23], wherein the
runtime checks are in-lined into the untrusted program itself to pro-
duce a self-monitoring program.

The IRM approach is capable of enforcing a large class of powerful secu-
rity policies, including ones that that cannot be enforced with purely static
type-checking [14]. In addition, IRM’s can enforce a flexible range of poli-
cies, often allowing the code recipient to choose the security policy after the
code is received, whereas static type systems and PCC usually enforce fixed
security policies that are encoded into the type system or proof logic itself,
and that therefore cannot be changed without changing the type system or
certifying compiler.

But despite their power and flexibility, the rewriters that automatically
embed IRM’s into untrusted programs are typically trusted components of
the system. Since rewriters tend to be large and complex when efficient
rewriting is required or complex security policies are to be enforced, the
rewriter becomes a significant addition to the system’s trusted computing
base.

In this paper, we present Mobile, an extension to the .NET CIL that
makes it possible to automatically verify IRM’s using a static type-checker.
Mobile (MOnitorable BIL with Effects) is an extension of BIL (Baby In-
termediate Language) [13], a substantial fragment of managed .NET CIL
that was used to develop generics for .NET [16]. Mobile programs are CIL
programs with additional typing annotations that track an abstract repre-
sentation of program execution history. These typing annotations allow a
type-checker to verify statically that the runtime checks in-lined into the
untrusted program suffice to enforce a specified security policy. Once type-
checked, the typing annotations can be erased, and the self-monitoring pro-
gram can be safely executed as normal CIL code. This verification process
allows a rewriter to be removed from the trusted computing base and re-
placed with a (simpler) type-checker. Even when the rewriter is small and
therefore comparable in size to the type-checker, type-checking constitutes
a useful level of redundancy that provides greater assurance than trusting

2

trusted untrusted

managed CIL code

?
-security policy rewriter

??
� Mobile codetype-checker

?
execute

yes

-no reject

Figure 1: A Mobile load path

the rewriter alone. Mobile thus leverages the power of IRM’s while using
the type-safety approach to keep the trusted computing base small.

Figure 1 summarizes a typical load path on a system that executes
IRM’s written in Mobile. Untrusted, managed CIL code is first automat-
ically rewritten according to a security policy, yielding a self-monitoring
program written in Mobile. The rewriting can be performed by either a
code producer or by a client machine receiving the untrusted code. Since
the rewriter, and therefore the self-monitoring program, remains untrusted,
the self-monitoring program is then passed to a trusted type-checker that
certifies the code with respect to the original security policy. Code that
satisfies the security policy will be approved by the type-checker, and is
therefore safe to execute; code that is not well-typed will be rejected and
would indicate a failure of the rewriter.

In this paper we focus on robust certification of Mobile code. Tech-
niques for efficient rewriting are left to future work, but we describe a näıve
rewriter and suggest some strategies for optimizing it in §3. Our proto-
type implementation of Mobile consists of a type-checker that verifies sound
rewriting with respect to security policies expressed as finite-state security
automata. The implementation can verify both single-threaded and multi-
threaded managed CIL applications, and it supports language features be-
yond those modeled by BIL, such as exceptions and finalizers.

3

2 Related Work

Type-systems λA [27] and λhist [24] enforce history-based security policies
over languages based on the λ-calculus. In both, program histories are
tracked at the type-level using effect types that represent an abstraction of
those global histories that might have been exhibited by the program prior
to control reaching any given program point.

Mobile differs from λA and λhist by tracking history on a per-object basis.
That is, both λA and λhist represent a program’s history as a finite or infi-
nite sequence of global program events, where the set of all possible global
program events is always finite. Policies that are only expressible using an
infinite set of global program events (e.g. events parameterized by object in-
stances) are therefore not enforceable by λA or λhist. For example, the policy
that every opened file must be closed by the time the program terminates
is not enforceable by either λA or λhist when the number of file objects that
could be allocated during the program’s execution is unbounded. In object-
oriented languages such as the .NET CIL, policies concerning unbounded
collections of objects arise naturally, so it is not clear how λA or λhist can
be extended to such settings.

Mobile, however, enforces policies that are universally quantified over
objects of any given class. For example, a Mobile policy can dictate that,
for each file handle object the program allocates, an Open operation must be
performed on it before any Read operations can be performed on it. Mobile
therefore allows objects to be treated as first-class in policy specifications,
whereas λA and λhist do not.

PCC has been proposed as a framework for supporting certifying rewrit-
ing using temporal logic [3]. The approach is potentially powerful, but does
not presently support languages that include exceptions, concurrency, and
other features found in real programming languages [2, p. 173]. It is there-
fore unclear whether proof size and verification speed would scale well in
practical settings.

CQual [11] and Vault [6] are C-like languages that enforce history-based
properties of objects by employing a flow-sensitive type system based on
alias types [25]. Security-relevant objects in CQual or Vault programs have
their base types augmented with type qualifiers, which track the security-
relevant state of the object. Control flow paths that include operations for
changing the security state of an object at runtime cause the type qualifier
of that object to change during type-checking. A type-checker can therefore
determine if any object might enter a state at runtime that violates the
security policy.

Vault’s type system additionally includes variant types that allow a run-
time value to reflect an object’s current state. Untrusted programs can then
test such values before performing security-relevant operations on the ob-

4

jects they track. The Vault type-checker verifies that these runtime tests are
sufficient to guard against a security violation by refining an object’s type
qualifier along control flow paths that test such a runtime value.

Inspired by CQual and Vault, our work scales these ideas up to a large
existing programming language: the managed .NET CIL. In scaling up to
a larger-scale language, we adopt a somewhat different approach to track-
ing object security states at the type level. Both CQual and Vault assign
linear types to security-relevant objects (and, in the case of Vault, to run-
time state values), and use aliasing analyses to track changes to items with
linear types. However, it is not clear how such analyses can be extended to
support concurrency or to support an important technique commonly used
by IRM’s to track object security states, wherein security-relevant objects
are paired with runtime values that record their states, and then such pairs
are permitted to leak to the heap. Existing alias analyses cannot easily
track items that are permitted to leak to the heap arbitrarily, or that can
be manipulated by multiple concurrent threads of execution.

We therefore take the approach of L3 [18], wherein linearly-typed
items are permitted to leak to the heap by packing them into shared
data structures with limited interfaces. These shared object-state pairs,
called packages, can be aliased arbitrarily and are not tracked by the type
system. Mobile provides trusted operations for packing and unpacking
linear-typed items to and from shared package objects. To perform any
(security-relevant) operation that might change a value with linear type,
it must first be unpacked from any package that contains it. As with
ownership types [5, 4], packing and unpacking operations are implemented
as destructive reads, so that only one thread can perform security-relevant
operations on a given security-relevant object at a time. By including
appropriate pairing and unpairing operations in the code, IRM’s can exploit
the power of unrestricted aliasing, yet prove through the type system that
all security-relevant objects are sufficiently monitored. Mobile’s type system
and the CLI permissions system are both leveraged to maintain invariants
linking an object to an accurate runtime representation of its state.

3 Overview

A Mobile security policy identifies a set of security-relevant object classes
and assigns a set of acceptable traces to each such class. A trace is a finite
or infinite sequence of security-relevant events—program operations that
take a security-relevant object as an argument. A Mobile program satisfies
the security policy if (i) for every finite control flow path, the sequence
of security-relevant events performed on every object allocated along that
path is a member of the set of traces that the security policy has assigned to
that object’s class; and (ii) for every infinite control flow path, the sequence

5

of security-relevant operations performed on every security-relevant object
allocated along that path is a prefix of a member of the set of traces assigned
to that object’s class.

For example, a security policy that concerns files might identify the
System.IO.File class provided by the .NET Common Language Runtime
(CLR) as a security-relevant class, and might identify calls to the Open,
Read, and Close methods of that class1 as security-relevant operations. A
security policy that requires programs to open files before reading them,
allows at most three reads per opened file, and requires programs to close
files before the program terminates, might assign (O (R ∪ R2 ∪ R3) C)ω as the
set of acceptable traces for class System.IO.File (where O, R, and C denote
Open, Read, and Close events, respectively, and ω denotes finite or infinite
repetition).

Although Mobile security policies model events as operations performed
on objects, global events that do not concern any particular object can be
encoded as operations on a global object that is allocated at program start
and destroyed at program termination. Thus, Mobile policies can regard
global events, per-object events, and combinations of the two.

For example, one might modify the example policy above by addition-
ally requiring that at most ten network sends may occur during the life-
time of the program. In that case, the global object would additionally be
identified as a security-relevant object, a Send method call performed on
any System.Net.Sockets.Socket object would be identified as a security-
relevant event for the global object, and the global object would be assigned
the set of traces denoted by ε ∪ S ∪ S2 ∪ · · · ∪ S10 (where S denotes a Send
event).

A rewriter that produces self-monitoring programs from untrusted CIL
code is expected to produce well-typed Mobile code, so that the policy-
adherence theorem can be used to guarantee that it is safe to execute. For
this rewriting task to be feasible, Mobile’s type system must be flexible
enough to permit rewriters to insert runtime security checks—well-typed
code that tracks the state of security-relevant objects at runtime, testing as-
pects of the state that cannot be verified statically. To that end, Mobile sup-
ports a pack operation that pairs a security-relevant object with a runtime
value (e.g. an integer) representing an abstraction of the object’s current
state, and that encapsulates them into a two-field package object. Mobile’s
unpack operation can be used to unpack a package, yielding the original ob-
ject that was packed along with the runtime value that represents its state.
Mobile programs can then test this runtime value to infer information about
the associated object’s state. Both pack and unpack are implemented as

1The .NET CLR’s File class does not actually have methods with these names, but
instead supports file I/O via other classes such as the StreamReader class. We use more
typical names to clarify the example.

6

CIL method calls to a small trusted library (about ten lines of C# code).
To keep type-checking tractable, Mobile does not allow security-relevant

operations on objects that are packed. A package class’ two fields are de-
clared to be private so that, to access a security-relevant object directly and
perform operations on it, it must first be unpacked. While unpacked, Mobile
allows only limited aliasing of security-relevant objects—none of their aliases
can escape to the heap. To enforce this restriction, the unpack operation
is implemented as a destructive read, preventing the package from being
unpacked again before it is re-packed. Packages, however, are permitted to
escape to the heap and to undergo unlimited aliasing. These restrictions
allow the type-checker to statically track histories of unpacked objects and
to ensure that packed objects are always paired with a value that accurately
reflects their state. When an object is packed, it is safe for the type-checker
to forget whatever information might be statically known about the object,
keeping the type-checking algorithm tractable and affording the rewriter a
dynamic fallback mechanism when static analysis cannot verify all security-
relevant operations.

When pack and unpack are implemented as atomic operations, Mobile
can also enforce security policies in concurrent settings. In such a setting,
Mobile’s type system maintains the invariant that each security-relevant ob-
ject is either packed or held by at most one thread. Packed objects are always
policy-adherent (or their finalizers must bring them to a policy-adherent
state at program termination; see §5), whereas unpacked objects are tracked
by the type system to ensure that they return to a policy-adherent state be-
fore they are relinquished by the thread.

Using the above operations, a näıve rewriter can implement state-based
histories by simply representing security-relevant objects as packages.
Whenever a security-relevant operation is to be performed, the rewriter
would insert code to first unpack the package and test the object’s runtime
state, then perform the security-relevant operation only if the test succeeds
(possibly terminating otherwise), and finally repackage the object with
updated state.

This strategy suffices to implement any state-based history but might
result in inefficient code if security-relevant operations are frequent. Thus,
Mobile’s type system also makes it possible to avoid some of these dynamic
operations when policy-adherence can be proved statically. For example,
a more sophisticated rewriter could in some cases insert code to perform
numerous security-relevant operations consecutively without any dynamic
checks. Instead of dynamic checks, the rewriter could add typing annota-
tions that prove to the type-checker that the omitted checks are unnecessary
for preventing a security violation. Substituting annotations for dynamic
checks in this way is often possible in straight-line code or tight loops that
do not leak security-relevant objects to the heap. However, when objects

7

do escape to the heap, the type system is not sufficiently powerful to track
them and dynamic checks would usually be necessary in order to prove that
a security violation cannot occur. Thus, Mobile’s type system is sufficiently
expressive that rewriters can avoid some but not all dynamic checks.

Our implementation of Mobile models security policies as finite-state
security automata. This approach is appealing because it is simple, practi-
cal, it introduces minimal extra state to untrusted programs, and it seems
to cover most of the enforceable security policies discussed in the litera-
ture. However, the formalisms presented in this paper do not assume any
particular method of representing object states at runtime. Rather, we pa-
rameterize the framework in terms of arbitrary state representations and
state tests so that alternative implementations can be realized in the future.
For example, future implementations might track object states using LTL
expressions or even by recording an object’s complete history at runtime.
Thus, Mobile constitutes a framework general enough to reason about many
different in-lining strategies used by IRM’s.

4 A Formal Analysis of Mobile

4.1 The Abstract Machine

Figure 2 gives the Mobile instruction set. Like BIL, Mobile’s syntax is
written in postfix notation. In addition to BIL instructions2, Mobile includes

• instruction evt e, which performs security-relevant operation e on an
object,

• instructions newpackage and newhist for creating packages and run-
time state values,

• instructions pack and unpack for packing/unpacking objects and run-
time state values to/from packages,

• instruction condst, which dynamically tests a runtime state value,
and

• the pseudo-instructions v and ret, which do not appear in source
code but are introduced in the intermediate stages of the small-step
semantics presented in §4.2. (Instruction v is a term that has been
reduced to value v, and instruction ret pops the current stack frame
at the end of a method call.)

2For simplicity, we omit BIL’s value classes and managed pointers from Mobile, but
otherwise include all BIL types and instructions.

8

I ::= ldc.i4 n integer constant
I1 I2 I3 cond conditional
I1 I2 while while-loop
I1; I2 sequence
ldarg n method argument
I starg n store into arg
I1 . . . In newobj C(µ1, . . . , µn) make new obj
I0 I1 . . . In callvirt C::m.Sig method call
I ldfld µ C::f load from field
I1 I2 stfld µ C::f store into field
I evt e exhibit event
newpackage C make new package
I1 I2 I3 pack pack package
I unpack n unpack package
I1 I2 I3 condst C, k test state
I1 . . . In newhist C, k state constructor
v values*
I ret method return*

*Values and return instructions do not appear in Mobile source code, but are
introduced by the small-step operational semantics as the program evaluates.

Figure 2: The Mobile instruction set

Types τ ::= µ | C〈`〉
Untracked types µ ::= void | int32 | C〈?〉 | Rep

C
〈H〉

Class names C

Object identity variables `

History abstractions H ::= ε | e |H1H2 |H1 ∪H2 |Hω |
θ |H1 ∩H2

History abstraction variables θ

Method signatures Sig ::= ∀Γin .((Ψin ,Fr in)(
∃Γout .(Ψout ,Frout , τ))

Typing contexts Γ ::= · | Γ, `:C | Γ, `:C〈?〉 | Γ, θ
Object history maps Ψ ::= 1 |Ψ ? (` 7→ H)
Local variable frames Fr ::= (τ0, . . . , τn)

Figure 3: The Mobile type system

9

τ � τ

H ⊆ H ′

Rep
C
〈H〉 � Rep

C
〈H ′〉

τi � τ ′i ∀i ∈ 0..n
(τ0, . . . , τn) � (τ ′0, . . . , τ

′
n)

Dom(Ψ) = Dom(Ψ′) Ψ(`) ⊆ Ψ′(`) ∀` ∈ Dom(Ψ)
Ψ � Ψ′

Figure 4: Mobile subtyping

Figure 3 provides Mobile’s type system. Mobile types consist of void
types, integers, classes, and history abstractions (the types of runtime state
values). The type of each unpacked, security-relevant object C〈`〉 is para-
meterized by an object identity variable ` that uniquely identifies the object.
All aliases of the object have types with the same object identity variable,
but other unpacked objects of the same class have types with different object
identity variables. The types C〈?〉 of packed classes and security-irrelevant
classes do not include object identity variables, and their instances are there-
fore not distinguishable by the type system. We consider Mobile terms to
be equivalent up to alpha conversion of bound variables.

The types Rep
C
〈H〉 of runtime state values are parameterized both by

the class type C of the object to which they refer and by a history abstraction
H—an ω-regular expression (plus variables and intersection) that denotes a
set of traces. In such an expression, ω denotes finite or infinite repetition.

Closed (i.e. variable-less) history abstractions conform to a subset re-
lation; we write H1 ⊆ H2 if the set of traces denoted by H1 is a subset
of the set of traces denoted by H2. This subset relation induces a natural
subtyping relation � given in Figure 4. Observe that the subtyping relation
in Figure 4 does not recognize class subtyping of security-relevant classes.
We leave support for subtyping of security-relevant classes to future work.

Type variables in Mobile types are bound by typing contexts Γ, which
assign class or package types to object identity variables ` and declare any
history abstraction variables θ. Object identity variables can additionally
appear in object history maps Ψ, which associate a history abstraction H
with each object identity variable that corresponds to an unpacked, security-
relevant object. Since object identity variables uniquely identify each object
instance, object history maps can be seen as a spatial conjunction (?) [21] of
assertions about the histories of the various unpacked objects in the heap.

10

v ::= result
0 void
i4 integer
` heap pointer
rep

C
(H) runtime state value

o ::= heap elements

objC{fi = vi}
−→e object

pkg(`, rep
C

(H)) filled package

pkg(·) empty package
h ::= `i 7→ oi heap
a ::= (v0, . . . , vn) arguments
s ::= (a0, . . . , an) stack
ψ ::= (h, s) small-step store

Figure 5: The Mobile memory model

A complete Mobile program consists of:

Class names C

Field types field : (C × f) → µ

Class methods methodbody : (C::m.Sig) → I

Class policies policy : C → H

We also use the notation fields(C) to refer to the number of fields in class
C. Method signatures Sig will be described in §4.3.

4.2 Operational Semantics

Unlike [13], we provide a small-step operational semantics for Mobile rather
than a large-step semantics, so as to apply the policy adherence theorems
presented in §4.4 to programs that do not terminate or that enter a bad
state.

In Mobile’s small-step memory model, presented in Figure 5, objects
consist not only of an assignment of values to fields but also a trace −→e
that records a history of the security-relevant operations performed on the
object. Although our model attaches a history trace to each object, we
prove in §4.4 that it is unnecessary for the virtual machine to track and
store object traces because well-typed Mobile code never exhibits a trace
that violates the security policy.

The small-step operational semantics of Mobile, given in Figures 6 and 7,
define how a given store ψ and instruction I steps to a new store ψ′ and

11

E ::=[] | E I2 I3 cond | E; I2 | E starg n |
v1 . . . vm E I1 . . . In newobj C(µ1, . . . , µm+n+1) |
v1 . . . vm E I1 . . . In callvirt C::m.Sig | E ret |
E ldfld µ C::f | E I2 stfld µ C::f | v1 E stfld µ C::f |
E evt e | E I2 I3 pack | v1 E I3 pack | v1 v2 E pack |
E unpack C, k | E I2 I3 condst C, k |
v1 . . . vm E I1 . . . In newhist C, k

Figure 6: Mobile Evaluation Contexts

instruction I ′, written ψ, I ψ′, I ′.
Rules 17 and 18 use notation not previously defined and therefore de-

serve special note. Runtime operations testC,k and hcC,k test runtime state
values and construct new runtime state values, respectively. Rather than
fixing these two operations, we allow Mobile to be extended with unspecified
implementations of them. Different implementations of testC,k and hcC,k can
therefore be used to allow Mobile to support different collections of secu-
rity policies. For example, a Mobile system that supports security policies
expressed as DFA’s might implement runtime state values as 32-bit inte-
gers and might support tests that compare runtime state values to integer
constants (to determine which state the DFA is in). In that case, one could
define for each k ∈ 0..232, hcC,k() = k and testC,k(i) = {1 if i = k, else 0}. A
more powerful (but more computationally expensive) Mobile system might
implement runtime state values as dynamic data structures that record an
object’s entire trace and might provide tests to examine such structures.
In this paper, we assume only that a countable collection of state value
constructors and tests exists and that this collection adheres to typing con-
straints 19, 20, 21, and 22 presented in §4.3.

The operational semantics given in Figure 7 are for a single-threaded
virtual machine without support for finalizers. To model concurrency, one
could extend our stacks to consist of multiple threads and add a small-
step rule that non-deterministically chooses which thread to execute next.
Finalizers could be modeled by adding another small-step rule that non-
deterministically forks a finalizer thread whenever an object is unreachable.
Our implementation supports concurrency and finalizers, but to simplify the
presentation, we leave the analysis of these language features to future work.

4.3 Type System

Mobile’s type system considers each Mobile term to be a linear operator
from a history map and frame list (describing the initial heap and stack,

12

ψ, ldc.i4 i4 ψ, i4 (1)

ψ, I ψ′, I ′

ψ,E[I] ψ′, E[I ′]
(2)

if i4 = 0 then j = 3 else j = 2

ψ, i4 I2 I3 cond ψ, Ij
(3)

ψ, I1 I2 while ψ, I1 (I2; (I1 I2 while)) 0 cond (4)
ψ, v; I2 ψ, I2 (5)

0 ≤ j ≤ n

(h, s(v0, . . . , vn)), ldarg j (h, s(v0, . . . , vn)), vj

(6)

0 ≤ j ≤ n

(h, s(v0, . . . , vn)), v starg j
(h, s(v0, . . . , vj−1, v, vj+1, . . . , vn)), 0

(7)

` 6∈ Dom(h) n = fields(C)
(h, s), v1 . . . vn newobj C(µ1, . . . , µn)

(h[` 7→ objC{fi = vi|i ∈ 1..n}ε], s), `

(8)

methodbody(C::m.Sig) = I

(h, s), v0 . . . vn callvirt C::m.Sig (h, s(v0, . . . , vn)), I ret
(9)

(h, sa), v ret (h, s), v (10)

h(`) = objC{. . . , f = v, . . .}−→e

(h, s), ` ldfld µ C::f (h, s), v
(11)

h(`) = objC{. . . , f = v, . . .}−→e

(h, s), ` v′ stfld µ C::f (h[` 7→ objC [f 7→ v′]], s), 0
(12)

h(`) = objC{. . .}
−→e

(h, s), ` evt e1 (h[` 7→ objC{. . .}
−→e e1], s), 0

(13)

` 6∈ Dom(h)

(h, s),newpackage C (h[` 7→ pkg(·)], s), `
(14)

h(`) = pkg(. . .)

(h, s), ` `′ rep
C

(H) pack (h[` 7→ pkg(`′, rep
C

(H))], s), 0
(15)

h(`) = pkg(`′, rep
C

(H)) 0 ≤ j ≤ n

(h, s(v0, . . . , vn)), ` unpack j (
h[` 7→ pkg(·)], s(v0, . . . , vj−1, rep

C
(H), vj+1, . . . , vn)

)
, `′

(16)

if testC,k(rep
C

(H)) = 0 then j = 3 else j = 2

ψ, rep
C

(H) I2 I3 condst C, k ψ, Ij
(17)

arity(hcC,k) = n

ψ, v1 . . . vn newhist C, k ψ, hcC,k(v1, . . . , vn)
(18)

Figure 7: Small-step Operational Sematics for Mobile

13

1 (newobj C()) starg 1;
2 (ldarg 1) evt e1;
3 (ldarg 1) evt e2;
4 (newpackage C) stfld 2;
5 (ldarg 2) (ldarg 1) (newhist C, 0) pack;
6 (. . .) (ldarg 2) stfld . . . ;
7 ((ldarg 2) unpack 4) starg 3;
8 (ldarg 3) ((ldarg 4) evt e1) (. . .) condst C, 0

Figure 8: Sample Mobile program

respectively) to a new history map and frame list (describing the heap and
stack yielded by the operation) along with a return type. That is, we write
Γ ` I : (Ψ;−→Fr) (∃Γ′.(Ψ′;−→Fr

′
; τ ′) if term I, when evaluated in typing

context Γ, takes history map Ψ and frame list −→Fr (in which any typing
variables are bound in context Γ) to new history map Ψ′ and new frame list
−→Fr

′
, and yields a value of type τ ′ (if it terminates). Any new typing variables

appearing in −→Fr
′
and τ ′ are bound in context Γ′. A method signature (see

Figure 3) is the type assigned to the term comprising its body.
Below, we provide an informal description of Mobile’s typing rules by

walking the type-checking algorithm through the sample Mobile program
given in Figure 8. A complete list of typing rules is stated formally in the
appendix.

Line 1 of the sample program creates a new object of class C and stores it
in local register 1. When a new security-relevant object is created, Mobile’s
type system assigns it a fresh object identity variable `. The return type of
the the newly created object is thus C〈`〉 and the new history map yielded by
the operation satisfies Ψ′(`) = ε; that is, new objects are initially assigned
the empty trace.

As security-relevant events are performed on the object, the type system
tracks these changes by statically updating its history map to append these
new events to the sequence it recorded in its history map. So for example,
after processing lines 2–3 of the sample program, which perform events e1
and e2 on the object in local register 1, the type-checker’s new history map
would satisfy Ψ′(`) = e1e2. At each point that a security-relevant event
is performed, the type system ensures that the new trace satisfies a prefix
of the security policy. For example, when type-checking line 3, the type-
checker would verify that e1e2 ⊆ pre(policy(C)), where policy(C) denotes
the set of acceptable traces assigned by the security policy to class C, and
pre(policy(C)) denotes the set of prefixes of members of set policy(C).

Security-relevant objects of type C〈`〉 are like typical objects except that
they are not permitted to escape to the heap. That is, they cannot be as-
signed to object fields. In order to leak a security-relevant object to the
heap, a Mobile program must first store it in a package using a pack in-

14

struction. This requires three steps: (1) A package must be created via a
newpackage instruction. (2) A runtime state value must be created that
accurately reflects the state of the object to be packed. This is accomplished
via the newhist instruction, which is described in more detail below. (3)
Finally, the pack operation is used to store the object and the runtime state
value into the package. Lines 4 and 5 of the sample program illustrate these
three steps. Line 4 creates a new package and stores it in local register 2.
Line 5 then fills the package using the object in local register 1 along with
a newly created runtime state value.

In order for Mobile’s type system to accept a pack operation, it must
be able to statically verify that the runtime state value is an accurate ab-
straction of the object being packed. That is, if the runtime state value
has type Rep

C
〈H〉, then the type system requires that Ψ(`) ⊆ H where ` is

the object identity variable of the object being packed. Additionally, since
packed objects are untracked and therefore might continue to exist until the
program terminates, packed objects must satisfy the security policy. That
is, we require that Ψ(`) ⊆ policy(C).

Packages that contain security-relevant objects can leak to the heap, as
illustrated by line 6 of the sample program, which stores the package to a
field of some other object. Since only packed objects can leak to the heap,
the restriction that packed objects must be in a policy-adherent state is a
potential limitation of the type system. That is, it might often be desirable
to leak an object that is not yet in a policy-adherent state to the heap, but
later retrieve it and restore it to a policy-adherent state before the program
terminates. In §5 we show how Mobile implementations can use finalizer
code to avoid this restriction and leak objects to the heap even when they
are not yet in a policy-adherent state.

After a pack operation, the type system removes object identity variable
` from the history map. Hence, after line 5 of the sample program, Ψ′(`)
is undefined and the object that was packed becomes inaccessible. If the
program were to subsequently attempt to load from local register 1 (before
replacing its contents with something else), the type-checker would reject
the code because that register now contains a value with an invalid type.
Object identity variable ` can therefore be thought of as a capability that
has been revoked from the local scope and given to the package.

In order to perform more security-relevant events on an object, a Mobile
program must first reacquire a capability for the object by unpacking the
object from its package via an unpack instruction. Line 7 of the sample
program unpacks the package in local register 2, storing the extracted ob-
ject in local register 3 and storing the runtime state value that was packaged
with it in local register 4. Since packages and the objects they contain are
not tracked by the type system, the type system cannot statically determine
the history of a freshly unpacked object. All that is statically known is that

15

the runtime state value that will be yielded at runtime by the unpack in-
struction will be an accurate representation of the unpacked object’s history.
To reflect this information statically, the type system assigns a fresh object
identity variable `′ to the unpacked object and a fresh history variable θ to
the unknown history. The unpacked object and runtime state value then
have types C〈`′〉 and Rep

C
〈θ〉, respectively, and the new history map satis-

fies Ψ′(`′) = θ. The type C〈?〉 of a package can hence be thought of as an
existential type binding type variables `′ and θ.

If the sample program were at this point to perform security-relevant
event e on the newly unpacked object, Mobile’s type system would reject
because it would be unable to statically verify that θe ⊆ policy(C) (since
nothing is statically known about history θ). However, a Mobile program
can perform additional evt operations on the object by first dynamically
testing the runtime state value yielded by the unpack operation. If a Mobile
program dynamically tests a value of type Rep

C
〈θ〉, Mobile’s type system

can statically infer information about history θ within the branches of the
conditional. For example, if a condst instruction is used to test a value
with type Rep

C
〈θ〉 for equality with a value of type Rep

C
〈e1e2〉, then in the

positive branch of the conditional, the type system can statically infer that
θ = e1e2. If policy(C) = (e1e2)ω, then a Mobile program could execute
I evt e1 within the positive branch of such a conditional (where I is the
object that was unpacked), because e1e2e1 ⊆ pre((e1e2)ω); but the type-
checker would reject a program that executed I evt e2 in the positive branch,
since e1e2e2 6⊆ pre((e1e2)ω).

Mobile supports many possible schemes for representing histories at run-
time and for testing them, so rather than fixing particular operations for con-
structing runtime state values and particular operations for testing them, we
instead assume only that there exists a countable collection of constructors
newhist C, k and conditionals condst C, k for all integers k, that construct
runtime state values and test runtime state values (respectively) for objects
of class C. We then abstractly define HCC,k(. . .) to be the type Rep

C
〈H〉

of a history value constructed using constructor k for security-relevant class
C, and we define ctx+

C,k(H,Ψ) and ctx−C,k(H,Ψ) to be the object history
maps that refine Ψ in the positive and negative branches (respectively) of a
conditional that performs test k on a history value of type Rep

C
〈H〉. Mobile

supports any such refinement that is sound in the sense that

testC,k(H) = 0 =⇒ Ψ � ctx−C,k(H,Ψ)(`) (19)

and

testC,k(H) 6= 0 =⇒ Ψ � ctx+
C,k(H,Ψ)(`) (20)

We further assume that each history type constructor HCC,k(. . .) accurately
reflects its runtime implementation, in the sense that for all history value

16

types Rep
C1
〈H1〉, . . . ,Rep

Cn
〈Hn〉 such that n = arity(HCC,k), there exists

some H such that

HCC,k(Rep
C1
〈H1〉, . . . ,Rep

Cn
〈Hn〉) = Rep

C
〈H〉 (21)

and

hcC,k(rep
C1

(H1), . . . , rep
Cn

(Hn)) = rep
C
(H) (22)

In the sample program, suppose that history value constructor
newhist C, 0 takes no arguments and yields a runtime value that represents
history e1e2; and suppose that conditional test condst C, 0 compares a
runtime state value to the value that represents history e1e2. Formally,
suppose that HCC,0() = Rep

C
〈e1e2〉 and ctx+

C,0(θ,Ψ) = Ψ[θ 7→ e1e2]. Thus,
in the positive branch of such a test, the type-checker’s object history map
can be refined by substituting e1e2 for any instances of the history variable
being tested. Then if policy(C) = (e1e2)ω, a Mobile type-checker would
accept the sample program. In the positive branch of the conditional in
line 8, the type-checker would infer that the object in local register 4 has
history e1e2, and therefore it is safe to perform event e1 on it. However, if
policy(C) = e1e2e2, then the type-checker would reject, because e1e2e1 is
not a prefix of e1e2e2.

Our implementation of Mobile implements history abstraction values as
integers. Thus, it provides 232 newhist operations for each security-relevant
class C, defining hcC,k() = k for all k ∈ 0..232 − 1. Tests condst of runtime
state values are implemented as equality comparisons between the integer
runtime state value to be tested and an integer constant. Thus, we define

testC,k(rep
C
(θ)) =

{
1 if rep

C
(θ) = k

0 otherwise

ctx+
C,k(θ,Ψ) = Ψ[θ 7→ θ ∩Hk]

ctx−C,k(θ,Ψ) = Ψ[θ 7→ θ ∩ (∪i6=kHi)]

for each integer k ∈ 0..232 − 1, where Hk is a closed history abstraction
statically assigned to integer constant k. The assignments of closed history
abstractions Hk to integers k are not trusted, so this mapping can be de-
fined by the Mobile program itself (e.g., in settings where self-monitoring
programs are produced by a common rewriter or where separately produced
programs do not exchange objects) or by the policy-writer (in settings where
the mapping must be defined at a system global level for consistency).

The above scheme allows a Mobile program to represent object security
states at runtime with a security automaton of 232 states or less. Each state
of the automaton is assigned an integer constant k, and history abstraction

17

Hk would denote the set of traces that cause the automaton to arrive in
state k.

Many other extensions to Mobile are also possible. For example, rather
than implementing runtime state values as simple integers, they could be
implemented as data structures that store LTL expressions or complete trace
histories. Tests of these data structures could be implemented as calls to
methods in a trusted library.

4.4 Policy Adherence of Mobile Programs

The operational semantics of Mobile presented in §4.2 permit untyped
Mobile programs to enter bad terminal states—states in which the Mobile
program has not been reduced to a value but no progress can be made.
For example, an untyped Mobile program might attempt to load from a
non-existent field or attempt to unpack an empty package (in which case
no small-step rule can be applied). Mobile’s type system presented in §4.3
prevents both policy violations and bad terminal states, except that it does
not prevent unpack operations from being performed on empty packages.
This reflects the reality that in practical settings there will always be bad
terminal states that are not statically preventable. We prove below that
Mobile programs well-typed with respect to a security policy will not violate
the security policy when executed even if they enter a bad state.

Formally, we define well-typed by

Definition 1. A method C::m.Sig with Sig = ∀Γin .(Ψin ,Fr in) (
∃Γout .(Ψout ,Frout , τ) is well-typed if and only if there exists a deriva-
tion for the typing judgment Γin ` I : (Ψin ,Fr in) (∃Γout .(Ψout ,Frout , τ)
where I = methodbody(C::m.Sig).

Definition 2. A Mobile program is well-typed if and only if (1) for all
C::m.Sig ∈ Dom(methodbody), method C::m.Sig is well-typed, and (2) there
exists a method Cmain ::main.Sigmain ∈ Dom(methodbody) with Sigmain =
∀Γin .(Ψin , (τ1, . . . , τn)) (∃Γout .(Ψout ,Frout , τout) such that for all substi-
tutions σ : θ → −→e and all object identity variables `:C ∈ (Γin ,Γout), if
Ψout(`) = H then σ(H) ⊆ policy(C).

Part 2 of definition 2 captures the requirement that a Mobile program’s
entry method must have a signature that complies with the security policy
on exit.

Policy violations are defined differently depending on whether the pro-
gram terminates normally. If the program terminates normally, Mobile’s
type system guarantees that the resulting heap will be policy-adherent;
whereas if the program does not terminate or enters a bad state, Mobile
guarantees only that the heap at each evaluation step will be prefix-adherent,
where policy- and prefix-adherence are defined as follows:

18

Definition 3 (Policy Adherent). A heap h is policy-adherent if, for all class
objects objC{. . .}

−→e ∈ Rng(h), −→e ⊆ policy(C).

Definition 4 (Prefix Adherent). A heap h is prefix-adherent if, for all class
objects objC{. . .}

−→e ∈ Rng(h), −→e ⊆ pre(policy(C)).

To formalize the theorem, we first define a notion of consistency between
a static typing context and a runtime memory state. We say that a memory
store ψ respects an object identity context Ψ and a list of frames −→Fr , written
Γ ` ψ : (Ψ;−→Fr) if there exists a derivation using the the inference rules given
in Figure 9. The following two theorems then establish that well-typed
Mobile programs do not violate the security policy.

Theorem 1 (Terminating Policy Adherence). Assume that a Mobile pro-
gram is well-typed, and that, as per Definition 2, its main method has
signature Sigmain = ∀Γin .(Ψin , (τ1, . . . , τn))(∃Γout .(Ψout ,Frout , τout). If
Γin ` ψ : (Ψin ;Fr) holds and if ψ,methodbody(Cmain ::main.Sig) ∗(h′, s′), v
holds, then h′ is policy-adherent.

Proof. See Appendix B.

Theorem 2 (Non-terminating Prefix Adherence). Assume that a
Mobile program is well-typed, and assume that Γ ` I : (Ψ;−→Fr) (
∃Γ′.(Ψ′;−→Fr

′
; τ) and Γ ` (h; s) : (Ψ;−→Fr) hold. If h is prefix-adherent and

(h, s), I n(h′, s′), I ′ holds, then h′ is prefix-adherent.

Proof. See Appendix B.

An important consequence of both of these theorems is that Mobile can
be implemented on existing .NET systems without modifying the memory
model to store object traces at runtime. Since a static type-checker can ver-
ify that Mobile code is well-typed, and since well-typed code never exhibits
a trace that violates the security policy, the runtime system need not store
or monitor object traces to prevent security violations.

5 Implementation

Our prototype implementation of Mobile consists of a type-checker for
Mobile’s type system extended to the full managed subset of Microsoft’s
.NET CIL. The type-checker was written in Ocaml (about one thousand
lines of code) and uses Microsoft’s .NET ILX SDK [26] to read and manip-
ulate .NET bytecode binaries. Mobile programs are .NET CIL programs
with typing annotations encoded as .NET method attributes. The Mobile
type-checker reads these (untrusted) annotations and verifies them in the
course of type-checking.

19

Γ `heap h : Γ `hist h : (Γ; Ψ) Γ `stack s : −→Fr
Γ ` (h, s) : (Ψ;−→Fr)

(23)

Γ0 `heap h : Γ
Γ0 ` vi : (Ψ;−→Fr)((Ψ;−→Fr ;field(C, fi)) ∀i ∈ 1..fields(C)

Γ0 `heap h, (` 7→ objC{fi = vi|i ∈ 1..fields(C)}−→e) : Γ, `:C
(24)

Γ0 `heap h : Γ
Γ0 `heap h, (` 7→ pkg(. . .)) : Γ, `:C〈?〉

(25)

Γ0 `heap h : Γ
Γ0 `heap h : Γ, θ

(26)

Γ0 `heap · : ·
(27)

`hist h : (Γ; Ψ) −→e ⊆ H

`hist h, (` 7→ objC{. . .}
−→e) : (Γ, `:C; Ψ ? (` 7→ H))

(28)

`hist h : (Γ; Ψ) −→e ⊆ H ⊆ policy(C)

`hist h, (` 7→ pkg(`′, rep
C

(H))), (`′ 7→ objC{. . .}
−→e) :

(Γ, `:C〈?〉, `′:C; Ψ)

(29)

`hist h : (Γ; Ψ) −→e ⊆ policy(C)

`hist h, (` 7→ objC{. . .}
−→e) : (Γ, `:C; Ψ)

(30)

`hist h : (Γ; Ψ)
`hist h, (` 7→ pkg(·)) : (Γ, `:C〈?〉; Ψ)

(31)

`hist h : (Γ; Ψ)
`hist h : (Γ, θ; Ψ)

(32)

`hist · : (·; 1)
(33)

Γ `stack s : −→Fr Γ ` vi : (Ψ;−→Fr 0)((Ψ;−→Fr 0; τi) ∀i ∈ 0..n
Γ `stack s(v0, . . . , vn) : −→Fr (τ0, . . . , τn)

(34)

Γ `stack · : ·
(35)

Figure 9: Consistency of Mobile Statics and Dynamics

20

struct Package {
private object obj;
private int state;

public void Pack(object o, int s) {
lock (o) { obj=o; state=s; }

}

public object Unpack(ref int s) {
lock (obj) {

object o=obj;
if (o==null) throw new EmptyPackage();
obj=null; s=state;
return o;

}
}

}

Figure 10: Implementation of pack and unpack

Our implementation allows security policies to identify method calls as
security-relevant events. Thus, security policies can constrain the usage of
resources provided by the CLR by monitoring CLR method calls and the
objects they return. Our type-checker can, in principle, regard any CIL
instruction as a security-relevant event, but we leave practical investigation
of this feature to future work.

Operations pack and unpack are implemented as method calls to the
(very small) trusted C# library given in Figure 10. Observe that C#’s lock
construct is used to make both operations atomic. History abstraction values
are implemented as integers. Thus, our newhist operation is simply a ldc.i4
instruction that loads an integer constant onto the evaluation stack. Policies
can statically declare for each integer constant a closed history abstraction
that integer represents when used as a runtime state value. Tests of runtime
state values consist of equality comparisons with integer constants in the
manner described in §4.3.

With this simple support for history abstractions and tests, our type-
checker can support IRM’s that enforce security policies by expressing each
object’s state with a security automaton. Such an IRM can assign an integer
constant to each state of the automaton, and can associate with each such
constant a history abstraction that denotes the set of traces causing the
automaton to enter the given state. The integer equality tests then allow
the IRM to test whether any object’s automaton is in any particular state.

The type-checker must verify subset relations over the language of his-
tory abstractions given in Figure 3. Although deciding subset for ω-regular

21

expressions with variables and intersection is not tractable in general, the
task is simplified by observing that real Mobile code only introduces history
variables at the beginnings of expressions (when an object is unpacked) and
only introduces intersections that involve a variable and a closed history
abstraction (when a runtime state value is tested). Furthermore, history
variables cannot appear in policies or their prefixes, further reducing the
possible forms. The resulting sub-language can be decided using a regular
expression subset algorithm (see Appendix C).

Our type-checker also recognizes method annotations attached to final-
izers of security-relevant classes. A finalizer’s precondition must be satisfied
whenever an object of its class escapes to the heap (i.e. when it is packed),
since at any point after that, its package object could become orphaned and
then garbage-collected. By the time a program terminates, all of its objects
are guaranteed to satisfy their finalizers’ postconditions, since at that point
any remaining objects will be garbage-collected. This allows an IRM to leak
security-relevant objects to the heap (in packages) even when they are not
yet in a policy-adherent state, as long as the object’s finalizer suffices to
restore it to a policy-adherent state once garbage-collection occurs.

6 Conclusions and Future Work

Mobile’s type system and the theorems presented in §4.4 show that a com-
mon style of IRM, in which extra state variables and guards that model
a security automaton have been in-lined into the untrusted code, can be
independently verified by a type-checker, eliminating the need to trust the
rewriter that produced the IRM. We verify policies that are universally quan-
tified over unbounded collections of objects—that is, policies that require
each object to exhibit a history of security-relevant events that conforms
to some stated property. The language of security policies is left abstract
and could consist of DFA’s, LTL expressions, or any computable language
of finite and infinite event sequences.

Our implementation of Mobile for managed Microsoft .NET CIL ex-
presses security policies as finite-state security automata. We verify such
policies in the presence of exceptions, concurrency, finalizers, and non-
termination, demonstrating that Mobile can be scaled to real type-safe,
low-level languages.

Our presentation of Mobile has not addressed issues of object inheritance
of security-relevant classes. Future work should examine how to safely ex-
press and implement policies that require objects related by inheritance to
conform to different properties. A type-checker for such a system would need
to identify when a typecast at runtime could potentially lead to a violation
of the policy and provide a means for policy-adherent programs to perform
necessary typecasts.

22

Another open problem is how to support a wider range of IRM implemen-
tations. Mobile supports only a specific (but typical) treatment of runtime
state, wherein each security-relevant object is paired with a dynamic repre-
sentation of its state every time it is leaked to the heap. In some settings,
it may be desirable to implement IRM’s that store an object’s dynamic
state differently, such as in a separate array rather than packaged together
with the object it models. Type systems for coordinated data structures
[22] could potentially be leveraged to support these decoupled objects and
states, maintaining the invariant that security-relevant objects and the run-
time state values that monitor them remain consistent with one another.

We chose a type system for Mobile that statically tracks control flow in
a data-insensitive manner, with ω-regular expressions denoting sets of event
sequences. This approach is appealing because there is a natural rewriting
strategy (outlined in §3) whereby well-typed Mobile code can be automat-
ically generated from untrusted CIL code. A more powerful type system
could employ a richer language like Hoare Logic [15] to track data-sensitive
control flow. This could allow clever rewriters to eliminate additional run-
time checks by statically proving that they are unnecessary. However, for-
mulating a sound and complete Hoare Logic for .NET that includes objects
and concurrency is challenging; furthermore, the burden of producing useful
proofs in this logic would be pushed to the rewriter. Future work should in-
vestigate rewriting strategies that could make such an approach worthwhile.

Finally, not every enforceable security policy can be couched as a com-
putable property that is universally quantified over object instances. For
example, one potentially useful policy is one that requires that for every
file object opened for writing, there exists an encryptor object to which its
output stream has been linked. Such a policy is not supported by Mobile
because it regards both universal and existentially quantified properties that
relate multiple object instances. Future work should consider how to im-
plement IRM’s that enforce such policies, and how these implementations
could be type-checked so as to statically verify that the IRM satisfies the
security policy.

Acknowledgments

The authors are indebted to Matthew Fluet, Michael Hicks, and Amal
Ahmed for their helpful critiques of this paper.

References

[1] Lujo Bauer, Jay Ligatti, and David Walker. Composing security poli-
cies with polymer. In ACM SIGPLAN Conference on Programming

23

Language Design and Implementation (PLDI), pages 305–314, Chicago,
Illinois, June 2005.

[2] Andrew Bernard. Engineering Formal Security Policies for Proof-
Carrying Code. PhD thesis, Carnegie Mellon University, Pittsburgh,
Pennsylvania, April 2004.

[3] Andrew Bernard and Peter Lee. Temporal logic for proof-carrying code.
In 18th International Conference on Automated Deduction, pages 31–
46, Copenhagen, Denmark, July 2002.

[4] D. G. Clarke and S. Drossopoulou. Ownership, encapsulation and dis-
jointness of type and effect. In 17th Annual ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), pages 292–310, Seattle, Washington, November 2002.

[5] D. G. Clarke, J. Noble, and J. M. Potter. Simple ownership types
for object containment. In European Conference for Object-Oriented
Programming (ECOOP), pages 53–76, Budapest, Hungary, June 2001.

[6] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols
in low-level software. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 59–69, Snowbird,
Utah, June 2001.

[7] ECMA. ECMA-335: Common Language Infrastructure (CLI). ECMA
(European Association for Standardizing Information and Communica-
tion Systems), Geneva, Switzerland, second edition, December 2002.

[8] Úlfar Erlingsson and Fred B. Schneider. IRM enforcement of Java stack
inspection. In IEEE Symposium on Security and Privacy, pages 246–
255, Oakland, California, May 2000.

[9] Úlfar Erlingsson and Fred B. Schneider. SASI enforcement of security
policies: A retrospective. In WNSP: New Security Paradigms Work-
shop. ACM Press, 2000.

[10] David Evans and Andrew Twynman. Flexible policy-directed code
safety. In IEEE Symposium on Security and Privacy, pages 32–45,
Oakland, California, May 1999.

[11] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive type
qualifiers. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 1–12, Berlin, Germany, June
2002.

[12] Li Gong. JavaTM 2 platform security architecture, version 1.2. Whitepa-
per. c© 1997–2002 Sun Microsystems, Inc.

24

[13] A. D. Gordon and D. Syme. Typing a multi-language intermediate code.
In 28th ACM Symposium on Principles of Programming Languages,
pages 248–260, London, United Kingdom, January 2001.

[14] Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Computabil-
ity classes for enforcement mechanisms. To appear in ACM Transac-
tions on Programming Languages and Systems, 2006. Also available as
Technical Report TR-2003-1908, Cornell University, Ithaca, New York,
August 2003.

[15] C.A.R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–580 and 583, October 1969.

[16] Andrew Kennedy and Don Syme. The design and implementation
of generics for the .NET common language runtime. In ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (PLDI), pages 1–12, Snowbird, Utah, June 2001.

[17] Tim Lindholm and Frank Yellin. The JavaTM Virtual Machine Specifi-
cation. Addison-Wesley, second edition, 1999.

[18] Greg Morrisett, Amal Ahmed, and Matthew Fluet. L3: A linear lan-
guage with locations. To appear in the 7th International Conference
on Typed Lambda Calculi and Applications.

[19] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard
Samuels, Frederick Smith, David Walker, Stephanie Weirich, and Steve
Zdancewic. TALx86: A realistic typed assembly language. In ACM
SIGPLAN Workshop on Compiler Support for System Software, pages
25–35, Atlanta, Georgia, May 1999.

[20] George C. Necula and Peter Lee. The design and implementation of
a certifying compiler. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 333–344, 1998.

[21] Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning
about programs that alter data structures. In 15th Annual Conference
of the European Association for Computer Science Logic, LNCS, pages
1–19, Paris, France, 2001. Springer-Verlag.

[22] Michael F. Ringenburg and Dan Grossman. Types for describing coor-
dinated data structures. In ACM SIGPLAN International Workshop on
Types in Languages, Design and Implementation (TLDI), pages 25–36,
Long Beach, California, January 2005.

[23] Fred B. Schneider. Enforceable security policies. ACM Transactions on
Information and Systems Security, 3(1):30–50, February 2000.

25

[24] Christian Skalka and Scott F. Smith. History effects and verification. In
Asian Programming Languages Symposium (APLAS), pages 107–128,
November 2004.

[25] Frederick Smith, David Walker, and Greg Morrisett. Alias types. Lec-
ture Notes in Computer Science, 1782:366–381, March 2000 2000.

[26] Don Syme. ILX: Extending the .NET Common IL for functional lan-
guage interoperability. In Nick Benton and Andrew Kennedy, editors,
First International Workshop on Multi-Language Infrastructure and In-
teroperability, volume 59.1, Florence, Italy, September 2001.

[27] David Walker. A type system for expressive security policies. In 27th
ACM SIGPLAN Symposium on Principles of Programming Languages,
pages 254–267, January 2000.

A Typing Rules

The following is a formal statement of Mobile’s typing rules.

Γ ` ldc.i4 n : (Ψ;−→Fr)((Ψ;−→Fr ; int32)
(36)

Γ ` I1 : (Ψ;−→Fr)(∃Γ1.(Ψ1;
−→Fr 1; int32)

Γ,Γ1 ` Ii : (Ψ1;
−→Fr 1)(∃Γ′.(Ψ′;−→Fr

′
; τ) ∀i ∈ {2, 3}

Γ ` I1 I2 I3 cond : (Ψ;−→Fr)(∃Γ1,Γ′.(Ψ′;−→Fr
′
; τ)

(37)

Γ,Γ′ ` I1 I2 0 cond : (Ψ;−→Fr)(∃Γ′.(Ψ;−→Fr ;void)
Γ,Γ′ ` I1 I2 while : (Ψ;−→Fr)(∃Γ′.(Ψ;−→Fr ;void)

(38)

Γ ` I1 : (Ψ;−→Fr)(∃Γ1.(Ψ1;
−→Fr 1;void)

Γ,Γ1 ` I2 : (Ψ1;
−→Fr 1)(∃Γ2.(Ψ′;−→Fr

′
; τ)

Γ ` I1; I2 : (Ψ;−→Fr)(∃Γ1,Γ2.(Ψ′;−→Fr
′
; τ)

(39)

` ∈ Dom(Ψ′) field(C, f) = µ

Γ ` I : (Ψ;−→Fr)(∃Γ′.(Ψ′;−→Fr
′
;C〈`〉)

Γ ` I ldfld µ C::f : (Ψ;−→Fr)(∃Γ′.(Ψ′;−→Fr
′
;µ)

(40)

Γ ` I1 : (Ψ;−→Fr)(∃Γ1.(Ψ1;
−→Fr 1;C〈`〉)

Γ,Γ1 ` I2 : (Ψ1;
−→Fr 1)(∃Γ2.(Ψ′;−→Fr

′
;µ)

` ∈ Dom(Ψ′)
field(C, f) = µ

Γ ` I1 I2 stfld µ C::f : (Ψ;−→Fr)(∃Γ1,Γ2.(Ψ′;−→Fr
′
;void)

(41)

0 ≤ j ≤ n

Γ ` ldarg j : (Ψ;−→Fr (τ0, . . . , τn))((Ψ;−→Fr (τ0, . . . , τn); τj)
(42)

Γ ` I : (Ψ;−→Fr)(∃Γ′.(Ψ′;−→Fr
′
(τ0, . . . , τn); τ) 0 ≤ j ≤ n

Γ ` I starg j : (Ψ;−→Fr)(
∃Γ′.(Ψ′;−→Fr

′
(τ0, . . . , τj−1, τ, τj+1, . . . , τn);void)

(43)

26

Γ,Γ1, . . . ,Γi−1 ` Ii : (Ψi−1;
−→Fr i−1)(

∃Γi.(Ψi;
−→Fr i;µi) ∀i ∈ 1..n

n = fields(C) ` 6∈ Dom(Γ,Γ1, . . . ,Γn) ε ∈ pre(policy(C))
Γ ` I1 . . . In newobj C(µ1, . . . , µn) :

(Ψ0;
−→Fr 0)(∃Γ1, . . . ,Γn, `:C.(Ψn ? (` 7→ ε);−→Fr n;C〈`〉)

(44)

Γ0, . . . ,Γj ` Ij : (Ψj ,
−→Fr j)(∃Γj+1.(Ψj+1,

−→Fr j+1, τj) ∀j ∈ 0..n
τ0 = C〈`〉 ` ∈ Dom(Ψn+1) C::m.Sig ∈ Dom(methodbody)

Γ0, . . . ,Γn ` Sig <: (Ψin , (τ0, . . . , τn))(∃Γout .(Ψout ,Frout , τ)
Ψn+1 = Ψunused ?Ψin

Γ0 ` I0 . . . In callvirt C::m.Sig :
(Ψ0,

−→Fr 0)(∃Γ1, . . . ,Γn+1,Γout .(Ψunused ?Ψout ,
−→Fr n+1, τ)

(45)

He ⊆ pre(policy(C))
Γ ` I : (Ψ;−→Fr)(∃Γ′.(Ψ′ ? (` 7→ H);−→Fr

′
;C〈`〉)

Γ ` I evt e : (Ψ;−→Fr)(∃Γ′.(Ψ′ ? (` 7→ He);−→Fr
′
;void)

(46)

` 6∈ Dom(Γ)
Γ ` newpackage C : (Ψ;−→Fr)(∃`:C〈?〉.(Ψ;−→Fr ;C〈?〉)

(47)

H ⊆ H ′ ⊆ policy(C)
Γ ` I1 : (Ψ;−→Fr)(∃Γ1.(Ψ1;

−→Fr 1;C〈?〉)
Γ,Γ1 ` I2 : (Ψ1;

−→Fr 1)(∃Γ2.(Ψ2;
−→Fr 2;C〈`〉)

Γ,Γ1,Γ2 ` I3 : (Ψ2;
−→Fr 2)(∃Γ3.(Ψ′ ? (` 7→ H);−→Fr

′
; Rep

C
〈H ′〉)

Γ ` I1 I2 I3 pack : (Ψ;−→Fr)(∃Γ1,Γ2,Γ3.(Ψ′;−→Fr
′
;void)

(48)

` 6∈ Dom(Ψ′) θ 6∈ Dom(Γ)
Γ ` I : (Ψ;−→Fr)(∃Γ′.(Ψ′;−→Fr

′
(τ0, . . . , τn);C〈?〉)

Γ ` I unpack j : (Ψ;−→Fr)(∃Γ′, `:C, θ.
(Ψ′, ` 7→ θ;−→Fr

′
(τ0, . . . , τj−1,Rep

C
〈θ〉, τj+1, . . . , τn);C〈`〉)

(49)

Γ ` I1 : (Ψ;−→Fr)(∃Γ1.(Ψ1;
−→Fr 1; Rep

C
〈H〉)

Γ,Γ1 ` I2 : (ctx+
C,k(H,Ψ1);

−→Fr 1)(∃Γ′.(Ψ′;−→Fr
′
; τ)

Γ,Γ1 ` I3 : (ctx−C,k(H,Ψ1);
−→Fr 1)(∃Γ′.(Ψ′;−→Fr

′
; τ)

Γ ` I1 I2 I3 condst k : (Ψ;−→Fr)(∃Γ1,Γ′.(Ψ′;−→Fr
′
; τ)

(50)

Γ ` Ii : (Ψi−1;
−→Fr i−1)(∃Γi.(Ψi;

−→Fr i; Rep
Ci
〈Hi〉) ∀i ∈ 1..n

Γ ` I1 . . . In newhist C, k : (Ψ0;
−→Fr 0)(∃Γ1, . . . ,Γn.

(Ψn;−→Fr n;HCC,k(Rep
C1
〈H1〉, . . . ,Rep

Cn
〈Hn〉))

(51)

Γ1,Γ′ ` I : (Ψ1;
−→Fr 1)(∃Γ2.(Ψ2;

−→Fr 2; τ)
Ψ′

1 � Ψ1
−→Fr

′
1 �

−→Fr 1 Ψ2 � Ψ′
2

−→Fr 2 �
−→Fr

′
2 τ � τ ′

Γ1,Γ′ ` I : (Ψ′
1;
−→Fr

′
1)(∃Γ2,Γ′.(Ψ′

2;
−→Fr

′
2; τ

′)
(52)

Γ ` 0 : (Ψ;−→Fr)((Ψ;−→Fr ;void)
(53)

Γ ` i4 : (Ψ;−→Fr)((Ψ;−→Fr ; int32)
(54)

Ψ = Ψ′ ? (` 7→ H)

Γ, `:C ` ` : (Ψ;−→Fr)((Ψ;−→Fr ;C〈`〉)
(55)

27

Γ, `:C〈?〉 ` ` : (Ψ;−→Fr)((Ψ;−→Fr ;C〈?〉)
(56)

Γ ` rep
C

(H) : (Ψ;−→Fr)((Ψ;−→Fr ; Rep
C
〈H〉)

(57)

Γ ` I : (Ψ;−→Fr)(∃Γ′.(Ψ′;−→Fr
′
Fr0; τ)

Γ ` I ret : (Ψ;−→Fr)(∃Γ′.(Ψ′;−→Fr
′
; τ)

(58)

The judgment Γ ` Sig1 <: Sig2 in rule 45 asserts that Sig1 alpha-
varies to Sig2. That is, there exists a substitution σ : ` → ` such that
σ(Sig1) = Sig2 and any free variables in Sig2 are drawn from Γ. This
captures the requirement that call sites must satisfy the callee’s precondition
and can assume the callee’s postcondition.

B Typing Proofs

The proofs of Terminating Policy Adherence (Theorem 1) and of Non-
terminating Prefix Adherence (Theorem 2) are arrived at in three steps.
First, in §B.2 we prove subject reduction for the type system. That is, we
prove that taking a step according to the operational semantics provided in
Figure 7 preserves the type of a Mobile term as defined in Appendix A. Sec-
ond, in §B.3 we prove that well-typed Mobile terms can take a step as long
as they have not been reduced to a value or have not entered a “bad” state,
such as by performing an unpack operation on an empty package. Third,
these two results are leveraged in §B.4 to prove Terminating Policy Adher-
ence and Non-terminating Prefix Adherence theorems. That is, we show
that well-typed Mobile programs that terminate normally will satisfy the
security policy, and that well-typed Mobile programs that do not terminate
or that enter a “bad” state will satisfy a prefix of the security policy.

B.1 Canonical Derivations

In the proofs that follow, it will be useful to appeal to the following “ob-
vious” facts about the derivation system given in Figure 9. (Proofs of the
facts below can be obtained by trivial inductions over the derivations of the
various relevant judgments.)

Fact 1. If Γ′ `heap h : Γ holds then the following three statements are
equivalent:

(i) Γ = Γ0, `:C
(ii) h = h0, (` 7→ objC{fi = vi|i ∈ 1..fields(C)}−→e)
(iii) There exists a derivation of Γ `heap h : Γ that ends in

Γ′ `heap h0 : Γ0

Γ′ ` vi : (Ψ;−→Fr)((Ψ;−→Fr ;field(C, fi)) ∀i ∈ 1..fields(C)
(24)

Γ′ `heap h : Γ

28

and the following three statements are equivalent:

(i) Γ = Γ0, `:C〈?〉
(ii) h = h0, (` 7→ pkg(. . .))
(iii) There exists a derivation of Γ `heap h : Γ that ends in

Γ′ `heap h0 : Γ0 (25)
Γ′ `heap h : Γ

Fact 2. If `hist h : (Γ;Ψ) holds then the following three statements are
equivalent:

(i) Γ = Γ0, `
′:C

(ii) h = h0, (`′ 7→ objC{. . .}
−→e)

(iii) There exists a derivation of `hist h : (Γ; Ψ) that ends in one of

`hist h0 : (Γ0; Ψ0) −→e ⊆ H
(28)

`hist h : (Γ; Ψ)
,

`hist h1 : (Γ1; Ψ) −→e ⊆ H ⊆ policy(C)
(29)

`hist h : (Γ; Ψ)
, or

`hist h0 : (Γ0; Ψ) −→e ⊆ policy(C)
(30)

`hist h : (Γ; Ψ)

where Ψ = Ψ0 ? (`′ 7→ H), Γ1 = Γ0, `:C〈?〉, and h1 = h0, (` 7→
pkg(`′, rep

C
(H)));

and the following three statements are equivalent:

(i) Γ = Γ0, `:C〈?〉
(ii) h = h0, (` 7→ pkg(. . .))
(iii) There exists a derivation of `hist h : (Γ; Ψ) that ends in one of

`hist h1 : (Γ1; Ψ) −→e ⊆ H ⊆ policy(C)
(29)

`hist h : (Γ; Ψ)

or

`hist h0 : (Γ0; Ψ)
(31)

`hist h : (Γ; Ψ)

where Γ1 = Γ0, `:C〈?〉 and h1 = h0, (` 7→ pkg(`′, rep
C
(H))).

Fact 3. The following judgments can be weakened in the following ways:

1. If Γ0 `heap h : Γ holds then Γ0,Γ′ `heap h : Γ also holds.

29

2. If Γ0 `stack s : −→Fr holds then Γ0,Γ′ `stack s : −→Fr also holds.
3. If Γ0 ` I : (Ψ;−→Fr) (∃Γ′′.(Ψ′′;−→Fr

′′
; τ) holds then Γ0,Γ′ ` I :

(Ψ;−→Fr)(∃Γ′′.(Ψ′′;−→Fr
′′
; τ) also holds.

Facts 1 and 2 state that when Γ′ `heap h : Γ holds or `hist h : (Γ;Ψ)
holds, then Γ and h match element for element, and there is a way to
reorganize the derivation of either judgment to bring the rule that refers to
any particular element to the bottom of the derivation tree. That is, the
rule applications in either derivation can be reordered arbitrarily. Fact 3
states that judgment Γ0 `heap h : Γ, judgment Γ0 `stack s : −→Fr , and judgment
Γ0 ` I : (Ψ;−→Fr) (∃Γ′′.(Ψ′′;−→Fr

′′
; τ) can be weakened by adding more

elements to Γ0.

B.2 Subject Reduction

Lemma 1 (Context Widening). If Γ ` I : (Ψ;Fr)(∃Γ′.(Ψ′;Fr ′; τ) holds
and I contains no ret instructions, then Γ ` I : (Ψextra ? Ψ;−→Fr Fr) (
∃Γ′.(Ψextra ?Ψ′;−→Fr Fr ′; τ) holds.

Proof. Observe that all typing rules except the typing rule for ret (58) are
parameterized by an arbitrary frame list prefix that remains unchanged by
an application of the rule. Since I has no ret instructions, this suffices to
prove that Γ ` I : (Ψ;−→Fr Fr)(∃Γ′.(Ψ′;−→Fr Fr ′; τ) holds.

It remains to show that Ψ ` I : (Ψextra ?Ψ;Fr)(∃Γ′.(Ψextra ?Ψ′;Fr ′; τ)
holds. Let D be the derivation of Γ ` I : (Ψ;Fr)(∃Γ′.(Ψ′;Fr ′; τ). Proof
is by induction on the structure of D.

Case 1: D ends in rule 36, 42, 47, 53, 54, 55, 56, or 57. In these cases,
Ψ′ = Ψ. The lemma follows immediately by instantiating Ψ with
Ψextra ?Ψ in each typing rule.

Case 2: D ends in rule 37, 38, 39, 40, 41, 43, 44, 46, 48, 49, 50, or 51.
The lemma follows by inductive hypothesis, by instantiating each an-
tecedent of the form Γ0 ` I0 : (Ψ0;Fr0) (∃Γ′0.(Ψ′

0;Fr ′0; τ0) with
Γ0 ` I0 : (Ψextra ?Ψ0;Fr0)(∃Γ′0.(Ψextra ?Ψ′

0;Fr ′0; τ0).

Case 3: D ends in rule 45. In addition to instantiating into each antecedent
as in the previous case, instantiate Ψunused with Ψextra ?Ψunused . The
lemma then holds by inductive hypothesis.

Case 4: D ends in rule 52. Observe from the subtyping rules that if Ψ1 �
Ψ′

1 then Ψextra ? Ψ1 � Ψextra ? Ψ′
1. We can therefore instantiate the

rule’s antecedents as in the previous two cases to prove the lemma by
inductive hypothesis.

30

Lemma 2 (Context Subtyping). If `hist h : (Γ;Ψ) and Ψ � Ψ′ hold then
`hist h : (Γ; Ψ′) holds.

Proof. Let D be a derivation of `hist h : (Γ;Ψ). Proof is by induction over
the structure of D.

Base Case: If D ends with rule 33, then Ψ = Ψ′ = · and the lemma holds
immediately.

Inductive Case: If D ends in any remaining rule other than rule 28, then
the lemma follows immediately from the inductive hypothesis. Assume
D ends in rule 28 and therefore has the form

`hist h0 : (Γ0; Ψ0) −→e ⊆ H
(28)

`hist h : (Γ; Ψ)

where Γ = Γ0, `:C, h = h0, (` 7→ objC{. . .}
−→e), and Ψ = Ψ0 ? (` 7→ H).

Since Ψ � Ψ′, it follows that Ψ′ = Ψ′
0 ? (` 7→ H ′) such that H ⊆ H ′

and Ψ0 � Ψ′
0. Thus, by inductive hypothesis one can derive

`hist h0 : (Γ0; Ψ′
0)

−→e ⊆ H ′
(28)

`hist h : (Γ; Ψ′)

Lemma 3 (Stepwise Subject Reduction). Assume that

Γ ` ψ : (Ψ;−→Fr) (59)

Γ ` I : (Ψ;−→Fr)(∃Γ′′.(Ψ′′;−→Fr
′′
; τ) (60)

both hold and assume that all methods in Dom(methodbody), are well-typed.
If ψ, I ψ′, I ′ holds then there exists Γ′, Ψ′, −→Fr

′
, and σ : θ → −→e such that

Γ′ ` ψ′ : (Ψ′;−→Fr
′
) holds and Γ′ ` I ′ : (Ψ′;−→Fr

′
)(∃Γ′′.(σ(Ψ′′);σ(−→Fr

′′
);σ(τ))

holds.

Proof. Proof is by induction on the derivation of the judgment ψ, I ψ′, I ′.
To make the proof more tractable, in what follows we make the simplifying
assumption that weakening rule 52 does not appear in the derivation of
judgment 60. Similar logic to that presented below applies to cases where
rule 52 is present.

Case 1: ψ, ldc.i4 i4 ψ, i4. Then Γ′′ = · and (Ψ′′;−→Fr
′′
; τ) = (Ψ;−→Fr ; int32)

by 36. To satisfy the lemma, choose Γ′ = Γ, Ψ′ = Ψ, −→Fr
′
= −→Fr , and

σ = · and apply typing rule 54.

31

Case 2: ψ,E[I0] ψ′, E[I ′0]. Let D be a derivation of 60. Observe that
for all possible E[I0], derivation D includes a subderivation D2 of
Γ ` I0 : (Ψ;−→Fr) (∃Γ′2.(Ψ′

2;
−→Fr

′
2; τ2). By inductive hypothesis, there

exists Γ′, Ψ′, −→Fr
′
, and σ such that Γ′ ` ψ′ : (Ψ′;−→Fr

′
) and Γ′ `

I ′0 : (Ψ′;−→Fr
′
) (∃Γ′2.(σ(Ψ′

2);σ(−→Fr
′
2);σ(τ2)). Let D′2 be a derivation

of this latter judgment. Then derivation D can be modified by re-
placing subderivation D2 with derivation D′2 to obtain a derivation of
Γ′ ` E[I ′0] : (Ψ′;−→Fr

′
)(∃Γ′′.(σ(Ψ′′);σ(−→Fr

′′
);σ(τ)).

Case 3: ψ, i4 I2 I3 cond ψ, Ij where j ∈ {2, 3}. Any derivation of 60
contains a subderivation of Γ ` Ij : (Ψ;−→Fr) (∃Γ′′.(Ψ′′;−→Fr

′′
; τ) (by

37 and 54). Thus the lemma is satisfied by choosing Γ′ = Γ, Ψ′ = Ψ,
−→Fr

′
= −→Fr , and σ = ·.

Case 4: ψ, I1 I2 while ψ, I1 (I2; (I1 I2 while)) 0 cond. Any derivation
of 60 must have the form

Γ ` I1 : (Ψ;−→Fr) (
∃Γ1.(Ψ1;−→Fr 1; int32)

Γ ` I2 : (Ψ1;−→Fr 1) (
∃Γ2.(Ψ;−→Fr ;void)

Γ ` 0 : (Ψ1;−→Fr 1) (

∃Γ2.(Ψ;−→Fr ;void)
(37)

Γ ` I1 I2 0 cond : (Ψ;−→Fr) (∃Γ′′.(Ψ;−→Fr ;void)
(38)

Γ ` I1 I2 while : (Ψ;−→Fr) (∃Γ′′.(Ψ;−→Fr ;void)

where Γ = Γ0,Γ′′ and Γ′′ = Γ1,Γ2. One can therefore derive

Γ ` I1 :
(Ψ;−→Fr) (∃Γ1.
(Ψ1;−→Fr 1; int32)

(52)
Γ ` I1 :
(Ψ;−→Fr) (∃Γ′′.
(Ψ1;−→Fr 1; int32)

Γ ` I2 :
(Ψ1;−→Fr 1) (
∃Γ2.(Ψ;−→Fr ;void)

(52)
Γ ` I2 :
(Ψ1;−→Fr 1) (
∃Γ′′.(Ψ;−→Fr ;void)

Γ ` I1 I2 while :
(Ψ;−→Fr) (
∃Γ′′.(Ψ;−→Fr ;void)

(38)
Γ ` I2; (I1 I2 while) :

(Ψ1;−→Fr 1) (∃Γ′′.(Ψ;−→Fr ;void)

Γ ` 0 :

(Ψ1;−→Fr 1) (
∃Γ2.(Ψ;−→Fr ;void)

(52)

Γ ` 0 :

(Ψ1;−→Fr 1) (
∃Γ′′.(Ψ;−→Fr ;void)

(37)

Γ0, Γ′′ ` I1 (I2; (I1 I2 while)) 0 cond : (Ψ;−→Fr) (∃Γ′′.(Ψ;−→Fr ;void)

The lemma is thus satisfied by choosing Γ′ = Γ, Ψ′ = Ψ, −→Fr
′
= −→Fr ,

and σ = ·.

Case 5: ψ, v; I2 ψ, I2. Any derivation of 60 contains a subderivation of
Γ ` I2 : (Ψ;−→Fr)(∃Γ′′.(Ψ′′;−→Fr

′′
; τ) (by 39 and 53). Thus the lemma

is satisfied by choosing Γ′ = Γ, Ψ′ = Ψ, −→Fr
′
= −→Fr , and σ = ·.

Case 6: ψ, ldarg j ψ, vj where ψ = (h, s(v0, . . . , vn)). From 60 and 42,
−→Fr has the form −→Fr 0Fr and 0 ≤ j ≤ n. From 59 and 34, Fr =
(τ0, . . . , τn) and Γ ` vj : (Ψ;−→Fr) ((Ψ;−→Fr ; τj) holds. The lemma is
therefore satisfied by choosing Γ′ = Γ, Ψ′ = Ψ, −→Fr

′
= −→Fr , and σ = ·.

Case 7: (h, s), v starg j (h, s′), 0 where s = s0(v0, . . . , vn) for some
stack prefix s0, and s′ = s0(v0, . . . , vj−1, v, vj+1, . . . , vn). From
60 and 43, −→Fr has the form −→Fr 0Fr , and 0 ≤ j ≤ n. From 59
and 34, Fr = (τ0, . . . , τn). From 60 and 43, Γ′′ = ·, Ψ′′ = Ψ,

32

−→Fr
′′

= −→Fr 0(τ0, . . . , τj−1, τ
′, τj+1, . . . , τn), τ = void, and Γ ` v :

(Ψ;−→Fr) ((Ψ;−→Fr ; τ ′) holds. Choose Γ′ = Γ, Ψ′ = Ψ, −→Fr
′

= −→Fr
′′
,

and σ = ·. Since all type judgments for value expressions are inde-
pendent of frames, one can derive Γ ` v : (Ψ′;−→Fr

′
) ((Ψ′;−→Fr

′
; τ ′)

to prove by 34 that Γ′ ` (h; s′) : (Ψ′;−→Fr
′
) holds. Furthermore,

Γ′ ` 0 : (Ψ′;−→Fr
′
)((Ψ′′;−→Fr

′′
; τ) holds by 53, satisfying the lemma.

Case 8: (h, s), v1 . . . vn newobj C(µ1, . . . , µn) (h′, s), ` where h′ =
h, (` 7→ objC{fi = vi|i ∈ 1..n}ε) and n = fields(C). From 60 and 44,
Γ′′ = `:C, Ψ′′ = Ψ ? (` 7→ ε), −→Fr

′′
= −→Fr , and τ = C〈`〉. Additionally,

Γ ` vi : (Ψ;−→Fr) ((Ψ;−→Fr ;field(C, fi)) ∀i ∈ 1..n. Choose Γ′ = Γ′′,
Ψ′ = Ψ′′, −→Fr

′
= −→Fr

′′
, and σ = ·. From 59 one can derive

Γ′ `heap h : Γ Γ′ ` vi : (Ψ;−→Fr)((Ψ;−→Fr ;field(C, fi)) ∀i ∈ 1..n
(24)

Γ′ `heap h
′ : Γ′

and derive
`hist h : (Γ′; Ψ) ε ⊆ ε

(24)
`hist h

′ : (Γ′; Ψ′)

Thus Γ′ ` (h′, s) : (Ψ′,
−→Fr

′
) holds. Further, observe that Γ′ ` ` :

(Ψ′;−→Fr
′
)(∃Γ′′.(Ψ′′;Fr ′′;C〈`〉) holds by 55 because Γ′ = Γ, `:C. Thus

the lemma is satisfied.

Case 9: (h, s), v0 . . . vn callvirt C::m.Sig (h, sa), I0 ret where a =
(v0, . . . , vn) and I0 = methodbody(C::m.Sig). From 60 and 45, −→Fr

′′
=

−→Fr , and there exists (Ψin , (τ0, . . . , τn)), Ψout , Ψunused , and Frout such
that Ψ = Ψunused ?Ψin , Ψ′′ = Ψunused ?Ψout ,

Γ ` vi : (Ψ;−→Fr)((Ψ;−→Fr ; τi) ∀i ∈ 0..n (61)

and

Γ ` Sig <: (Ψin ; (τ0, . . . , τn))(∃Γ′′.(Ψout ;Frout ; τ).

Since C::m.Sig is well-typed, it follows that

Γ ` I0 : (Ψin ; (τ0, . . . , τn))(∃Γ′′.(Ψout ;Frout ; τ).

By context widening, this implies that

Γ ` I0 : (Ψunused ?Ψin ;−→Fr (τ0, . . . , τn))(
∃Γ′′.(Ψunused ?Ψout ;

−→Fr Frout ; τ)

33

which collapses to

Γ ` I0 : (Ψ;−→Fr (τ0, . . . , τn))(∃Γ′′.(Ψ′′;−→Fr Frout ; τ).

Choose Γ′ = Γ, Ψ′ = Ψ, −→Fr
′
= −→Fr (τ0, . . . , τn), and σ = ·. To prove

that Γ′ ` I ′ : (Ψ′;−→Fr
′
)(∃Γ′′.(Ψ′′;−→Fr

′′
; τ) holds, derive

Γ ` I0 : (Ψ;−→Fr (τ0, . . . , τn))(∃Γ′′.(Ψ′′;−→Fr Frout ; τ)(58)
Γ ` I0 ret : (Ψ;−→Fr (τ0, . . . , τn))(∃Γ′′.(Ψ′′;−→Fr ; τ)

(recalling that −→Fr
′′

= −→Fr). To prove that Γ′ ` (h; sa) : (Ψ′;−→Fr
′
) holds,

observe that Γ `stack s : −→Fr holds by 59, and therefore one can derive

Γ `stack s : −→Fr Γ ` vi : (Ψ;−→Fr)((Ψ;−→Fr ; τi) ∀i ∈ 0..n
(34)

Γ′ `stack sa : −→Fr
′

by 61 and 34.

Case 10: (h, sa), v ret (h, s), v. By 60 and 58, Γ′′ = ·, Ψ = Ψ′′, and
−→Fr = −→Fr

′′
Fr0 for some Fr0. Choose Γ′ = Γ, Ψ′ = Ψ′′, −→Fr

′
= −→Fr

′′
, and

σ = ·. Any derivation of 60 has a subderivation of Γ ` v : (Ψ;−→Fr)(
(Ψ;−→Fr ; τ). Since the typing rules for value expressions are independant
of frame, one can therefore derive Γ ` v : (Ψ′;−→Fr

′
) ((Ψ′′;−→Fr

′′
; τ).

Furthermore, one derivation of 59 has a subderivation of

Γ `stack s : −→Fr
′′ ...

(34)
Γ `stack sa : −→Fr

′′
Fr0

Hence Γ′ `stack s : −→Fr
′
holds.

Case 11: (h, s), ` ldfld µ C::f (h, s), v where h(`) = objC{. . . , f =
v, . . .}−→e . By 60 and 40, Γ′′ = ·, Ψ = Ψ′′, and −→Fr = −→Fr

′′
.

Choose Γ′ = Γ, Ψ′ = Ψ, −→Fr
′

= −→Fr , and σ = ·. Any deriva-
tion of 60 has a subderivation of Γ ` v : (Ψ;−→Fr) ((Ψ;−→Fr ; τ).
Hence Γ ` v : (Ψ′;−→Fr

′
) ((Ψ′′;−→Fr

′′
; τ) holds. Furthermore,

Γ′ ` (h; s) : (Ψ′;−→Fr
′
) holds by 59.

Case 12: (h, s), ` v stfld µ C::fj (h′, s), 0 where h′ = h[` 7→ objC [fj 7→
v]], and 1 ≤ j ≤ fields(C), and h(`) = objC{fi = vi|i ∈ 1..fields(C)}−→e .
By 60 and 41, Γ′′ = ·, Ψ = Ψ′′, −→Fr = −→Fr

′′
, and τ = void. Choose

Γ′ = Γ, Ψ′ = Ψ, −→Fr
′

= −→Fr , and σ = ·. Observe that Γ′ ` 0 :

34

(Ψ′;−→Fr
′
) ((Ψ′′;−→Fr

′′
; τ) holds by rule 53. Furthermore, since one

derivation of 59 has a subderivation of
Γ `heap h0 : Γ0

Γ ` vi : (Ψ;−→Fr)((Ψ;−→Fr ;field(C, fi)) ∀i ∈ 1..fields(C)
(24)

Γ `heap h : Γ

where Γ = Γ0, `:C and h = h0, (` 7→ objC{. . .}
−→e), and since 60 implies

that all three of Γ ` v : (Ψ;−→Fr) ((Ψ;−→Fr ;µ), field(C, fj) = µ, and
` ∈ Dom(Γ′) hold, one can derive

Γ `heap h0 : Γ0

Γ ` v : (Ψ;−→Fr)((Ψ;−→Fr ;field(C, fj))
Γ ` vi : (Ψ;−→Fr)((Ψ;−→Fr ;field(C, fi)) ∀i ∈ 1..j − 1, j + 1..fields(C)

(24)
Γ′ `heap h

′ : Γ′

Hence Γ′ ` (h′; s) : (Ψ′;−→Fr
′
) holds.

Case 13: (h, s), ` evt e1 (h′, s), 0 where h′ = h[` 7→ objC{. . .}
−→e e1 and

h(`) = objC{. . .}
−→e . By 60 and 46, Γ′′ = ·, −→Fr = −→Fr

′′
, τ = void,

Ψ = Ψ1 ? (` 7→ H) for some Ψ1 and H, and Ψ′′ = Ψ1 ? (` 7→ He1).
Choose Γ′ = Γ, Ψ′ = Ψ′′, −→Fr

′
= −→Fr , and σ = ·. Then Γ′ ` 0 :

(Ψ′;−→Fr
′
) ((Ψ′′;−→Fr

′′
; τ) holds by typing rule 53. Furthermore, since

one derivation of 59 has a subderivation of

`hist h0 : (Γ0; Ψ1) −→e ⊆ H
(28)

`hist h : (Γ; Ψ)

where Γ = Γ0, `:C and h = h0, ` 7→ objC{. . .}
−→e , one can derive

`hist h0 : (Γ0; Ψ1) −→e e1 ⊆ He1 (28)
`hist h

′ : (Γ; Ψ′′)

Hence Γ′ ` (h′; s) : (Ψ′;−→Fr
′
) holds.

Case 14: (h, s),newpackage C (h′, s), ` where h′ = h, ` 7→ pkg(·). By
60 and 47, Γ′′ = `:C〈?〉, Ψ = Ψ′′, −→Fr = −→Fr

′′
, and τ = C〈?〉. Choose

Γ′ = Γ,Γ′′, Ψ′ = Ψ, −→Fr
′

= −→Fr , and σ = ·. Observe that Γ′ ` ` :
(Ψ′′;−→Fr

′′
)((Ψ′′;−→Fr

′′
; τ) by typing rule 56. Hence Γ′ ` ` : (Ψ′;−→Fr

′
)(

∃Γ′′.(Ψ′′;−→Fr
′′
; τ) holds by rule 52. In addition, any derivation of 59

includes subderivations of Γ `heap h : Γ and `hist h : (Γ; Ψ); hence one
can derive

Γ′ `heap h : Γ
(25)

Γ′ `heap h
′ : Γ′

and `hist h : (Γ; Ψ)
(31)

`hist h
′ : (Γ′; Ψ′)

Thus Γ′ ` (h′; s) : (Ψ′;−→Fr
′
) holds, proving the lemma.

35

Case 15: ` `′ rep
C
(H) pack (h′, s), 0 where h(`) = pkg(. . .) and h′ =

h[` 7→ pkg(`′, rep
C
(H))]. By 60 and 48, Γ′′ = ·, −→Fr = −→Fr

′′
, τ =

void, and Ψ = Ψ′′ ? (` 7→ H ′) for some H ′. Any derivation of 60 has
subderivations of Γ ` rep

C
(H) : (Ψ;−→Fr)((Ψ′′;−→Fr ; Rep

C
〈H〉) (by rule

57) such that H ′ ⊆ H ⊆ policy(C) (by rule 48), and of

Ψ = Ψ′′ ? (`′ 7→ H ′)
(55)

Γ ` `′ : (Ψ;−→Fr)((Ψ;−→Fr ;C〈`〉)

where Γ = Γ0, `:C〈?〉, `′:C. One derivation of 59 has a subderivation
of

D
`hist h0, (` 7→ pkg(. . .)) : (Γ0, `:C〈?〉; Ψ′′) −→e ⊆ H ′

(28)
`hist h : (Γ; Ψ)

where h = h0, (` 7→ pkg(. . .)), (`′ 7→ objC{. . .}
−→e) (because rule 28

is the only derivation rule that can add `′ 7→ H ′ to Ψ.) Given the
definition of h0 above, observe that

h′ = h0, (` 7→ pkg(`′, rep
C
(H))), (`′ 7→ objC{. . .}

−→e)

and −→e ⊆ H ′ ⊆ H ⊆ policy(C). Choose Γ′ = Γ, Ψ′ = Ψ′′, −→Fr
′
= −→Fr ,

and σ = ·. Observe that Γ′ ` 0 : (Ψ′;−→Fr
′
)((Ψ′′;−→Fr

′′
; τ) is derivable

using rule 53.

It remains to be shown that `hist h
′ : (Γ′; Ψ′) holds. To prove this,

it suffices to prove that `hist h0 : (Γ0; Ψ′′) holds, since if this latter
judgment holds, one can derive

`hist h0 : (Γ0; Ψ′′) −→e ⊆ H ⊆ policy(C)
(29)

`hist h
′ : (Γ; Ψ′′)

Suppose h(`) = pkg(·). Then

D = `hist h0 : (Γ0; Ψ′′)
(31)

`hist h0, (` 7→ pkg(·)) : (Γ0, `:C〈?〉; Ψ′′)

proving that `hist h0 : (Γ0; Ψ′′) holds.

Otherwise h(`) = pkg(`′′, rep
C
(H ′′)) for some `′′ and H ′′. In that case,

D = `hist h1 : (Γ1; Ψ′′)
−→
e′′ ⊆ H ′′ ⊆ policy(C)

(29)
`hist h0, (` 7→ pkg(`′′, rep

C
(H ′′))) : (Γ0, `:C〈?〉; Ψ′′)

36

where Γ0 = Γ1, (`′′:C) and h0 = h1, (`′′ 7→ objC{. . .}
−→
e′′). One can

therefore derive

`hist h1 : (Γ1; Ψ′′)
−→
e′′ ⊆ policy(C)

(30)
`hist h0 : (Γ0; Ψ′′)

proving that `hist h0 : (Γ0; Ψ′′) holds.

Case 16: (h, s(v0, . . . , vn)), ` unpack j (h[` 7→ pkg(·)], sa′), `′ where
h(`) = pkg(`′, rep

C
(H)) and a′ = (v0, . . . , vj−1, rep

C
(H), vj+1, . . . , vn).

By 60 and 51, Γ′′ = `:C, θ, Ψ′′ = Ψ ? (` 7→ θ), τ = C〈`〉, and −→Fr
′′

=
−→Fr 0(τ0, . . . , τj−1,Rep

C
〈θ〉, τj+1, . . . , τn) where −→Fr = −→Fr 0(τ0, . . . , τn).

One derivation of 59 has a subderivation of

`hist h0 : (Γ0; Ψ) −→e ⊆ H ⊆ policy(C)
(29)

`hist h : (Γ; Ψ)

where Γ = Γ0, `:C〈?〉, `′:C and h = h0, (` 7→ pkg(`′, rep
C
(H))), (`′ 7→

objC{. . .}
−→e).

Choose Γ′ = Γ, σ = (θ 7→ −→e), Ψ′ = σ(Ψ′′), and −→Fr
′
= σ(−→Fr

′′
). Since

θ 6∈ Dom(Γ) (by rule 49), it follows that σ(Ψ′′) = Ψ ? (` 7→ −→e). One
can therefore derive

Ψ′ = Ψ ? (` 7→ −→e)
(55)

Γ′ ` `′ : (Ψ′;−→Fr
′
)((σ(Ψ′′);σ(−→Fr

′′
);σ(τ))

and one can derive

`hist h0 : (Γ0; Ψ)
(31)

`hist h0, (` 7→ pkg(·)) : (Γ0, `:C〈?〉; Ψ) −→e ⊆ −→e
(28)

`hist h
′ : (Γ′; Ψ′)

Finally, since any derivation of 59 has a subderivation of

Γ `stack s : −→Fr 0 Γ ` vi : (Ψ;−→Fr)((Ψ;−→Fr ; τi) ∀i ∈ 0..n
(34)

Γ `stack s(v0, . . . , vn) : −→Fr 0(τ0, . . . , τn)

and since Γ ` rep
C
(H) : (Ψ′;−→Fr

′
)((Ψ′;−→Fr

′
; Rep

C
〈H〉) holds by typ-

ing rule 57, it follows from derivation rule 34 that Γ′ `stack sa
′ : −→Fr

′

holds.

Case 17: ψ, rep
C
(H) I2 I3 condst C, k ψ, Ij where j ∈ {2, 3}. Choose

Γ′ = Γ, −→Fr
′
= −→Fr ,

Ψ′ =

{
ctx+

C,k(H,Ψ) if j = 2
ctx−C,k(H,Ψ) if j = 3

37

and σ = ·. By 60, 51, and 57, both Γ ` I2 : (ctx+
C,k;

−→Fr) (

∃Γ′′.(Ψ′′;−→Fr
′′
; τ) and Γ ` I3 : (ctx−C,k;

−→Fr)(∃Γ′′.(Ψ′′;−→Fr
′′
; τ) hold, so

Γ ` Ij : (Ψ′;−→Fr
′
)(∃Γ′′.(Ψ′′;−→Fr

′′
; τ) holds.

Any derivation of 59 has subderivations of Γ `heap h : Γ and `hist

h : (Γ; Ψ). To prove that Γ′ ` ψ : (Ψ′;−→Fr
′
), it suffices to show that

`hist h : (Γ;Ψ′). If j = 2 then testC,k(rep
C
(H)) 6= 0 (by 17), and

axiom 20 therefore implies that Ψ � ctx+
C,k(H,Ψ). Altnernatively, if

j = 3 then testC,k(rep
C
(H)) = 0, and axiom 19 therefore implies that

Ψ � ctx−C,k(H,Ψ). In either case, Ψ � Ψ′ holds. By context subtyping,
we conclude that `hist h : (Γ; Ψ′) also holds.

Case 18: ψ, v1 . . . vn newhist C, k ψ, hcC,k(v1, . . . , vn). By 60 and 51,
Γ′′ = ·, Ψ = Ψ′′, −→Fr = −→Fr

′′
, and τ = HCC,k(Rep

C1
〈H1〉, . . . ,Rep

Cn
〈Hn〉)

where Γ ` vi : (Ψ;−→Fr) ((Ψ;−→Fr ; Rep
Ci
〈Hi〉) holds for all i ∈ 1..n.

Choose Γ′ = Γ, Ψ′ = Ψ, −→Fr
′

= −→Fr , and σ = ·. By axioms 21 and
22, there exists H such that τ = Rep

C
〈H〉 and hcC,k(v1, . . . , vn) =

rep
C
(H). Thus, Γ ` rep

C
(H) : (Ψ′;−→Fr

′
) ((Ψ′′;−→Fr

′′
; Rep

C
〈H〉) holds

by typing rule 57.

Theorem 3 (Subject Reduction). Assume that Γ ` ψ : (Ψ;−→Fr) holds and
assume that all methods in Dom(methodbody) are well-typed. If Γ ` I :
(Ψ;−→Fr) (∃Γ′′.(Ψ′′;−→Fr

′′
; τ) holds and ψ, I n ψ′, I ′ holds then there exist

Γ′, Ψ′, −→Fr
′
, and σ : θ → −→e such that Γ′ ` ψ′ : (Ψ′;−→Fr

′
) holds and Γ′ ` I ′ :

(Ψ′;Fr ′)((σ(Ψ′′);σ(Fr ′′);σ(τ)) holds.

Proof. Proof is by induction on n.

Base Case: Assume n = 0. Choose Γ′ = Γ, Ψ′ = Ψ, −→Fr
′
= −→Fr , and σ = ·.

The theorem is then satisfied by assumption.

Inductive Case: Assume n ≥ 1. Since ψ, I n ψ′, I ′ holds, there ex-
ist ψ1 and I1 such that ψ, I n−1 ψ1, I1 holds and such that
ψ1, I1 ψ′, I ′ also holds. By inductive hypothesis, there ex-
ists Γ1, Ψ1,

−→Fr 1, and σ1 such that Γ1 ` ψ1 : (Ψ1;
−→Fr 1) and

Γ1 ` I1 : (Ψ1;
−→Fr 1) ((σ1(Ψ′′);σ1(

−→Fr
′′
);σ1(τ)) hold. The theo-

rem then follows from the stepwise subject reduction lemma.

38

B.3 Progress

Theorem 4 (Progress). Assume Γ ` I : (Ψ;−→Fr) ((Ψ′;−→Fr
′
; τ) and Γ `

(h; s) : (Ψ;−→Fr) hold. Then one of the following conditions holds:

1. I = v for some value v.

2. There exists a small-step store ψ′ and instruction I ′ such that
(h, s), I ψ′, I ′.

3. I = E
[
` unpack j

]
and h(`) = pkg(·).

Proof. If I is a value, then condition 1 of the theorem holds immediately,
proving the theorem. Assume I is not a value. Then I must have one of the
following forms:

Case 1: I = E[ldc.i4 i4]. Condition 2 holds with I ′ = E[i4] and ψ′ =
(h, s).

Case 2: I = E[v1; I2]. Condition 2 holds with I ′ = E[I2] and ψ′ = (h, s).

Case 3: I = E[v I2 I3 cond]. By typing rule 37, v = i4 for some integer
i4 . Thus, condition 2 holds with I ′ = E[Ij] and ψ′ = (h, s), where

j =

{
3 if i4 = 0
2 otherwise

Case 4: I = E[I1 I2 while]. Condition 2 holds with

I ′ = E[I1 (I2; (I1 I2 while)) 0 cond]

and ψ′ = (h, s).

Case 5: I = E[ldarg j]. By typing rule 42, −→Fr = −→Fr 0(τ0, . . . , τn) and
0 ≤ j ≤ n. Since Γ `stack s : −→Fr , it follows from derivation rule 34
that s = s0(v0, . . . , vn). Hence, condition 2 holds with I ′ = E[vj] and
ψ′ = (h, s).

Case 6: I = E[v′ starg j]. By typing rule 43, −→Fr = −→Fr 0(τ0, . . . , τn) and
0 ≤ j ≤ n. Since Γ `stack s : −→Fr , it follows from derivation rule 34
that s = s0(v0, . . . , vn). Hence, condition 2 holds with I ′ = E[0] and
ψ′ = (h, s0(v0, . . . , vj−1, v

′, vj+1, . . . , vn)).

Case 7: I = E[v1 . . . vn newobj C(µ1, . . . , µn)]. Typing rule 44 implies
that n = fields(C). Condition therefore 2 holds with I ′ = E[`] and
ψ′ = (h[` 7→ objC{fi 7→ vi|i ∈ 1..n}ε], s).

39

Case 8: I = E[v0 . . . vn callvirt C::m.Sig]. By typing rule 45, there
exists I0 such that methodbody(C::m.Sig) = I0. Hence, condition 2
holds with I ′ = E[I0 ret] and ψ′ = (h, s(v0, . . . , vn)).

Case 9: I = E[v ldfld µ C::f]. By typing rule 40, v = ` such that Γ `
` : (Ψ;−→Fr)((Ψ;−→Fr ;C〈`〉) holds. Since Γ `heap h : Γ holds, it follows
from derivation rule 24 that h(`) = objC{. . . , f = v, . . .}−→e for some
value v. Hence, condition 2 holds with I = E[v] and ψ′ = (h, s).

Case 10: I = E[v v′ stfld µ C::f]. By typing rule 41, v = ` such that
Γ ` ` : (Ψ;−→Fr) ((Ψ;−→Fr ;C〈`〉) holds. Since Γ `heap h : Γ holds, it
follows from derivation rule 24 that h(`) = objC{. . . , f = v, . . .}−→e for
some value v. Hence, condition 2 holds with I = E[0] and ψ′ = (h[` 7→
objC [f 7→ v′]], s).

Case 11: I = E[v evt e1]. By typing rule 46, v = ` such that Γ ` ` :
(Ψ;−→Fr)((Ψ;−→Fr ;C〈`〉) holds. Since Γ `heap h : Γ holds, it follows from
derivation rule 24 that h(`) = objC{. . .}

−→e for some event sequence −→e .
Thus, condition 2 of the theorem holds with I ′ = E[0] and ψ′ = (h[` 7→
objC{. . .}

−→e e1 , s).

Case 12: I = E[newpackage C]. Choose ` 6∈ Dom(h). Condition 2 holds
with I ′ = E[`] and ψ′ = ((h, (` 7→ pkg(·))), s).

Case 13: I = E[v v′ v′′ pack]. By typing rule 46, v = ` such that Γ `
` : (Ψ;−→Fr) ((Ψ;−→Fr ;C〈?〉) holds, v′ = `′ for some heap pointer `′,
and v′′ = rep

C
(H) for some history abstraction H. Since Γ `heap h : Γ

holds, it follows from derivation rule 25 that h(`) = pkg(. . .). Hence,
condition 2 of the theorem holds with I ′ = E[0] and ψ′ = (h[` 7→
pkg(`′, rep

C
(H))], s).

Case 14: I = E[v unpack j]. By typing rule 49, v = ` such that Γ `
` : (Ψ;−→Fr) ((Ψ;−→Fr ;C〈?〉) holds, and −→Fr = −→Fr 0(τ0, . . . , τn) where
0 ≤ j ≤ n. Since Γ `stack s : −→Fr , it follows from derivation rule
34 that s = s0(v0, . . . , vn). Since Γ `heap h : Γ, it follows from
derivation rule 25 that h(`) = pkg(. . .). If h(`) = pkg(`′, v), then
condition 2 of the theorem holds with I = E[`′] and ψ′ = (h[` 7→
pkg(·)], s0(v0, . . . , vj−1, v, vj+1, . . . , vn)). Otherwise h(`) = pkg(·) and
therefore condition 3 of the theorem holds.

Case 15: I = E[v I2 I3 condst k]. By typing rule 50, v = rep
C
(H) for

some class C and history abstraction H. Condition 2 therefore holds
with

I ′ =

{
E[I3] if testk(C, rep

C
(H)) = 0

E[I2] otherwise

40

and ψ′ = (h, s).

Case 16: I = E[v1 . . . vn newhist k]. By typing rule 51, arity(HC k) = n.
By axiom 22, it therefore follows that arity(hck) = n. Condition 2 of
the theorem statement therefore holds with I ′ = E[hck(v1, . . . , vn)]
and ψ′ = (h, s).

B.4 Policy Adherence

The proof of Terminating Policy Adherence (Theorem 1) is as follows.

Proof. By subject reduction, there exists Γ′, Ψ′, −→Fr
′
, and σ such that Γ′ `

v : (Ψ′;Fr ′)((σ(Ψout);σ(Frout);σ(τout)) and Γ′ ` (h′; s′) : (Ψ′;Fr ′) hold.
From the typing rules for value expressions, we know that Ψ′ = σ(Ψout) and
Fr ′ = σ(Frout). Thus

Γ′ ` (h′; s′) : (σ(Ψout);σ(Frout);σ(v)) (62)

holds.
Let ` and −→e be given such that h′(`) = objC{. . .}

−→e . If ` ∈ Dom(Ψout)
then there exists a derivation of 62 with a subderivation of

... −→e ⊆ σ(Ψout(`))(28)
`hist h

′ : (Γ′; Ψ′)

Since σ(Ψout(`)) ⊆ policy(C) by assumption, we conclude that −→e ⊆
policy(C). If instead ` 6∈ Dom(Ψout), then there exists a derivation of 62
with either a subderivation of

... −→e ⊆ · · · ⊆ policy(C)
(29)

`hist h
′ : (Γ′; Ψ′)

or a subderivation of

... −→e ⊆ policy(C)
(30)

`hist h
′ : (Γ′; Ψ′)

In either case, we conclude that −→e ⊆ policy(C), satsifying the theorem.

The proof of Non-terminating Prefix Adherence (Theorem 2) is as fol-
lows.

Proof. Proof is by induction on n.

41

Base Case: If n = 0 then h′ = h and the theorem holds by assumption.

Inductive Case: If n ≥ 1 then there exists h1, s1, and I1 such that
(h, s), I n−1(h1, s1), I1 holds and (h1, s1), I1 (h′, s′), I ′ holds. By
inductive hypothesis, h1 is prefix-adherent. By subject reduction,
there also exists Γ1, Ψ1, Fr1, and σ such that Γ1 ` I1 : (Ψ1;Fr1) (
(σ(Ψ′);σ(−→Fr

′
);σ(τ)) and Γ1 ` (h1; s1) : (Ψ1;

−→Fr 1) hold.

Suppose I1 = E[v1 . . . vn newobj C(µ1, . . . , µm)]. Then h′ = h, (` 7→
objC{. . .}ε). Typing rule 44 implies that ε ∈ pre(policy(C)). Since h
is prefix-adherent, we conclude that h′ is also prefix-adherent.

Suppose I1 = E[` evt e1]. Then h and h′ are identical except for
the event history of class object h(`) = objC{. . .}

−→e . Typing rule 46
implies that Ψ1(`)e1 ⊆ pre(policy(C)). Since ` ∈ Dom(Ψ1) there exists
a derivation of Γ1 ` (h1; s1) : (Ψ1;

−→Fr 1) that includes a subderivation
of

... −→e ⊆ Ψ1(`)(28)
`hist (h1; s1) : (Γ1; Ψ1)

Thus, −→e e1 ⊆ pre(policy(C)), and we conclude that h′ is prefix-
adherent.

If I1 has any other form, then h and h′ are identical with respect to
the event histories of their class objects. Since h is prefix-adherent by
assumption, it follows that h′ is prefix-adherent.

C Deciding Subset Relations

The typing rules presented in Appendix A require a type-checker to decide
subset relations over the language of history abstractions given in Figure 3.
History abstractions are ω-regular expressions with variables and intersec-
tion. In general, deciding subset for such a language is intractable, but
not every history abstraction expression can appear in practice. Our imple-
mentation of Mobile decides subset for a sub-language of the language of
history abstractions. We present this sub-language below, we argue that it
captures most of the useful history abstractions that can appear in practice,
and we prove that subset over this language can be reduced to subset over
the language of regular expressions.

C.1 History Variables and Intersection

Intersection is introduced into a history abstraction during type-checking
by typing rule 50 (the typing rule for condst). In our implementation, this

42

typing rule substitutes an expression of the form θ ∩H for each occurrence
of variable θ, where H is a closed history abstraction. Since intersection is
introduced in no other way, this reduces the language of history abstractions
of interest to the following sub-language of the language given in Figure 3:

H ::= ε | e |H1H2 |H1 ∪H2 |Hω | V
V ::= θ | V ∩ C
C ::= ε | e | C1C2 | C1 ∪ C2 | Cω

Since our history abstractions are intended to model security automata,
each closed history abstraction C introduced by the condst typing rule de-
notes the set of traces that can cause the automaton to enter a particular
state. Since the automata are deterministic, for any pair C1, C2 of these
abstractions, either C1 = C2 or C1 ∩ C2 = ∅. Thus, we can conservatively
approximate a history abstraction of the form θ∩C1∩C2 with an abstraction
of the form θ ∩C1. The latter is guaranteed to be a superset of the former,
and no IRM that models security policies using deterministic security au-
tomata will be affected by the conservative approximation.3 This further
reduces the language of history abstractions to

H ::= ε | e |H1H2 |H1 ∪H2 |Hω | V
V ::= θ ∩ C
C ::= ε | e | C1C2 | C1 ∪ C2 | Cω

History variables are further constrained in where they can appear. No
typing rule allows an open history abstraction to be appended to a closed
history abstraction. History variables introduced in conditional branches
and in loops are required to alpha-vary at join points for those conditionals
and loops so that there is only ever one unique history variable per history
abstraction. (This ensures that there are only a finite number of history
variables in scope at any given control flow point.) Our implementation
therefore only supports history abstractions of the form

H ::= (θ ∩ C1)C2 | C
C ::= ε | e | C1C2 | C1 ∪ C2 | Cω

C.2 Reduction to Regular Expression Subset

In this section we reduce the subset relation for the above language to subset
over regular expressions.

3IRM’s that do not model security policies using deterministic automata will be affected
in that they will not be able to usefully “stack” dynamic state tests. That is, doing a second
state test within a conditional branch of another state test will not cause the type-checker
to infer the conjunction of the two tests; rather, the type-checker will conservatively infer
typing refinements from only one of the tests, ignoring the other.

43

Subset problems for the above language can appear in one of five possible
forms:

1. ∀θ.
(
(θ ∩ C1)C2 ⊆ (θ ∩ C ′1)C ′2

)
,

2. ∀θ1, θ2.
(
(θ1 ∩ C1)C2 ⊆ (θ2 ∩ C ′1)C ′2

)
(where θ1 6= θ2),

3. ∀θ.
(
(θ ∩ C1)C2 ⊆ C

)
,

4. ∀θ.
(
C ⊆ (θ ∩ C1)C2

)
, or

5. C ⊆ C ′.

That is, there is either one history variable on both sides of the subset
problem (1), a different history variable on each side (2), a single history
variable on one side but none on the other (3 and 4), or no history variables
at all (5). In Theorems 5–8, we show that each of the first four forms can
be reduced to the fifth form. Then in Theorem 9 we reduce the fifth form
to the subset problem for regular expressions.

Lemma 4. Every closed, non-empty ω-regular expression has a finite-length
member.

Proof. Proof is by induction on the structure of the ω-regular expression
H. If H has the form ε or e, then the lemma follows immediately. If H
has the form H1H2, H1 ∪ H2, or H1 ∩ H2, then the lemma follows from
inductive hypothesis. If H has the form Hω

1 , then the lemma holds because
ε ∈ Hω

1 .

Theorem 5. The following two statements are equivalent:

(i) ∀θ.
(
(θ ∩ C1)C2 ⊆ (θ ∩ C ′1)C ′2

)
(ii) (C1 ⊆ ∅) ∨ (C2 ⊆ ∅) ∨ ((C1 ⊆ C ′1) ∧ (C2 ⊆ C ′2))

Proof. We begin by proving that (ii) implies (i). If C1 ⊆ ∅ or C2 ⊆ ∅ holds
then (θ ∩C1)C2 = ∅ holds and the theorem is proved. Assume instead that
C1 and C2 are both non-empty, and that C1 ⊆ C ′1 and C2 ⊆ C ′2 hold. Then
(θ ∩ C1) ⊆ (θ ∩ C ′1) holds, and hence (θ ∩ C1)C2 ⊆ (θ ∩ C ′1)C ′2 holds.

It remains to show that (i) implies (ii). Assume that for all sets θ,
(θ∩C1)C2 ⊆ (θ∩C ′1)C ′2 holds. If C1 ⊆ ∅ or C2 ⊆ ∅ then the theorem follows
immediately, so assume that C1 and C2 are both non-empty. First, we prove
that C1 ⊆ C ′1 holds. Instantiate θ = C1\C ′1 (where \ denotes set difference).
Then (C1\C ′1)C2 ⊆ ∅ holds. Since C2 is non-empty by assumption, it follows
that C1\C ′1 = ∅ holds, and therefore C1 ⊆ C ′1 holds. Second, we prove that
C2 ⊆ C ′2 holds. Since C1 is non-empty, Lemma 4 guarantees that there exists
a finite member s ∈ C1. Instantiate θ = s. Then sC2 ⊆ (s ∩ C ′1)C ′2 holds.
Since C2 is non-empty, sC2 is also non-empty, and therefore (s ∩ C ′1) and

44

C ′2 are non-empty. Since (s∩C ′1) is non-empty, it follows that (s∩C ′1) = s.
Therefore sC2 ⊆ sC ′2 holds, and we conclude that C2 ⊆ C ′2 holds.

Theorem 6. The following two statements are equivalent:

(i) ∀θ1, θ2.
(
(θ1 ∩ C1)C2 ⊆ (θ2 ∩ C ′1)C ′2

)
(where θ1 6= θ2)

(ii) (C1 ⊆ ∅) ∨ (C2 ⊆ ∅)

Proof. To prove that (i) implies (ii), assume that for all sets θ1 and θ2,
(θ1 ∩C1)C2 ⊆ (θ2 ∩C ′1)C ′2 holds. Instantiate θ1 = C1 and θ2 = ∅. It follows
that C1C2 ⊆ ∅ holds, and therefore C1 ⊆ ∅ or C2 ⊆ ∅ hold.

To prove that (ii) implies (i), assume instead that C1 ⊆ ∅ or C2 ⊆ ∅
hold. Then (θ ∩C1)C2 = ∅ holds, and the theorem follows immediately.

Theorem 7. The following two statements are equivalent:

(i) ∀θ.
(
(θ ∩ C1)C2 ⊆ C

)
(ii) C1C2 ⊆ C

Proof. To prove that (i) implies (ii), assume that for all sets θ, (θ∩C1)C2 ⊆ C
holds. Instantiate θ = C1 and it follows that C1C2 ⊆ C holds.

To prove that (ii) implies (i), assume instead that C1C2 ⊆ C holds. Then
for all sets θ, (θ ∩ C1)C2 ⊆ C1C2 ⊆ C holds, proving the theorem.

Theorem 8. The following two statements are equivalent:

(i) ∀θ.
(
C ⊆ (θ ∩ C1)C2

)
(ii) C ⊆ ∅

Proof. To prove that (i) implies (ii), instantiate θ = ∅ in (i) and (ii) follows
immediately. To prove that (ii) implies (i), substitute ∅ for C in (i).

The above four proofs demonstrate that subset problems involving vari-
ables and intersection can all be reduced to four or fewer instances of subset
problems over closed ω-regular expressions. We now show that the subset
problem for ω-regular expressions without Kleene star can be reduced to the
subset problem for regular expressions.

Lemma 5. Let C be an ω-regular expression without Kleene star, and define
R to be the same expression but with all ω’s replaced with Kleene stars. The
set denoted by R is the set of finite-length members of the set denoted by C.

45

Proof. Proof is by induction on the structure of expression C.
If C = ∅, C = ε, or C = e, then C contains only finite-length sequences

and C = R.
If C = C1C2 or C = C1 ∪ C2, then R = R1R2 or R = R1 ∪ R2 (respec-

tively), where R1 and R2 are C1 and C2 (respectively) with any ω’s replaced
by Kleene stars. By inductive hypothesis, R1 is the set of finite members of
C1 and R2 is the set of finite members of C2. It follows that R1R2 is the
set of finite members in C1C2 and R1 ∪ R2 is the set of finite members in
C1 ∪ C2.

If C = Cω
1 then R = R∗1 where R1 is C1 with any ω’s replaced by Kleene

stars. By inductive hypothesis, R1 is the set of finite-length members of C1;
therefore R∗1 is the set of finite-length members of Cω

1 .

Lemma 6. Let C be an ω-regular expression without Kleene star. For every
infinite-length sequence s ∈ C, and for all integers i ≥ 0, there exists a finite
sequence s′ ∈ C such that s and s′ have identical length-i prefixes.

Proof. Proof is by induction on the structure of C. Let s ∈ C and i ≥ 0 be
given, and assume that s is infinite.

If C = ∅, C = ε, or C = e, then C contains only finite-length sequences
and the lemma holds vacuously.

If C = C1C2 then s ∈ C1 or s = s1s2 where s1 ∈ C1 is finite and
s2 ∈ C2 is infinite. If s ∈ C1 then the lemma holds immediately by inductive
hypothesis. Otherwise since s2 ∈ C2, by inductive hypothesis there is a finite
sequence s3 ∈ C2 such that s2 and s3 have identical length-i prefixes. Hence,
s1s3 ∈ C is finite and has a length-i prefix identical to that of s.

If C = C1 ∪ C2 then s ∈ C1 or s ∈ C2. By inductive hypothesis, there
exists a finite sequence s′ ∈ C1 or s′ ∈ C2 such that s and s′ have identical
length-i prefixes.

Finally, if C = Cω
1 then s = s1s2s3 · · · such that for all j ≥ 1, sj ∈ C1.

That is, s is a concatenation of a finite or infinite collection of sequences
drawn from C1. Since s is infinite, one can choose an integer k ≥ 1 such
that s′ = s1s2 · · · sk has length at least i. Without loss of generality, assume
that k is the smallest such integer. Observe that s and s′ have identical
length-i prefixes and that s′ ∈ C (because s′ is a concatenation of a finite
collection of sequences from C1). If s′ is finite then the lemma is satisfied.
Assume instead that s′ is infinite. Then sk is infinite. Since sk ∈ C1 is
infinite, by inductive hypothesis there exists s′′ ∈ C1 such that s′′ is finite
and sk and s′′ have identical length-i prefixes. Hence, s1 · · · sk−1s

′′ ∈ C is
finite and has a length-i prefix identical to that of s.

Theorem 9. Let C1 and C2 be closed ω-regular expressions without Kleene
star, and define R1 and R2 to be the same expressions but with all ω’s
replaced by Kleene stars. Then C1 ⊆ C2 if and only if R1 ⊆ R2.

46

Proof. We first prove the forward implication. Assume that C1 ⊆ C2. Then
the set of finite-length sequences in C1 is a subset of the set of finite-length
sequences in C2. By Lemma 5, R1 is the set of finite-length sequences in
C1 and R2 is the set of finite-length sequences in C2, so we conclude that
R1 ⊆ R2.

We next prove the inverse of the forward implication. Assume there
exists s ∈ C1 such that s 6∈ C2. If s is finite then by Lemma 5, s ∈ R1 and
s 6∈ R2, and therefore R1 6⊆ R2, proving the theorem.

Assume instead that s is infinite. Since s 6∈ C2, there exists i ≥ 1 such
that no member of C2 has a length-i prefix matching that of s. Lemma 6
implies that there exists a finite sequence s′ ∈ C1 such that s and s′ have
matching length-i prefixes. Since s′ ∈ C1 is finite, Lemma 5 implies that
s′ ∈ R1. However, since C2 has no members with length-i prefixes that
match that of s′, Lemma 5 also implies that there are no members of R2

with length-i prefixes that match that of s′. Hence s′ 6∈ R2, and we conclude
that R1 6⊆ R2, proving the theorem.

The theorems presented in this subsection yield a simple algorithm for
deciding subset over the sub-language of history abstractions defined in the
previous subsection. That is, Theorems 5–8 reduce the subset problem for
history abstractions with variables and intersection to four or fewer instances
of the subset problem for history abstractions without variables or intersec-
tion. Then Theorem 9 shows that subset for history abstractions without
variables or intersection can be computed by changing all ω’s into Kleene
stars and deciding subset for the resulting regular expressions.

47

	Introduction
	Related Work
	Overview
	A Formal Analysis of Mobile
	The Abstract Machine
	Operational Semantics
	Type System
	Policy Adherence of Mobile Programs

	Implementation
	Conclusions and Future Work
	Typing Rules
	Typing Proofs
	Canonical Derivations
	Subject Reduction
	Progress
	Policy Adherence

	Deciding Subset Relations
	History Variables and Intersection
	Reduction to Regular Expression Subset

