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PREFACE
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part of the dissertation the text of an original paper or papers submitted for publication.
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Preparation of Master’s Theses and Doctoral Dissertations at The University of Texas at

Dallas.” It must include a comprehensive abstract, a full introduction and literature review,

and a final overall conclusion. Additional material (procedural and design data as well as

descriptions of equipment) must be provided in sufficient detail to allow a clear and precise

judgment to be made of the importance and originality of the research reported.

It is acceptable for this dissertation to include as chapters authentic copies of papers already

published, provided these meet type size, margin, and legibility requirements. In such cases,

connecting texts which provide logical bridges between different manuscripts are mandatory.

Where the student is not the sole author of a manuscript, the student is required to make an

explicit statement in the introductory material to that manuscript describing the student’s

contribution to the work and acknowledging the contribution of the other author(s). The

signatures of the Supervising Committee which precede all other material in the dissertation

attest to the accuracy of this statement.
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The advent of advanced weaponized software over the past few years, including the Stuxnet,

Duqu, and Flame viruses, is indicative of the seriousness with which advanced persistent

threats (APTs) have begun to treat the cyber-realm as a potential theatre for offensive

military action and espionage. This has coincided with a strong interest in creating malware

obfuscations that hide their payloads for extended periods of time, even while under active

search. Progress on this front threatens to render conventional software defenses obsolete,

placing the world in dire need of more resilient software security solutions.

This dissertation underlines the seriousness of this threat through the design and imple-

mentation of two novel, next-generation malware obfuscation technologies that bypass to-

day’s widely deployed defenses. Unlike conventional polymorphic malware, which mutates

randomly in an effort to evade detection, the presented attacks are reactively adaptive in

the sense that they intelligently surveil, analyze, and adapt their obfuscation strategies

in the wild to understand and defeat rival defenses. The dissertation then presents three

novel software defenses that offer strengthened software security against both current and

future offensive threats. Rather than attempting to detect threats statically (i.e., before
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they execute), or introducing dynamic monitors that raise compatibility and performance

penalties for consumers, the new defenses implement automated, source-free, binary soft-

ware transformations that preemptively transform untrusted software into safe software.

Experiments show that this security retrofitting approach offers higher performance, greater

security, and more flexible deployment options relative to competing approaches. Thus,

binary code transformation and mutation is realized as both a powerful offensive and a

potent defensive paradigm for software attacks and defenses.
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CHAPTER 1

INTRODUCTION

One of the more observable consequences of our rapid technological progress is the increasing

level of computerized automation used for previously mechanized or manual tasks. The

surprising amount of software present in today’s cars, the wealth of sensitive intellectual

property that is stored on the cloud, and the wave of cyber-physical systems being used to

control so much of a country’s critical infrastructure are particularly illuminating examples

that show how this phenomenon has manifested itself at the individual, corporate and

national levels.

This increased reliance on computers at the corporate and national levels has also made

cyber assets tactically valuable targets. In particular, the emergence of weaponized software,

such as the Stuxnet (Sanger, 2012), Duqu (Guilherme and Szor, 2012), and Flame (Lee, 2012)

viruses, points to a change in the deployment strategy and intended purpose of malware.

What was once seen as the exclusive domain of cyber-criminals, used purely for monetary

profit, is now being recognized for its potential as an effective reconnaissance and covert

monitoring tool (Flame), or as a safer, cheaper way to preemptively strike at targets of

strategic military value (Stuxnet).

In such a scenario, any competitive solution to cyber-security must include options for

both offensive and defensive action, and approaches that focus purely on defense will be at

a severe disadvantage. In essence, the clear distinction between attackers and defenders is

being blurred as cyber-security begins to resemble a more traditional arms race.

To succeed against well-defended opponents, cyber-offensive malware must penetrate

machines protected by real-time detection systems that rely heavily on static analysis. For
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2

example, modern defenses typically scan untrusted binary software before it executes to

determine whether it might be malicious, and the classification hinges on unique syntactic

features of malware rather than its semantics. Static analysis is favored because it is faster

and consumes fewer resources relative to purely dynamic methods (Kim and Karp, 2004;

Kreibich and Crowcroft, 2004; Li et al., 2006; Newsome et al., 2005; Singh et al., 2004),

and because it can sometimes spot suspicious syntactic anomalies associated with vehicles

of zero-day attacks (Newsome et al., 2005; Li et al., 2006; Grace et al., 2010; Zhao and Ahn,

2013), which exploit vulnerabilities previously unknown to defenders. Resilience against

static analyses is therefore a high priority for malware obfuscation technologies.

Oligormorphism, polymorphism, virtualization-based obfuscation, and metamorphism are

the four main techniques modern malware uses to evade static analyses, and are explained in

more detail in Section 2.1. Although these obfuscations can be temporarily effective against

some modern static defenses, their reliance on random, undirected mutation makes them

brittle against defenders who actively adapt their protections to target specific emerging

threats and threat-families. In most cases, focused defender reverse-engineering efforts

uncover mutation patterns or invariants that suffice for defenders to reliably detect and

quarantine most or all variants of the malware. That is, malware employing one of these

techniques is able to hide from a detection tool only so long as its signature is not known.

Once a copy of the malware has been analyzed and a signature crafted, detection tools are

able to correctly classify subsequently encountered copies.

In this context, it is reasonable to view current approaches to obfuscation as short-term

solutions for attackers. They work on the element of surprise—send out a previously unseen

malware that performs its task up until it is discovered and a fix released. The monetary

benefit to exploiting this time lag is the major incentivising factor for malware authors who

attack typical end-users.
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However, the use of malware as a targeted espionage or counter-attack tool is severely hin-

dered by the inability of obfuscation technologies to autonomously adapt their obfuscations

once a signature has been crafted.

To overcome this limitation, next-generation cyber-weapons must employ more powerful,

flexible, reactively adaptive obfuscation strategies that learn and adapt to changing defenses

rapidly and autonomously. Such adaptation renders signature-based defenses moot, since as

soon as defenders discover and deploy a new signature in response to the threat, reactively

adaptive malware learns the new signature and adapts its obfuscation pattern to evade it.

Thus, reactively adaptive mutation innovations will imbue weaponized software with true

stealth capabilities rather than mere diversity.

Dually, next-generation cyber-defenders must adopt more powerful defensive paradigms

that can cope with reactively adaptive malware threats posed by resourceful adversaries.

Because today’s heavy reliance upon static detection is so dependent on the syntax of

untrusted binaries, this next wave of reactively adaptive malware is likely to overwhelm

current defenses. Rather than relying on syntactic matching to discover malware, a more

semantic-aware approach that predicts and selectively monitors the possible behaviors of

untrusted binaries stands a far better chance of detecting and preventing malicious actions

from occurring.

Traditionally, such runtime monitors have been implemented at the operating system or

virtual machine level, where they capture all software activities and subject them to security

checks. However, In-lined Reference Monitors (IRMs)—which instantiate the monitoring

logic within the monitored applications themselves through automated binary program

rewriting—offer numerous advantages to the traditional approach.

Firstly, because IRMs create self-monitoring applications, they do not require kernel

modifications or administrative privileges to safely run. This makes them easier to deploy,

and also allows their use in environments where such controls are unavailable (in low-resource
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devices, for example). Secondly, IRMs can be customized to enforce organization-specific

policies, or streamlined with platform-specific optimizations, allowing them to exhibit greater

flexibility and lower overheads compared to traditional approaches. Lastly, because IRMs

reside within the address space of the monitored application, they have ready access to a

greater amount of its internal state, making them strictly more powerful than their traditional

bretheren.

Recent defensive techniques attempt to capitalize on this idea. Systems like CFI (Abadi

et al., 2009), XFI (Erlingsson et al., 2006), and SecondWrite (Smithson et al., 2010) statically

transform and augment untrusted programs to include monitors that dynamically constrain

the behavior of the program as it executes. Although they offer advantages over traditional

system-level monitoring, these techniques either require code-producer cooperation (Abadi

et al., 2009; Erlingsson et al., 2006) or introduce non-trivial overheads (Cheng et al., 2006;

Lam et al., 2013). This severely limits the applicability of these techniques to the vast swath

of commercial off-the-shelf (COTS) and legacy binaries in use today, which do not have

source or debug information available, or for which consumers will not accept a significant

performance degradation purely for the sake of improved security. There is thus a need for

a source-free technique that can efficiently monitor and constrain an arbitrary application’s

behavior.

Code-reuse attacks (described in more detail in Section 2.2) are one of the most signif-

icant threat classes addressed by several of the approaches advanced by this dissertation.

These attacks seek to subvert the control-flow of the running application and re-route

it so that the executed sequence of instructions implements some malicious shell-code.

Existing defenses have tried to mitigate this threat using techniques like address space layout

randomization (ASLR), binary instrumentation (Chen et al., 2009; Davi et al., 2011), or

compile-time inserted protections (Onarlioglu et al., 2010). Unfortunately, none of these

techniques achieves the triumverate of efficiency, security, and wide applicability. Compile-

time approaches are efficient, but cannot be applied to COTS binaries, limiting their reach.
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Binary instrumentation techniques offer greater support, but induce significant performance

overheads—500% or more in certain cases (Chen et al., 2009)—while ASLR has been shown

to be ineffective against code-reuse attacks like Return-Oriented Programming (ROP). Here

too, there is dire need of a source-free technique that can efficiently protect binaries against

this class of attacks.

My Thesis. This dissertation draws attention to the fragile state of today’s software

defenses by introducing and exposing new reactively adaptive malware mutation approaches

that imbue weaponized software with powerful stealth capabilities that reliably defeat today’s

static malware detection defenses. In response, it proposes new source-free binary code

transformation defensive techniques that are better suited to securing applications against

next-generation offensive threats. For both tasks, the dissertation leverages the power of

automated source-free binary rewriting to propose offensive and defensive solutions that are

both efficient and widely deployable.

The dissertation begins by detailing two obfuscation techniques that exploit current

defenses’ reliance on structural information to detect malware. Both techniques create

directed obfuscations that are capable of bypassing today’s defenses. It then describes three

defensive techniques that leverage automated binary rewriting to retroactively secure binaries

against (1) next-generation malware obfuscations, (2) return-oriented programming attacks,

and (3) implementation-aware code-reuse attacks. All three techniques incur low overheads,

and can be applied to legacy binaries with no need for source code or debug symbols—making

them a practical option for real-world deployment.

The rest of this dissertation is laid out as follows. Chapter 2 presents an overview of

currently used offensive and defensive techniques, as well the challenges associated with

source-free binary rewriting.

Part I describes the two malware obfuscation techniques and evaluates their effectiveness

against current defenses. Both techniques make directed changes to malware with respect
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to a specific target system. They rely on information gleaned either from the automated

analysis of the defenses in use (Chapter 3), or by the analysis of benign binaries on the target

(Chapter 4). Doing so allows for the obfuscations to exhibit continued structural similarity

with the defensive tools’ notion of what benign binaries look like.

Part II discusses the creation of the first compiler-agnostic and source-free x86 binary

rewriter that is robust to disassembly errors and compatible with advanced compiler tech-

niques like interleaved code and data, or position independent code. We use the rewriter

to create three security systems for x86 binaries: (1) Reins (Chapter 5) provides Software

Fault Isolation (SFI) and arbitrary policy enforcement at the system API level. (2) STIR

(Chapter 6) rewrites binaries so that the order of its basic blocks is randomized on each

execution—protecting against code-reuse attacks like ROP. (3) O-CFI (Chapter 7) uses

a combination of fine-grained randomization and control-flow integrity to protect against

advanced code-reuse attacks that seek to nullify the advantages of load-time randomization

by gaining knowledge about the runtime layout of a binary. All three systems are able to

rewrite legacy COTS binaries while introducing negligible amounts of overhead.

Finally, relevant related work is presented in Chapter 8 and conclusions are presented in

Chapter 9.



CHAPTER 2

BACKGROUND

2.1 Malware Detection and Obfuscation

The majority of malware detection systems employed on computing devices today rely

significantly upon static detection heuristics. Static malware detection tools check and

classify binaries as malicious or benign before they execute. This is in contrast to dynamic

detection techniques that monitor the execution of a binary and classify it at run-time.

Dynamic detection techniques have access to the behavior exhibited by a binary, and are able

to utilize that information to make fairly accurate classifications. However, they also suffer

from higher overheads (Kim and Karp, 2004; Singh et al., 2004; Kreibich and Crowcroft,

2004; Li et al., 2006; Newsome et al., 2005) than static approaches, which makes solely

dynamic detection unsuitable for performance-critical environments.

Instead, static detection techniques are used to shortlist potentially malicious binaries

which can then be subjected to a more expensive dynamic scrutiny if required. The weakness

of static techniques derives from the undecidability of statically inferring arbitrary program

behaviors. As a result, static detection usually relies upon the syntactic—rather than

semantic—analysis of binary code. That is, it attempts to classify a binary as malicious

by comparing its contents and structure for similarities to known malware. For this reason,

static syntactic-based techniques are commonly referred to as static signature-based defenses.

The cat-and-mouse relationship between malware detection and obfuscation can be seen

by looking at currently employed obfuscation strategies, most of which seek to attack weak-

nesses inherent in a static, syntax-based approach to detection. The most widely used of

these are briefly detailed below (Ször, 2005).

7
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• Oligomorphism uses simple invertible operations, such as XOR, to transform the

malicious code and hide distinguishing features. The code is then recovered by inverting

the operation to deploy the obfuscated payload.

• Polymorphism is an advancement of the same concept that encrypts most of the

malicious code before propagation, leaving only a decryption routine, which unpacks

the malicious code before execution.

More advanced polymorphic techniques, such as polymorphic blending, strenthen the

obfuscation by modifying statistical information of binaries via byte padding or sub-

stitution (Fogla et al., 2006). However, the malware’s decryption routine (which must

remain unencrypted) is often sufficiently unique that it can be used as a signature

to detect an entire family of polymorphic malware. Semantic analysis techniques

can therefore single out and identify the unpacker to detect malware family mem-

bers (Kruegel et al., 2005).

• Virtualization-based obfuscators express malware as bytecode that is interpreted

at runtime by a custom VM. However, this merely shifts the obfuscation burden to

concealing the (usually large) in-lined, custom VM.

• Metamorphism is a more advanced approach to obfuscation that, in lieu of encryp-

tion, replaces its malicious code sequences with semantically equivalent code during

propagation. This is accomplished using a metamorphic engine that processes binary

code and modifies it to output a structurally different but semantically identical copy.

Since the mutations all consist of purely non-encrypted, plaintext code, they tend

to exhibit statistical properties indistinguishable from other non-encrypted, benign

software.

Both oligomorphism and polymorphism are statically detectable with high probability

using statistical or semantic techniques. Encrypting or otherwise transforming the code
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significantly changes statistical characteristics of the program, such as byte frequency (Wang

et al., 2006; Wang and Stolfo, 2004) and entropy (Lyda and Hamrock, 2007), prompting

defenses to classify them as suspicious. Subsequent, more computationally expensive analyses

can then be judiciously applied to these suspicious binaries to identify malware.

Current metamorphic engines focus on achieving a high diversity of mutants in an effort

to decrease the probability that the mutants share any features that can serve as a basis for

signature-based detection. However, diversity does not necessarily lead to indistinguishabil-

ity. For example, malware signatures that whitelist features (i.e., those that classify binaries

as suspicious if they do not contain certain features) actually become more effective as mutant

diversity increases. Similarly, reverse-engineering current metamorphic engines often reveals

patterns that can be exploited to derive a suitable signature for detection.

An additional weakness to all these techniques is that once a threat has been discovered,

signatures that detect it can be crafted (usually with the aid of a manual analyst) after which

the malware can easily be detected and eliminated from infected machines. Although this

process offers little protection from zero-days or against undiscovered threats, they suffice

to ensure that malware is only a threat for the period of time between its release and its

eventual discovery.

2.2 Code-Reuse Attacks and Defenses

Subverting control-flows of vulnerable programs by hijacking function pointers (e.g., return

addresses) and redirecting them to shell code is a widely used methodology underlying many

software attacks. For such an attack to succeed, there are two conditions: (1) the targeted

software is vulnerable to redirection, and (2) the attacker-supplied shell code is executable.

Consequently, to stop these attacks, a great deal of research has focused on identifying

and eliminating software vulnerabilities, either through static analysis of program source
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code (Larochelle and Evans, 2001) or through dynamic analysis or symbolic execution of

program binary code (Cadar et al., 2006; Godefroid et al., 2008).

Meanwhile, there is also a significant amount of work focusing on how to prevent the

execution of shell code based on its origin or location. Initially, attackers directly injected

malicious machine code into vulnerable programs, prompting the development of W⊕X

(write-xor-execute) protections such as DEP (Andersen, 2004) and ExecShield (van de Ven,

2004) to block execution of the injected payloads. In response, attackers began to redirect

control flows directly to potentially dangerous code already present in victim process address

spaces (e.g., in standard libraries), bypassing W⊕X. Return-into-libc attacks (Solar Designer,

1997) and return oriented programming (ROP) (Shacham, 2007; Buchanan et al., 2008;

Checkoway et al., 2010) are two major categories of such attacks. As a result, address

space layout randomization (ASLR) (PaX Team, 2003; Bhatkar et al., 2005) was invented

to frustrate attacks that bypass W⊕X.

ASLR has significantly raised the bar for standard library-based shell code because

attackers cannot predict the addresses of dangerous instructions to which they wish to

transfer control. However, a recent attack from Q (Schwartz et al., 2011) has demonstrated

that attackers can alternatively redirect control to shell code constructed from gadgets (i.e.,

short instruction sequences) already present in the application binary code. Such an attack

is extremely dangerous since instruction addresses in most application binaries are fixed (i.e.,

static) once compiled (except for position independent code). This allows attackers to create

robust shell code for many binaries (Schwartz et al., 2011).

2.3 Binary Rewriting and In-lined Reference Monitors

Software is often released in binary form. There are numerous distribution channels, such

as downloading from the vendor’s web site, sharing through a P2P network, or sending via

email attachments. All of these channels can introduce and distribute malicious code. Thus,
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it is very common for end-users to possess known but not fully trusted binary code, or even

unknown binaries that they are lured to run. To date, there are two major classes of practical

mechanisms to protect users while running such binaries. One is a heavy-weight approach

that runs the binary in a contained virtual machine (VM) (Ford and Cox, 2008; Scott and

Davidson, 2002; Payer and Gross, 2011). The other is a lighter-weight approach that runs

them in a sandboxing environment with an in-lined reference monitor (IRM) (Wahbe et al.,

1993; Schneider, 2000; Yee et al., 2009).

The VM approach is appealing for several reasons. First, it avoids the problem of

statically disassembling CISC binaries. Instead, VMs dynamically translate binary code

with the aid of just-in-time binary translation (Ford and Cox, 2008; Scott and Davidson,

2002; Payer and Gross, 2011; Kiriansky et al., 2002). This allows dynamically computed jump

targets to be identified and disassembled on the fly. Second, VMs can intercept API calls

and filter them based on a security policy. Third, even if damage occurs, it can potentially

be contained within the VM. Therefore, the VM approach has been widely used in securing

software and analyzing malicious code.

However, production-level VMs can be extremely large relative to the untrusted processes

they guard, introducing significant computational overhead when they are applied to enforce

fine-grained policies. Their high complexity also makes them difficult to formally verify; a

single bug in the VM implementation leaves users vulnerable to attack. Meanwhile, there

is an air-gap if the binary needs to access host files, and VM services must also bridge

the semantic-gap (Chen and Noble, 2001). While lighter-weight VM alternatives, such as

program shepherding (Kiriansky et al., 2002), lessen some of these drawbacks, they still

remain larger and slower than IRMs.

On the other hand, a large body of past research including SFI (Wahbe et al., 1993),

PittSFIeld (McCamant and Morrisett, 2006), CFI (Abadi et al., 2009), XFI (Erlingsson et al.,

2006), and NaCl (Yee et al., 2009), has recognized the many advantages of client-side, static,
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binary-rewriting for securing untrusted, mobile, native code applications. Binary-rewriting

boasts great deployment flexibility since it can be implemented separately from the code-

producer (e.g., by the code-consumer or a third party), and the rewritten code can be safely

and transparently executed on machines with no specialized security hardware, software, or

VMs. Moreover, it offers superior performance to many VM technologies since it statically

in-lines a light-weight VM logic directly into untrusted code, avoiding overheads associated

with context-switching and dynamic code generation. Finally, safety of rewritten binaries can

be machine-verified automatically—in the fashion of proof-carrying-code (Necula, 1997)—

allowing rewriting to be performed by an untrusted third party.

Unfortunately, all past approaches to rewriting native binary code require some form of

cooperation from code-producers. For example, Google’s Native Client (NaCl) (Yee et al.,

2009) requires a special compiler to modify the client programs at the source level and

use NaCl’s trusted libraries. Likewise, Microsoft’s CFI (Abadi et al., 2009) and XFI (Er-

lingsson et al., 2006) requires code-producers to supply a program database (PDB) file

(essentially a debug symbol table) with their released binaries. Earlier works such as

PittSFIeld (McCamant and Morrisett, 2006) and SASI (Erlingsson and Schneider, 1999)

require code-producers to provide gcc-produced assembly code. Code that does not satisfy

these requirements cannot be rewritten and is therefore conservatively rejected by these

systems. These restrictions have prevented binary-rewriting from being applied to the vast

majority of native binaries because most code-producers do not provide such support and

are unlikely to do so in the near future.

2.4 Challenges with Source-Free Disassembly

To rewrite binaries in a way that preserves intended functionality, a rewriter must correctly

handle instructions that are shifted to new locations—ensuring not only that all relative

data references are updated, but also that any relevant control flows are correctly repointed.
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This in turn relies on obtaining an accurate disassembly of the binary; without it, neither

data references nor control flows can be recovered. However, doing so statically and without

access to source code or debug information entails numerous challenges.

1. Disassembly undecidability: It is not possible in general to fully disassemble

arbitrary x86 binaries purely statically. All static disassemblers rely on heuristics to

find the reachable code amidst the data, and even the best disassemblers frequently

guess incorrectly even for non-malicious, non-obfuscated binaries (Wartell et al., 2011).

Solutions that assume fully correct disassemblies are therefore impractical for real-

world, legacy, COTS binaries.

2. Interleaved Code and Data: Modern compilers aggressively interleave static

data within code sections in both PE and ELF binaries for performance reasons. In

the compiled binaries there is generally no means of distinguishing the data bytes

from the code. Inadvertently randomizing the data along with the code breaks the

binary, introducing difficulties for instruction-level randomizers. Viable solutions must

somehow preserve the data whilst randomizing all the reachable code.

3. Computed jumps: Native x86 code often dynamically computes jump destinations

from data values at runtime. Such operations pervade almost all x86 binaries; for

example, binaries compiled from object-oriented languages typically draw code pointers

from data in method dispatch tables. These pointers can undergo arbitrary binary

arithmetic before they are used, such as logic that decodes them from an obfuscated

representation intended to thwart buffer overrun attacks.

Preserving the semantics of computed jumps after stirring requires an efficient means

of dynamically identifying and re-pointing all code pointers to the relocated instruc-

tion addresses. Prior work, such as static binary rewriters for software fault isola-

tion (Wahbe et al., 1993; Small and Seltzer, 1996; Erlingsson and Schneider, 1999;
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McCamant and Morrisett, 2006), relies upon compile-time support to handle this.

However, randomizing legacy code for which there is no source-level relocation or debug

information requires a new solution.

4. Callbacks: A callback occurs when the OS uses a code pointer previously passed from

the program as a computed jump destination. Such callbacks are a mainstay of event-

driven applications. Unlike typical computed jumps, callback pointers are not used as

jump targets by any instruction visible to the randomizer. The only instructions that

use them as jump targets are within the OS. This makes these code pointers especially

difficult to identify and re-point correctly.

5. Position-dependent instructions: Instructions whose behavior will break if they

are relocated within the section that contains them are said to be position-dependent.

Ironically, position-dependent instructions are typically found within blocks of position

independent code (PIC)—code sections designed to be relocatable as a group at load-

time or runtime (Oracle Corporation, 2010). The position independence of such code

is typically achieved via instructions that dynamically compute their own addresses

and expect to find the other instructions of the section at known offsets relative

to themselves. Such instructions break if relocated within the section, introducing

difficulties for more fine-grained, instruction-level randomization.
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CHAPTER 3

EXPLOITING AN ANTIVIRUS INTERFACE1

Static signature-based malware detectors identify malware by scanning untrusted binaries

for distinguishing byte sequences or features. Features unique to malware are maintained in

a signature database, which must be continually updated as new malware is discovered and

analyzed.

Signature-based malware detection generally enforces a static approximation of some

desired dynamic (i.e., behavioral) security policy. For example, access control policies,

such as those that prohibit code injections into operating system executables, are statically

undecidable and can therefore only be approximated by any purely static decision procedure

such as signature-matching. A signature-based malware-detector approximates these policies

by identifying syntactic features that tend to appear only in binaries that exhibit policy-

violating behavior when executed. This approximation is both unsound and incomplete

in that it is susceptible to both false positive and false negative classifications of some

binaries. For this reason signature databases are typically kept confidential, since they

contain information that an attacker could use to craft malware that the detector would

misclassify as benign, defeating the protection system. The effectiveness of signature-based

malware detection thus depends on both the comprehensiveness and confidentiality of the

signature database.

Traditionally, signature databases have been manually derived, updated, and dissemi-

nated by human experts as new malware appears and is analyzed. However, the escalating

1This chapter contains material previously published as: Kevin W. Hamlen, Vishwath Mohan,
Mohammad M. Masud, Latifur Khan, and Bhavani Thuraisingham. Exploiting an Antivirus Interface.
Computer Standards & Interfaces Journal, 31(6):1182–1189, April 2009.
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rate of new malware appearances and the advent of self-mutating, polymorphic malware

over the past decade have made manual signature updating less practical. This has led to

the development of automated data mining techniques for malware detection (Kolter and

Maloof, 2004; Schultz et al., 2001; Masud et al., 2008), that are capable of automatically

inferring signatures for previously unseen malware.

In this chapter we show how these data mining techniques can also be applied by an

attacker to discover ways to obfuscate malicious binaries so that they will be misclassified

as benign by the detector. Our approach hinges on the observation that although malware

detectors keep their signature databases confidential, all malware detectors reveal one bit

of signature information every time they reveal a classification decision. This information

can be harvested particularly efficiently when it is disclosed through a public interface. The

classification decisions can then be delivered as input to a data mining malware detection

algorithm to infer a model of the confidential signature database. From the inferred model

we derive feature-removal and feature-insertion obfuscations that preserve the behavior of a

given malware binary but cause it to be misclassified as benign. The result is an obfuscation

strategy that can defeat any purely static signature-based malware detector.

We demonstrate the effectiveness of this strategy by successfully obfuscating several real

malware samples to defeat malware detectors on Windows operating systems. Windows-

based antivirus products typically support Microsoft’s IOfficeAntivirus interface (Mi-

crosoft Developer Network (MSDN) Digital Library, 2009), which allows applications to

invoke any installed antivirus product on a given binary and respond to the classification

decision. Our experiments exploit this interface to obtain confidential signature database

information from several commercial antivirus products.

The rest of this section is organized as follows. Section 3.1 provides an overview of our ap-

proach, Section 3.2 describes a data mining-based malware detection model, and Section 3.3

discusses methods of deriving binary obfuscations from a detection model. Section 3.4 then
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Figure 3.1. Binary Obfuscation Architecture

describes experiments and evaluation of our technique. Section 3.5 concludes with discussion

and suggestions for future work.

3.1 Overview

The architecture of our binary obfuscation methodology is illustrated in Figure 3.1. We begin

by submitting a diverse collection of malicious and benign binaries to the victim signature

database via the signature query interface. The interface reveals a classification decision for

each query. For our experiments we used the IOfficeAntivirus COM interface that is pro-

vided by Microsoft Windows operating systems (Windows 95 and later) (Microsoft Developer

Network (MSDN) Digital Library, 2009). The Scan method exported by this interface takes

a filename as input and causes the operating system to use the installed antivirus product

to scan the file for malware infections. Once the scan is complete, the method returns a

success code indicating whether the file was classified as malicious or benign. This allows

applications to request virus scans and respond to the resulting classification decisions.
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We then use the original inputs and resulting classification decisions as a training set for

an inference engine. The inference engine learns an approximating model for the signature

database using the training set. In our implementation, this model was expressed as a

decision tree in which each node tests for the presence or absence of a specific binary n-gram

feature that was inferred to be security-relevant by the data mining algorithm.

This inferred model is then reinterpreted as a recipe for obfuscating malware so as to

defeat the model. tree encodes a set of binary features that, when added or removed from a

given malware sample, causes the resulting binary to be classified as malicious or benign by

the model. The obfuscation problem is thus reduced to finding a binary transformation that,

when applied to malware, causes it to match one of the benignly-classified feature sets. In

addition, the transformation must not significantly alter the behavior of the malware binary

being obfuscated. Currently we identify suitable feature sets by manual inspection, but we

believe that future work could automate this process.

Once such a feature set is identified and applied to the malware sample, the resulting

obfuscated sample is submitted as a query to the original signature database. A malicious

classification indicates that the inferred signature model was not an adequate approximation

for the signature database. In this case the obfuscated malware is added to the training set

and training continues, resulting in an improved model, whereupon the process repeats. A

benign classification indicates a successful attack upon the malware detector. In our exper-

iments we found that repeating the inference process was not necessary; our obfuscations

produced misclassified binaries after one round of inference.

3.2 A data mining based malware detection model

A data mining-based malware detector first trains itself with known instances of malicious

and benign executables. Once trained, it can predict the proper classifications of previously
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Figure 3.2. A data mining-based malware detection framework

unseen executables by testing them against the model. The high-level framework of such a

system is illustrated in Figure 3.2.

The predictive accuracy of the model depends on the given training data and the learning

algorithm (e.g., support vector machine, decision tree, näıve bayes, etc.) Several data mining-

based malware detectors have been proposed in the past (Kolter and Maloof, 2004; Schultz

et al., 2001; Masud et al., 2008). The main advantage of these models over the traditional

signature-based models is that data mining-based models are more robust to changes in

the malware. Signature-based models fail when new malware appears with an unknown

signature. On the other hand, data mining-based models generalize the classification process

by learning a suitable malware model dynamically over time. Thus, they are capable of

detecting malware instances that were not known at the time of training. This makes it

more challenging for an attacker to defeat a malware detector based on data mining.

Our previous work on data mining-based malware detection (Masud et al., 2008) has

developed an approach that consists of three main steps:

1. feature extraction, feature selection, and feature-vector computation from the training

data,

2. training a classification model using the computed feature-vector, and
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3. testing executables with the trained model.

These steps are detailed throughout the remainder of the section.

3.2.1 Feature extraction

In past work we have extracted three different kinds of features from training instances (i.e.,

executable binaries):

1. Binary n-gram features: In order to extract these features, we consider each ex-

ecutable as a string of bytes and extract all possible n-grams from the executables,

where n ranges from 1 to 10.

2. Assembly n-gram features: We also disassemble each executable to obtain an

assembly language program. We then extract n-grams of assembly instructions.

3. Dynamic link library (DLL) call features: Library calls are particularly relevant

for distinguishing malicious binaries from benign binaries. We extract the library calls

from the disassembly and use them as features.

When deriving obfuscations to defeat existing malware detectors we found that restrict-

ing our attention only to binary n-gram features sufficed for our experiments reported in

Section 3.4. However, in future work we intend to apply all three feature sets to produce

more robust obfuscation algorithms.

Binary n-gram feature extraction: To extract features, we first apply the UNIX

hexdump utility to convert the binary executable files into textual hexdump files, which

contain the hexadecimal numbers corresponding to each byte of the binary. This process

is performed to ensure safe and easy portability of the binary executables. The feature

extraction process consists of two phases: (1) feature collection, and (2) feature selection.
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The feature collection process proceeds as follows. Let the set of hexdump training files

be H = {h1, ..., hb}. We first initialize a set L of n-grams to empty. Then we scan each

hexdump file hi by sliding an n-byte window over its binary content. Each recovered n-byte

sequence is added to L as an n-gram. For each n-gram g ∈ L we count the total number

of positive instances pg (i.e., malicious executables) and negative instances ng (i.e., benign

executables) that contain g.

There are several implementation issues related to this basic approach. First, the total

number of n-grams may be very large. For example, the total number of 10-grams in our

dataset is 200 million. It may not possible to store all of them in computer’s main memory.

Presently we solve this problem by storing the n-grams in a large disk file that is processed

via random access. Second, if L is not sorted, then a linear search is required for each

scanned n-gram to test whether it is already in L. If N is the total number of n-grams in

the dataset, then the time for collecting all the n-grams would be O(N2), an impractical

amount of time when N = 200 million. In order to solve the second problem, we use an

Adelson-Velsky-Landis (AVL) tree (Goodrich and Tamassia, 2005) to index the n-grams. An

AVL tree is a height-balanced binary search tree. This tree has a property that the absolute

difference between the heights of the left sub-tree and the right sub-tree of any node is at

most one. If this property is violated during insertion or deletion, a balancing operation is

performed, and the tree regains its height-balanced property. It is guaranteed that insertions

and deletions are performed in logarithmic time. Inserting an n-gram into the database thus

requires only O(log2(N)) searches. This reduces the total running time to O(N log2(N)),

making the overall running time about 5 million times faster when N as large as 200 million.

Our feature collection algorithm implements these two solutions.

Feature selection: If the total number of extracted features is very large, it may not

possible to use all of them for training. Aside from memory limitations and impractical

computing times, a classifier may become confused with a large number of features because
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most of them would be noisy, redundant, or irrelevant. It is therefore important to choose

a small, relevant and useful subset of features for more efficient and accurate classification.

We choose information gain (IG) as the selection criterion because it is recognized in the

literature as one of the best criteria isolating relevant features from large feature sets. IG can

be defined as a measure of effectiveness of an attribute (i.e., feature) in classifying a training

data (Mitchell, 1997). If we split the training data based on the values of this attribute, then

IG gives the measurement of the expected reduction in entropy after the split. The more an

attribute can reduce entropy in the training data, the better the attribute is for classifying

the data.

The next problem is to select the best S features (i.e., n-grams) according to IG. One

näıve approach is to sort the n-grams in non-increasing order of IG and select the top S of

them, which requires O(N log2N) time and O(N) main memory. But this selection can be

more efficiently accomplished using a heap that requires O(N log2 S) time and O(S) main

memory. For S = 500 and N = 200 million, this approach is more than 3 times faster and

requires 400,000 times less main memory. A heap is a balanced binary tree with the property

that the root of any sub-tree contains the minimum (maximum) element in that sub-tree.

First we build a min-heap of size S. The min-heap contains the minimum-IG n-gram at its

root. Then each n-gram g is compared with the n-gram at the root r. If IG(g) ≤ IG(r)

then we discard g. Otherwise, r is replaced with g, and the heap is restored.

Feature vector computation: Suppose the set of features selected in the above step

is F = {f1, ..., fS}. For each hexdump file hi, we build a binary feature vector hi(F) =

{hi(f1), ..., hi(fS)}, where hi(fj) = 1 if hi contains feature fj, or 0 otherwise. The training

algorithm of a classifier is supplied with a tuple (hi(F), l(hi)) for each training instance hi,

where hi(F) is the feature vector and l(hi) is the class label of the instance hi (i.e., positive

or negative).
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3.2.2 Training

We apply SVM, Näıve Bayes (NB), and decision tree (J48) classifiers for the classification

task. SVM can perform either linear or non-linear classification. The linear classifier

proposed by Vapnik (Boser et al., 1992) creates a hyperplane that separates the data points

into two classes with the maximum margin. A maximum-margin hyperplane is the one that

splits the training examples into two subsets such that the distance between the hyperplane

and its closest data point(s) is maximized. A non-linear SVM (Cortes and Vapnik, 1995) is

implemented by applying a kernel trick to maximum-margin hyperplanes. This kernel trick

transforms the feature space into a higher dimensional space where the maximum-margin

hyperplane is found, through the aid of a kernel function.

A decision tree contains attribute tests at each internal node and a decision at each leaf

node. It classifies an instance by performing the attribute tests prescribed by a path from

the root to a decision node. Decision trees are rule-based classifiers, allowing us to obtain

human-readable classification rules from the tree. J48 is the implementation of the C4.5

Decision Tree algorithm. C4.5 is an extension of the ID3 algorithm invented by Quinlan

(2003). In order to train a classifier, we provide the feature vectors along with the class

labels of each training instance that we have computed in the previous step.

3.2.3 Testing

Once a classification model is trained, we can assess its accuracy by comparing its classifi-

cation of new instances (i.e., executables) to the original victim malware detector’s classifi-

cations of the same new instances. In order to test an executable h, we first compute the

feature vector h(F) corresponding to the executable in the manner described above. When

this feature vector is provided to the classification model, the model outputs (predicts) a

class label l(h) for the instance. If we know the true class label of h, then we can compare

the prediction with the true label, and check the correctness of the learned model. If the
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model’s performance is inadequate, the new instances are added to the training set resulting

in an improved model, and testing resumes.

In the next section, we describe how the model yielded by the above process can be used

to derive binary obfuscations that defeat the model.

3.3 Model-reversing Obfuscations

Malware detectors based on static data-mining attempt to learn correlations between the

syntax of untrusted binaries and the (malicious or benign) behavior that those binaries

exhibit when executed. This learning process is necessarily unsound or incomplete because

most practically useful definitions of “malicious behavior” are Turing-undecidable. Thus,

every purely static algorithm for malware detection is vulnerable to false positives, false

negatives, or both. Our obfuscator exploits this weakness by discovering false negatives in

the model inferred by a static malware detector.

The decision tree model inferred in the previous section can be used as a basis for deriving

binary obfuscations that defeat the model. The obfuscation involves adding or removing

features (i.e., binary n-grams) to and from the malware binary so that the model classifies

the resulting binary as benign. These binary transformations must be carefully crafted

so as to avoid altering the runtime behavior of the malware program lest they result in a

policy-adherent or non-executable binary.

A simple example will illustrate. Figure 3.3 shows a simple decision tree model for

malware detection. Each internal node in the tree denotes a feature test. For example, the

root has feature test f1. A test instance x (i.e., executable) is first tested against the root.

If x has feature f1, then the detector follows the left branch (True); otherwise it follows

the right branch (False). This process continues until the detector arrives at a leaf node.

Leaf nodes denote classification decisions, expressed as a minus sign (benign) or plus sign
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f1

f2

T

f4

F

L1 (−)

T

f3

F

L4 (+)

T

L5 (−)

F

L2 (−)

T

L3 (+)

F

Figure 3.3. An example of a decision tree-based malware detection model

(malicious). For example, instances that cause the detector to arrive in leaf node L1 will be

classified as benign.

According to the model in Figure 3.3, malware having features f1 and f2 will be classified

as benign. Likewise, malware lacking both f1 and f4 will also be classified as benign. Thus,

an obfuscation that inserts features f1 and f2 into a binary, or removes both f1 and f4 from

the binary, without altering the runtime behavior of the binary, suffices to conceal malware

from the detector.

3.3.1 Path Selection

We begin the obfuscation process by searching for a candidate path through the decision

tree that ends in a benign leaf node. Our goal will be to add and remove features from the

malicious executable x so as to cause the detector to follow the chosen decision tree path

during classification. Since the path ends in a benign-classifying decision node, this will

cause the malware to be misclassified as benign by the detector.

Each path from the root to a leaf node in a decision tree can be thought of as a

classification rule composed of the conjunction of the conditions encoded by each node in

the path. For example, in Figure 3.3 the path from the root to leaf node L2 encodes the

following rule (R2):

R2 : f1 ∧ ¬f2 ∧ f3 =⇒ benign
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which says that if a test instance has feature f1 and does not have feature f2, and has feature

f3, then the instance is benign. Here the negated term ¬f2 indicates that this pattern must

not be present in the test instance.

While we believe that it is possible in theory to obfuscate any executable binary to

satisfy any given rule at classification-time, some rules are significantly easier to realize

than others for any given binary. In general, feature removal tends to be more difficult to

implement than feature addition. Thus, to minimize the number of feature additions, for

each benign-classifying rule in the decision tree we count the number of negated conjunct

terms corresponding to features that are present in x. The path with the fewest such terms

is likely to be easiest to implement and is therefore chosen as the candidate rule.

Once a candidate rule R is selected, we evaluate each conjunct term of R against binary

x. Each such test may either succeed or fail for x. Negated feature tests ¬f may fail because

feature f is present in x, and non-negated feature tests f may fail because feature f is not

present in x. Let Fr be the set of features f such that ¬f is a term in rule R and test ¬f

fails for x, and let Fa be the set of features f such that f is a term in rule R and test f fails

for x. Adding all features in Fa to x and removing all features in Fr from x would cause

the resulting binary to satisfy rule R. If these feature-additions and feature-removals can be

implemented without changing the runtime behavior of x, then these transformations suffice

to successfully obfuscate x so that its malicious behavior is not detected. In the following

sections we discuss strategies for implementing feature-removals and feature-additions to

successfully obfuscate x in this way.

3.3.2 Feature Insertion

Inserting new features into executable binaries without significantly altering their runtime

behavior tends to be a fairly straightforward task. We discuss several strategies for adding

features to x86 Portable Executable (PE) binary files. While the discussion is specific to PE

files, we believe these strategies can also be extended to other binary formats.
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The x86 PE binary format is composed of sections of binary data. The starting file offset

of each section is linked from a header at the beginning of the file, or from fields within other

sections reachable via the header. PE files can therefore be thought of as tree data structures

rooted at the file header; the system loader does not typically process them sequentially from

beginning to end. Bytes appearing outside of any section are therefore completely ignored

by the system loader.

Thus, one easily implementable strategy for transparently inserting a new feature into a

PE file is to simply append the feature bytes to the end of the file, or to insert them between

existing sections. These bytes will be ignored by the system loader and will not be present

in the process memory image when the binary is loaded. They will therefore have no effect

upon the runtime behavior of the process.

In our tests reported in Section 3.4 we found that this simple feature-insertion sufficed

to defeat the detectors we tested. However, a more sophisticated detector might limit its

feature-selection process to reachable PE sections in order to defeat this attack. To counter

this defense, we could have introduced the features to existing sections in one of the following

ways:

• Add the feature to a non-loaded section. Each section in a PE file includes a flag that

specifies whether the section is loaded into memory at runtime. contain meta-data that

is useful for tools such as debuggers but that is not used during execution. Features

can therefore be safely added to new or existing non-loaded sections without affecting

the program’s runtime behavior.

• Append the feature to a dynamically-sized section. Some loaded sections, such as the

heap, grow at runtime. These sections have two different length specifiers in PE files—

one specifies the size of any statically initialized data that is loaded from the PE file

into the segment at process start, and the other specifies the amount of memory to

allocate (but not initialize) for the entire section at load time.
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Feature data can be safely added to these growable sections by appending it to the

statically initialized data for the section. This feature data will be loaded into the

section at process start but will be overwritten as the section grows. It will only

affect runtime behavior of programs that read uninitialized heap memory before it is

allocated. Since no standard memory manager does this, this is a simple and safe way

to add features to loaded sections without changing the behavior of most programs.

• Insert the feature into the code segment as dead (i.e., unreachable) code. This strategy

involves inserting the feature bytes into unused portions of the code segment, possibly

by shifting existing code blocks to make room. We discuss this technique in more detail

below.

Dead code insertion is more difficult to implement than the other feature insertion

strategies, but has the advantage that it is provably undecidable for any purely static detector

to reliably isolate these features from the rest of the code. Dead code identification is a

well known undecidable problem for any architecture that includes conditional or computed

jumps. Thus, the feature will not be safely discardable during feature selection, and will

therefore be included in the decision tree by any classifier that depends on a static analysis

for feature selection.

Dead code insertion cannot be computably implemented for arbitrary binaries, but it

can be implemented as long as a control-flow graph for the binary code is known. This is a

reasonable assumption if we assume that the attacker has access to the malware source code.

Most existing compilers for x86 architectures already insert small blocks of static data or

padding between methods using this information, and assemblers have directives for doing

this as well. Dead code can be safely inserted using either of these established techniques.
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3.3.3 Feature Removal

Removal of a feature from an executable binary is more difficult to implement without

changing the program’s runtime behavior. There are two major techniques for doing this

implemented by existing malware:

• encryption (polymorphic malware), and

• code mutation (metamorphic malware).

Polymorphic malware encrypts the majority of its code and data using a random key. This

payload is then decrypted at runtime and executed. The payload can be re-encrypted using

a different key during propagation, creating many syntactically different but functionally

identical variants.

Features found in the encrypted payload cyphertext of a polymorphic virus or worm can

typically be removed simply by choosing a different encryption key. With a large enough

key space and a sufficiently diverse collection of cyphertexts, the probability of finding a

cyphertext that includes none of the disallowed features can be raised arbitrarily high. Non-

polymorphic malware can be made polymorphic by wrapping it in a polymorphic propagation

system.

Thus, polymorphic malware propagation reduces the feature space available to a detector

to the two remaining file portions that cannot be encrypted: the file meta-data, and the

decryption kernel. File meta-data cannot be encrypted because the system loader must

be able to parse it in order for the binary to be executable. The decryption kernel that

decrypts the payload cannot be encrypted without introducing a new decryption kernel,

hence reintroducing the issue.

Although PE meta-data cannot be safely encrypted, the meta-data of typical x86 PE files

can easily be crafted to be identical to that of known benign executables. A detector that

does not reject important benign programs cannot, therefore, reliably distinguish malicious
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instances from non-malicious instances based on features found in this standard meta-data.

Thus, we henceforth limit our attention to removing features from the decryption kernel.

The decryption kernel of a polymorphic worm is a relatively small code stub at or near

the program entrypoint that decrypts the encrypted payload and then branches to the

newly decrypted code. Removing a feature from the decryption kernel requires replacing

it with a functionally equivalent byte sequence. Metamorphic malware engines achieve this

by randomly applying a set of known code equivalence transformations to the decryption

code to produce syntactically different but functionally identical code. One of the simplest

such transformations is to randomly insert nop (no-operation) instructions between various

instructions, which will be ignored by the processor at runtime.

While nop-insertion is an effective feature-removal strategy for some malware detectors,

more sophisticated detectors can defend against such an attack by disregarding all nop

instructions during feature selection.2 To defeat such a detector, we could have resorted to

a more powerful metamorphic obfuscator such as the MetaPHOR system; cf. (Walenstein

et al., 2006). MetaPHOR disassembles x86 binary code to a simplified intermediate language

in which common sequences of instructions are expressed as single operations. It then re-

assembles new x86 binary code from the intermediate representation pseudo-randomly. That

is, for any given intermediate code there exist many possible equivalent x86 instruction

sequences, which are chosen randomly to create a syntactically different but functionally

equivalent instruction sequence.

While polymorphism and metamorphism are powerful existing techniques for obfuscating

malware against signature-based detectors, it should be noted that existing polymorphic and

metamorphic malware mutates randomly. Our attack therefore differs from these existing

2instructions in arbitrary x86 binary code is not decidable in general due to the non-aligned nature of the
instruction set and the resulting instruction sequence aliasing decision problems. However, a feature-selector
based on n-grams could simply disregard all 0x90 bytes (the nop op-code) to defeat nop-insertion at the
expense of losing a marginal amount of decision information.
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approaches in that we choose obfuscations that are derived directly from signature database

information leaked by the malware detector being attacked. Our work therefore builds upon

this past work by showing how antivirus interfaces can be exploited to choose an effective

obfuscation, which can then be implemented using these existing techniques.

3.4 Experiments

To test our approach, we conducted two sets of experiments. In the first experiment

we attempted to collect classification data from several commercial antivirus products by

querying their public interfaces automatically. In the second experiment we obfuscated a

malware sample in order to defeat the data mining-based malware detector we developed in

past work (Masud et al., 2008), and that is described in Section 3.2. In future work we intend

to combine these two results to test fully automatic obfuscation attacks upon commercial

antivirus products.

3.4.1 Dataset

We have two non-disjoint datasets. The first dataset (dataset1) contains a collection of

1,435 executables, 597 of which are benign and 838 are malicious. The second dataset

(dataset2) contains 2,452 executables, having 1,370 benign and 1,082 malicious executables.

The distribution of dataset1 is hence 41.6% benign and 58.4% malicious, and that of dataset2

is 55.9% benign and 44.1% malicious. This distribution was chosen intentionally to evaluate

the performance of the feature sets in different scenarios. We collect the benign executables

from different Windows XP, and Windows 2000 machines, and collect the malicious executa-

bles from VX Heavens (VX Heavens, 2009), which contains a large collection of malicious

executables. The benign executables contain various applications found in the Windows

system folder (e.g. C:\Windows), as well as other executables drawn from the default

program installation directory (e.g., C:\Program Files) of various machines. Malicious
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executables contain viruses, worms, trojans, and back-doors. We select only the Win32

Portable Executables (PE) in both the cases. We would like to experiment with other

executable formats (e.g., ELF) in the future.

3.4.2 Interface Exploit Experiment

To test the feasibility of collecting confidential signature database information via the an-

tivirus interface on Windows operating systems, we wrote a small utility that queries the

IOfficeAntivirus (Microsoft Developer Network (MSDN) Digital Library, 2009) COM

interface on Windows XP and Vista machines. The utility uses this interface to request

virus scans of instances in dataset1. We tested our utility on four commercial antivirus

products: Norton Antivirus 2009, McAfee VirusScan Plus, AVG 8.0, and Avast Antivirus

2009.

In all but Avast Antivirus we found that we were able to reliably sample the signature

database using the interface. Our utility required no elevated privileges to successfully

harvest this data on Windows XP and Windows Vista systems. Benign classifications had

no observable effect (other than to solicit the appropriate return code from the interface),

while malicious classifications had the side-effect of quarantining the executable named in

the query. The quarantining process typically involved GUI activity (e.g., a pop-up window

warning the user) and file activity (e.g., moving the file to a safe location), which slowed

down the detection process slightly. However, we found that this activity did not prevent

ongoing scan requests. On average we were able to obtain classification decisions at a rate of

2 MB/sec (4.6 files per second) on a 2Ghz Windows Vista desktop machine with a standard

5400 RPM SATA harddrive. We therefore expect that a large amount of classification data

could be gathered in this way fairly easily on victim systems.

In the case of Avast Antivirus 2009 we found that the return code yielded by the interface

was not meaningful—it did not distinguish between different classifications. Thus, Avast
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Antivirus 2009 was not vulnerable to our attack. However, in Section 3.5 we discuss possible

methods of circumventing this limitation that could be implemented in future work.

3.4.3 Model-driven Obfuscation Experiment

We next used the techniques described in Section 3.3 to obfuscate a malicious executable so

as to conceal it from a data mining-based malware detector (Masud et al., 2008). To train

the classifier we used the two datasets described above. Each dataset has different sizes

and distributions of benign and malicious executables. We select the classification-relevant

binary n-gram features using the techniques explained in Section 3.2. Then we build decision

tree classifiers using the selected feature sets. Our implementation is developed in Java with

JDK 1.5. We use Weka ML toolbox (Witten and Frank, 2005) for training the decision tree

classifier (the C4.5 algorithm).

In order to evaluate our technique on malware obfuscation, we chose to obfuscate the

Win32.Navidad.a virus using our technique. Our malware detection model M sucessfully

classified this as malware. In order to defeat the model, the malware was obfuscated via the

following steps:

1. Generate the binary feature vector corresponding to the malware x using our technique

described in Section 3.2.3. Let the feature vector be F(x) = {f1(x), ..., fn(x)}, where

fi(x) is either 0 or 1 depending on whether the feature (i.e., n-gram) fi is absent or

present in x.

2. Analyze the decision tree model M and identify a candidate rule R as described in

Section 3.3.1.

3. Identify the features that must be inserted or remove to satisfy R.

4. Insert and/or remove the necessary features to/from the malware using a hexadecimal

editor.
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In the case of Win32.Navidad.a, we only needed to insert features in order to successfully

defeat the model. The resulting obfuscated binary was misclassified by the detector as

benign. We also verified through informal testing that the obfuscated malware still had

identical functionality to the original malware.

Although we performed this obfuscation manually, we believe it would be fairly easy to

fully automate this process. One obvious approach would be to apply existing polymorphic

and metamorphic malware obfuscation engines such as MetaPHOR; cf. (Walenstein et al.,

2006) to feature-containing portions of the malware using a succession of randomly chosen

cryptographic keys and seed values until the unwanted features are removed. We intend to

investigate such an approach in future work.

3.5 Conclusion

In this chapter we have outlined a technique whereby antivirus interfaces that reveal clas-

sification decisions can be exploited to infer confidential information about the underlying

signature database. These classification decisions can be used as training inputs to data

mining-based malware detectors. Such detectors will learn an approximating model for the

signature database that can be used as a basis for deriving binary obfuscations that defeat

the signature database. We conjecture that this technique could be used as the basis for

effective, fully automatic, and targeted attacks against signature-based antivirus products.

Our experiments justify this conjecture by demonstrating that classification decisions

can be reliably harvested from several commercial antivirus products on Windows operating

systems by exploiting the Windows public antivirus interface. We also demonstrated that

effective obfuscations can be derived for real malware from an inferred model by successfully

obfuscating a real malware sample using our model-reversing obfuscation technique. The

obfuscated malware defeated the detector from which the model was derived.
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Our signature database inference procedure is not an effective attack against one commer-

cial antivirus product we tested because that product does not fully support the antivirus

interface. In particular, it returns the same result code irrespective of its classification

decision for the submitted binary file. However, we believe this limitation could be overcome

by an attacker in at least two different ways:

First, although the return code does not divulge classification decisions, the product does

display observably different responses to malicious binaries, such as opening a quarantine

pop-up window. These responses could be automatically detected by our query engine.

Determining classification decisions in this way is a slower but still fully automatic process.

Second, many commercial antivirus products also exist as freely distributed, stand-alone

utilities that scan for (but do not necessarily disinfect) malware based on the same signature

databases used in the retail product. These light-weight scanners are typically implemented

as Java applets or ActiveX controls so that they are web-streamable and executable at low

privilege levels. Such applets could be executed in a restricted virtual machine environment

to effectively create a suitable query interface for the signature database. The execution

environment would provide a limited view of the filesystem to the victim applet and would

infer classification decisions by monitoring decision-specific system calls, such as those that

display windows and dialogue boxes.

From the work summarized in this chapter, we conclude that effectively concealing

antivirus signature database information from an attacker is important but difficult. Current

antivirus interfaces such as the one currently supported by Windows operating systems

invite signature information leaks and subsequent obfuscation attacks. Antivirus products

that fail to support these interfaces are less vulnerable to these attacks, however they

still divulge confidential signature database information through covert channels, such as

graphical responses and other side-effects.
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Fully protecting against these confidentiality violations might not be feasible; however

there are some obvious steps that defenders can take to make these attacks more computa-

tionally expensive for the attacker. One obvious step is to avoid implementing or supporting

interfaces that divulge classification decisions explicitly and on-demand through return codes.

While this prevents benign applications from detecting and responding to malware quaran-

tines, this reduction in functionality seems reasonable in the (hopefully uncommon) context

of a malware attack. Protecting against signature information leaks through covert channels

is a more challenging problem. Addressing it effectively might require leveraging anti-

piracy technologies that examine the current execution environment and refuse to divulge

classification decisions in restrictive environments that might be controlled by an attacker.

Without such protection, attackers will continue to be able to craft effective, targeted binary

obfuscations that defeat existing signature-based malware detection models.



CHAPTER 4

FRANKENSTEIN1

The technique described in Chapter 3 is able to bypass feature based defenses by first

constructing a classification model that approximates the feature detection capabilities of a

target defensive tool, and then using that model to create directed changes in a malware

binary. Our second technique, detailed in this chapter, pursues an alternative strategy

to create directed mutations. It exploits the reliance of feature-based tools on structural

information by constructing malware entirely out of parts of benign binaries. Because these

binaries are classified as benign by defensive tools on the target system, any program created

purely out of sequences harvested from these binaries cannot be reliably classified as malicious

by static feature-based defenses.

Mutants generated in this manner will use different code sequences to implement the

same malicious behavior, and in this sense Frankenstein can be thought of as an extension

of metamorphism. However, while traditional metamorphic engines focus on achieving a

high diversity of mutants in an effort to decrease the probability that the mutants share

any features that can serve as a basis for signature-based detection, we observe that such

diversity does not necessarily lead to indistinguishability. For example, malware signatures

that whitelist features (i.e., those that classify binaries as suspicious if they do not contain

certain features) actually become more effective as mutant diversity increases. Similarly,

reverse-engineering current metamorphic engines often reveals patterns that can be exploited

to derive a suitable signature for detection.

1This chapter contains material previously published as: Vishwath Mohan and Kevin W. Hamlen.
Frankenstein: Stitching Malware from Benign Binaries. In Proceedings of the 6th USENIX Workshop on
Offensive Technologies (WOOT), pp. 77–84, August 2012.
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Our system therefore adopts a different approach to metamorphism that is inspired by

recent advances in return-oriented programming. Return-oriented programming searches the

address spaces of victim binaries for gadgets—instruction sequences that end with the return

instruction (Shacham, 2007). Previous work has shown that a sufficiently large code base

(such as the standard C library libc), suffices to find a Turing-complete set of gadgets that

can be used to exploit known vulnerabilities (Roemer et al., 2012). Others have also shown

that searching for gadgets is an automatable task (Schwartz et al., 2011).

We apply the idea of harvesting instructions to obfuscate malicious code. Rather than

using a metamorphic engine to mutate, we stitch together harvested code sequences from

benign files on the infected system to create a semantically equivalent binary. By composing

the new binary entirely out of byte sequences common to benign-classified binaries, the

resulting mutants are less likely to match signatures that include both whitelisting and

blacklisting of binary features.

Our main contribution is a new method to obfuscate malware that works by synthesizing

copies entirely from byte sequences that have already been classified as benign by local

defenses. In doing so, we demonstrate a heretofore unrecognized synergy between research

on metamorphic obfuscation and that on return-oriented programming.

As a proof-of-concept, we present a toy implementation consisting of a binary obfus-

cator that generates stand-alone x86 native code mutants from a specification (described

in Section 4.1), but that does not self-propagate. Experiments focus on obfuscating code

whose size and functionality is representative of the small, unencryptable portion of malware

(e.g., unpackers) rather than full malware payloads, to which alternative approaches, such

as mimimorphism (Wu et al., 2010), are usually applicable. Thus, we envision our approach

as a complement to these alternatives rather than a replacement.

The rest of this chapter is laid out as follows. In Section 4.1 we present a high-level

overview of Frankenstein and discuss its constituent components. Section 4.2 contains
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Figure 4.1. High-level architecture of Frankenstein

the details of our prototype implementation, and Section 4.3 reports experimental results.

Finally, Section 4.4 summarizes and discusses opportunities for future work.

4.1 Design

Franksentein searches programs on the local machine for gadgets, which it composes to

form a semantically identical copy of itself. The different components of Frankenstein are

diagrammatically represented in Figure 4.1. Below, we describe our notion of a gadget,

which differs from its usual definition in the context of return-oriented programming, and

then discuss each of the components in more detail.

4.1.1 Gadgets

Our definition of a gadget is a more relaxed version of that needed for return-oriented

exploits (Shacham, 2007; Schwartz et al., 2011). Return-oriented programming, which is

a form of control-flow hijacking, relies on the ret instruction to transfer control from one

sequence of instructions to the next. Thus, only sequences that end with a ret constitute

viable gadgets. Since we statically stitch gadgets together, we are not bound by this
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constraint. For our purposes, a gadget is any sequence of bytes that are interpretable as

valid x86 instructions.

A second difference from return-oriented programming is that, as a purely static ap-

proach, we need not restrict the search to the address space of a currently running process.

Gadgets are therefore harvested from executable file images on victim systems. Both these

facts afford us a much larger pool of potential gadgets from which to construct mutants.

This is advantageous since we would like each copy of Frankenstein to differ as much as

possible from all other copies.

Gadgets are categorized by their type (a semantic abstraction of the kind of task they

perform) and by a set of parameters (instantiated with values that specialize the gadget

to a particular task). For example, the MovReg type represents any gadget that moves a

value from one register to another. All MovReg gadgets have two parameters, InReg and

OutReg , that represent the operation OutReg ← InReg .

A complete set of gadget types, their associated parameters, and the semantic task that

each encodes is given in Table 4.1. The symbols ./cmp and �aop represent integer comparison

and modular arithmetic operations, respectively. The collection is Turing-complete, and

therefore suffices to build arbitrary computations. In contrast to gadget types for return-

oriented programming (Schwartz et al., 2011), our collection includes types for conditional

and non-conditional branches. These are unnecessary for return-oriented programming since

in that context every gadget is reached via an appropriate return instruction injected into the

stack. To better resemble benign software, Frankenstein uses more conventional control-flows

that include standard branching instructions.

Every gadget is also associated with a clobber list, which represents secondary register

and memory locations whose values the gadget modifies. The clobber list is used to find a

sequence of gadgets that do not interfere with one another.
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Table 4.1. Gadget types
Gadget Type (t) Input (`) Parameters (p) Semantic Definition

NoOp — — No change to memory or registers
DirectBranch Offset — EIP ← EIP + Offset
DirectConditionalBranch Offset ./cmp, Reg1, Reg2 EIP ← EIP + Offset if Reg1 ./cmp Reg2

LoadReg OutReg , InReg — OutReg ← InReg
LoadConst OutReg , Value — OutReg ← Value
LoadMemAddr OutReg , Addr — OutReg ← [Addr ]
LoadMemReg OutReg , AddrReg Scale, Disp OutReg ← [AddrReg ∗ Scale + Disp]
StoreMemAddr InReg , Addr — [Addr ]← InReg
StoreMemReg InReg , AddrReg Scale, Disp [AddrReg ∗ Scale + Disp]← InReg
Arithmetic OutReg , InReg1, InReg2 �aop OutReg ← InReg1 �aop InReg2

Table 4.2. Examples of logical predicates

Predicate Semantic Definition Suitable Gadgets

noop — NoOp
move(L1,L2) L1 ← L2 All Loads/Stores
add(L1,L2,L3) L1 ← L2 + L3 Arithmetic
sub(L1,L2,L3) L1 ← L2 − L3 Arithmetic
jump(n, Why) Jump n blueprint steps DirectBranch,

if Why holds ConditionalBranch

The types defined in the table are sufficient to carry out our initial experiments, but

future work should consider extending the table to support obfuscation of more complex

tasks.

4.1.2 Semantic Blueprint

Typical metamorphic malware recompiles itself from a bytecode intermediate language dur-

ing propagation. Each mutant carries a freshly obfuscated intermediate form of itself for this

purpose. (The intermediate form is data, which is easier to obfuscate than code.) In contrast,

Frankenstein propagates by re-synthesizing itself from a more abstract semantic blueprint.

The semantic blueprint is a sequence of abstract machine states, where each step in the

sequence is represented as a logical predicate. Each predicate is a combination of an atomic

term and zero or more locations. A location can be a specific register, memory address,
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hypotenuse squared :-

mov(L1, ’[0x401248]’),

mov(L2, ’[0x40124C]’),

mul(L3, L1, L1), mul(L4, L2, L2)

add(L5, L3, L4), mov(’EAX’, L5).

Figure 4.2. A semantic blueprint to compute the square of a triangle’s hypotenuse

immediate value, or a variable that refers to an arbitrary register or memory location. The

jump predicate instead has arguments consisting of a relative offset into the blueprint’s list

of states and an optional condition.

A subset of logical predicates used by Frankenstein is shown in Table 4.2. For example,

the move predicate is an abstraction of the movement of a value from one location L2 to

another L1. Thus, depending on the values of its locations, a move predicate might be

satisfiable by any of the Load* or Store* gadget types. The flexibility of a predicate to

match multiple gadget types allows the semantic blueprint to more abstractly encode what is

computed rather than how the computation is carried out. This in turn allows for a diverse

set of gadgets to match a given portion of the semantic blueprint.

Figure 4.2 shows how predicates can be chained together to form a clause. In the example,

the memory locations 0x401248 and 0x40124C contain the values of two sides of a right-

angled triangle, and the calculated length of the square of the hypotenuse is stored in the

EAX register. Variables L1–L5 can refer to memory locations or registers.

The level of abstraction (and with it the diversity of mutants) can be tuned by adjusting

the granularity of the predicates in the blueprint. It is possible to create layers of predi-

cates that can each be expressed as clauses of lower-layer predicates, each layer effectively

abstracting higher-level operations. For example, two consecutive predicates that increment

register r and then multiply it by 2 could be replaced by a single predicate that computes

2(r + 1). The resulting predicate would be satisfied by new gadget sequences, such as one

that first multiples by 2 and then adds 2. The trade-off is the greater search time required
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to discover implementations of more abstract gadgets. If the predicates are too abstract, the

search becomes intractable.

Since gadget discovery is based on search, our proof-of-concept implementation expresses

semantic blueprints as predicates written a logic programming language (Prolog). While a

full Prolog search engine is obviously too heavy-weight for inclusion in real malware, effective

gadget search does not require the full capabilities of logic programming. We expect a

combination of unification and simple depth-first search to suffice, and consequently believe

that a much slimmer implementation is possible.

4.1.3 Gadget Discovery

The majority of the obfuscation process involves finding a suitable set of gadgets that can be

used to implement the semantic blueprint. The search process proceeds similarly to gadget

searches for return-oriented programming (Schwartz et al., 2011), but with several variations

reflecting our different focus (obfuscation as opposed to finding one viable sequence from a

limited code base).

In the discovery phase, Frankenstein searches the local file system for binaries. From

our experiments, our experience has been that 2–3 binaries from the system32 folder suffices

to provide a code base from which to harvest a diverse, Turing-complete set of gadgets

on Microsoft Windows systems. Frankenstein starts by collecting byte sequences from the

code sections of these binaries using a variable-length sliding window. The sliding window

approach is simpler than implementing (and obfuscating) a full disassembler, and it increases

the pool of available gadgets by including for consideration the many misaligned instruction

sequences that all benign programs contain (but rarely execute).

Each byte sequence is passed through an instruction decoder to produce an instruction

sequence. Sequences containing invalid op-codes or undesirable branches (such as calls or

returns) are discarded, and the remaining sequences are tested for gadget viability using

Algorithm 1.
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Algorithm 1 Gadget discovery

Input: σ0 (initial symbolic machine state), and
[i1, . . . , in] (instruction sequence)

Output: G ⊆ T × Φ (matching gadget types)
for j = 1 to n do
σj ← E [[ij]]σj−1

end for
G← ∅
for all t ∈ T do

if U(t, σn) is defined then
φ← U(t, σn)
G← G ∪ {(t, φ)}

end if
end for
return G

Frankenstein performs gadget discovery with the aid of a small abstract evaluator E :

I → Σ → Σ that defines the effect of an instruction i ∈ I upon a symbolic machine state

σ ∈ Σ. Notation E [[i]]σ denotes the resulting symbolic state, where states σ : ` → e map

locations ` (viz., registers, flags, and memory addresses) to symbolic expressions e. For

example, each register’s initial content is encoded as a fresh symbol in the initial abstract

state: σ(eax ) = EAX , and so on.

After composing the effects of all instructions in a candidate sequence, the final symbolic

output state is unified with each possible gadget type t ∈ T . A gadget type t is conceptually

a state predicate, possibly containing uninstantiated parameters p. Unification U(t, σ′)

succeeds if there exists an instantiation φ : Φ = p → ParamVals of the parameters such

that substituting t according to φ yields a concrete predicate satisfied by symbolic state

σ′. In that case the unification returns the parameter instantiation φ. Otherwise U (t, σ′)

is undefined (and the search continues). Two instruction sequences that match a particular

gadget type are considered equivalent if they have identical instantiations of all parameters,

excluding the clobber list.
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It is common for a large instruction sequence to be recognized as multiple valid gadget

types when considering its effect on different machine state variables. For example, the

instruction sequence

mov ebx, dword ptr [eax*4 + 0xc]

mov ecx, eax

inc ecx

can be used as a LoadReg gadget representing ecx ← ebx , a loadMemReg gadget

representing ebx ← [eax ∗ 4 +0xc], or as an Arithmetic gadget representing ecx ← ecx + 1.

In each case, the clobber list includes all other state variables that are modified. We also

include additional constraints for sequences where memory indirection is involved. In our

example gadget above, the value of eax ∗ 4 must be a valid memory address to ensure that it

does not cause a crash when executed. These constraints are expressed in the form of logical

clauses as part of the arrangement layer (described below), which ensures that we only find

valid solutions.

4.1.4 Gadget Arrangement

The next step involves finding a suitable combination of gadget types that match the semantic

blueprint. In Frankenstein, gadget arrangement is a natural consequence of the way that

the semantic blueprint is defined. The logical predicates that we define in Table 4.2 also

happen to be the lowest level in the layered approach to constructing predicates described

previously. We call this the arrangement level because all possible gadget arrangements are

expressed in terms of these predicates.

Given a clause defined in terms of higher-level predicates, logic programming can be used

to reduce them to multiple clauses composed entirely of arrangement layer predicates, such

that the definition of each clause in turn represents one or more potential gadget arrange-

ments. We assume that malware authors have access to arbitrary high-level representations
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of the code, including requirements, design, and implementation of the payload. They can

therefore use this information to express the malware in terms of the higher-level predicates.

At present, our prototype of Frankenstein does not have support for higher level predi-

cates, and expresses blueprints using predicates from the arrangement level only. However,

adding higher-level predicates is not conceptually difficult, and we plan to include this feature

in future versions of our system.

4.1.5 Gadget Assignment

In the last phase, we use the discovered gadgets to find satisfiable assignments for each

generated gadget arrangement. We leverage the unification process of logic programming for

this purpose, which is well-suited to this problem. Frankenstein begins by converting each

discovered gadget into an extended version of one of the predicates defined in Table 4.2. The

extension adds two terms to each predicate: a list of clobbered locations and an identification

number. The identification number associates each of these predicates with the instruction

sequence that the gadget represents, while the clobber list facilitates discovery of sequences

of non-interfering gadgets.

Next, the predicates that form the definition of each of the reduced clauses obtained in

the gadget arrangement phase above are also extended to include variables that represent

a clobber list and identification numbers. To each definition, we also add a generated list

of constraints that prevent the parameters of predicates from interfering with one another.

Finally, we use constraint logic programming to solve each clause. The full set of solutions

obtained represent all the possible gadget assignments that implement the original semantic

blueprint.

4.1.6 Executable Synthesis

For each successful gadget assignment, Frankenstein masks all external calls in the code

by converting them into computed jumps. As a result, Frankenstein’s mutants have no
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noteworthy system calls in their import address tables, concealing them from detectors that

rely upon such features for fingerprinting.

The last step is injecting the finished code into a correctly formatted binary so it can be

propagated. Frankenstein has a binary parsing component and a seed binary that it uses as a

template. For each mutant, it injects the code into the template file and updates all relevant

metadata in the header. At this point the new mutants are natively executable programs.

4.2 Implementation

To test the viability of our approach, we created a prototype stand-alone obfuscator that

takes a gadget arrangement as input and produces a working portable executable (PE) file

as output. The prototype searches the local system for programs, mines them to discover

gadgets, finds a suitable gadget assignment, and realizes it as a PE file. The prototype was

implemented in a combination of Python and Prolog. The experiments were performed on

a quad-core virtual machine with 3 GB RAM running 64-bit Windows 7. The host machine

is an Intel i7 Q6500 quad-core laptop running 64-bit Windows 7.

The gadget discovery, gadget assignment, and duplication phases implement the algo-

rithms described in the previous section. However, the abstract evaluator that analyzes and

discovers gadgets currently supports only a limited subset of instructions—about 8 different

instructions excluding branches. Even though this greatly reduces the number of gadgets

available for incorporation into mutants, it nevertheless suffices to find more than enough

gadgets to implement our sample programs.

The discovery module, implemented in Python, takes a set of binaries and a semantic

blueprint as input. It outputs a series of Prolog predicates that define each discovered gadget,

as well as a Prolog query that represents a viable combination of the gadget types specified

in the arrangement. This is delivered to the assignment module, implemented in Prolog,

which outputs all discovered solutions to the query. Each solution is then converted into its



49

equivalent byte sequence by the executable synthesis module, implemented in Python, which

injects the byte code into a template PE file. For ease of testing, the duplication module

contains pre-fabricated templates for function prologues and epilogues, which are used to

modularize the synthesized byte sequence as a stand-alone function. We note that function

prologues and epilogues could easily be synthesized using the gadget discovery mechanism

instead, if so desired.

4.3 Experimental Results

We tested our prototype by discovering gadgets in some common Windows binaries. For our

results, we only chose gadgets that contained 2–6 instructions. Our results are tabulated in

Table 4.3. We recorded the number of gadgets found and time taken both with and without

using the sliding window protocol discussed in Section 4.1. Surprisingly, we found that using

the sliding window protocol to discover misaligned sequences increased the gadget count

by only 34% on average but increased discovery time by 794%, a trade-off that does not

seem worthwhile. We conjencture that increasing the number of instructions supported by

the abstract evaluator will help balance these ratios somewhat, but that a better strategy

is likely to be one that searches for gadgets using a simple fall-through disassembly while

increasing the number of binaries mined. All results we discuss hereafter are based on the

numbers for the non-sliding window algorithm.

The results show that even with the limited capacity of our prototype, 2–3 binaries are

sufficient to bring the number of gadgets above 100,000. On average we discovered about 46

gadgets per KB of code, finding approximately 2338 gadgets per second.

Next, we tested the prototype’s ability to synthesize working code. We chose two

algorithms for our experiments: insertion sort and a loop that XORs an array of bytes using

a one-time pad. Both programs contain operations commonly found within the packers
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Table 4.3. Gadget discovery statistics for some Windows binaries
Without Sliding Window With Sliding Window

Binary Name File Size (KB) Gadgets Found Time Taken (s) Gadgets Found Time Taken (s)

gcc.exe 1327 82885 29.70 97163 172.24
calc.exe 758 41914 22.09 60390 189.86
explorer.exe 2555 89617 40.31 127859 429.56
cmd.exe 295 17514 7.17 25008 88.34
notepad.exe 175 4512 1.82 6974 24.39

Input:
L1 = address of data,
L2 = address of one-time pad,
L3 = array length,
L4 = address of encrypted output
Blueprint:
xor encryption :-

move(L5, 0),

jump(7, L5 = (L3-1)),

move(L6, [L1+L5*4]),

move(L7, [L2+L5*4]),

xor(L8, L6, L7),

move([L4+L5*4], L8),

add(L4, L4, 1),

add(L5, L5, 1),

jump(-7, always).

Figure 4.3. Semantic blueprint for a simple XOR oligomorphism

used by conventional malware. The semantic blueprints for these programs are shown in

Figures 4.3 and 4.4.

The semantic blueprints were reproduced as Prolog queries, with extensions to predicates

and added constraints to ensure non-interference between gadgets as detailed previously. In

both cases, only gadgets harvested from explorer.exe were used. The queries produced

over 10,000 viable gadget assignments each, with an average speed of 3 assignments per

second.
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Input:
L1 = address of array
L2 = length of array
Blueprint:
insertion sort :-

move(L3, 1),

jump(14, L3 = L2),

move(L4, L3),

move(L5, [L4*4+L1]),

jump(8, L4 = 0),

jump(7, [L1+(L4-1)*4] < L5),

sub(L4, L4, 1),

move(L6, [L4*4+L1]),

add(L4, L4, 1),

move([L4*4+L1], L6),

sub(L4, L4, 1),

jump(-7, always),

move([L4*4+L1], L5),

add(L3, L3, 1),

jump(-13, always).

Figure 4.4. Semantic blueprint for insertion sort

This high diversity can be attributed to multiple satisfiable sub-arrangements of gadgets,

which can each be combined with every variation of all other sub-arrangements, leading to a

combinatorially high number of unique overall arrangements. Although this might appear to

produce a large number of similar variants, diversity can be ensured by harvesting gadgets

from different sets of binaries and additionally by only selecting assignments that have no

gadgets in common with each other.

To better understand the size increase induced by our approach, we compared the sizes

of 100 mutants generated by Frankenstein for the one-time pad XOR algorithm against its

corresponding compiler generated code. The compiled code was generated with C++ using

Visual Studio 2010 with basic security checks turned on and optimization set to full. The

mean of the sizes of the generated mutants was 48 bytes compared to the 25 bytes produced

by Visual Studio. The variance in size between the generated samples was 16. This shows
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Table 4.4. The number of fresh n-grams shared by at least m mutants

mutant subset size (m out of 20)

n 3 4 5 6 7

2 0 0 0 0 0
3 5 4 4 2 0
4 14 5 4 2 0
5 19 8 4 2 0
6 23 11 4 1 0
7 26 12 3 1 0
8 26 9 1 1 0
9 24 9 1 1 0

10 23 9 1 1 0
11 0 0 0 0 0

total 160 (2.3%) 67 (1.0%) 22 (0.3%) 11 (0.2%) 0 (0%)

that the size of a mutant can be expected to be slightly less than double the size of its

optimized compiler-generated version, an increase that we feel is an acceptable cost for the

benefit of obfuscation.

To assess the binary distribution of the generated mutants, we generated 20 implemen-

tations of the XOR blueprint after mining donor program explorer.exe for gadgets, and

counted the number of n-grams that do not appear in the donor program and were shared

by at least m mutants. Our results are tabulated in Table 4.4. Only about 20 such n-grams

are common across 25% of our mutant population, and no n-grams are common across more

than 35% of the population. In addition, all the common n-grams are relatively short; no

n-grams of length n ≥ 11 were shared. These are encouraging results because they indicate

that few binary n-gram features are relevant for distinguishing malware instances from the

benign programs used for gadget harvesting.

Our experimental results are promising, and suggest that developing a more compre-

hensive Frankenstein tool is a worthwhile endeavor. Specifically, we conjecture that a more

comprehensive abstract evaluator that can analyze a greater number of instructions can
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potentially find far more gadgets, and thus produce mutants that exhibit even greater

diversity.

4.4 Conclusion

We presented a new way of obfuscating malware that is fundamentally different from existing

metamorphic malware approaches. Rather than recompiling the code purely randomly

during propagation, which leads to diverse but potentially distinguishable binary features,

our system searches non-malicious programs on the local system for byte sequences that

function as the building blocks for semantically equivalent but syntactically new copies. Our

experiments showed that mining a few files is both sufficient to obtain high mutant diversity,

and fast enough to be a practical mutation strategy.

By creating new copies entirely from byte sequences obtained from benign files, we argue

that it becomes significantly more difficult for defenders to infer adequate signatures that

reliably distinguish malware from non-malware on victim systems. In particular, signatures

that include feature-whitelisting are less effective against our framework than against more

conventional forms of obfuscation.

For future work, we intend to implement a more comprehensive system and experiments

to verify and extend our preliminary results. If successful, our gadget-stitching approach

will constitute a powerful tool for active defense (e.g., offensive cyber-operations), and will

highlight the need for stronger, purely semantics-based defenses that place less reliance on

syntactic feature detection for early warning.
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CHAPTER 5

VERIFIED SYSTEM CALL SAFETY ENFORCEMENT1

In this chapter we present the first, purely static, CISC native code rewriting and in-lining

system (Reins) that requires no cooperation from code-producers (i.e., is compiler-agnostic).

Unlike past work, Reins can automatically rewrite large-scale, COTS, Windows applications

yielded by arbitrary compilers, even with no access to source-level information (e.g., PDB

files or debug symbol stores). It transparently supports a large category of production-level

applications unsupportable by past efforts, including those that include event-driven OS-

callbacks, dynamic linking, exceptions, multithreading, computed jumps, and mixtures of

trusted and untrusted modules.

Realizing Reins for COTS x86 binary in Windows platform raises many challenges,

including semantic preservation of dynamically computed jumps, code interleaved with data,

function callbacks, and imperfect disassembly. We address these challenges through the

design and implementation of a suite of novel techniques, including conservative disassembly

and indirect jump target identification. Central to our approach is a binary transformation

strategy that expects and tolerates many forms of disassembly errors by conservatively

treating every byte in target code sections as both code and static data. This obviates

the need for perfect disassemblies, which are seldom realizable in practice without source

code.

To tame and secure unsafe logic inside the binary code, Reins automatically transforms

binaries to redirect system API calls through a trusted policy-enforcement library. The

1This chapter contains material previously published as: Richard Wartell, Vishwath Mohan, Kevin
W. Hamlen, and Zhiqiang Lin. Securing Untrusted Code via Compiler-Agnostic Binary Rewriting. In
Proceedings of the Annual Computer Security Applications Conference (ACSAC), pp. 299–308, December
2012.

55



56

library thereby mediates all security-relevant API calls and their arguments before (and after)

they are serviced, and uses this information to enforce safety policies over histories of these

security-relevant events. Indirect control flow transfers (e.g., call/jmp/ret) are protected

by in-lined guard code that ensures that they target safe code addresses when executed. In

addition, a small, trusted verifier shifts the significant complexity of the rewriting system

out of the trusted computing base (TCB) by independently certifying that rewritten binaries

cannot circumvent the in-lined monitor. Thus, binaries that pass verification are guaranteed

to be safe to execute. While reflective code can change its behavior in response to rewriting,

verification ensures that such changes cannot effect policy-violations.

In summary, Reins makes the following contributions:

• We present the first compiler-agnostic, machine-certifying, x86 rewriting algorithm

that supports real-world COTS binaries without any appeal to source code or debug

symbols. To the best of our knowledge, all past static binary rewriting techniques

require source-level or debugging information to support many COTS binary features.

• We design a set of novel techniques to support binary families for which fully correct

automated disassembly is provably undecidable, including those that contain computed

jumps, dynamic linking, static data interleaved with code, and untrusted callback

functions invoked by the OS.

• We have implemented Reins as a proof-of-concept prototype, and tested it on a number

of binaries including malware code. Our empirical evaluation shows that our system

successfully preserves the behavior of non-malicious, real-world Windows applications,

introducing runtime overheads of about 2.4%.
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5.1 Background

5.1.1 Assumptions

The goal of our system is to tame and secure malicious code in untrusted binaries through

static binary rewriting. Since a majority of malware threats currently target Windows

x86 platforms, we assume the binary code is running in Microsoft Windows OS with x86

architecture. Linux binary code can be protected similarly, but is not covered by the

prototype implementation covered in this chapter. (In fact, rewriting Windows binary code

is much more challenging than for Linux due to the much greater diversity of Windows-

targeting compilers.)

Our goal is to design a compiler-agnostic static binary rewriting technique, so we do

not impose any constraints on the code-producer; it could be any Windows platform com-

piler, or even hand-written machine code. Debug information (e.g., PDB) is assumed to

be unavailable. Like all past native code IRM systems, our fully static approach rejects

attempts at self-modification; untrusted code may only implement runtime-generated code

through standard system API calls, such as dynamic link library (DLL) loading. Code-

injection attacks are therefore thwarted because the monitor ensures that any injected code

is unreachable.

In addition, our goal is not to protect untrusted code from harming itself. Rather, we

prevent modules that may have been compromised (e.g., by a buffer overflow) from abusing

the system API to damage the file system or network, and from corrupting trusted modules

(e.g., system libraries) that may share the untrusted module’s address space. This confines

any damage to the untrusted module.

5.1.2 Threat model

Attackers in our model submit arbitrary x86 binary code for execution on victim systems.

Neither attackers nor defenders are assumed to have kernel-level (ring 0) privileges. Attacker-
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supplied code runs with user-level privileges, and must therefore leverage kernel-supplied

services to perform malicious actions, such as corrupting the file system or accessing the

network to divulge confidential data. The defender’s ability to thwart these attacks stems

from his ability to modify attacker-supplied code before it is executed. His goal is therefore

to reliably monitor and restrict access to security-relevant kernel services without the aid of

kernel modifications or application source code, and without impairing the functionality of

non-malicious code.

5.1.3 Attacks

The central challenge for any protection mechanism that constrains untrusted native code is

the problem of taming computed jumps, which dynamically compute control-flow destina-

tions at runtime and execute them. Attackers who manage to corrupt these computations or

the data underlying them can hijack the control-flow, potentially executing arbitrary code.

While computed jumps may seem rare to those accustomed to source-level program-

ming, they actually pervade almost all binary programs compiled from all source languages.

Computed jumps typically include returns (whose destinations are drawn from stack data),

method calls (which use method dispatch tables), library calls (which use import address

tables), multi-way branches (e.g., switch-case), and optimizations that cache code addresses

to registers.

Deciding whether any of these jumps might target an unsafe location at runtime requires

statically inferring the program register and memory state at arbitrary code points, which

is a well known undecidable problem. Moreover, since x86 instructions are unaligned (i.e.,

any byte can be the start of an instruction), computed jumps make it impossible to reliably

identify all instructions in untrusted binary code; disassemblers must heuristically guess

the addresses of many instruction sequences to generate a complete disassembly. Untrusted

binaries (e.g., malicious code) are often specifically crafted to defeat these heuristics, thereby

concealing malicious instruction sequences from analysis tools.
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5.2 System Overview

Given an untrusted binary, Reins automatically transforms it so that (1) all access to system

(and library) APIs are mediated by our policy enforcement library, and (2) all inter-module

control-flow transfers are restricted to published entry points of known libraries, preventing

execution of attacker-injected or misaligned code.

Reins’ rewriter first generates a conservative disassembly of the untrusted binary that

identifies all safe, non-branching flows (some of which might not actually be reachable) but

not unsafe ones. The resulting disassembly encodes a control-flow policy: instructions not

appearing in the disassembly are prohibited as computed jump targets. Generating even

this conservative disassembly of arbitrary x86 COTS binaries is challenging because COTS

code is typically aggressively interleaved with data, and contains significant portions that

are only reachable via computed jumps.

To help overcome some of these challenges, our rewriter is implemented as an IDAPython

(Erdélyi, 2008) program that leverages the considerable analysis power of the Hex-rays

IDA Pro commercial disassembler (Hex-Rays, 2012) to identify function entrypoints and

distinguish code from data in complex x86 binaries. While IDA Pro is powerful, it is not

perfect; it suffers numerous significant disassembly errors for almost all production-level

Windows binaries.

Thus, our rewriting algorithm’s tolerance of disassembly errors is critical for success.

Our system architecture is illustrated in Figure 5.1. Untrusted binaries are first analyzed

and transformed into safe binaries by a binary rewriter, which enforces control-flow safety

and mediates all API calls.

A separate verifier certifies that the rewritten binaries are policy-adherent. Malicious

binaries that defeat the rewriter’s analysis might result in rewritten binaries that fail verifi-

cation or that fail to execute properly, but never in policy violations.
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Figure 5.1. Reins architecture

5.3 Detailed Design

Rewriting Control-flow Transfers

Control Flow Safety: Our binary rewriting algorithm uses SFI (Wahbe et al., 1993) to

constrain control-flows of untrusted code. It is based on an SFI approach pioneered by

PittSFIeld (McCamant and Morrisett, 2006), which partitions instruction sequences into

c-byte chunks. Chunk-spanning instructions and targets of jumps are moved to chunk

boundaries by padding the instruction stream with nop (no-operation) instructions. This

serves three purposes:

• When c is a power of 2, computed jumps can be efficiently confined to chunk boundaries

by guarding them with an instruction that dynamically clears the low-order bits of the

jump target.

• Co-locating guards and the instructions they guard within the same chunk prevents

circumvention of the guard by a computed jump. A chunk size of c = 16 suffices to

contain each guarded sequence in our system.

• Aligning all code to c-byte boundaries allows a simple, fall-through disassembler to

reliably discover all reachable instructions in rewritten programs, and verify that all

computed jumps are suitably guarded.
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To allow trusted, unrewritten system libraries to safely coexist in the same address space

as chunk-aligned, rewritten binaries, we logically divide the virtual address space of each

untrusted process into low memory and high memory. Low memory addresses range from 0

to d−1 and may contain rewritten code and non-executable data. Higher memory addresses

may contain code sections of trusted libraries and arbitrary data sections (but not untrusted

code).

Partition point d is chosen to be a power of 2 so that a single guard instruction suffices

to confine untrusted computed jumps and other indirect control flow transfers to chunk

boundaries in low memory. For example, a jump that targets the address currently stored

in the eax register can be guarded by:

and eax, (d− c)

jmp eax

This clears both the high-order and low-order bits of the target address before jumping,

preventing an untrusted module from jumping directly to a system accessor function or to

a non-chunk boundary in its own code, respectively. The partitioning of virtual addresses

into low and high memory is feasible because rewritten code sections are generated by the

rewriter and can therefore be positioned in low memory, while trusted libraries are relocatable

through rebasing and can therefore be moved to high memory when necessary.

Preserving Good Flows: The above suffices to enforce control-flow safety, but it does not

preserve the behavior of most code containing computed jumps. This is a major deficiency

of many early SFI works, most of which can only be successfully applied to relatively small,

gcc-compiled programs that do not contain such jumps. More recent SFI works have only

been able to overcome this problem with the aid of source-level debug information.

Our source-free solution capitalizes on the fact that although disassemblers cannot gen-

erally identify all jumps in arbitrary binary code, modern commercial disassemblers can
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heuristically identify a superset of all the indirect jump targets (though not the jumps that

target them) in most binary code. This is enough information to implement a light-weight,

binary lookup table that the IRM can consult at runtime to dynamically detect and correct

computed jump targets before they are used. Our lookup table overwrites each old target

with a tagged pointer to its new location in the rewritten code. This solves the computed

jump preservation problem without the aid of source code.

Since the disassembler identifies a superset of targets and not an exact set, the lookup

table implementation must be carefully designed to tolerate false positives. Misidentification

of a code point as a jump target is therefore relatively harmless to Reins; each such

misidentification merely increases the size of rewritten code by a few bytes due to alignment.

A false negative (i.e., failure to identify one or more targets) is more serious and may lead

to rewritten code that does not execute properly, but the verifier ensures that it cannot lead

to a policy violation. Thus, both forms of error are tolerated.

Another major design issue is the need to arrange the lookup table so that IRM code

that uses it remains exceptionally small and efficient. This is critical for achieving low

overhead, since computed jumps are extremely common in real-world binaries. Our solution

implements most lookups with just two non-branching instructions (a compare instruction

and a conditional move), shown atop the first row of Table 5.1. This efficient implementation

is achieved by tagging each lookup table entry with a leading byte that never appears

as the first byte of valid code. We use a tag byte of 0xF4, which encodes an x86 hlt

instruction that is illegal in protected mode. The compare instruction uses this byte to

quickly distinguish stale pointers that point into the lookup table from those that already

point to code. The conditional move then corrects the stale ones. This succinct realization of

semantics-preserving computed jump guards is the key to Reins’ exceptionally low overhead.

Retaining the old code section as a data section has the additional advantage of retaining

any static data that may be interleaved in the code. This data can therefore be read by
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Table 5.1. Summary of x86 code transformations

Description Original code Rewritten code

Computed jumps with
register operands

call/jmp r cmp byte ptr [r], 0xF4

cmovz r, [r+1]
and r, (d− c)
call/jmp r

Computed jumps with
memory operands

call/jmp [m] mov eax, [m]

cmp byte ptr [eax],

0xF4

cmovz eax, [eax+1]

and eax, (d− c)
call/jmp eax

Returns ret (n) and [esp], (d− c)
ret (n)

IAT loads mov rm, [IAT:n] mov rm, offset tramp n

Tail-calls to high memory jmp [IAT:n] tramp n:
and [esp], (d− c)
jmp [IAT:n]

the rewritten executable at its original addresses, avoiding many difficult data preservation

problems that hamper other SFI systems. The tradeoff is an increased size of rewritten

programs, which tend to be around twice the size of the original. However, this does not

necessarily lead to an equivalent increase in runtime process sizes. Our experiences with

real x86 executables indicates that dynamic data sizes tend to eclipse static code sizes in

memory-intensive processes. Thus, in most cases rewritten process sizes incur only a fraction

of the size increase experienced by the disk images whence they were loaded.

When the original computed jump employs a memory operand instead of a register, as

shown in row 2 of Table 5.1, the rewritten code requires a scratch register. Table 5.1 uses
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eax, which is caller-save by convention and is not used to pass arguments by any calling

convention supported by any mainstream x86 compiler (Fog, 2009).2

A particularly common form of computed jump deserves special note. Return instructions

(ret) jump to the address stored atop the stack (and optionally pop n additional bytes from

the stack afterward). These are guarded by the instruction given in row 3 of Table 5.1, which

masks the return address atop the stack to a low memory chunk boundary. Call instructions

are moved to the ends of chunks so that the return addresses they push onto the stack are

aligned to the start of the following chunk. Thus, the return guards have no effect upon

return addresses pushed by properly rewritten call instructions, but they block jumps to

corrupted return addresses that point to illegal destinations, such as the stack. This makes

all attacker-injected code unreachable.

Preserving API Calls: To allow untrusted code to safely access trusted library functions

in high memory, the rewriter permits one form of computed jump to remain unguarded:

Computed jumps whose operands directly reference the import address table (IAT) are

retained. Such jumps usually have the following form:

call [IAT:n]

where IAT is the section of the executable reserved for the IAT and n is an offset that

identifies the IAT entry. These jumps are safe since the entrypoint to the APIs is hooked by

Reins to ensure that they always target policy-compliant addresses at runtime.

Not all uses of the IAT have this simple form, however. Most x86-targeting compilers

also generate optimized code that caches IAT entries to registers, and uses the registers as

jump targets. To safely accommodate such calls, the rewriter identifies and modifies all

2To support binaries that depend on preserving eax across computed jumps, the table’s sequence can be
extended with two instructions that save and restore eax. We did not encounter any programs that require
this, so our experiments use the table’s shorter sequence.
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Original:
.text:00499345 8B 35 FC B5 4D 00 mov esi, [4DB5FCh] ;IAT:MBTWC

. . .

.text:00499366 FF D6 call esi

Rewritten:
.tnew:0059DBF0 BE 90 12 5D 00 mov esi, offset loc 5D1290

. . .

.tnew:0059DC15 80 3E F4 cmp byte ptr [esi], F4h

.tnew:0059DC18 0F 44 76 01 cmovz esi, [esi+1]

.tnew:0059DC1C 90 90 90 90 nop (×4)

.tnew:0059DC20 81 E6 F0 FF FF 0F and esi, 0FFFFFF0h

.tnew:0059DC26 90 (×8) nop (×8)

.tnew:0059DC2E FF D6 call esi

. . .

.tnew:005D1290 81 24 24 F0 FF FF 0F and dword ptr [esp], 0FFFFFF0h

.tnew:005D1297 FF 25 FC B5 4D 00 jmp [4DB5FCh] ;IAT:MBTWC

Figure 5.2. Rewriting a register-indirect system call

instructions that use IAT entries as data. An example of such an instruction is given in

row 4 of Table 5.1. For each such instruction, the rewriter replaces the IAT memory operand

with the address of a callee-specific trampoline chunk (in row 5) introduced to the rewritten

code section (if it doesn’t already exist). The trampoline chunk safely jumps to the trusted

callee using a direct IAT reference. Thus, any use of the replacement pointer as a jump

target results in a jump to the trampoline, which invokes the desired function.

Dynamic linking and callbacks are both supported via a similar form of trampolining

detailed in the technical report (Hamlen et al., 2010).

Examples

To illustrate the rewriting algorithm, Figs. 5.2 and 5.3 demonstrate the transformation

process for two representative assembly codes.

Figure 5.2 implements a register-indirect call to a system API function (MBTWC). The

first instruction of the original code loads an IAT entry into the esi register, which is later

used as the target of the call. Reins replaces this address with the address of the in-
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Original:
.text:00408495 FF 24 85 CC 8A 40 00 jmp ds:off 408ACC[eax*4]

. . .

.text:00408881 3D 8C 8A 4D 00 00 cmp byte 4D8A8C, 0

.text:00408888 74 13 jz short loc 40889D

.text:0040888A 84 C9 test cl, cl

.text:0040888C 74 0F jz short loc 40889D

. . .

.text:00408ACC 81 88 40 00 dd offset loc 408881

.text:00408AD0 . . . (other code pointers)

Rewritten:
.text:00408881 F4 60 3A 4F 00 db F4, loc 4F3A60

.tnew:004F33B4 8B 04 85 CC 8A 40 00 mov eax, ds:dword 408ACC[eax*4]

.tnew:004F33BB 80 38 F4 cmp byte ptr [eax], F4h

.tnew:004F33BE 90 90 nop (×2)

.tnew:004F33C0 0F 44 40 01 cmovz eax, [eax+1]

.tnew:004F33C4 25 F0 FF FF 0F and eax, 0FFFFFF0h

.tnew:004F33C9 FF E0 jmp eax

. . .

.tnew:004F3A60 3D 8C 8A 4D 00 cmp byte 4D8A8C, 0

.tnew:004F3A67 74 27 jz short loc 4F3A90

.tnew:004F3A69 84 C9 test cl, cl

.tnew:004F3A6B 74 22 jz short loc 4F3A90

Figure 5.3. Rewriting code that uses a jump table

lined trampoline code at the bottom of the figure, which performs a safe jump to the same

destination. The call instruction is replaced with the guarded call sequence shown in lines 2–

7 of the rewritten binary. The compare (cmp) and conditional move (cmovz) implement the

table-lookup, and the masking instruction (and) aligns the destination to a chunk boundary.

This makes the ensuing call provably safe to execute.

Figure 5.3 shows a computed jump with a memory operand that indexes a jump table.

The rewritten code first loads the destination address into a scratch register (eax) in accor-

dance with row 2 of Table 5.1. It then implements the same lookup and masking guards as

in Figure 5.2. This time the lookup has a significant effect—it discovers at runtime that the

address drawn from the lookup table must be repointed to a new address. This preserves
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the behavior of the binary after rewriting despite the failure of the disassembler to discover

and identify the jump table at rewrite-time.

Memory Safety

To prevent untrusted binaries from dynamically modifying code sections or executing data

sections as code, untrusted processes are executed with DEP enabled. DEP-supporting

operating systems allow memory pages to be marked non-executable (NX). Attempts to

execute code in NX pages result in runtime access violations. The binary rewriter sets the

NX bit on the pages of all low memory sections other than rewritten code sections to prevent

them from being executed as code. Thus, attacker-injected shell code in the stack or other

data memory regions cannot be executed.

User processes on Windows systems can set or unset the NX bit on memory pages within

their own address spaces, but this can only be accomplished via a small collection of system

API functions—e.g., VirtualProtect and VirtualAlloc. The rewriter replaces the IAT

entries of these functions with trusted wrapper functions that silently set the NX bit on all

pages in low memory other than rewritten code pages. The wrappers do not require any

elevated privileges; they simply access the real system API directly with modified arguments.

The real system functions are accessible to trusted libraries (but not untrusted libraries)

because they have separate IATs that are not subjected to our IAT hooking. Trusted libraries

can therefore use them to protect their local heap and stack pages from untrusted code that

executes in the same address space. Our API hooks prevent rewritten code from directly

accessing the page protection bits to reverse these effects. This prevents the rewritten code

from gaining unauthorized access to trusted memory.

Our memory safety enforcement strategy conservatively rejects untrusted, self-modifying

code. Such code is a mainstay of certain application domains, such as JIT-compilers. For

these domains we consider alternative technologies, such as certifying compilers and certified,
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bytecode-level IRMs, to be a more appropriate means of protection. Self-modifying code is

increasingly rare in other domains, such as application installers, because it is incompatible

with DEP, incurs a high performance penalty, and tends to trigger conservative rejection by

antivirus products. No SFI system to our knowledge supports arbitrary self-modifying code.

Verification

The disassembler, rewriter, and lookup table logic all remain completely untrusted by our

architecture. Instead, a small, independent verifier certifies that rewritten programs cannot

circumvent the IAT and are therefore policy-adherent. The verifier does not prove that

the rewriting process is behavior-preserving. This reduced obligation greatly simplifies the

verifier relative to the rewriter, resulting in a small TCB.

The verification algorithm performs a simple fall-through disassembly of each executable

section in the untrusted binary and checks the following purely syntactic properties:

• All executable sections reside in low memory.

• All exported symbols (including the program entrypoint) target low memory chunk

boundaries.

• No disassembled instruction spans a chunk boundary.

• Static branches target low memory chunk boundaries.

• All computed jump instructions that do not reference the IAT are immediately preceded

by the appropriate and-masking instruction from Table 5.1 in the same chunk.

• Computed jumps that read the IAT access a properly aligned IAT entry, and are preceded

by an and-mask of the return address. (Call instructions must end on a chunk boundary

rather than requiring a mask, since they push their own return addresses.)

• There are no trap instructions (e.g., int or syscall).
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These properties ensure that any unaligned instruction sequences concealed within un-

trusted, executable sections are not reachable at runtime. This allows the verifier to limit

its attention to a fall-through disassembly of executable sections, avoiding any reliance upon

the incomplete code-discovery heuristics needed to produce full disassemblies of arbitrary

(non-chunk-aligned) binaries.

5.4 Implementation

We have developed an implementation of Reins for the 32-bit version of Microsoft Windows

XP/Vista/7/8. The implementation consists of four components: (1) a rewriter, (2) a

verifier, (3) an API hooking utility, and (4) an intermediary library that handles dynamic

linking and callbacks. Rather than using a single, static API hooking utility, we implemented

an automated monitor synthesizer that generates API hooks and wrappers from a declarative

policy specification. This is discussed in Section 5.5.3. None of the components require

elevated privileges. While the implementation is Windows-specific, we believe the general

approach is applicable to any modern OS that supports DEP technology.

The rewriter transforms Windows Portable Executable (PE) files in accordance with

the algorithm in Section 5.3. Its implementation consists of about 1,300 lines of IDA

Python scripting code that executes atop the Hex-rays IDA Pro 6.1 disassembler. One

of IDA Pro’s primary uses is as a malware reverse engineering and de-obfuscating tool,

and it boasts many powerful code analyses that heuristically recover program structural

information without assistance from a code-producer. These analyses are leveraged by our

system to automatically distinguish code from data and identify function entrypoints to

facilitate rewriting.

In contrast to the significant complexity of the rewriting infrastructure, the verifier’s

implementation consists of 1,500 lines of 80-column OCaml code that uses no external

libraries or utilities (other than the built-in OCaml standard libraries). Of these 1,500 lines,
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approximately 1,000 are devoted to x86 instruction decoding, 300 to PE binary parsing,

and 200 to the actual verification algorithm in Section 5.3. The decoder handles the entire

x86 instruction set, including floating point, MMX, and all SSE extensions documented in

the Intel and AMD manuals. This is necessary for practical testing since production-level

binaries frequently contain at least some exotic instructions. No code is shared between the

verifier and rewriter.

The intermediary library consists of approximately 500 lines of C and hand-written, in-

lined assembly code that facilitates callbacks and dynamic linking. An additional 150-line

configuration file itemizes all trusted callback registration functions exported by Windows

libraries used by the test programs. We supported all callback registration functions exported

by comdlg32, gdi32, kernel32, msvcrt, and user32. Information about exports from

these libraries was obtained by examining the C header files for each library and identifying

function pointer types in exported function prototypes.

Our API hooking utility replaces the IAT entries of all monitored system functions

imported by rewritten PE files with the addresses of trusted monitor functions. It also

adds the intermediary library to the PE’s list of imported modules. To avoid expanding

the size of the PE header (which could shift the positions of the binary sections that follow

it), our utility simply changes the library name kernel32.dll in the import section to

the name of our intermediary library. This causes the system loader to draw all IAT

entries previously imported from kernel32.dll from the intermediary library instead. The

intermediary library exports all kernel32 symbols as forwards to the real kernel32, except

for security-relevant functions, which it exports as local replacements. Our intermediary

library thus doubles as the policy enforcement library.
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Table 5.2. Experimental results: SPEC benchmarks

Size Increase
Binary
Program File (%) Code (%) Process (%)

Rewriting
Time (s)

Verification
Time (ms)

gzip 103 31 0 12.5 142
vpr 94 26 22 14.4 168
mcf 108 32 2 10.5 84
parser 108 34 1 17.4 94
gap 118 42 0 31.2 245
bzip2 102 29 0 10.8 91
twolf 99 24 27 25.3 245
mesa 104 20 6 42.4 554
art 108 33 14 12.4 145
equake 103 27 1 12.3 165
median +103.5% +30.0% +1.5% 13.45s 155ms

5.5 Evaluation

5.5.1 Rewriting Effectiveness

We tested Reins with a set of binary programs listed in Tables 5.2 and 5.3. Table 5.2 lists

results for some of the benchmarks from the SPEC 2000 benchmark suite. Table 5.3 lists

results for some other applications, including GUI programs that include event- and callback-

driven code, and malware samples that require enforcement of higher-level security policies

to prevent malicious behavior. In both tables, columns 2–3 report the percentage increase

of the file size, code segment, and process size, respectively; and columns 5–6 report the

time taken for rewriting and verification, respectively. All experiments were performed on

a 3.4GHz quad-processor AMD Phenom II X4 965 with 4GB of memory running Windows

XP Professional and MinGW 5.1.6.

File sizes double on average after rewriting for benign applications, while malware shows

a smaller increase of about 40%. Code segment sizes increase by a bit less than half for

benign applications, and a bit more than half for malware. Process sizes typically increase
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Table 5.3. Experimental results: Applications and malware

Size Increase
Binary
Program File (%) Code (%) Process (%)

Rewriting
Time (s)

Verification
Time (ms)

notepad 60 31 20 1.5 18
Eureka 32 53 15 17.9 225
DOSBox 112 38 0 137.1 2394
PhotoView 87 57 4 3.5 49
BezRender 128 55 3 4.1 55
gcc 100 37 15 3.0 36
g++ 100 41 16 3.0 37
jar 101 34 12 2.4 27
objcopy 122 49 23 26.9 354
size 103 50 116 16.3 20
strings 122 50 42 21.5 283
as 99 49 2 30.4 397
ar 121 50 4 21.8 285
whetstone 88 21 54 0.6 6
linpack 57 19) 31 0.6 6
pi ccs5 125 28 1 5.8 66
md5 25 48 149 0.6 5
median 100% 41% 15% 4.1s 49ms

Virut.a (rejected) − −
Hidrag.a (rejected) − −
Vesic.a 75 34 108 0.3 194
Sinn.1396 37 115 93 0.2 75
Spreder.a 14 66 17 3.0 72
median 37% 66% 93% 0.3s 75ms

by about 15% for benign applications, but almost 90% for malware. The rewriting speed is

about 32s per megabyte of code, while verification is much faster—taking only about 0.4s

per megabyte of code on average.

5.5.2 Performance Overhead

We also measured the performance of the non-interactive programs in Tables 5.2 and 5.3.

The runtime overheads of the rewritten programs as a percentage of the runtimes of the
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Figure 5.4. Runtime overhead due to rewriting

originals is presented in Figure 5.4. The median overhead is 2.4%, and the maximum is

approximately 15%. As with other similar works (Abadi et al., 2009; Ford and Cox, 2008),

the runtimes of a few programs decrease after rewriting. This effect is primarily due to

improved instruction alignment introduced by the rewriting algorithm, which improves the

effectiveness of instruction look-ahead and decoding pipelining optimizations implemented

by modern processors. While the net effect is marginal, it is enough to offset the overhead

introduced by the rest of the protection system in these cases, resulting in safe binaries whose

runtimes are as fast as or faster than the originals.

The experiments reported in Tables 5.2 and 5.3 enforced only the core access control

policies required to prevent control-flow and memory safety violations. Case studies that

showcase the framework’s capacity to enforce more useful policies are described in Sec-

tion 5.5.4.

5.5.3 Policy Enforcement Library Synthesis

To quickly and easily demonstrate the framework’s effectiveness for enforcing a wide class of

safety policies, we developed a monitor synthesizer that automatically synthesizes the policy
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1 function conn = ws2_32:: connect(
2 SOCKET, struct sockaddr_in ∗, int) −> int;
3 function cfile = kernel32:: CreateFileW(
4 LPCWSTR, DWORD, DWORD, LPSECURITY_ATTRIBUTES,
5 DWORD, DWORD, HANDLE) −> HANDLE WINAPI;

7 event e1 = conn(_, {sin_port=25}, _) −> 0;
8 event e2 = cfile(”∗. exe”, _, _, _, _, _, _) −> _;

10 policy = e1∗ + e2∗;

Figure 5.5. A policy that prohibits applications from both sending emails and creating .exe

files

enforcement portion of the intermediary library from a declarative policy specification. Policy

specifications consist of: (1) the module names and signatures of all security-relevant API

functions to be monitored, (2) a description of the runtime argument values that, when passed

to these API functions, constitute a security-relevant event, and (3) a regular expression over

this alphabet of events whose prefix-closure is the language of permissible traces (i.e., event

sequences).

To illustrate, Figure 5.5 shows a sample policy. Lines 1–5 are signatures of two API

functions exported by Windows system libraries: one for connecting to the network and

one for creating files. Lines 7–8 identify network-connects as security-relevant when the

outgoing port number is 25 (i.e., an SMTP email connection) and the return value is 0 (i.e.,

the operation was successful), and file-creations as security-relevant when the filename’s

extension is .exe. Underscores denote arguments whose values are not security-relevant.

Finally, line 10 defines traces that include at most one kind of event (but not both) as

permissible. Here, * denotes finite or infinite repetition and + denotes regular alternation.

Currently our synthesizer implementation supports dynamic value tests that include

string wildcard matching, integer equality and inequality tests, and conjunctions of these

tests on fields within a structure. From this specification, the monitor synthesizer generates

the C source code of a policy enforcement library that uses IAT hooking to reroute calls to
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1 function cfile = kernel32:: CreateFileW(
2 LPCWSTR, DWORD, DWORD, LPSECURITY_ATTRIBUTES,
3 DWORD, DWORD, HANDLE) −> HANDLE WINAPI;
4 function exec = kernel32:: WinExec(LPCSTR, UINT)
5 −> UINT WINAPI;

7 event e1 = cfile(”∗. exe”, _, _, _, _, _, _) −> _;
8 event e2 = cfile(”∗. msi”, _, _, _, _, _, _) −> _;
9 event e3 = cfile(”∗. bat”, _, _, _, _, _, _) −> _;

10 event e4 = exec(”explorer”, _) −> _;

12 policy = ;

Figure 5.6. Eureka email policy

connect and CreateFileW through trusted guard functions. The guard functions implement

the desired policy as a determinized security automaton (Schneider, 2000)—a finite state

automaton that accepts the prefix-closure of the policy language in line 10. If the untrusted

code attempts to exhibit a prohibited trace, the monitor rejects by halting the process.

5.5.4 Case Studies

An Email Client: As a more in-depth case-study, we used the rewriting system and monitor

synthesizer to enforce two policies on the Eureka 2.2q email client. Eureka is a fully featured,

commercial POP client for 32-bit Windows that features a graphical user interface, email

filtering, and support for launching executable attachments as separate processes. It is

1.61MB in size and includes all of the binary features discussed in earlier sections, including

Windows event callbacks and dynamic linking. It statically links to eight trusted system

libraries.

Without manual assistance, IDA automatically recovers enough structural information

from the Eureka binary to facilitate the full binary rewriting algorithm presented in Sec-

tion 5.3. Rewriting requires 18s and automated verification of the rewritten binary requires

0.2s.
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After rewriting, we synthesized an intermediary library that enforces the access control

policy given in Figure 5.6, which prohibits creation of files whose filename extensions are

.exe, .msi, or .bat, and which prevents the application from launching Windows Explorer

as an external process. (The empty policy expression in line 12 prohibits all events defined

in the specification.) We also enforced the policy in Figure 5.5, but with a policy expression

that limits clients to at most 100 outgoing SMTP connections per run. Such a policy might

be used to protect against malware infections that hijack email applications for propagation

and spamming.

After rewriting, we systematically tested all program features and could not detect any

performance degradation or changes to any policy-permitted behaviors. All program features

unrelated to the policy remain functional. However, saving or launching an email attachment

with any of the policy-prohibited filename extensions causes immediate termination of the

program by the monitor. Likewise, using any program operation that attempts to open an

attachment using Windows Explorer, or sending more than 100 email messages, terminates

the process. The rewritten binary therefore correctly enforces the desired policy without

impairing any of the application’s other features.

An Emulator: DOSBox is a large DOS emulator with over 16 million downloads on

sourceforge. Though its source code is available, it was not used during the experiment.

The precompiled binary is 3.6MB, and like Eureka, includes all the difficult binary features

discussed earlier.

We enforced several policies that prohibit access to portions of the file system based

on filename string and access mode. We then used the rewritten emulator to install and

use several DOS applications, including the games Street Fighter 2 and Capture the Flag.

Installation of these applications requires considerable processing time, and is the basis for

the timing statistics reported in Table 5.3. As in the previous experiment, no performance
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degradation or behavioral changes are observable in the rewritten application, except that

policy-violating behaviors are correctly prohibited.

Malware: To analyze the framework’s treatment of real-world malware, we tested Reins

on five malware samples obtained from a public malware research repository: Virut.a,

Hidrag.a, Vesic.a, Sinn.1396, and Spreder.a. While these malware variants are well-known

and therefore preventable by conventional signature-matching antivirus defenses, the results

indicate how our system reacts to binaries intentionally crafted to defeat disassembly tools

and other static analyses. Each is statically or dynamically rejected by the protection system

at various different stages, detailed below.

Virut and Hidrag are both rejected at rewriting time when the rewriter encounters

misaligned static branches that target the interior of another instruction. While supporting

instruction aliasing due to misaligned computed jumps is useful for tolerating disassembly

errors, misaligned static jumps only appear in obfuscated malware to our knowledge, and

are therefore conservatively rejected.

Vesic and Sinn are Win32 viruses that propagate by appending themselves to executable

files on the C: volume. They do not use packing or obfuscation, making them good candidates

for testing our framework’s ability to detect malicious behavior rather than just suspicious

binary syntax. With a fully permissive policy, our framework successfully rewrites and verifies

both malware binaries; running the rewritten binaries preserves their original (malicious)

behaviors. However, enforcing the policy in Figure 5.6 results in premature termination

of infected processes when they attempt to propagate by writing to executable files. We

also successfully enforced a second policy that prohibits the creation of system registry keys,

which Vesic uses to insert itself into the boot process of the system. These effectively protect

the infected system before any damage results.

Spreder has a slightly different propagation strategy that searches for executable files in

the shared directory of the Kazaa file-sharing peer-to-peer client. We successfully enforced a
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policy that prohibits use of the FindFirstFileA system API function to search for executable

files in this location. This results in immediate termination of infected processes.

5.6 Discussion

In this section we first discuss the security benefits Reins provides, and then discuss the

binary code conventions that are prerequisites for behavior-preservation under our binary

rewriting scheme, as well as the reliability of our disassembly. The limitations of our approach

are highlighted during the course of the discussion.

5.6.1 Control-flow Policies

As we have demonstrated, Reins can rewrite many complex legacy binaries, enforcing coarse-

grained control-flow safety and preserving safe computed jumps without source code. How-

ever, Reins does not enforce the finer-grained control-flow integrity properties of CFI (Abadi

et al., 2009). CFI uses source code or PDB files to build a control-flow graph that serves as

the integrity policy to enforce. This connection to source code is foundational to CFI because

any fine-grained definition of “good” control-flows invariably depends on the semantics of

the source code that the untrusted binary code is intended to reflect. Without source code,

there is no sensible definition of control-flow integrity for Reins to enforce.

As such, Reins and CFI have fundamentally different goals. CFI’s goal is to micro-

manage behavior within an untrusted binary to prevent attackers from corrupting its internal

flows. In contrast, Reins’ goal is to protect the environment outside the untrusted binary,

not its internals. This includes external resources like the file system and network, and the

trusted libraries that access them (e.g., OS/kernel libraries). The only flows that affect such

resources are those that exit the untrusted code. For these, there are sensible, well-defined

(but coarser-grained) control-flow policies apart from source code. For example, flows to the
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stack or data are disallowed (to block code-injection attacks), and flows to trusted libraries

must obey the library’s interface (e.g., its export address table).

Reins prevents these forms of malicious behavior based on the security policy. It is

possible for an attacker to craft ROP (Shacham, 2007) or Q (Schwartz et al., 2011) shell

code to overwrite the stack pointer and break the internal control flows, but the attacker must

ultimately manipulate the arguments of system calls to effect damage outside the confines of

the untrusted module. These malicious system calls are detected and prevented by Reins.

5.6.2 Code Conventions

Our rewriting algorithm in Section 5.3 preserves the behavior of code that adheres to

standard, compiler-agnostic x86 code generation conventions. Code that violates these

conventions can yield rewritten code that fails verification or fails to execute properly,

but never verified code that circumvents the monitor. Nevertheless, the practicality of the

approach depends on its ability to preserve the behavior of a large class of non-malicious code.

Compatibility limitations of this sort have been a major obstacle to widespread adoption of

much past SFI research.

Code pointers: Reins expects each code pointer used as a jump target by untrusted code

to originate from one of five sources:

• a low-memory address drawn from the program counter (e.g., a return address pushed

by a call),

• data that points to a basic block boundary,

• a code address stored in the IAT,

• a return address pushed by a trusted caller during a callback, or

• a return value yielded by the system’s dynamic linking API.
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As demonstrated by our experiments, these cover a large spectrum of real-world binary

code. Nevertheless, there are some unusual cases that Reins still rejects. For example,

a program that computes external library entrypoints instead of requesting them from

the system’s linker is incompatible with Reins, and will typically crash when executed.

Addressing such limitations is future work.

Reliable Disassembly: Binaries generated by most mainstream compilers mix code and

static data within the .text section of the executable. Reins relies upon a classification

algorithm that heuristically distinguishes code from data (Wartell et al., 2011). If code

is misclassified as data, that code is incorrectly omitted from the rewritten binary’s code

section. If data is misclassified as code that looks like a possible computed jump target,

the rewriter might overwrite some of the data with tagged pointers as it constructs the

lookup table (see Section 5.3). This can result in corruption of the static data. However,

data misclassified as code without such targets just contributes harmless, dead code to the

rewritten binary’s code section. Heuristics that conservatively classify most bytes as code

with few computed jump targets therefore tend to work well for our system.

Function entrypoints are readily identifiable in most binaries by the characteristic func-

tion prologues and epilogues that begin and conclude most function bodies. The few

remaining computed jump targets are gleaned through the disassembler’s code reachability

analysis and a few pattern-matching heuristics that identify instruction sequences compiled

from common source language structures (e.g., switch-case statements) that often compile

to computed jumps.

In practice we found that for most non-malicious programs, IDA Pro’s automatic binary

analysis works well, accurately identifying all code (with some data harmlessly misidentified

as code) and identifying all computed jump targets (with some code harmlessly misiden-

tified as a computed jump target). Any missed targets are easy to identify and correct
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manually, since their omission causes the rewritten binary to crash at precisely the site of

the misclassified address in the (now non-executable) old code segment.

Dense Computed Jump Targets: A more subtle assumption of the algorithm is that

all computed jump targets in the original binary are at least w + 1 bytes away from the

next computed jump target or following data, where w is the system word size. This is

necessary to ensure sufficient space for the rewriter to write a tagged pointer at that address

without overwriting any adjacent pointers or data. Entrypoints packed closer than this are

rare, since most computed jump targets are 16-byte aligned for performance reasons, and

since all binaries compatible with hotpatching have at least w + 1 bytes of padding between

consecutive function entrypoints (Microsoft Corporation, 2005).

In the rare case that two targets are within w bytes in the original code, the rewriter

strategically chooses the address of the rewritten code section so that the encodings of tagged

pointers into it can occasionally overlap. For example, with tag byte t = 0xF4, the sequence

F4 00 F4 00 04 00 04 encodes two overlapping, little-endian tagged pointers to addresses

0x0400F400 and 0x04000400. By positioning the rewritten versions of these two functions

at those addresses, the rewriter can encode overlapping pointers to them in the lookup

table. With chunk size c = 16 and memory division d = 228, a rewritten code base address

of 224(t& 0xF) + 216t supports at least 15 two-pointer collisions and 1 three-pointer collision

per rewritten code page—far more than we saw in any binary we studied.

5.6.3 Other Future Work

The experiments reported in Section 5.5 focus on testing the soundness, transparency, and

feasibility of our static binary rewriting algorithm on a real-world OS, and on demonstrating

the enforcement of some simple but useful security policies. Past work (Hamlen et al., 2006;

Ligatti et al., 2009; Rajagopalan et al., 2006) has shown that IRM systems are capable of

enforcing more sophisticated temporal properties when equipped with more powerful event
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languages and responses to impending policy violations that go beyond mere program termi-

nation. Developing policy-enforcement libraries that implement such policies is therefore a

logical next step toward applying our framework to interesting, practical security problems

for these real-world systems.

5.7 Conclusion

We have presented the design, implementation, and evaluation of a new SFI/IRM system,

Reins, that monitors and restricts Windows API calls of untrusted native x86 binaries

for which source code and debugging information are unavailable. The binary rewriting

algorithm supports many difficult binary features, including computed jumps, dynamic

linking, interleaved code and data, and OS callbacks, all without any explicit cooperation

from code-producers, and it is behavior-preserving for a large class of COTS binaries. To

the best of our knowledge, no past binary rewriting-based SFI work has achieved this. The

enforcement mechanism requires no kernel extensions or privileges, making it applicable to

shared and closed computing environments, and separate, light-weight machine-verification

keeps the TCB small. Experiments on a number of COTS and malware programs show

the effectiveness of Reins, and demonstrate that although rewriting doubles file sizes on

average, runtimes increase by only about 2.4% and the median process size increases by only

about 15%.



CHAPTER 6

SELF-TRANSFORMING INSTRUCTION RELOCATION1

The defensive technique exposited in this chapter leverages source-free binary rewriting to

secure binaries from ROP attacks (see Section 2.2).

Recent attempts to protect against ROP have employed both static and dynamic tech-

niques. In-place-randomization (IPR) (Pappas et al., 2012) statically smashes unwanted

gadgets by changing their semantics or reordering their constituent instructions without

perturbing the rest of the binary. Alternatively, ILR (Hiser et al., 2012) dynamically

eliminates gadgets by randomizing all instruction addresses and using a fall-through map to

dynamically guide execution through the reordered instructions. While these two approaches

are valuable first steps, IPR suffers from deployment issues (since millions of separately

shipped, randomized copies are required to obtain a sufficiently diverse field of application

instances), and ILR suffers from high performance overhead (because of its highly dynamic,

VM-based approach).

Our technique—Self-Transforming Instruction Relocation (STIR)—transforms legacy ap-

plication binary code into self-randomizing code that statically re-randomizes itself each

time it is loaded. The capacity to re-randomize legacy code (i.e., code without debug

symbols or relocation information) at load-time greatly eases deployment, and its static

code transformation approach yields significantly reduced performance overheads. Moreover,

randomizing at basic block granularity achieves higher entropy than ASLR, which only

1This chapter contains material previously published as: Richard Wartell, Vishwath Mohan, Kevin
W. Hamlen, and Zhiqiang Lin. Binary Stirring: Self-randomizing Instruction Addresses of Legacy x86
Binary Code. In Proceedings of the 19th ACM Conference on Computer and Communications Security
(CCS), pp. 157–168, October 2012.

83
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randomizes section base addresses, and can therefore be susceptible to derandomization

attacks (Shacham et al., 2004; Roglia et al., 2009).

STIR is a fully automatic, binary-centric solution that does not require any source code or

symbolic information for the target binary program. STIR-enabled code randomly reorders

the basic blocks in each binary code section each time it is launched, frustrating attempts to

predict the locations of gadgets. It is therefore fully transparent, and there is no modification

to the OS or compiler. This makes it easily deployable; software vendors or end users need

only apply STIR to their binaries to generate one self-randomizing copy, and can thereafter

distribute the binary code normally.

Randomizing legacy CISC code for real-world OS’s (Microsoft Windows and Linux) with-

out compiler support raises many challenges, including semantic preservation of dynamically

computed jumps, code interleaved with data, function callbacks, and imperfect disassembly

information. These challenges are detailed further in Section 6.1. In this section, we

develop a suite of novel techniques, including conservative disassembly, jump table recovery,

and dynamic dispatch, to address these challenges. Central to our approach is a binary

transformation strategy that expects and tolerates many forms of disassembly errors by

conservatively treating every byte in target code sections as both a potential instruction

starting point and static data. This obviates the need for perfect disassemblies, which are

seldom realizable in practice without source code.

We have implemented STIR and evaluated it on both Windows and Linux platforms

with a large number of legacy binary programs. Our experimental results show that STIR

can successfully transform application binaries with self-randomized instruction addresses,

and that doing so introduces about 1% overhead (significantly better than ILR’s 16%) on

average at runtime to the applications.

In summary, this section makes the following contributions.
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• We present a mostly static, instruction address randomization technique to counter

ROP shell-code that reuses gadgets in legacy binaries. Randomization is achieved via

a novel static binary rewriting that first transforms the binary into a self-randomizable

representation, followed by a load-time phase that stirs the binary at program start,

yielding a different ordering of the instruction addresses each time the program is

launched.

• To enable static rewriting of legacy code, we have developed a number of new techniques

in support of native x86 code for computed jumps, code-data interleaving, OS call-

backs, dynamic linking, and disassembly error tolerance. We believe these techniques

constitute a significant advancement in static binary writing.

• We have implemented our entire system on two mainstream OS architectures (Windows

and Linux) and tested it with a large number of application binaries. The implemen-

tation consists of a conservative, static disassembler and a load-time reassembler. Our

empirical evaluation shows that STIR is a promising approach for defending real-world

legacy binaries against ROP shell code.

Section 6.1 begins with an overview of our approach. Section 6.2 elaborates by presenting

a detailed design of STIR, including its static disassembler and load-time reassembler. Sec-

tion 6.3 reports the results of our evaluation of STIR on over 100 Windows and Linux binaries.

Section 6.4 discusses known limitations of the system. Finally, Section 6.5 concludes.

6.1 System Overview

Users of our system submit legacy x86 COTS binaries (PE files for Windows, or ELF files

for Linux) to a rewriter. The rewriter disassembles, transforms, and reassembles the target

code into a new, self-randomizing binary that reorders its own basic blocks each time it is

executed. Instruction address randomization is achieved by randomizing the basic blocks.
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Original Binary

.text

Rewritten Binary

.told (NX bit set)

.tnew

Header

Import Table

.data

Block 1 → 500F86 . . .
data → (8 bytes)
Block 2 → 55FF24 . . .
...

...

Block n→ 5A5B0F . . .
data → (6 bytes)

Rewritten Header

Import Table

.data

Block 1 → F4 〈addr of NB 1〉
data → (8 bytes)
Block 2 → 55FF24 . . .
...

...

Block n→ F4 〈addr of NB n〉
data → (6 bytes)

NB 1 → rewrite(Block 1)
NB 2 → rewrite(Block 2)
...

...

NB n→ rewrite(Block n)

Figure 6.1. Static binary rewriting phase

No source code, relocation information, debug sections, symbol stores (e.g., PDB files), or

hints are required. Expert users may guide the disassembly process through the use of an

interactive disassembler like IDA Pro (Hex-Rays, 2012), but our system is designed to make

such guidance unnecessary in the vast majority of cases.

6.1.1 Approach Overview

Our system architecture addresses these challenges in two phases: (1) a static phase, depicted

by Figure 6.1, that transforms the binary into a more easily randomizable form, and (2) a

load-time phase that stirs the binary by randomly reordering its instructions each time it

starts. Code/data interleaving, imperfect disassembly, and position independent instructions

are addressed by the static phase. Computed jumps and callbacks are further assisted by

the load-time phase.
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To solve the code/data interleaving and uncomputable disassembly problems, our static

phase adopts a novel approach that treats all bytes as both data and code. To do so, it

doubles each code segment into two separate segments—one in which all bytes are treated as

data, and another in which all bytes are treated as code. This approach of keeping a copy of

original binary code is partially inspired by DynInst (Hollingsworth et al., 1994) (although

DynInst keeps only one copy, whereas STIR keeps both).

In the data-only copy (.told), all bytes are preserved at their original addresses, but

the section is set non-executable (NX), safely deactivating any original, unrandomized code

(including any gadgets) that it may contain. This safely preserves all the static data at its

original addresses without the need to statically identify which bytes are data and which are

code.

In the code-only copy (.tnew), all bytes are disassembled into code blocks that can be

randomly stirred into a new layout each time the program starts. Any data bytes simply

become harmless, unreachable code in the new binary’s code section. Thus, there is no need

to statically predict which bytes are part of reachable control-flows and which are not.

Random stirring of the code-only section is performed during the second stage by a

trusted library statically linked into the new binary. The library randomly reorders all basic

blocks in the new code section each time the program starts. The load order of the system

guarantees that this library initializer code always runs before the target code it stirs.

Afterwards, some code pointers (e.g., immediate operands and those pushed onto the

stack by call instructions) have been re-pointed to correct addresses, but others (e.g., those

in method dispatch tables) continue to point into the data-only segment. Recall that the

data-only segment is non-executable, so attempting to use one of these stale pointers as a

computed jump target results in an exception (usually a crash). To solve this computed

jump problem, our static phase additionally translates all computed jump instructions from

the original code into a short alternative sequence in the new code that dynamically detects
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Original:
.text:0040CC9B FF D0 call eax

Rewritten:
.tnew:00436EDA 80 38 F4 cmp byte ptr [eax], F4h

.tnew:00436EDD 0F 44 40 01 cmovz eax, [eax+1]

.tnew:00436EE1 FF D0 call eax

Figure 6.2. Semantic preservation of computed jumps

and re-points old pointers to new addresses at runtime. Computed jumps are extremely

common, so keeping the replacement sequence small and efficient is crucial for maintaining

good performance.

We discovered a 2-instruction sequence, shown in Figure 6.2, that reliably re-points such

code pointers with low overhead. Conceptually, our solution repurposes part of the data-

only segment as a lookup table that maps old code addresses to the new one. Instructions at

likely computed jump targets in the old code are overwritten during the static and load-time

phases with pointers to their corresponding locations in the new code segment. Even though

static disassemblers cannot reliably distinguish code from data or anticipate the destinations

of specific computed jump instructions, they can identify likely computed jump targets, such

as function prologues, with high accuracy. Such heuristics suffice to identify a superset of

all computed jump targets, although which computed jumps go where remains unknown.

The instruction sequence in Figure 6.2 leverages this information by conditionally re-

placing each code pointer with the correct pointer stored at the location to which it points,

efficiently patching the computed control-flows at runtime. To easily distinguish old code

pointers from new, our lookup table prefixes each pointer entry with tag byte 0xF4, which

encodes an illegal x86 instruction. Thus, pointers whose destinations start with the tag are

stale and need to be updated, while those that do not are already correct.

Callbacks are facilitated by a similar process that involves rerouting control-flows that

cross the user-code/OS boundary through the trusted library, which re-points callback
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Binary Rewriter Memory Image

Load-time Stirring PhaseStatic Rewriting Phase

Original
Application

Binary

Conservative
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(IDA Python)
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Binary
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Randomized
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Figure 6.3. System architecture

pointers. The details of this process and the preservation of position-dependent instructions

are discussed in greater detail the in the next section.

6.2 Detailed Design

The architecture of STIR is shown in Figure 6.3. It includes three main components: (1)

a conservative disassembler, (2) a lookup table generator, and (3) a load-time reassembler.

At a high level, our disassembler takes a target binary and transforms it to a randomizable

representation. An address map of the randomizable representation is encoded into the new

binary by the lookup table generator. This is used by the load-time reassembler to efficiently

randomize the new binary’s code section each time it is launched.

This section presents a detailed design of each component. We first outline the static

phase of our algorithm (our conservative disassembler and lookup table generator) in Sec-

tion 6.2.1, followed by the load-time phase (our reassembler) in Section 6.2.2. Section 6.2.3

walks through an example. Finally, Section 6.2.4 addresses practical compatibility issues.

6.2.1 Static Rewriting Phase

Target binaries are first disassembled to assembly code. We use the IDA Pro disassem-

bler from Hex-rays for this purpose (Hex-Rays, 2012), though any disassembler capable of

accurately identifying likely computed jump targets could be substituted.
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Algorithm 2 Trans(α, c): Translate one instruction

Input: address mapping α : Z⇀ Z and instruction c
Output: translated instruction(s)

if IsComputedJump(c) then
op ← Operand(c)
if IsRegister(op) then

return [ cmp op, F4h;
cmovz op, [op+1]; c ]

else if IsMemory(op) then
Operand(c)← eax

return [ mov eax, op;
cmp [eax], F4h;
cmovz eax, [eax+1]; c ]

end if
else if IsDirectJump(c) then
t← OffsetOperand(c)
return c with operand changed to α(t)

else
return c

end if

The resulting disassembly may contain harmless errors that misidentify data bytes as

code, or that misidentify some code addresses as possible computed jump targets; but errors

that omit code or misidentify data as computed jump targets can lead to non-functional

rewritten code. We therefore use settings that encourage the disassembler to interpret all

bytes that constitute valid instruction encodings as code, and that identify all instructions

that implement prologues for known calling conventions as possible computed jump tar-

gets. These settings suffice to avoid all harmful disassembly errors in our experiments (see

Section 6.3).

The assembly code is next partitioned into basic blocks, where a basic block can be

any contiguous sequence of instructions with a single entry point. Each block must also

end with an unconditional jump, but STIR can meet this requirement by inserting jmp

0 instructions (a semantic no-op) to partition the code into arbitrarily small blocks during
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Algorithm 3 Translate all instructions

Input: instruction list C
Output: rewritten block list B
B ← [ ]
α← ∅
t← base address of .told section
t′ ← base address of .tnew section
for all c ∈ C do

if IsCode(c) then
α← α ∪ {(t, t′)}
t′ ← t′ + |Trans(ι, c)|

end if
t← t+ |c|

end for
for all c ∈ C do

if IsCode(c) then
append Trans(α, c) to B

end if
end for
return B

rewriting. The resulting blocks are copied and translated into a new binary section according

to Algorithms 2–3, which we implemented as an IDAPython script.

Algorithm 2 translates a single instruction into its replacement in the new code section.

Most instructions are left unchanged, but computed jumps are replaced with the lookup

table code described in Section 6.1.1, and direct branches are re-pointed according to address

mapping α.

Algorithm 3 calls Algorithm 2 as a subroutine to translate all the instructions. Its initial

pass first computes mapping α by using identity function ι as the address mapping.2 The

second pass uses the resulting α to generate the final new code section with direct branches

re-targeted.

2Some x86 instructions’ lengths can change when ι is replaced by α. Our rewriter conservatively translates
these to their longest encodings during the first pass to avoid such changes, but a more optimal rewriter
could use multiple passes to generate smaller code.



92

Once the new code section has been generated, the lookup table generator overwrites all

potential computed jump targets t in the original code section with a tag byte 0xF4 followed

by 4-byte pointer α(t). This implements the lookup table described in Section 6.1.1.

It may seem more natural to implement range checks to identify stale pointers rather

than using tag bytes. However, in general a stirred binary may consist of many separate

modules, each of which has undergone separate stirring, and which freely exchange stale

code pointers at runtime. Since each module loads into a contiguous virtual address space,

it is not possible to place all the old code sections within a single virtual address range.

Thus, implementing pointer range checks properly would require many nested conditionals,

impairing performance. Our use of tag bytes reduces this to a single conditional move

instruction and no conditional branches.

The resulting binary is finalized by editing its binary header to import the library that

performs binary stirring at program start. PE and ELF headers cannot be safely lengthened

without potentially moving the sections that follow, introducing a host of data relocation

problems. To avoid this, we simply substitute the import table entry for a standard system

library (kernel32.dll on Windows) with an equal-length entry for our library. Our library

exports all symbols of the system library as forwards to the real system library, allowing it

to be transparently used as its replacement. This keeps the header length invariant while

importing all the new code necessary for stirring.

6.2.2 Load-time Stirring Phase

When the rewritten program is launched, the STIR library’s initializer code runs to comple-

tion before any code in STIR-enabled modules that link to it. On Windows this is achieved

by the system load order, which guarantees that statically linked libraries initialize before

modules that link to them. On Linux, the library is implemented as a shared object (SO)

that is injected into the address space of STIR-enabled processes using the LD PRELOAD
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environment variable. When this variable is set to the path of a shared object, the system

loader ensures that the shared object is loaded first, before any of the other libraries that a

binary may need.

The library initializer performs two main tasks at program start:

1. All basic blocks in the linking module’s .tnew section are randomly reordered. During

this stirring, direct branch operands are repointed according to address mapping α,

computed during the static phase.

2. The lookup table in the linking module’s .told section is updated according to α to

point to the new basic block locations.

Once the initialization is complete, the .tnew section is assigned the same access permissions

as the original program’s .text section. This preserves non-writability of code employing

W⊕X protections.

To further minimize the attack surface, the library is designed to have as few return

instructions as possible. The majority of the library that implements stirring is loaded

dynamically into the address space at library initialization and then unloaded before the

stirred binary runs. Thus, it is completely unavailable to attackers. The remainder of the

library that stays resident performs small bookkeeping operations, such as callback support

(see Section 6.2.4). It contains less than 5 return instructions total.

6.2.3 An Example

To illustrate our technique, Figure 6.4 shows the disassembly of a part of the original binary’s

.text section and its counterparts in the rewritten binary’s .told and .tnew sections after

passing through the static and load-time phases described above.

The disassembly of the .text section shows two potential computed jump targets, at

addresses 0x404B00 and 0x404B18, that each correspond to a basic block entry point. In the
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rewritten .told section, the underlined values show how each is overwritten with the tag

byte 0xF4 followed by the 4-byte pointer α(t) that represents its new location in the .tnew

section.3 All remaining bytes from the original code section are left unchanged (though the

section is set non-executable) to ensure that any data misclassified as code is still accessible

to instructions that may refer to it.

The .tnew section contains the duplicated code after stirring. Basic blocks 0x404B00,

0x404B10 and 0x404B18, which were previously adjacent, are relocated to randomly chosen

positions 0x51234C, 0x53AF21 and 0x525B12 (respectively) within the new code section.

Non-branch instructions are duplicated as is, but static branches are re-targeted to the new

locations of their destinations. Additionally, as address 0x525B16 shows, branch instructions

are conservatively translated to their longest encodings to accommodate their more distant

new targets.

6.2.4 Special Cases

Real-world x86 COTS binaries generated by arbitrary compilers have some obscure features,

some of which required us to implement special extensions to our framework to support

them. In this section we describe the major ones and our solutions.

Callbacks:

Real-world OS’s—especially Windows—make copious use of callbacks for event-driven

programming. User code solicits callbacks by passing code pointers to a callback registration

function exported by the system. The supplied pointers are later invoked by the OS in

response to events of interest, such as mouse clicks or timer interrupts. Our approach of

dynamically re-pointing stale pointers at the sites of dynamic calls does not work when the

call site is located within an unstirred binary, such as an OS kernel module.

3This value changes during each load-time stirring.
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Original .text:
.text:00404AF0 00 4B 40 00 .dword 00404B00h

.text:00404AF4 18 4B 40 00 .dword 00404B18h

.text:00404AF8 CC (×8) .align 16

.text:00404B00 8B 04 85 F0 4A 40 00 mov eax,[eax*4+404AF0h]

.text:00404B07 FF E1 jmp eax

.text:00404B09 CC CC CC CC CC CC CC .align 16

.text:00404B10 55 push ebp

.text:00404B11 8B E5 mov esp, ebp

.text:00404B13 C3 retn

.text:00404B14 CC CC CC CC .align 8

.text:00404B18 55 push ebp

.text:00404B19 83 F8 01 cmp eax, 1

.text:00404B1C 7D 02 jge 404B20h

.text:00404B1E 33 C0 xor eax, eax

.text:00404B20 8B C1 mov eax, ecx

.text:00404B22 E8 D9 FF FF FF call 404B00h

STIRred .told (Jump Table):
.told:00404AF0 00 4B 40 00 18 4B 40 00

.told:00404AF8 CC CC CC CC CC CC CC CC

.told:00404B00 F4 4C 23 51 00 40 00 FF

.told:00404B08 E1 CC CC CC CC CC CC CC

.told:00404B10 55 8B E5 C3 CC CC CC CC

.told:00404B18 F4 12 5B 52 00 02 33 C0

.told:00404B20 8B C1 E8 D9 FF FF FF

STIRred .tnew:
.tnew:0051234C 8B 04 85 F0 4A 40 00 mov eax,[eax*4+404AF0h]

.tnew:00512353 80 38 F4 cmp F4h, [eax]

.tnew:00512356 0F 44 40 01 cmov eax, [eax+1]

.tnew:0051235A FF E1 jmp eax

. . . (other basic blocks) . . .
.tnew:00525B12 55 push ebp

.tnew:00525B13 83 F8 01 cmp eax, 1

.tnew:00525B16 0F 8D 00 00 00 02 jge 525B1Eh

.tnew:00525B1C 33 C0 xor eax, eax

.tnew:00525B1E 8B C1 mov eax, ecx

.tnew:00525B20 E8 27 C8 FE FF call 51234C

. . . (other basic blocks) . . .
.tnew:0053AF21 55 push ebp

.tnew:0053AF22 8B E5 mov esp, ebp

.tnew:0053AF24 C3 retn

Figure 6.4. A stirring example
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To compensate, our helper library hooks (Hoglund and Butler, 2006) all import address

table entries of known callback registration functions exported by unstirred modules. The

hooks re-point all calls to these functions to a helper library that first identifies and corrects

any stale pointer arguments before passing control on to the system function. This interpo-

sition ensures that the OS receives correct pointer arguments that do not point into the old

code section.

Position Independent Code:

PIC instructions compute their own address at runtime and perform pointer arithmetic

to locate other instructions and data tables within the section. An underlying assumption

behind this implementation is that even though the absolute positions of these instructions

in the virtual address space may change, their position relative to one another does not.

This assumption is violated by stirring, necessitating a specialized solution.

All PIC that we encountered in our experiments had the form shown in the first half

of Figure 6.5. The call instruction has the effect of pushing the address of the following

instruction onto the stack and falling through to it. The following instruction pops this

address into a register, thereby computing its own address. Later this address flows into a

computation that uses it to find the base address of a global offset table at the end of the

section. In the example, constant 56A4h is the compile-time distance from the beginning of

the pop instruction to the start of the global offset table.

To support PIC, our rewriter identifies call instructions with operands of 0 and performs a

simple data-flow analysis to identify instructions that use the pushed address in an arithmetic

computation. It then replaces the computation with an instruction sequence of the same

length that loads the desired address from the STIR system tables. This allows the STIR

system to maintain position independence of the code across stirring. In Figure 6.5, the nop

instruction is added to ensure that the length matches that of the replaced computation.
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Original:
.text:0804894B E8 00 00 00 00 call 08048950h

.text:08048950 5B pop ebx

.text:08048951 81 C3 A4 56 00 00 add ebx, 56A4h

.text:08048957 8B 93 F8 FF FF FF mov edx, [ebx-8]

Rewritten:
.tnew:0804F007 E8 00 00 00 00 call 0804F00Ch

.tnew:0804F00C 5B pop ebx

.tnew:0804F00D BB F4 DF 04 08 mov ebx, 0804DFF4h

.tnew:0804F012 90 nop

.tnew:0804F013 8B 93 F8 FF FF FF mov edx, [ebx-8]

Figure 6.5. Position-independent code

Our analysis is not guaranteed to find all possible forms of PIC. For example, PIC that

uses some other instruction to compute its address, or that allows the resulting address to

flow through the heap before use, would defeat our analysis, causing the rewritten binary

to crash at runtime. However, our analysis sufficed to support all PIC instances that we

encountered, and compiler documentation of PIC standards indicates that there is only a

very limited range of PIC implementations that needs to be supported (Oracle Corporation,

2010).

Statically Computed Returns:

Although returns are technically computed jumps (because they draw their destinations

from the stack), our rewriting algorithm does not guard them with checks for stale pointers.

This is a performance optimization that assumes that all return addresses are pushed onto

the stack by calls; thus, no return addresses are stale.

This assumption was met by all binaries we studied except for a certain pattern of

initializer code generated by GNU Compilers. The code sequence in question pushes three

immediate operands onto the stack, which later flow to returns. We supported this by

treating those three instructions as a special case, augmenting them with stale pointer checks

that correct them at the time they are pushed instead of at the time they are used. A more
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Original .text: Jump table .told:

2
b
y
te

s
lo

st func 1: func 1:

.text:40EAA9 33 C0 xor eax, eax .text:40EAA9 F4 2E

.text:40EAAB C3 retn .text:40EAAB 04

func 2: func 2:

.text:40EAAC 50 push eax .text:40EAAC F4
0

b
y
te

s
lo

st

func 1: func 1:

.text:40EAA9 33 C0 xor eax, eax .text:40EAA9 F4 2E

.text:40EAAB 5B pop ebx .text:40EAAB 25

.text:40EAAC 5E pop esi .text:40EAAC 42

.text:40EAAD C3 retn .text:40EAAD 00

func 2: func 2:

.text:40EAAE 50 push eax .text:40EAAE F4

Figure 6.6. Overlapping function pointers

general solution could rewrite all return instructions with stale pointer guards, probably at

the cost of performance.

Short Functions:

Our jump table implementation overwrites each computed jump target with a 5-byte

tagged pointer. This design assumes that nearby computed jump targets are at least 5

bytes apart; otherwise the two pointers must overlap. An example of this type of jump

table collision is shown in Figure 6.6, where the first row has two jump table destinations

overlapping two bytes of each other, and the second row does not overlap at all. Such

closely packed destinations are rare, since most computed jump destinations are already 16-

byte aligned for performance reasons, and since all binaries compatible with hot-patching

technology have at least 5 bytes of padding between consecutive function entry points

(enough to encode a long jump instruction) (Microsoft Corporation, 2005).

In the rare case that two computed jump targets are closer, the rewriter strategically

chooses stirred block addresses within the new code section whose pointer representations

can safely overlap. For example, if the .tnew section is based at address 0x04000000, the

byte sequence F4 00 F4 00 04 00 04 encodes two overlapping, little-endian, tagged pointers
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to basic block addresses 0x0400F400 and 0x04000400, respectively. This strategy suffices to

support at least 135 two-pointer collisions and 9 three-pointer collisions per rewritten code

page—far more than we saw in any binary we studied.

6.3 Empirical Evaluation

6.3.1 Effectiveness

Rewriting Time and Space Overheads: To evaluate the effectiveness of our system, we

tested both the Windows and Linux versions of STIR with a variety of COTS and benchmark

binaries. Both Windows and Linux tests were carried out on Windows 7 and Ubuntu 12

running on an Intel Core i5 dual core, 2.67GHz laptop with 4GB of physical RAM.

On Windows, we tested STIR against the SPEC CPU 2000 benchmark suite as well as

popular applications like Notepad++ and DosBox. For the Linux version, we evaluated our

system against the 99 binaries in the coreutils toolchain (v7.0) for the Linux version. Due to

space limitations, figures only present Windows binaries and a selection of 10 Linux binaries.

In all of our tests, stirred binaries exhibited the same behavior and output as their original

counterparts. Average overheads only cover binaries that run for more than 500ms.

Figure 6.7 shows how the rewriting phase affects the file size and code section sizes of

each binary, which increase on average by 73% and 3% respectively. However, runtime

process sizes increase by only 37% on average, with the majority of the increase due to the

additional library that is loaded into memory. Our current helper library implementation

makes no attempt to conserve its virtual memory allocations, so we believe that process sizes

can be further reduced in future development. Occasionally our disassembler is able to safely

exclude large sections of static data from rewritten code sections, leading to decreased code

sizes. For example, mesa’s code section decreases by more than 15%. On average, static

rewriting of Windows binaries requires 45 seconds per megabyte of code sections, whereas
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Table 6.1. Linux test programs grouped by type and size

Group Sizes (KB) Programs

File 1 17–37 dircolors, ln, mkdir, mkfifo, mknod, mktemp,
rmdir, sync

File 2 41–45 chgrp, chmod, chown, dd, rm, shred, touch,
truncate

File 3 49–97 chcon, cp, df, dir, install, ls, mv, vdir

Text 1 21–25 base64, cksum, comm, expand, fmt, fold, paste,
unexpand

Text 2 25–29 cut, join, md5sum, nl, sha1sum, shuf, tac, tsort

Text 3 29–37 cat, csplit, head, sha224sum, sum, tr, uniq, wc

Text 4 37–89 od, pr, ptx, sha256sum, sha384sum, sha512sum,
sort, split, tail

Shell 1 5–17 basename, dirname, env, false, hostid, link,
logname, uptime

Shell 2 17–21 arch, echo, printenv, true, tty, unlink, whoami, yes

Shell 3 21 group, id, nice, noshup, pathchk, pwd, runcon,
sleep

Shell 4 21–29 chroot, expr, factor, pinky, readlink, tee, test,
uname, users

Shell 5 30–85 date, du, printf, seq, stat, stty, su, timeout, who

Linux binaries require 31 seconds per megabyte. Linux filenames in Figure 6.7 are grouped

by type (File, Text, and Shell) and by program size due to the large number of programs.

Table 6.1 lists the programs in each group.

Figure 6.8 displays all file info for every program STIR was tested on; code size increase,

file size increase, runtime process size increase, and static rewriting time. No file names

are displayed due to the number of programs, but they are ordered from left to right as

the following: 2 GUI Windows Programs, 10 SPEC2000 benchmark programs compiled

with Visual Studio 2010, 99 alphabetical coreutils Linux Programs. Figure 6.9 displays the

execution time increase and execution overhead seen in all Linux binaries whose execution

time was less than 5ms.
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Figure 6.9. Execution Time Increase and Overhead for Fast Running Programs (<5ms)

Gadget Elimination: One means of evaluating ROP attack protection is to count the

number of gadgets that remain after securing each binary. There are several tools available

for such evaluation, including Mona (Corelan Team, 2012) on Windows and RoPGadget (Sal-

wan, 2012) on Linux. We used Mona to evaluate the stirred Windows SPEC2000 benchmark

programs. Mona reports the number of gadgets the binary contains after the load-time phase

is complete. We define a gadget as unusable if it is no longer at the same virtual address

after basic block randomization. Figure 6.10 shows that on average STIR causes 99.99% of

gadgets to become unusable. The only gadgets that remain after randomization of the test

programs consist of a pop and a retn instruction that happened to fall onto the same address.

Most malware payloads are not expressible with such primitive gadgets to our knowledge.
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Figure 6.10. Gadget reduction for Windows binaries
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Figure 6.11. Runtime overheads for Windows binaries

We also applied the Q exploit hardening system (Schwartz et al., 2011) to evaluate the

effectiveness of our system. Since Q is a purely static gadget detection and attack payload

generation tool, running Q dynamically after a binary has been stirred is not possible.

Instead, we ran Q on a number of Linux binaries (viz., rsync, opendchub, gv, and proftpd)

to generate a payload, and then ran a script that began execution of the stirred binary,

testing each of the gadgets Q selected for its payload after randomization. Attacks whose

gadgets all remained usable after stirring were deemed successful; otherwise, Q’s payload

fails. In our experiments, no payload generated by Q was able to succeed against STIR.
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6.3.2 Performance Overhead

Runtime performance statistics for Windows and Linux binaries are shown in Figs. 6.11 and

6.12, respectively, with each bar reflecting the application’s median overhead over 20 trials.

The median overhead is 4.6% for Windows applications, 0.3% for Linux applications, and

1% overall.

To isolate the effects of caching, Figure 6.12 additionally reports the runtime overhead

(discounting startup and initialization time) of unstirred Linux binaries, in which the load-

time stirring phase was replaced by a loop that touches each original code byte without

rewriting it, and then runs this unmodified, original code. This potentially has the effect of

pre-fetching some or all of the code into the cache, decreasing some runtimes (although, as

the figure shows, in practice the results are not consistent). Stirred binaries exhibit a median

overhead of 1.2% over unstirred ones.

Amongst the Windows binaries, the gap SPEC2000 benchmark program consistently

returns the worst overhead of 35%. This may be due to excessive numbers of callback

functions or computed jumps. In contrast, the parser benchmark actually increases in

speed by 5%. We speculate that this is due to improved locality resulting from separation

of static data from the code (at the expense of increased process size). On average, the

SPEC2000 benchmarks exhibit an overhead increase of 6.6%. We do not present any runtime

information for DosBox and Notepad++, since both are user-interactive. We did, however,

manually confirm that all program features remain functional after transformation, and no

performance degradation is observable.

To separate the load-time overhead of the stirring phase from the rest of the runtime

overhead, Figure 6.13 plots the stirring time against the code size. As expected, the graph

shows that the increase in load-times is roughly linear with respect to code sizes, requiring

1.37ms of load-time stirring per KB of code on average.
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Figure 6.12. Runtime overheads for Linux binaries
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Figure 6.13. Load-time overhead vs. code size

For the most part, none of our tests require manual intervention by the user; all are

fully automatic. The only exception to this is that IDA Pro’s disassembly of each SPEC2000

benchmark program contained exactly two identical errors due to a known bug in its control-

flow analysis heuristic. We manually corrected these two errors in each case before proceeding

with static rewriting.
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6.4 Limitation and Future Work

In this section we first examine the entropy of our randomization, and then discuss limitations

of STIR and propose future work.

6.4.1 Randomization Entropy

Our threat model assumes that attackers do not have unrestricted read access to process

address spaces. (Such powerful access renders address randomization defenses ineffective.)

Under this assumption, the search space that an attacker must explore to defeat STIR is

much larger than for ASLR—including 64-bit ASLR and PIE (Drepper, 2005)—because even

the relative locations of gadgets within sections are randomized by STIR.

For example, past work concludes that a brute force attack against an exploitable Apache

web server equipped with standard (fixed) PaX ASLR requires an expected 2n/2 = 2n−1

probes for success, where n is the number of bits of randomness in the address space (Shacham

et al., 2004). Re-randomizing ASLR doubles this to 2n expected probes. However, STIR

increases this to an expected (2n)!/(2(2n−g)!) probes even without re-randomization, where

g is the number of gadgets in the payload, since each probe must independently guess the

positions of all g gadgets. On a 64-bit architecture with 14-bit aligned pages and 1 bit

reserved for the kernel (i.e., n = 50), the expected number of probes for a g=3-gadget attack

is therefore over 7.92× 1028 (≈ 249248/2) times greater with STIR than with re-randomizing

ASLR.

Brute force attacks that defeat ASLR by randomly guessing gadget locations over many

trials (Shacham et al., 2004) or using the location of one binary feature to infer the locations

of others (Roglia et al., 2009) therefore fail when applied to STIR. Runtime re-stirring could

enlarge the search space even further; this is an avenue of future work (see Section 6.4.2).

The entropy of our randomization procedure is a function of the average basic block size

of each binary relative to the size of the code section in which it resides. STIR also chooses
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random, independent base addresses for the new code section(s) and lookup table(s). This

level of entropy is sufficient to render almost all gadgets unusable in our tests, but more

cautious users may wish to increase the entropy further. To do so, STIR could be extended

to pad rewritten code sections with random, unreachable instruction sequences that do not

contain returns or jumps. This extra information would increase the number of basic blocks

and decrease their relative size, thus increasing the entropy of the system.

6.4.2 Limitations and Future Work

STIR currently only randomizes code available at load time; code generated at runtime is not

stirred. Thus, obfuscated code that unpacks itself at runtime derives little benefit from STIR,

since the unpacked code is never randomized. Similarly, JIT-compiled code that is generated

at runtime remains unrandomized (although the static JIT compiler is randomized by STIR).

Periodically re-stirring stir-enabled binaries at runtime could help protect runtime-generated

code, but is difficult to realize in practice because it introduces new, more complex varieties

of stale pointers for each round of stirring. Implementing a runtime re-stirring system is

therefore reserved as a subject of future work.

Our present work focuses on randomizing application main modules rather than libraries

because library randomization is a less pressing concern (since libraries already benefit

from ASLR randomization) and is significantly easier to realize (since almost all libraries

support rebasing, and therefore contain relocation information). Our current implementation

therefore only randomizes application main modules, not Windows DLLs or Linux shared

objects (SOs). However, library stirring is not difficult to add. It merely requires the

implementation of a custom loader that adjusts export address tables of stirred libraries

after stirring but before dynamic linking. This is a conceptually easy extension that we

intend to undertake in the future.

The experiments reported in Section 6.3 divide basic blocks at unconditional jump

instructions already present in the original code. However, STIR can divide basic blocks at



109

any instruction boundary by inserting jumps that explicitly fall through (i.e., jmp 0). This

increases the entropy by partitioning the code into smaller, more numerous basic blocks. It

also has the benefit of breaking (rather than merely relocating) ROP gadgets that rely on

aliased instruction sequences whose encodings span the encodings of adjacent instructions

in the application programming. Relocating the instructions so that they are non-adjacent

breaks such a gadget. The tradeoff is increased code size (due to the new instructions) and

increased runtime overhead (due to the larger number of jumps). Whether this tradeoff is

worthwhile is an open question that should be investigated by future work.

Although our randomization strategy defeats typical ROP attacks that chain gadgets, it

does not protect against control-flow hijacking attacks that simply call a legitimate computed

jump target (e.g., an original method) with corrupted arguments. STIR’s address transla-

tion logic permits such jumps because it detects and re-points stale pointers to legitimate

computed jump targets at runtime. At the binary level, there is little that distinguishes a

non-corrupted but stale pointer to such a method (e.g., one drawn from a method dispatch

table) from one created by an attacker. Blocking these attacks requires a more refined

control-flow integrity policy that dictates exactly which computed jumps may target which

methods, like by Abadi et al. (2009). Reliably extracting such information from legacy

binaries is a difficult open problem.

As mentioned in Section 6.2.4, our system requires a list of all callback registration

functions in unstirred libraries. While the callback registration functions exported by system

libraries are theoretically well documented parts of the public system API, in practice we

have found that some are less than well documented. For example, some compilers generate

calls to internal Windows libc functions for which we could find no documentation in any

reference manual. To determine the signatures of these callees we were forced to disassemble

and reverse-engineer the system modules that contain them. Maintaining a complete list of

callback registration functions for a large OS can therefore be challenging when the system

API documentation is incorrect or incomplete.
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6.5 Conclusion

We have presented STIR, a system that imbues legacy x86 binaries with self-randomizing

instruction addresses. The system supports COTS binaries for both Windows and Linux,

including those with dynamically computed jumps, code-data interleaving, OS callbacks,

dynamic linking, and imperfect disassemblies. The system is compiler-agnostic and requires

no form of code-producer cooperation. We have devised and implemented an array of novel

techniques to address these challenges. Our evaluation shows that STIR can randomize a

large body of large-scale, legacy x86 code, introducing about 1% runtime overhead on average

to randomized applications.



CHAPTER 7

OPAQUE CONTROL-FLOW INTEGRITY1

Code-reuse attacks, like those described by Bletsch et al. (2011) have become a mainstay of

software exploitation over the past several years, due to the rise of data execution protections

that nullify traditional code-injection attacks. Rather than injecting malicious payload code

directly onto the stack or heap, where modern data execution protections block it from being

executed, attackers now ingeniously inject addresses of existing in-memory code fragments

(gadgets) onto victim stacks, causing the victim process to execute its own binary code in

an unanticipated order (Shacham, 2007). With a sufficiently large victim code section, the

pool of exploitable gadgets becomes Turing-complete (Homescu et al., 2012), facilitating the

construction of arbitrary attack payloads without the need for code-injection. Such payload

construction has even been automated (Schwartz et al., 2011). As a result, code-reuse has

largely replaced code-injection as one of the top software security threats.

This has motivated copious work on defenses that can address code-reuse threats. Prior

defenses can generally be categorized into two major paradigms: CFI (Abadi et al., 2009)

and artificial software diversity (Cohen, 1993).

CFI restricts all of a program’s runtime control-flows to a graph of whitelisted control-

flow edges. Usually the graph is derived from the semantics of the program source code or

a conservative disassembly of its binary code. As a result, CFI-protected programs reject

control-flow hijacks that attempt to traverse edges not supported by the original program’s

semantics. Fine-grained CFI monitors indirect control-flows precisely ; for example, function

1This chapter contains material accepted for publication as: Vishwath Mohan, Per Larsen, Stefan
Brunthaler, Kevin W. Hamlen, and Michael Franz. Opaque Control-Flow Integrity. In Proceedings of
the 22nd Network and Distributed System Security Symposium (NDSS), February 2015.
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callees must return to their exact callers. Although such precision provides the highest

security, it also tends to incur high performance overheads, for example about 21% for Abadi

et al. (2009). Because this overhead is often too high for industry adoption, researchers

have proposed many optimized, coarser-grained variants of CFI. Coarse-grained CFI trades

some security for better performance by reducing the precision of the checks. For example,

functions must return to valid call sites (but not necessarily to the particular site that

invoked the callee). Unfortunately, such relaxations have proved dangerous—a number of

recent proof-of-concept exploits have shown how even minor relaxations of the control-flow

policy can be exploited to effect attacks (Davi et al., 2014; Göktaş et al., 2014; Carlini and

Wagner, 2014). Table 7.1 summarizes the impact of several of these recent exploits.

Artificial software diversity offers a different but complementary approach that random-

izes programs in such a way that attacks succeeding against one program instance have a very

low probability of success against other (independently randomized) instances of the same

program. Probabilistic defenses rely on memory secrecy—i.e., the effects of randomization

must remain hidden from attackers. One of the simplest and most widely adopted forms

of artificial diversity is Address Space Layout Randomization (ASLR), which randomizes

the base addresses of program segments at load-time. Unfortunately, merely randomizing

the base addresses does not yield sufficient entropy to preserve memory secrecy in many

cases; there are numerous successful derandomization attacks against ASLR (Shacham et al.,

2004; Strackx et al., 2009; Serna, 2012b,a; Joly, 2013; Evans, 2013). Finer-grained diversity

techniques obtain exponentially higher entropy by randomizing the relative distances be-

tween all code points. For example, binary-level Self-Transforming Instruction Relocation

(STIR) (Wartell et al., 2012a) (Chapter 6) and compilers with randomized code-generation

(Homescu et al., 2013) have both realized fine-grained artificial diversity for production-level

software at very low overheads.

Recently, a new wave of implementation disclosure attacks (Snow et al., 2013; Bittau

et al., 2014; Seibert et al., 2014) have threatened to undermine fine-grained artificial diversity
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defenses. Implementation disclosure attacks exploit information leak vulnerabilities to read

memory pages of victim processes at the discretion of the attacker. By reading the in-memory

code sections, attackers thwart the memory secrecy assumptions of artificial diversity, render-

ing their defenses ineffective. Since finding and closing all information leaks is well known

to be prohibitively difficult and often intractable for many large software products, these

attacks constitute a very dangerous development in the cyber-threat landscape; there is

currently no well-established, practical defense.

This chapter presents Opaque CFI (O-CFI): a new approach to coarse-grained CFI that

strengthens fine-grained artificial diversity to withstand implementation disclosure attacks.

The heart of O-CFI is a new form of control-flow check that conceals the graph of abusable

control-flow edges even from attackers who have complete read-access to the randomized

binary code, the stack, and the heap of victim processes. Such access only affords attackers

knowledge of the intended (and therefore non-abusable) edges of the control-flow graph, not

the edges left unprotected by the coarse-grained CFI implementation. Artificial diversifica-

tion is employed to vary the set of unprotected edges between program instances, maintaining

the probabilistic guarantees of fine-grained diversity.

Experiments show that O-CFI enjoys performance overheads comparable to standard

fine-grained diversity and non-opaque, coarse-grained CFI. Moreover, O-CFI’s control-flow

checking logic is implemented using Intel x86/x64 memory-protection extensions (MPX)

that are expected to be hardware-accelerated in commodity CPUs from 2015 onwards. We

therefore expect even better performance for O-CFI in the near future.

Our contributions are as follows:

• We introduce O-CFI, the first low-overhead code-reuse defense that tolerates imple-

mentation disclosures.

• We describe our implementation of a fully functional prototype that protects stripped,

x86 legacy binaries without source code.
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• Analysis shows that O-CFI provides quantifiable security against state-of-the-art ex-

ploits, including JIT-ROP (Snow et al., 2013) and Blind-ROP (Bittau et al., 2014).

• Performance evaluation yields competitive overheads of just 4.92% for computation-

intensive programs.

7.1 Threat Model

Our work is motivated by the emergence of attacks against fine-grained diversity and coarse-

grained control-flow integrity. We therefore introduce these attacks and distill them into a

single, unified threat model.

7.1.1 Bypassing Coarse-Grained CFI

Ideally, CFI permits only programmer-intended control-flow transfers during a program’s

execution. The typical approach is to assign a unique ID to each permissible indirect control-

flow target, and check the IDs at runtime. Unfortunately, this introduces performance

overhead proportional to the degree of the graph—the more overlaps between valid target

sets of indirect branch instructions, the more IDs must be stored and checked at each branch.

Moreover, perfect CFI cannot be realized with a purely static control-flow graph; for example,

the permissible destinations of function returns depend on the calling context, which is only

known at runtime. Fine-grained CFI therefore implements a dynamically computed shadow

stack, incurring high overheads (Abadi et al., 2009).

To avoid this, coarse-grained CFI implementations resort to a reduced-degree, static

approximation of the control-flow graph, and merge identifiers at the cost of reduced security.

For example, bin-CFI (Zhang et al., 2013) and CCFIR (Zhang and Sekar, 2013) use at most

three IDs per branch, and omit shadow stacks.

Recent work has demonstrated that these optimizations open exploitable security holes.

By choosing ROP gadgets that start at a function entry point or are call-preceded, it is
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possible to build ROP chains that bypass CFI (Göktaş et al., 2014), including subvert-

ing CCFIR and bin-CFI. Related works (Davi et al., 2014; Carlini and Wagner, 2014)

have similarly shown that call-preceded gadgets can bypass bin-CFI as well as other low-

overhead approaches that only check control-flow transfers before potentially dangerous func-

tion calls (Fratric, 2012; Pappas et al., 2013a; Ding et al., 2014; Microsoft, 2014). Table 7.1

maps coarse-grained CFI approaches to the corresponding proof-of-concept bypasses. Note

that the bypass of the original CFI approach assumes that returns are not tracked precisely

using a shadow stack.

Just-In-Time Code Reuse: Until recently, most threat models for CFI and artificial

diversity defenses assumed that the memory contents of protected processes were hidden from

attackers. The advent of Just-In-Time ROP (JIT-ROP) (Snow et al., 2013) demonstrated

that this assumption might be unrealistic in practice due to the existence of implementation

disclosure vulnerabilities. Using heap feng shui (Sotirov, 2007), JIT-ROP places a buffer

next to a string and a button object. By overflowing the buffer, the string length is set

arbitrarily high, allowing the attacker to read any byte in the virtual address space. Parsing

the button object through the overflowed string yields a reference to a mapped code page.

Typically, attackers need more than a single 4K page worth of code to find enough

gadgets to mount a code-reuse attack. To discourage brute-force searches for more code

pages, artificial diversity defenses routinely mine the address space with unmapped pages

that abort the process if accessed (Backes and Nürnberger, 2014). JIT-ROP evades these

mines by disassembling the initial code page and carefully traversing only direct references

to other code pages to recursively discover enough gadgets to mount a ROP attack. Since

gadget locations are no longer unknown to the attacker, reliable construction of custom ROP

chains becomes possible despite the fine-grained randomization defense.

Blind ROP: While JIT-ROP targets scripting-enabled clients, Blind Return Oriented Pro-

gramming (BROP) (Bittau et al., 2014) targets vulnerable Internet-facing services, such as
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web-servers, that restart after a crash. It capitalizes on the observation that child processes

created with the fork system call on Linux must be randomized in the same way as their

parent in order to continue executing. The attack uses a buffer overflow to overwrite the

stack byte-by-byte. Byte values are chosen so that correct guesses cause the server to

continue responding as intended, while incorrect guesses solicit a crash and restart. By

distinguishing these two outcomes, attackers can remotely infer secret stack cookie values

to bypass stack guards and discover gadget locations. Once the write system function is

located (typically in less than 4000 guesses) the entire code section can be exfiltrated to

an attacker-controlled server, after which a traditional ROP attack can be launched against

the vulnerable system. Like JIT-ROP, the attack defeats ASLR, DEP, stack canaries and

fine-grained code randomization on 64-bit systems.

Side Channel Disclosures: Recent work has even shown that under certain circumstances,

gadget locations can be leaked through side channels, such as timing channels (Seibert et al.,

2014). This underscores the difficulty of fully protecting software against all implementation

disclosure vulnerabilities. Complete protection entails mitigation of all side channel informa-

tion leaks, which is widely recognized as prohibitively difficult for most non-trivial software

products.

7.1.2 Assumptions

Given these sobering realities, we adopt a conservative threat model that assumes that

attackers will eventually find and disassemble all code pages in victim processes. Our threat

model therefore assumes that the adversary knows the complete in-memory code layout—

including the locations of any gadgets required to launch a ROP attack. We also assume that

the attacker can read and write the full contents of the heap and stack, as well as any data

structures used by the dynamic loader. In keeping with common practice, we assume that
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data execution protection is activated, so that code pages are either writable or executable

but not both.

However, we assume that attackers cannot safely perform a comprehensive, linear scan

of virtual memory, since defenders may place unmapped guard pages at random locations.

Instead, attackers must follow references from one disclosed memory page to another (Snow

et al., 2013) or resort to guessing (Bittau et al., 2014) in order to avoid inadvertently

touching one of these mined pages and alerting defenders (e.g., triggering re-randomization).

Successful attacks against our system are therefore those that reliably traverse control-flow

edges not intended by the original program semantics without triggering an invalid access

violation.

7.2 O-CFI Overview

O-CFI combines insights from CFI and automated software diversity. It extends CFI

with a new, coarse-grained CFI enforcement strategy inspired by bounds-checking, that

validates control-flow transfers without divulging the bounds against which their destinations

are checked. Bounds-checking is fast, the bounds are easier to conceal than arbitrary

gadget locations, and the bounds are randomizable. This imbues CFI and fine-grained

software diversity with an additional layer of protection against code-reuse attacks aided by

implementation disclosures. As a result, O-CFI enjoys performance similar to coarse-grained

CFI, with probabilistic security guarantees similar to those of fine-grained artificial diversity

in the absence of implementation disclosures.

Following traditional CFI, an O-CFI policy assigns to each indirect branch site in the

program a destination set that captures its set of permissible destination addresses. Such

a graph can be derived from program source code or (with lesser precision) a conservative

disassembly of the program’s object code. We next reformulate this policy as a bounds-

checking problem by reducing each destination set to only its minimal and maximal members.
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This approximation of the control-flow policy can be efficiently enforced by confining each

branch to the memory-aligned addresses within its destination set range. All intended

destination addresses are aligned within these bounds, so the enforcement conservatively

preserves intended control-flows. Code layout is optimized to tighten the bounds, so that

the set of unintended, aligned destinations within the bounds remains minimal. These few

remaining unintended but reachable destinations are protected by the artificial diversity half

of our approach.

The artificial diversity half of our approach probabilistically protects the aligned, in-

bounds, but policy-violating control-flows by applying fine-grained randomization to the

binary code at load-time. While the overall strategy for implementing this randomization

step is based on prior works (Wartell et al., 2012a), its purpose in O-CFI is fundamentally

different. Randomizing the code layout does not conceal the new layout from attackers, since

our threat model assumes attackers can read all the randomized code. Rather, its purpose

is to randomize the bounds to which each branch is constrained. The bounds imposed upon

each branch are not disclosed by the binary code since bounds values are stored in protected

registers, not expressed as immediate instruction arguments. Thus, attackers who can read

the binary code must nevertheless guess which control-flow hijacks trigger an out-of-bounds

branch violation and which do not.

Reformulating CFI in this way forces attackers to change their plan of attack. The recent

attacks against coarse-grained CFI succeed by finding exploitable code that is reachable

due to policy-relaxations needed for acceptable performance. These relaxations admit an

alarming array of false-positives: instead of identifying the actual caller, all call-preceded

instructions are incorrectly identified as permitted branch destinations. Such instructions

saturate a typical address space, giving attackers too much wiggle room to build attacks.

O-CFI counters this by changing the approximation approach: each branch destination is

restricted to a relatively short span of aligned addresses, with all the bounds chosen pseudo-

randomly at load-time. This greatly narrows the field of possible hijacks, and it removes the
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opportunity for attackers to analyze programs ahead of time for viable ROP gadget chains.

In O-CFI, no two program instances admit the same set of ROP payloads, since the bounds

are all randomized every time the program is loaded.

Since the security of coarse-grained CFI depends in part on the precision of its policy

approximation, it is important to note that O-CFI policy approximations can be made more

precise by tightening the bounds imposed upon each branch. This effectively reduces the

space of attacker guesses that might succeed in hijacking any given branch. To reduce this

space as much as possible, we introduce a novel binary code optimization, called portals, that

minimizes the distance covered by the lowest and greatest element of each indirect branch’s

destination set.

Our fine-grained artificial diversity implementation is an adaptation and extension of

binary stirring (Wartell et al., 2012a) (Chapter 6). Binary stirring randomizes the ordering

of basic blocks within code sections each time a program binary is loaded into memory. The

stirring has the effect of randomizing bounds to defeat attackers armed with implementation

knowledge, and affords even higher probabilistic protections against attackers who lack such

knowledge. Thus, O-CFI offers security that strictly subsumes and exceeds traditional fine-

grained code randomization.

In order to protect against information leaks that might disclose bounds information,

our implementation is carefully designed to keep all bounds opaque to external threats.

They are randomly chosen at load-time (as a side-effect of binary stirring) and stored in a

bounds lookup table (BLT) located at a randomly chosen base address. Since the table size

is very small relative to the virtual address space, and since attackers cannot safely perform

brute-force scans of the full address space (see Section 7.1.2), guessing the location of the

BLT is probabilistically infeasible for attackers. No code or data sections contain any pointer

references to BLT addresses; all references are computed dynamically at load-time and stored

henceforth exclusively in protected registers.
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7.2.1 Bounding the Control Flow

For each indirect branch site with (non-empty) destination set D, O-CFI guards the branch

instruction with a bounds-check that continues execution only if the impending target t

satisfies t ∈ [minD,maxD]. Indirect branch instructions include all control-flow transfer

instructions that target computed destinations, including return instructions. Failure of

the bounds-check solicits immediate process termination with an error code (for easier

debugging). Termination could be replaced with a different intervention if desired, such

as an automated attack analysis or alarm, followed by restart and re-randomization.

The bounds-check implementation first loads the pair (minD,maxD) from the BLT into

registers via an indirect, indexed memory reference. The load instruction’s arguments and

syntax are independent of the BLT’s location, concealing its address from attackers who

can read the checking code. The impending branch target t is then checked against the

loaded bounds. If the check succeeds, execution continues; otherwise the process immediately

terminates with a bounds range (#BR) exception. The #BR exception helps distinguish

between crashes and guessing attacks. To resist guessing attacks (e.g., BROP), web servers

and other services should use this exception to trigger re-randomization as they restart.

Table 7.2 contains pseudocode for the guards. The BLT securely stores (minD,maxD)

pairs for all branches, and is indexed using unique branch IDs (branch id in Table 7.2).

Following the approaches of PittSFIeld (McCamant and Morrisett, 2006), Google Native

Client (Yee et al., 2009), and Reins (Wartell et al., 2012b) (Chapter 5), O-CFI also aligns all

policy-permitted indirect branch destinations to power-of-two addresses, and masks the low-

order bits of all indirect branch arguments to force their targets to aligned addresses. This

prevents attackers from diverting control to misaligned instructions that are not intended

to be reachable by any legitimate flow of the original program. This is important since any

gadgets formed from misaligned instructions do not receive bounds checks.
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Table 7.2. Pseudo-code to constrain branch bounds.

Description Original code Rewritten code

Indirect
branches

call/jmp 〈dest〉 t := 〈dest〉
t := t& align mask
(bmin,bmax) := blt[branch id]

if not bmin ≤ t ≤ bmax:

abort(#BR);

call/jmp t

Returns ret 〈n〉 [esp] := [esp]& align mask
(bmin,bmax) := blt[branch id]

if not bmin ≤ [esp] ≤ bmax:

abort(#BR);

ret 〈n〉

To bypass these checks, an attacker must craft a payload whose every gadget is properly

aligned and falls within the bounds of the preceding gadget’s conclusory indirect branch. The

odds of guessing a reachable series of such gadgets decrease exponentially with the number

of gadgets in the desired payload.

7.2.2 Opacifying Control-flow Bounds

Diversifying bounds: The bounds introduced by O-CFI constitute a coarse-grained CFI

policy. Section 7.1 warns that such coarse granularity can lead to vulnerabilities. However,

to exploit such vulnerabilities, attackers must discover which control-flows adhere to the

CFI policy and which do not. To make the impermissible flows opaque to attackers, we

use diversity. Our prototype uses a modified version of the technique outlined by Wartell

et al. (Wartell et al., 2012a), which shuffles the basic block order at program load-time.

The general approach could alternatively be implemented as a compiler-based defense for

software whose source codes are available.
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Performing fine-grain code randomization at load-time indirectly randomizes the ranges

used to bound the control-flow. In contrast to other CFI techniques, attackers therefore do

not have a priori knowledge of the control-flow bounds.

Preventing Information Leaks: Attackers bypass fine grained diversity using information

leaks, such as those described in Section 7.1.1. Were O-CFI’s control-flow bounds expressed

as constants in the instruction stream, attackers could bypass our defense via information

leaks. To avoid this, we instead confine this sensitive information to an isolated data page,

the BLT. The BLT is initialized at a random virtual memory address at load-time, and there

are no pointer references (obfuscated or otherwise) to any BLT address in any code or data

page in the process. This keeps its location hidden from attackers.

Furthermore, we take additional steps to prevent accidental BLT disclosure via pointer

leaks. Our prototype stores BLT base addresses in segment selectors—a legacy feature of

all x86 processors. In particular, each load from the BLT uses the gs segment selector and

a unique index to read the correct bounds. We only use the gs selector for instructions

that implement bounds checks, so there are no other instructions that adversaries can reuse

to learn its value. Attackers are also prevented from executing instructions that reveal the

contents of the segment registers, since such instructions are privileged.

To succeed, attackers must therefore (i) guess branch ranges, or (ii) guess the base address

of the BLT. The odds of correctly guessing the location of the BLT are low enough to provide

probabilistic protection. On 32-bit Windows Systems, for instance, the chances of guessing

the base address are

1
231

212

=
1

524, 288

and on 64-bit Windows, the chances are

1
243

212

=
1

2, 147, 483, 648
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bar

baz

main

One-time BB Clustering Per-run BB and Cluster
Randomization

branch inst. branch target bound indirect branch

Portal Insertion

direct branch

Figure 7.1. O-CFI code layout transformation. Clustering occurs once, before the program
executes (2nd column). Basic block and cluster randomization (3rd column), and portal
insertion (4th column) occurs at load-time.

or less than one in two billion. Incorrect guesses alert defenders and trigger re-randomization

with high probability (by accessing an unallocated memory page).

The likelihood of successfully guessing a reachable gadget chain is a function of the length

of the chain and the span of the bounds. The next section therefore focuses on reducing the

average bounds span.

7.2.3 Tightening Control-flow Check Bounds

The distance between the lowest and highest intended destinations of any given indirect

control-flow transfer instruction depends on the code layout. Placing indirect branches close

to their targets both reduces bounds and improves locality, elevating both security and

efficiency. Therefore we organize the code segment into clusters—one per indirect branch—

each containing the basic blocks targeted by a particular branch.

To accommodate blocks that are destinations of multiple distinct branch instructions,

we consider three options: (i) put the block in one cluster and expand the bounds of other

branches to include its address, (ii) create duplicate copies of the block in multiple clusters,
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or (iii) add a portal block to each cluster, which unconditionally jumps to the block. Each

solution incurs a trade-off: expanding bounds reduces security, creating duplicates increases

code size, and portals introduce runtime overhead. The options are not mutually exclusive,

affording optimizers a range of strategies. Our experiments indicate that portals are often

the best choice (see below).

Figure 7.1 depicts the clustering, randomization, and portal creation phases, and their

effects on the layout of the code segment—particularly with respect to bounds sizes. To

prevent the load-time, fine-grained randomization phase from increasing the resulting bounds

ranges (e.g., by placing two targets at opposite ends of the address space) and consequently

nullifying the advantages of clustering, the load-time initializer proceeds in two stages, both

depicted in the third column of Figure 7.1. First, it randomizes the locations of blocks within

each cluster. This effectively changes instruction addresses without affecting the bounds of

any of the indirect branches. Next, it randomizes the cluster order, further increasing entropy.

Minimizing Branch Ranges with Portals: A portal is a direct jump to a block. Jumping

to a portal is therefore semantically equivalent to jumping directly to the block it targets.

Placing a portal to a stray target within the cluster that contains all of the other targets of a

branch avoids code duplication, and only widens the bounds by the portal size. Even when

all n targets of a branch fall within a single cluster, bounds ranges can be further minimized

by creating n portals to its n blocks. We call a collection of portals within a common cluster

a nexus.

The capacity of the portal system limits the number of portals per nexus. Varying nexus

capacity allows O-CFI to be tuned to different requirements. Setting it to zero prevents the

creation of any portals, forcing the optimizer to choose alternative options. At the other

extreme, setting no upper limit allows a portal to be created for every target, reducing

all bounds ranges to wt, where w is the alignment width (usually 16 or 32 bytes; see

Section 7.4.1) and t is the number of targets of the branch. At this setting, all indirect
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Figure 7.2. Chaining gadgets in O-CFI

branches can only branch into a nexus, and through them, only to exactly those addresses

that have been statically identified as targets. Thus, O-CFI with unbounded nexus capacity

enforces fine-grained, static CFI.

The extra layer of indirection imposed by a portal has a minor impact on runtime; there

is thus a trade-off between security and performance. Users may opt for full CFI enforcement

with O-CFI for security-critical components, and lower the nexus capacity to a desired per-

formance level for less critical software. In our experiments, we found that a nexus capacity of

12 results in a significant reduction in bounds sizes with imperceptible performance effects.

All of our experiments in Section 7.4 use this nexus capacity. Section 7.4.4 details how

different nexus capacities affect bound ranges.

7.2.4 Example Defense against JIT-ROP

The following example illustrates how O-CFI secures binaries against disclosure attacks.

Consider a binary whose code segment contains five useful gadgets g1, . . . , g5. Each gadget

terminates in an indirect branch protected by a bounds check. Figure 7.2 shows such a
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binary after basic block clustering and randomization. Cluster c2 contains the statically

identified targets for the terminating indirect branch b1 of gadget g1. O-CFI constrains b1

so it allows branches to a subset of the instructions contained in cluster c2 (with similar

constraints placed on other branches).

Under appropriate conditions, a disclosure attack such as JIT-ROP is able to recover

a large portion of the runtime layout of the binary (Snow et al., 2013). Our system does

not prevent any of the six JIT-ROP steps. We allow code pages to be harvested, gadgets

identified, and a payload to be dynamically crafted. We may even allow a few initial gadgets

in the payload to execute. However, O-CFI hides the valid ranges for each gadgets from

attackers even in the presence of implementation disclosure vulnerabilities. Recall that for

this guessed payload to successfully execute, every gadget in the payload chain must fall

within the valid range of the preceding gadget.

In our example, if g1 is selected to be part of the payload, it can only be chained with

gadget g4 or g5. Attempting to jump from g1 to any other gadget triggers a bounds violation

that stops the attack. Similarly, an attack that hijacks a control-flow to c1 can only redirect

it to gadgets g1, g2, or g3; all other gadgets are outside cluster c1 and are therefore detected as

impermissible destinations of the hijacked branch. Broadly speaking, all links in a payload’s

chain must traverse edges in the Cartesian product of the (aligned) gadget sets within the

corresponding clusters.

A successful attack must therefore limit itself to an extremely sparse graph of available

edges. Our experiments (see Section 7.4.3) indicate that in practice the probability of

successfully chaining gadgets in such a sparse graph is very low—just 0.01% for a four-gadget

payload. The entropy of our procedure is further analyzed in Section 7.5.1.
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Figure 7.3. O-CFI architecture. A vulnerable COTS x86 binary is analyzed and instrumented
statically to create the corresponding O-CFI binary. At load-time, a runtime library added
to the O-CFI binary randomizes the code layout and bounds the targets of every indirect
branch.

7.3 O-CFI Implementation

We have implemented a fully functional prototype of O-CFI for the Intel x86 architecture.

Our implementation uses a binary rewriting framework that secures COTS x86 binaries with-

out source, debug, or relocation information. Like traditional CFI, however, we emphasize

that O-CFI is equally suitable for inclusion in a compiler.

Our rewriter generates a transformed version of the binary that leverages

1. a coarse-grained CFI policy that bounds control-flows,

2. fine-grained randomization to protect against traditional ROP attacks and to diversify

control-flow bounds so they become unknown and unreliable for attackers,

3. x86 segmentation registers to prevent accidental leakage of the bounds lookup table

(BLT), and

4. an SFI framework similar to PittSFIeld (McCamant and Morrisett, 2006) to enforce

instruction alignment. This prevents attackers from accessing misaligned instructions

to bypass bounds checks.

The architecture of O-CFI is shown in Figure 7.3, and consists of two major phases.

The first is a one-time static binary rewriting phase that minimizes bounds via clustering
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and inserts the runtime library that implements the dynamic phase. The second is a load-

time, dynamic randomization and protection phase in which the runtime library randomizes

the code layout, and populates the BLT to reflect the new locations of indirect branch

targets. The dynamic phase also performs additional optimization, reducing bounds ranges

to improve security.

7.3.1 Static Binary Rewriting

Conservative Disassembly

We begin by disassembling the code section using a conservative disassembler. Similar to the

approach outlined by Wartell et al. (Wartell et al., 2012a), the code section is duplicated,

with the old copy (renamed to .told) serving as a read-only data segment and the new

copy (called .tnew) containing the rewritten executable code. The .told section is set non-

executable, and all code blocks identified as possible targets of indirect jumps are overwritten

with a five-byte tagged pointer. The tagged pointer consists of a tag byte (0xF4) followed by

the four-byte address of the new location of that block in the .tnew section. The tag byte

allows for an efficient runtime mechanism to redirect stale pointers to their correct targets,

and is explained below.

Since the .told section preserves all static data at its original addresses, data pointers

in the rewritten code section continue to behave correctly. This makes the rewriting system

robust to disassembly errors that misclassify data as code.

Disassembly errors that misclassify code as data could omit such code from the .tnew

section, resulting in a crash at runtime. To avoid this, we use settings that encourage

the disassembler to interpret all bytes with valid instruction encodings as code. In our

experiments, these settings suffice to avoid all disassembly errors that affect proper code

translation.
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SFI and Randomization Framework

To prevent attacks from jumping over the guards that constrain branch ranges, the new

code segment is split into power-of-two sized basic-blocks called chunks (McCamant and

Morrisett, 2006). Guard instructions and the branches they guard are always co-located

within a common chunk, and branch targets are confined to chunk boundaries, with padding

inserted where necessary to preserve this property. Confining branches to chunk boundaries

is efficiently realized as a single and instruction per branch, which clears the lower i bits of

the target address (where the size of a chunk is 2i+1 bytes).

Thus, control-flow within a chunk is linear, passing over every instruction from start to

end. This chunking and masking regimen ensures that control-flow guards execute before

every indirect branch. Additionally, it prevents jumps to misaligned (and hence unguarded)

instruction sequences, reducing the attack surface to the set of statically disassembled (and

hence protected) gadgets.

Direct branches are statically rewritten to reference their new target addresses. Indirect

branches require extra effort, since their exact targets only become known at runtime. At

runtime, there are two common cases to consider: (a) the impending target is already within

the .tnew section (e.g., it was pushed by a call instruction), or (b) the impending target

is a stale pointer that points into the .told section (e.g., it was loaded from a method

dispatch table stored as heap data, which the rewriter does not rewrite). The first case

requires no special treatment; the second solicits an efficient dynamic lookup and redirection

of the stale pointer to its new location (Wartell et al., 2012a). Specifically, we implement

a two-instruction sequence that tests for the presence of the tag byte at the target address,

and if present, substitutes the current target with the address stored after the tag, which

points to the block’s new location in the .tnew section. The tag byte is chosen to be an

illegal instruction encoding, so that no non-stale code pointer ever points to such a byte.
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The stale pointer redirection mechanism is not relied upon for security. Like all indirect

branch targets, redirected pointers undergo a mask and bounds-check before becoming

control-flow destinations. Thus, corrupting or defeating the redirection mechanism does

not circumvent the security policy.

The ability to redirect code pointers lays the foundation for load-time randomization.

Once the new randomized locations for basic blocks have been finalized, updating the values

in the .told section allows our redirection mechanism to correctly redirect all indirect

branches to the new, randomized block locations. Direct branches are simply modified

in-place.

Branch Instrumentation

The techniques described above provide a framework that can rewrite COTS binaries to

provide SFI and fine-grained randomization. This suffices to protect against traditional

ROP attacks, but not against implementation disclosure vulnerabilities, which require the

additional hardening implemented by O-CFI’s bounds-checking. Bounds-checking is applied

after stale pointer redirection alongside masking, to further limit the set of accessible gadgets.

Due to the enforced instruction alignment, attack payloads cannot circumvent these bounds

checks.

Furthermore, due to randomization, the bounds remain unknown to implementation-

aware attackers, and vary from program instance to program instance. Attacks cannot

statically pre-compute bounds ranges because the runtime randomization phase changes

bounds values on each execution. They also cannot dynamically leak the bounds, all of

which are stored securely in the BLT and never leaked to the stack or heap. Attackers must

therefore hazard guesses as to which gadget chains are safely accessible for any given program

instance.

The bounds-checking implementation logic is detailed in Table 7.2. In our implementation

for MPX-enabled, 32-bit systems, each BLT entry consists of two 32-bit pointers.
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Accurate Target Identification

To ensure that we identify all intended targets of indirect branches, we employ disassembly

heuristics that identify a superset of potential targets. As an example, we follow the following

sequence of steps to identify the set of potential targets for a return instruction:

1. Identify all code references to the function that contains the return. This includes

direct and indirect branches to the function entry point, as well as to any basic block

within the function.

2. For each identified branch that is not a call, find all code references that flow into it.

3. Recursively traverse all non-call references until a fixed point is reached (i.e., a set with

only calls).

4. The instruction immediately after each call forms the target set for that return.

Our heuristics are tuned to prefer false positives (non-targets treated as possibly valid

destinations), since such errors do not significantly affect the operation of our system. In

particular, each such error only marginally weakens the system’s security (by admitting an

unnecessary control-flow link that remains guarded by randomization) and slightly increases

generated code size. A compiler-side solution could be more precise, at the cost of requiring

source code and recompilation of programs.

Bounds Range Minimization

As discussed in Section 7.2.3, we use a combination of clustering and portals to reduce

bounds ranges. While the portals themselves are created only at binary load-time, it is

in the static phase that branch targets are clustered together and empty nexuses created.

Algorithm 4 gives a high level overview of our clustering algorithm. Each cluster created
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Algorithm 4 CreateClusters(S): Cluster basic blocks to place the targets of indirect
branches as close together as possible.

Input: S {the set of the basic blocks in the code segment}
Output: C {a set of clusters, one per indirect branch. Each c ∈ C is a set of basic blocks

that contain all the targets for a specific branch, as well as an empty nexus where portals
can be inserted at runtime.}
C ← ∅
for all b ∈ Branches(S) do
c← ∅
for all t ∈ Targets(b) do

b ′ ← GetBasicBlock(t)
if b′ /∈ C then
c← c ∪ {b ′}

end if
end for
{The nexus is an empty basic block to hold portals.}
c← c ∪ CreateNexus()
C ← C ∪ {c}

end for
{Add unclaimed basic-blocks into a single final cluster.}
C ← C ∪ {(S −

⋃
C)}

in this step gets an empty nexus. In our implementation, all nexuses are homogeneous in

size, but more sophisticated implementations could tailor nexus sizes to individual branches

based on the size of their statically determined target set.

Organizing the code into power-of-two sized chunks (for SFI enforcement) impacts por-

tals. In the absence of chunking, the size of each portal is the five bytes required for a

direct jump; but chunking rounds this up to the nearest multiple of the chunk-size. In our

implementation, this makes each portal 16 or 32 bytes long. Though this slightly increases

both file and code sizes, it only marginally affects the average bounds size, and does not

noticeably impact performance. Section 7.4.4 contains a detailed breakdown of how bounds

sizes vary with the number of portals per cluster.
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7.3.2 Accelerated Bounds Checks

To optimize performance, we leverage the Intel memory-protection extensions (MPX) for

x86/64 architectures to store and check bounds (Intel, 2013). MPX instructions will be

supported in Intel processors from 2015 onwards, so our approach will benefit from hardware

acceleration in the near future. MPX instructions execute as NOPs on non-MPX processors.

MPX provides hardware accelerated protection against buffer overflow or underflow

attacks, and introduces new registers and instructions to this end. The eight new bounds

registers each hold two pointers, and can be used to store both the lower and upper bounds

associated with a pointer value. New MPX instructions allow for quick loading and querying

of these bounds registers. We use the three MPX instructions shown in Table 7.3. Instruction

bndmov loads bounds from the BLT into bounds register bnd, and bndcl and bndcu verify

that the target address is within the loaded bounds.

To secure binaries intended for use on non-MPX systems, O-CFI also has a legacy

mode that uses the cmp and cmovcc instructions to guard branches. Although the lack

of dedicated range checking instructions makes these guards less efficient than their MPX-

enabled counterparts, binaries rewritten in this mode receive the same level of protection.

Section 7.3 describes our guard implementations in-depth, and we evaluate their performance

characteristics in Section 7.4.

The final consolidated sequence of instructions needed to enforce bounds, prevent execu-

tion of unintended instructions, and allow fine-grained randomization is shown in Table 7.4.

Column three shows the instructions used when targeting MPX-compatible platforms, while

the instructions used to enforce bounds on non-MPX, legacy processors are shown in column

four. In each listing, instructions appearing before the first chunk boundary are appended

to the preceding chunk, or wherever they best fit. Subsequent instructions are confined to

dedicated chunks in order to maintain security.
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Table 7.3. MPX instructions used in O-CFI

Syntax Description

bndmov bnd, m64 Move upper and lower bound
from m64 to bound register bnd.

bndcl bnd, r/m32 Generate a #BR if r/m32 is less
than the lower bound in bnd.

bndcu bnd, r/m32 Generate a #BR is r/m32 is
higher than the upper bound in
bnd.

MPX Mode: In MPX mode, we use 16-byte chunks. For indirect branches, lines 1 and

11 preserve the eax register, which is used as a scratch space. Lines 3 and 4 implement

the dynamic lookup and redirection mechanism for stale code pointers. Lines 5, 6, and 10

load the bounds associated with this branch into bounds register bnd1 and then compare it

against the target address. If the target address is outside the bounds, a #BR exception

is raised, and the program halted. Line 9 masks the target address, forcing it to a chunk

boundary.

Line 8 foils hijackers who attempt to abuse the final chunk as a gadget. The earlier chunk

boundary (above line 5) needs no such protection because all logic above it is strictly for

preserving program functionality, not for enforcing security. Thus, jumping to that boundary

during a code-reuse attack does not help the attacker—the resulting gadget implements a

fully guarded jump.

The process is shorter for returns, since returns do not require stale pointer correction.

The full return guard code therefore fits within two 16-byte chunks.

Legacy Mode: To protect binaries executing on processors without MPX support, O-CFI

emits legacy mode guards. This mode uses 32-byte chunks and stores BLT entries consisting

of three 32-bit pointers: the address of an abort function, the lower bound, and the upper

bound, respectively. Comparison (cmp) instructions compare the target address against
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Table 7.4. Summary of code transformations
Description Original Code Rewritten Code (MPX-mode) Rewritten Code (Legacy-mode)

Indirect Branches call/jmp r/[m] 1: mov [esp-4], eax

2: mov eax, r/[m]

3: cmp byte ptr [eax], 0xF4

4: cmovz eax, [eax+1]

— 16-byte chunk boundary —
5: bndmov bnd1, gs:[branch id]

6: bndcu bnd1, eax

7: jmp 9

— 16-byte chunk boundary —
8: xor eax, eax

9: and al, align mask
10: bndcl bnd1, eax

11: xchg eax, [esp-4]

12: call/jmp [esp-4]

1: mov [esp-8], eax

2: push ecx

3: mov eax, r/[m]

4: cmp byte ptr [eax], 0xF4

5: cmovz eax, [eax+1]

— 32-byte chunk boundary —
6: and al, align mask
7: mov ecx, branch id

8: cmp eax, gs:[ecx+4]

9: cmovb eax, gs:[ecx]

10: cmp eax, gs:[ecx+8]

11: cmovae eax, gs:[ecx]

12: pop ecx

13: xchg eax, [esp-8]

14: call/jmp [esp-8]

Returns ret — 16-byte chunk boundary —
1: xchg eax, [esp]

2: and al, align mask
3: bndmov bnd1, gs:[branch id]

4: jmp 6

— 16-byte chunk boundary —
5: xor eax, eax

6: bndcu bnd1, eax

7: bndcl bnd1, eax

8: xchg eax, [esp]

9: ret

1: xchg eax, [esp]

2: push ecx

— 32-byte chunk boundary —
3: and al, align mask
4: mov ecx, branch id

5: cmp eax, gs:[ecx+4]

6: cmovb eax, gs:[ecx]

7: cmp eax, gs:[ecx+8]

8: cmovbe eax, gs:[ecx]

9: pop ecx

10: xchg eax, [esp]

11: ret

both bounds. Conditional move instructions cmovb and cmovae replace the intended target

address with the abort function if either test fails. The abort function halts (and optionally

re-randomizes and restarts) the program.

Legacy mode’s larger chunk size and inclusion of abort function pointers in the BLT are

design choices intended to balance speed and space overheads given the lengthier instruction

sequences required to implement the guards without MPX support. The lengthier sequence

fits (just barely) within one 32-byte chunk without protection of an internal chunk boundary,

making that chunk size the best choice. (As before, the first chunk boundary requires no

protection, since the instructions that follow it implement a fully guarded jump.)

7.3.3 Dynamic Randomization and Protection

The dynamic phase of our system proceeds at load-time, before the binary executes.

In this phase the basic blocks are randomized for diversity, bounds on indirect branches
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Algorithm 5 RuntimeSetup(C,BLT ): Perform runtime randomization, and bounds range
setup and optimization.

Input: C {clustered code segment}, BLT {bounds table}
Output: C {randomized, bounds optimized code segment}

RandomizeCode(C)
CreateAllPortals(C)
UpdateDirectBranches(C)
UpdateJumpTable(C)
UpdateBoundsTable(BLT )
SetupSegmentedAccess(BLT ) {Move the bounds table to a random page and set up
segmented memory access to it via the gs register.}

Algorithm 6 RandomizeCode(C, Shuffle): Randomize basic blocks in a cluster-aware
manner.
Input: C {clustered code segment}, Shuffle {a method that takes a set as input and outputs

a random ordering}
Output: a randomized code segment
{Shuffle basic-blocks within the cluster.}
R← ∅
for all c ∈ C do
R← R ∪ {Shuffle(c)}

end for
{Shuffle the order of clusters within the code segment.}
return Shuffle(R)

Algorithm 7 CreatePortal(N, t): Create a portal to t from nexus N .

Input: N {a nexus}, t {target address}
Output: Add a direct jump to t in the first available slot in N , and returns its address.

for i = 1 to Capacity(N) do
if N [i] is an empty slot then
N [i]← CreateDirectJump(t)
return Address(N [i])

end if
end for
return null {Return null if insufficient capacity.}

are fixed, and bounds ranges are further minimized. O-CFI uses a runtime library for this

purpose, which it injects into the Import Address Table (IAT) of the rewritten binary during

the static phase.
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Algorithm 8 CreateAllPortals(C): Fill each nexus with portals to targets until (a) there
are no more targets for that branch, or (b) the nexus capacity is reached.

Input: C {the ordered set of clusters, post randomization}
Output: Fill nexuses with portals.

for all c ∈ C do
for i = 1 to Capacity(c.nexus) do

b ← GetParentBranch(c)
f ← FarthestTarget(c, b)
q ← CreatePortal(c.nexus , f )
if q 6= null then

UpdateTargets(b, f , q)
end if

end for
end for

The Windows load order guarantees that all statically linked libraries initialize before the

modules that link to them. The dynamic phase is thus carried out by the intermediate library

in its initialization code. Algorithm 5 describes the order of steps taken by the initialization

code.

First, the two-step process detailed in Algorithm 6 is used to randomize the code segment

without affecting bounds ranges. Next, each nexus is populated using a greedy algorithm

that creates portals to the farthest targets of its parent branch step-by-step, until its capacity

is exhausted. Algorithm 8 shows the pseudo-code for this process while Algorithm 7 details

how individual portals are created.

Once the targets of all branches have been finalized, direct branch operands are relocated

to their correct locations and all jump-table entries in the .told section are updated with

their new addresses. The BLT is also updated to reflect the new ranges for each branch,

after which it is then moved to a random page of memory. Finally, the gs segment register

is updated to point to the new base address of the BLT.
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7.3.4 Platform Support and Infrastructure

We have implemented O-CFI for 32-bit versions of Windows (XP/Vista/7/8). Our O-CFI

approach however, is not OS specific and is also applicable to 64-bit versions of Windows as

well as Linux and OS X.

The implementation consists of three parts: (i) a static rewriter, (ii) an intermediate

library, and (iii) an API hooking utility. The rewriter is implemented as a 2600 line IDA

Python program. IDA Python programs are parsed and interpreted by the Hex-rays IDA

Pro 6.1 disassembler. One of IDA Pro’s many uses is as a malware reverse engineering and

de-obfuscating tool, and it features many powerful code analyses that heuristically recover

program structural information without assistance from source code or debug information.

Our system leverages these analyses to automatically distinguish code from data, and to

identify indirect branches and possible targets of such branches.

The intermediary library consists of approximately 500 lines of C and hand-written,

in-lined assembly code that facilitates run-time fine-grained randomization and subsequent

portal creation. It also provides support for callback functions and dynamic linking. An

additional 150-line configuration file itemizes all trusted callback registration functions ex-

ported by Windows libraries used by the benchmarks.

The API hooking utility adds the intermediary library to the PE’s list of imported

modules. To avoid expanding the size of the PE header (which could shift the positions of the

binary sections that follow it), our utility simply changes the library name kernel32.dll in

the import section of the name of our intermediary library instead. The intermediary library

exports all kernel32 symbols as forwards to the real kernel32, except for security relevant

functions, which it exports as local replacements.
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7.4 Evaluation

We tested O-CFI with binaries from the SPEC2000 benchmark suite listed in Table 7.5. All

results detailed below were obtained on an Asus G53SW machine with 4GB of RAM and

the Intel Core i7 2630QM processor.

7.4.1 Rewriting and Space Overheads

Table 7.5 reports the percentage increase in file size and code size in the rewritten binaries,

as well as the time taken by O-CFI to rewrite each binary. Our prototype rewrites about

60KB of code per second on average. In legacy mode, binaries increase by an average of

194%, while the code segment size increases by about 145%. For binaries secured with MPX

mode guards, these measures are reduced to 137% for the file size increase, and roughly 71%

for the increase in code segment size. This difference reflects the relative cost of 32-byte

chunks in legacy mode versus 16-byte chunks in MPX mode.

Although O-CFI’s size increase may appear substantial, we believe that in many cases

trading increased memory usage for substantially better security at high runtime performance

is a worthwhile exchange. Our design is therefore calibrated to favor security and speed over

space overheads in common cases.

7.4.2 Performance Overheads

Figure 7.4 shows the performance impact of O-CFI. We report overheads for both MPX

and legacy mode guards for each binary. In both cases, they are measured as the mean

percentage increase in runtimes between the rewritten and original binary over 20 trials.

The average overhead across all benchmarks is 4.92% when using the legacy-mode guards

shown rightmost in Table 7.4.

We cannot provide precise numbers on MPX-enabled hardware since such hardware is

not yet available. However, since MPX instructions are treated as NOPs by the processor
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Table 7.5. Space and rewriting overheads

Size Increase (Legacy) Size Increase (MPX)
Binary
Program File (%) Code (%) File (%) Code (%)

Rewriting
Time (s)

gzip 194 148 134 72 4.07
vpr 167 126 118 59 6.71
mcf 206 153 142 75 3.48
parser 207 158 141 76 5.96
gap 216 162 152 85 1.32
bzip2 194 150 133 72 3.50
twolf 165 109 120 53 7.84
art 204 152 140 74 3.62
equake 193 144 134 70 3.62

mean +194% +145% +137% +71% 5.85s

0

2

4

6

8

10

12

twolf mcf bzip2 vpr art gzip equake parser gap Mean

R
u

n
ti

m
e 

O
ve

rh
ea

d
 (

%
) 

 Legacy Mode  MPX Mode

Figure 7.4. O-CFI runtime overhead

used in our experiments, and since long NOP instructions have roughly the same execution

characteristics as ALU operations with register operands on Core i7 processors (Fog, 2014),

we can use our current hardware to estimate the performance impact of MPX acceleration.

We find that MPX instructions decrease the performance impact to 4.17% and conclude that

O-CFI is likely to benefit from MPX support from 2015 and onwards.

Both types of guards show similar characteristics across the benchmarks, exhibiting

negligible overhead with mcf and bzip2, while gap and equake incur the largest overheads.

A few benchmarks (art and gzip) exhibit marginally better performance with the legacy

mode guards.
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Figure 7.5. O-CFI load-time overhead

We also measured the overhead of the load-time phase, including cluster-based random-

ization, bounds range updating, and portal creation. These results are reported in Figure 7.5.

Unsurprisingly, there is a linear relationship between the size of the code section and the

overhead induced at load-time.

7.4.3 Security

To evaluate the security properties of O-CFI under our threat model, we evaluate the

probability of chaining gadgets assuming full disclosure of the code segment. That is, we

assume that the attacker knows the precise address of every gadget in the rewritten binary.

Due to using segmented memory to access the BLT, an attacker is forced to guess the ranges

of each gadget. (Section 7.2.2 examines the probability of guessing the address of the BLT

itself.)

Under these assumptions, we carry out two experiments. First, we evaluate the statistical

likelihood of chaining gadgets without violating branch bounds. Second, we attempt to use

post-randomization gadget addresses to manually craft practical attacks against rewritten

binaries, and evaluate how O-CFI resists implementation disclosure in practice.
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Chaining Gadgets

We use the Mona ROP-generation tool (Corelan Team, 2012) to identify all gadgets in a

secured binary after the load-time phase, simulating full disclosure of the code segment.

To simulate an attacker’s attempts to guess branch ranges, payload chains are created by

randomly selecting gadgets from the discovered gadget set. When a selected gadget falls

outside the bounds of the previous gadget in the chain, the chain is terminated and its

length is considered the payload length for that run. By repeating this process over multiple

runs, we estimate the probability of successfully crafting payloads of various lengths.

This procedure estimates the probability of success of disclosure attacks resembling

JIT-ROP, where a failure (such as a #BR violation) results in program termination and

subsequent re-randomization of code and re-selection of bounds ranges.

BROP-like attacks, on the other hand, exploit the lack of re-randomization when binaries

are respawned via the fork system call. A crucial advantage of our system against such

attacks is the fact that a bounds violation does not automatically crash the program; rather,

it invokes the registered #BR exception handler. The exception handler responds to the

attack by forcing re-randomization, leaving BROP attacks on the same footing as JIT-ROP

attacks.

In our experiments, we ran 100,000 runs of the experimental methodology (for each

benchmark), and then measured the mean chance of success at crafting payloads of increasing

lengths. This evaluates the security of O-CFI against disclosure attacks. The results are

reported in Table 7.6.

Disclosure attacks in our experiments are unsuccessful at chaining more than four gadgets

from any of the binaries. Moreover, the chance of chaining even a four-gadget payload

is about 0.01% on average—a strong indicator that O-CFI offers powerful probabilistic

protection against such attacks.
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Table 7.6. Gadget chain lengths across SPEC benchmarks

Gadget Chain Size Chance (%)

2 2.0
3 0.8
4 0.01
5 –

Crafting Practical Attacks

Mona is capable of building practical gadget chains based on a heuristic search. In particular,

it can look for the gadgets necessary for attackers to (i) gain execute permissions, (ii) disable

DEP, and (iii) allocate a new page with execute permissions.

To evaluate security against a more practical disclosure attack, we leveraged this capa-

bility, and tried to build chains using gadgets from both the original and rewritten binaries.

For the rewritten binaries, we filtered any chains that resulted in bounds range exceptions.

Mona found partial chains (i.e., chains that incorporate some additional gadgets from

dynamically linked modules) for all original binaries, and found full chains for some. However,

no complete or partial chains could be found for any of the rewritten binaries. This provides

additional evidence of the effectiveness of O-CFI against implementation disclosures.

7.4.4 Portal Efficacy

We also tested the O-CFI’s effectiveness at reducing bounds ranges. Table 7.7 shows the

factor by which average bounds sizes reduce as the nexus capacity varies from 3 to 18, and

when the capacity is left unbounded. The bounds for each case are compared against a

baseline binary that has a nexus capacity of zero. Across most binaries, with the exception

of gap, the bounds sizes decrease roughly linearly as the number of portals increases. When

the capacity is left unbounded, the bounds reduce by a factor of almost 308. In other words,
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Figure 7.6. Bounds range histogram for a nexus capacity of 12. The vast majority of bounds
have span under 15K.

Table 7.7. Bounds range reduction factors with portals

Nexus Capacity
Binary
Program 3 6 9 12 15 18 ∞

gzip 3.11 4.34 5.01 5.99 6.96 8.60 288.19
twolf 2.70 3.61 4.42 5.51 6.82 7.96 310.67
vpr 2.75 4.17 5.54 6.95 9.23 10.68 287.79
gap 2.11 2.57 3.05 3.49 3.94 4.37 255.46
equake 2.90 5.73 6.93 10.47 12.94 16.94 352.73
art 3.33 5.22 6.80 8.60 13.55 16.93 368.97
mcf 3.37 6.09 6.86 9.58 12.63 18.94 353.72
bzip2 2.87 4.38 6.32 7.43 8.52 13.34 277.88
parser 2.87 4.65 5.38 6.05 6.91 9.15 275.49

median 2.89 4.53 5.59 7.12 9.05 11.88 307.88

the average bounds range for a binary with unbounded nexus capacities is only about 0.3%

of the range for a binary that does not use portals.

As mentioned earlier, our implementation uses a nexus capacity of 12, which reduces

bounds by a factor of about 7, while only marginally affecting code size or runtime per-

formance. Figure 7.6 is a histogram of bounds sizes across all the benchmarks when the

capacity is set to 12, with the counts measured on a logarithmic scale. Although there is



146

a fairly wide variance in ranges, the overwhelming majority of bounds are less than 15,000

bytes in size.

7.4.5 Security against Theoretical Full-Knowledge Attack

In the previous section, we evaluated whether a ROP generation tool (Mona) can construct

effective attacks for attackers who have not located the BLT (cf., Section refsec:assumptions).

Although we protect the BLT from memory disclosure, we now consider an extraordinarily

capable attacker who either (a) discovers all code pages, disassembles their contents, and

infers all bounds from full knowledge of the program control flow, or (b) somehow locates

and reads the BLT.

To the explore such an attacker’s capabilities, we extended and adapted the Frankenstein

mutation engine (Mohan and Hamlen, 2012) to search for a ROP chain that implements

the VirtualAlloc or VirtualProtect payloads from Section 7.4.3 without violating any

bounds. Frankenstein uses a constraint-solving algorithm to find gadget chains that realize

a user-specified goal state. The goal processor state for our payloads was expressed as the

stack layout needed for a protection-disabling system API call. Our tool has basic semantic

understanding of a subset of x86 instruction sequences, mainly pertaining to their effect on

the stack. It leverages this understanding to search for a satisfying sequence of gadgets from

a given gadget pool.

When testing against a binary, the gadget pool is initialized to the set of gadgets found

by Mona. Finally, for each runtime-randomized layout that the tool is provided, the BLT-

permitted range for each indirect branch is added as a constraint.

We used the tool on each of the SPEC2000 binaries, across 100 randomized code layouts

each. Our results mirror the practical payload tests—although we found partial chains for

the original binaries, we were unable to find any ROP chains that pass the bounds checks in

binaries protected by O-CFI.
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7.5 Discussion

7.5.1 Branch Range Entropy

A bounds-guessing disclosure attack succeeds when every gadget falls within the range of the

indirect branch in the preceding gadget. If a binary contains b indirect branches split across

c clusters, and every indirect branch represents a potential gadget, each cluster contains on

average b/c gadgets.

Given a randomly chosen initial gadget, the chances of choosing a second gadget that

falls within the range of the first is b/c
b

or 1/c. Thus, the chances of creating a payload with n

gadgets becomes (1/c)n−1. The average value of c across the SPEC binaries is 23. Thus, we

find that the chance of creating a bounds-adherent payload falls below 0.01% when n > 4.

This supports the experimentally obtained values for disclosure attacks in Table 7.6.

Rather than guessing branch ranges, an implementation disclosure attack could try to

guess the location of the BLT in at attempt to recover all bounds, so that it may craft a

payload in a more guided fashion. As discussed in Section 7.2.2, the probability of doing so

falls as low as 1/2,147,483,648 on x86-64 systems. Attackers who beat the odds and manage

to locate the BLT still face the daunting challenge of leveraging the leaked information to

craft a gadget sequence that (i) is not bounds-violating, and (ii) expresses a meaningful

payload. Section 7.4.5 demonstrates that this is quite difficult given the sparsity of control-

flows allowed by O-CFI.

7.5.2 Control-flow Obfuscation

Section 7.4.5 evaluates adversaries who use implementation disclosures, binary reverse engi-

neering, and control-flow fingerprinting to infer and recover the complete control-flow graphs

of victim programs, and it concludes that such attackers still cannot reliably craft significant-

length gadget chains. To further frustrate such efforts, O-CFI could be coupled with
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code obfuscation and anti-piracy strategies that hamper effective reverse-engineering. For

example, instruction-level diversification (e.g., register allocation and instruction schedule

randomization), code duplication, opaque predicates (Majumdar and Thomborson, 2005),

control-flow flattening (Wang et al., 2000), and non-readable code pages (Backes et al., 2014)

are all supportable by O-CFI.

7.5.3 External Module Support

O-CFI allows secured binaries to call library functions, and fully supports rewriting of

libraries. We here discuss this capability in the context of Microsoft Windows libraries,

but the approach generalizes to Linux as well.

Calling external modules from secured binaries

The Import Address Table (IAT) of secured binaries is set non-writable throughout program

execution, preventing attackers from corrupting it to redirect control-flow to arbitrary loca-

tions. As such, calls made to external modules through the IAT need not be constrained by

O-CFI, and work correctly unchanged.

Most binaries also access external modules using dynamic linking system calls, such as

LoadLibrary and GetProcAddress on Windows. We use trampolines (Yee et al., 2009)

to support such calls. In particular, the intermediary library that performs load-time

randomization also intercepts all calls to the OS’s dynamic linking API. The interception

dynamically loads the requested library, but returns a chunk-aligned pointer to a trampoline

within the caller’s address space instead of the address of the requested function. When the

trampoline is called, it safely transfers control to the library, ensuring compatibility between

dynamically linked O-CFI and non-O-CFI binaries.
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Securing Libraries

Libraries can be secured almost identically to program main modules. The only difference is

that the returns of exported functions need special bounds that permit cross-module control-

flows. O-CFI therefore creates a return-portal for each exported function and exports its

address. This way, library returns become intra-module, and their bounds can be set to the

range of all locally identified targets plus the address of the exported portal.

7.5.4 Approach Limitations and Future Work

Our prototype implementation of O-CFI relies on the static-rewriting phase to identify and

protect all branch ranges. As such, it is unable to secure code that is generated dynamically.

Consequently, although our technique is compatible with binaries that generate JIT-code,

our system cannot protect the JIT-compiled code. Homescu et al. (Homescu et al., 2013)

randomize the output of JIT-compilers. We believe that their strategy could be applied to

realize O-CFI for JIT code without modifying the JIT compiler.

Our O-CFI prototype implementation is presently incompatible with Windows Com-

ponent Object Model (COM). COM uses binary reflection to dynamically inform loading

modules of the methods a COM library supports. Once the COM library is loaded, calls

to its methods are implemented as indirect calls. Because indirect calls in O-CFI binaries

are masked to chunk-aligned targets for safety, and because any dynamically loaded COM

module has function entry points that are not located at these boundaries, any attempt to

jump to one of these functions crashes the binary. Supporting COM requires extending our

implementation with a mechanism that dynamically creates (chunk-aligned) trampolines for

the functions of loaded COM modules. This is reserved for future work.

A compiler-based implementation of O-CFI has access to a more precise control-flow

graph of the target binary than is available to our COTS-compatible, binary-level prototype.

Because completely accurate disassembly of x86 code is, in general, impossible (Horspool
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and Marovac, 1980; Cohen, 1993), our binary-level prototype is prone to false-negatives when

identifying branch targets. (False-positive are harmless, at worst contributing to an increased

bounds range for that branch.) Such false-negatives lead to runtime #BR violations for

legitimate control-flows. This is a standard limitation of source-free CFI, and is addressable

through improved disassembly heuristics like those discussed by Wartell et al. (2014).

7.6 Conclusions

CFI and artificial software diversity are well-established strategies for protecting software

against code-reuse attacks, including ROP attacks. Recent advances in offensive security

have alarmingly demonstrated how to bypass both: The security relaxations introduced by

coarse-grained CFI to achieve acceptable performance are exploitable by skillful control-flow

hijacking, and implementation disclosure vulnerabilities can be leveraged to derandomize

even fine-grained artificial diversity defenses.

O-CFI combines and extends both CFI and fine-grained diversity to address this dual

threat of code-reuse and implementation disclosure attacks. To do so, we reformulate CFI

as a bounds-checking problem, and repurpose fine-grained binary code randomization to

diversify and conceal the exploitable edges of the protected program’s control-flow graph.

As a result, O-CFI can protect software even against attackers who have complete read-access

to the randomized program code.

Our prototype implementation demonstrates that O-CFI can be effectively applied to pro-

tect legacy binaries without source code, and experimental evaluation exhibits performance

overheads of just 4.92%. Performance is expected to be even higher on future-generation

processors, since our bounds-checking implementation centers around Intel MPX instructions

that will be hardware-accelerated on forthcoming Intel-based processors.



CHAPTER 8

RELATED WORK

8.1 Malware Detection

Both the creation and the detection of malware that self-modifies to defeat signature-based

detectors are well-studied problems in the literature (Nachenberg, 1997; Ször, 2005). Self-

modifying malware has existed at least since the early 1990s and has subsequently become

a major obstacle for modern malware protection systems. For example, Sophos Security

(2013) reports that over 75% of malware uses self-modifying mechanisms in an attempt to

evade detection.

Most self-modifying malware uses encryption or packing as the primary basis for its

modifications. The majority of the binary code in such polymorphic malware exists as an

encrypted or packed payload, which is unencrypted or unpacked at runtime and executed.

Signature-based protection systems typically detect polymorphic malware by identifying dis-

tinguishing features in the small unencrypted code stub that decrypts the payload (Kruegel

et al., 2005). More recently, metamorphic malware has appeared, which randomly applies

binary transformations to its code segment during propagation in order to obfuscate features

in the unencrypted portion. An early example is the MetaPHOR system (Walenstein

et al., 2006), which has become the basis for many other metamorphic malware propagation

systems.

Reversing these obfuscations to obtain reliable feature sets for signature-based detection

has been a topic of research for over a decade (Kruegel et al., 2005; Brushi et al., 2007;

Walenstein et al., 2006), but case studies have shown that current antivirus detection schemes

151
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remain vulnerable to simple obfuscation attacks until the detector’s signature database is

updated to respond to the threat (Christodorescu and Jha, 2004).

To our knowledge, all existing self-modifying malware mutates randomly. Our work on

expoiting an anti-virus interface (see Chapter 3) therefore differs from past approaches in that

it proposes an algorithm for choosing obfuscations that target and defeat specific malware

defenses. These obfuscations could be inferred and applied fully automatically in the wild,

thereby responding to a signature update without requiring re-propagation by the attacker.

We argue that simple signature updates are therefore inadequate to defend against such an

attack.

Researchers have proposed alternatives to static feature-based malware detection. Dy-

namic approaches monitor the execution of a binary and attempt to use behavioral features

to make classification decisions. These include monitoring API call sequences (Shankarapani

et al., 2011), analysing behavior across different environments for divergence (Kirat et al.,

2014), or virtual-machine based methods, such as those used by Jiang et al. (2010). The

main drawback of dynamic techniques is their higher overhead compared to feature-based

detection (Li et al., 2006; Newsome et al., 2005; Singh et al., 2004).

Machine learning-based techniques extract different features from binaries to train a

classifier that can then be used to test whether a binary is malicious. For example, Masud

et al. (2008) use binary n-grams from executables, Santos et al. (2013) use opcode relevance

and opcode sequence frequencies, while Rieck et al. (2011) use behavioral information and

clustering.

8.2 Metamorphic Engines

Metamorphic malware changes the structure of its payload with each generation to evade

discovery. Metamorphic engines typically do this using a bottom-up approach: Starting

with a disassembler to recover assembly code for the payload, they perform a series of
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obfuscation phases, followed by application of an assembler to generate mutated native code.

Researchers have proposed criteria that could be used to better categorize and compare

different metamorphic engines (Walenstein et al., 2007). Most engines use a combination of

the following five phases to obfuscate their payloads (O’Kane et al., 2011): Garbage insertion

adds unreachable code to the original code. Code substitution replaces opcodes with func-

tionally equivalent but structurally different opcodes. Code insertion in-lines semantically

ineffectual code sequences or harmless computations. Register swapping reallocates registers,

and control flow scrambling adds jumps and reorders function calls.

Borello et al. (2010) developed a generic metamorphic engine that uses variations of

the techniques described above, in conjunction with data obfuscation, and showed that it

was able to evade detection by antivirus tools. However, researchers have shown that most

metamorhic malware currently seen in the wild lack this level of sophistication and can be

detected using a combination of heuristics and existing techniques (Canfora et al., 2014;

Konstantinou and Wolthusen, 2008; Leder et al., 2009; Chouchane and Lakhotia, 2006).

Thus, altough the potential for metamorhic malware to evade feature-based detection exists,

it is not currently leveraged to its maximum capability by current-generation malware.

Frankenstein’s (see Chapter 4) gadget-based obfuscation is a more principled approach to

metamorphism. It both widens the pool of possible mutations for greater diversity and tailors

its mutations to local defenses for more targeted attacks. For example, code substitution

in a metamorphic engine is typically performed by comparing instruction opcodes against

a fixed table of alternative sequences and then randomly choosing one from amongst them.

This induces a degree of randomness with respect to generated code sequences, but does

not ensure that the generated sequences are vastly different, nor that they do not contain

features widely recognized as malicious.

Frankenstein uses a more top-down approach. By starting with a high-level representation

of the payload logic and searching benign files for viable gadgets, it implicitly combines all
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5 phases described above. This combination gives it the ability to create mutants with a

greater diversity than standard bottom-up approaches.

8.3 Program Equivalence

Reasoning about program equivalence arises in connection with translation validators and

certifying compilers. A translation validator shows that compiler optimizations are semantics-

preserving by proving the semantic equivalence of the original program and its compiler-

optimized counterpart. Approaches include instrumenting the compiler (Kanade et al.,

2006), verifying a simulation relationship between the two programs (Necula, 2000; Sridhar

et al., 2014), and constructing value-graphs of the two programs and proving their syntactic

equivalence (Tristan et al., 2011; Tate et al., 2009).

Certifying compilers prove that object code respects the semantics of the higher-level

source code whence it was generated. Most certifying compilers do not prove full program

equivalence but instead reduce the complexity by considering only a subset of verifiable prop-

erties, such as type-safety (Necula and Lee, 1998; Chen et al., 2007). Certifying compilers

output object code, type specifications, and code annotations. The annotations and type

specifications can then be fed into a certifier which either outputs a proof of correctness or

a counterexample that violates type safety.

Frankenstein differs from these related fields in that it does not attempt to provide

any formal evidence of semantic equivalence for mutants. That is, although all mutants

satisfy the abstract specification whence they were generated, the mutator is under no

obligation to provide any evidence of semantic preservation or equivalence. Thus, there

is neither validation nor certification. Frankenstein does, however, leverage many theoretical

foundations underlying this past research, including pre- and post-conditions for semantic

blueprint specification, abstract (symbolic) interpretation for gadget discovery, and abstract

machine semantics for gadget analysis and arrangement.
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8.4 Superoptimizing Compilers

Superoptimization was first proposed by Massalin (Massalin, 1987), and refers to the trans-

formation of a loop-free code sequence into the most optimal set of assembly-level instruc-

tions. Optimality in this context is decided by the speed of the generated sequence, and

hence superoptimizing compilers attempt to find the fastest sequence of assembly instructions

that are equivalent to the input code. Such compilers use a lookup table populated with

parametrized replacement rules to perform their optimizations. The lookup table can be

generated manually as is the case with peephole optimizers, or generated automatically

based on a training set of binaries (Bansal and Aiken, 2008a). Researchers have also shown

the applicability of superoptimization for efficient multi-way branching (Sayle, 2008), or au-

tomated binary translation across architectures (Bansal and Aiken, 2008b). Recent research

has also evaluated the effectiveness of superoptimization in the Java Virtual Machine (Hume

and Watson, 2013) and the LLVM IR (Auler, 2011).

In an abstract sense, metamorphic obfuscation can be viewed as a superoptimization

problem where the model for optimality is not the speed of the generated code, but its

dissimilarity to previous versions of the code. However, since similarity of programs is a

high-dimensionality metric, there is no one unique solution to the obfuscation problem. (In

fact, discovering ever more solutions is a goal of most obfuscation.)

Gadget-based obfuscation can also be compared to superoptimization, but with a subtle

difference. The model for optimality in this case is the generated sequence’s similarity

to existing benign code. Additionally our technique does not use a pre-defined set of

replacement rules, forgoing them for a top-down approach to finding viable sequences from

benign files.
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8.5 Binary Rewriting

Static Approaches: Static binary rewriting is a core technology for many applications, such

as software fault isolation (Wahbe et al., 1993), static instrumentation, in-lined reference

monitoring (Schneider, 2000), and tamper-proofing (Anckaert et al., 2007). There are a

large body of rewriting techniques, including PittsField (McCamant and Morrisett, 2006),

Google Native Client (Yee et al., 2009), and Diablo (Sutter et al., 2005). Their rewriting

techniques typically target the assembly code yielded by a specific compiler with specific

compiler options (Wahbe et al., 1993; Small and Seltzer, 1996; Erlingsson and Schneider,

1999; McCamant and Morrisett, 2006; Yee et al., 2009) or type-safe byte-code languages

(Chen and Roşu, 2005; Bauer et al., 2005; Aktug and Naliuka, 2007).

However, most static binary rewriters make strong assumptions about target binaries

in order to successfully preserve their behavior. In contrast, Reins, STIR and O-CFI are

compiler-agnostic, require no relocation or debugging information, and have no reliance on

symbol stores. This is important for practical applicability since most COTS legacy binaries

lack this information.

Dynamic Approaches: Dynamic binary instrumentation is another approach to binary

mutation. Systems such as DynInst (Hollingsworth et al., 1994) and program shepherd-

ing (Kiriansky et al., 2002) have the potential to intercept, analyze, and modify instructions

at runtime to remove or modify the locations of gadgets, if extended with some form of basic

block randomization.

However, as demonstrated by DROP (Chen et al., 2009) and ROPdefender (Davi et al.,

2011), these systems tend to exhibit significantly higher overheads. STIR inlines the analysis

necessary for basic block randomization, whereas dynamic instrumentation defers much of

this analysis to computationally expensive runtime context switches between the application

and the VM. For example, DynInst and DynamoRIO (Cheng et al., 2006) exhibit 10–160×

overhead and 30% overhead, respectively (Lam et al., 2011; Cheng et al., 2006).
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8.6 Control-flow Integrity

Control Flow Integrity (CFI) was first proposed by Abadi et al. (Abadi et al., 2005) in 2005.

In its original iteration, CFI constrains the indirect branches in a binary to flow only to one

of the exact set of statically identified targets for that branch. Although CFI can secure

a binary against both traditional ROP attacks as well as the new wave of implementation-

disclosure based attacks, it has not met with widespread adoption in the industry. We believe

the two main reasons for this to be (i) difficulty reconstructing an accurate CFG for a binary

without access to source code or debug symbols, neither of which are readily available for

the large majority of COTS binaries, and (ii) higher overheads compared to randomization

based solutions.

Researchers have attempted to address both points in subsequent publications. A number

of low-overhead solutions have been proposed which impose very loose integrity checks on

program executions. These include ROPecker (Ding et al., 2014), ROPGuard (Fratric, 2012)

and kBouncer (Pappas et al., 2013b).

ROPecker and kBouncer use the x86 last branch record (LBR) register set to accomplish

their checks. kBouncer, for instance, performs CFI validation on the LBR during any

Windows API invocation, and checks to ensure that all returns all are call-preceded—i.e.,

that the return address points to an instruction immediately following a call instruction.

ROPecker creates an offline gadget database which is then compared at runtime with LBR

entries to ensure that control-flow is not being redirected to a gadget. ROPGuard also

performs CFI validation on Windows API calls. Like kBouncer, it ensures that return

addresses are call-preceded. It also validates that the memory word before a return address

is the start address of the API function.

CFI for COTS binaries (Zhang and Sekar, 2013) is another proposed coarse-grained CFI

solution. As the name implies, this technique can be applied to binaries without access to

source code or debug information. It relies on a static disassembly step where all potential
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branch (and return) targets are identified, and all indirect branches are instrumented with

code that jumps to a CFI validation routine. The validation routine ensures that target

and return addresses are either call-preceded, or belong to the set of statically identified

candidate targets. CFI for COTS binaries incurs a runtime overhead of 8.54%, lower than

traditional CFI, but higher than those typically achievable by randomization-based defenses.

Similar to CFI for COTS binaries, Compact Control Flow Integrity and Randomization

(CCFIR) (Zhang et al., 2013) applies coarse-grained CFI to binaries without source code

or debug information (but with relocation information). In this technique, legal targets for

indirect branches are collected into a separate Springboard section, and indirect branches

are only allowed to flow into the Springboard. CCFIR also incorporates some elements of

code-randomization—target entries are placed at random locations within the Springboard.

Although this confers it an additional degree of security against traditional ROP attacks,

disclosure-attacks are able to read the full contents of the Springboard, nullifying its advan-

tages against that class of attacks.

Davi et al. (Davi et al., 2014) test these coarse-grained CFI solutions and show that they

fail to adequately secure binaries against ROP attacks.

Forward CFI (Tice et al., 2014) and SafeDispatch (Jang et al., 2014) are two recent

compiler-based CFI solutions. Forward CFI protects binaries by inserting validation checks

for all forward-edge control flows. It is composed of three similar techniques, all of which

make use of a central table to store trusted code pointers. A secured binary is halted when an

indirect branch attempts to flow to a location not found in one of these tables. Forward CFI

shows promisingly low overheads (between 1-8.7%), but needs binaries to be recompiled with

a modified compiler before they can be secured. Furthermore, this solution is only intended

to secure forward control-flows, and does not protect against attacks that rely purely on ret

terminated gadgets.

SafeDispatch protects C++ binaries from virtual table hijacking by recompiling binaries

with a modifed C++ compiler that instruments all virtual method call sites with runtime
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checks that ensure that all method calls jump to valid implementations during execution.

Like Forward CFI, this technique offers a low performance overhead (2.1%), but requires

binaries to be recompiled in order to secure them. Additionally, SafeDispatch only protects

virtual method calls, leaving binaries vulnerable to ROP attacks that rely on modified return

addresses on the stack. In its current implementation SafeDispatch is also not compatible

with virtual calls to subclass methods defined in dynamically linked libraries, and cannot

protect against arbitrary code-pointers in function arguments lists, such as callback pointers.

8.7 Software Fault Isolation

Reins (Chapter 5) is related to SFI, whose works can be divided into (1) source-level

approaches, which instrument untrusted code with dynamic security guards at compile-time,

(2) binary-level approaches, which secure untrusted code at a purely binary level, and (3)

system-level approaches, which secure the software at system call level.

Source-level Approaches: Most SFI implementations target source code and therefore

insert security guard instructions at compile-time. Examples include StackGuard (Cowan

et al., 1998), DFI (Castro et al., 2006), WIT (Akritidis et al., 2008), BGI (Castro et al., 2009),

G-Free (Onarlioglu et al., 2010), and CFL (Bletsch et al., 2011). Source-level approaches

differ significantly from the problem of securing COTS native code because a compiler typi-

cally has full control over the structure of the binary it generates, its pointer representations,

and its implementation of computed jumps. In contrast, SFI systems for legacy native code

cannot statically distinguish code pointers from data, recover control-flow or data-flow graphs

reliably, or detect all instruction aliasing. Enforcing SFI without this information introduces

many challenges.

The primary disadvantage of source-level approaches is their reliance on the support of

a cooperating code-producer, who must (re)compile the untrusted or insecure code using

a special compiler. Such cooperation is not a reasonable expectation for many classes of
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untrusted code, which are distributed as raw native code produced by arbitrary compilers,

and that target mainstream system APIs such as Microsoft Windows or Linux.

Binary-level Approaches: Binary-level approaches require less compiler cooperation.

They can be further divided into those that operate dynamically and those that operate

statically:

Dynamic binary approaches use dynamic binary translation—Vx32 (Ford and Cox, 2008),

Strata (Scott and Davidson, 2002) or Libdetox (Payer and Gross, 2011) for example—

program shepherding (Kiriansky et al., 2002; Bania, 2011), or safe loading like TRuE (Payer

et al., 2012) to dynamically copy and instrument untrusted code into a sandbox at runtime.

Any flows that attempt to escape the sandbox recursively re-trigger the copying process,

keeping all untrusted, reachable code within the sandbox.

In contrast, static binary approaches in-line guard instructions into untrusted binary code

statically before the code executes, and do not perform any code generation or translation at

runtime. The only SFI systems other than Reins that target legacy, untyped, native code

binaries to our knowledge are CFI (Abadi et al., 2009), XFI (Erlingsson et al., 2006), PittS-

FIeld (McCamant and Morrisett, 2006), NaCl (Yee et al., 2009), and SecondWrite (Smithson

et al., 2010). CFI/XFI achieves reliable disassembly by consulting PDB files, which contain

debugging information. The debugging information reveals important structural and typ-

ing information from the application source code without disclosing the source code text;

however, PDB files are only produced by Microsoft compilers, and most code-producers do

not disclose them to the public. This significantly limits the domain of binaries to which

CFI/XFI is applicable. PittSFIeld and NaCl are similarly limited—PittSFIeld only supports

gcc-produced assembly code and NaCl requires untrusted code to be (re)compiled by their

tool chain.

SecondWrite tackles the problem of rewriting COTS binaries without debug or relocation

metadata, but it does not support formal machine-verification, has not yet been applied to
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realize complete fault isolation, and is not yet mature enough to rewrite full-scale COTS

applications (O’Sullivan et al., 2011).

Dynamic vs. static approaches have historically suffered a compatibility vs. performance

trade-off. That is, the dynamic approaches can currently handle a much larger class of

binaries than the static ones, including large-scale COTS applications, but at the expense of

significant runtime overheads, for example a 70% slowdown in Strata (Scott and Davidson,

2002). In addition, dynamic SFI systems are difficult to formally verify, and cannot be

deployed on architectures that prohibit runtime code generation or that lack the hardware-

level VM support that is often necessary to achieve reasonable performance.

In contrast, static approaches offer much lower overheads and formal, machine-checkable

proofs of safety, but currently support only a very restricted set of binary programs that

do not include most COTS applications. Therefore, Reins is the first purely static binary

SFI system capable of supporting nearly arbitrary, large-scale, COTS Windows applications

produced by mainstream compilers, including those that contain computed jumps, dynamic

linking, and event-driven OS callbacks.

System-level Approaches: There are also many system-level approaches, such as Janus

(Wagner, 1999), SysTrace (Provos, 2003), and Ostia (Garfinkel et al., 2004). These use

system call interposition to enforce policies that prevent abuse of the system API.

Unlike binary rewriting approaches, system-level approaches are transparent to the binary

code. However, they cannot block attacks of one module upon another within the same

address space, they cannot be deployed as a service (because the full implementation must

reside on the client machine), and they can introduce compatibility problems, such as

incorrect replication of OS semantics (Garfinkel, 2003).
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8.8 Security Through Artificial Diversity

Cohen was first to describe software diversity as a defense mechanism (Cohen, 1993). Forrest

subsequently demonstrated stack-layout randomization as a defense against stack smash-

ing (Forrest et al., 1997). The subsequent work on artificial diversity is extensive, and is

explained in-depth by systematization works (e.g., (Larsen et al., 2014)).

Randomization has emerged as a popular strategy to increase the diversity of software

and has been widely instantiated in existing works, such as ASLR (PaX Team, 2003; Bhatkar

et al., 2003, 2005), instruction set randomization (ISR) (Barrantes et al., 2003), data ran-

domization (Cowan et al., 2003; Cadar et al., 2008; Bhatkar and Sekar, 2008), OS interface

randomization (Chew and Song, 2002), and multi-variant systems (Cox et al., 2006; Bruschi

et al., 2007; Salamat et al., 2009).

Address Space Layout Randomization: ASLR is a practical technique that has been

adopted by many modern OSes such as Windows and Linux. The goal of ASLR is to obscure

the location of code and data objects that are resident in memory, including the addresses

of the program stack, heap, and shared library code (PaX Team, 2003; Bhatkar et al., 2003;

Xu et al., 2003; Bhatkar et al., 2005). ASLR is currently implemented through modifying

the OS kernel (PaX Team, 2003), system loader (Xu et al., 2003), and application source or

binary code (Bhatkar et al., 2003, 2005). However, all of these approaches require source code

information (e.g., debug symbols or relocation data) in order to randomize the instruction

addresses of most main modules. This motivates our work, which extends instruction address

randomization to the majority of legacy main modules that lack such information.

In addition, existing source-agnostic ASLR approaches are limited to randomizations

of relatively low granularity, leaving them vulnerable to derandomization attacks that can

succeed even when the address space is large (Roglia et al., 2009). For example, ASLR can

relocate and reorder some sections as wholes, but not the relative positions of the binary
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features within the sections. This leaves them vulnerable to attacks that reliably infer the

relative positions of vulnerable code features irrespective of the size of the address space. In

contrast, STIR (see Chapter 6) randomizes the relative positions of such features, defeating

such attacks.

Instruction Set Randomization: ISR is an approach to prevent code injection attacks

by randomizing the underlying system instructions (Barrantes et al., 2003; Kc et al., 2003).

In this approach, instructions are encrypted with a set of random keys and then decrypted

before being fetched and executed by the CPU. ISR is effective for preventing code injections

but cannot prevent ROP attacks. The technique is also hard to deploy in practice, requiring

encryption of any supported software.

Data Randomization: As a dual to ISR, program data can also be encrypted and de-

crypted. PointGuard (Cowan et al., 2003) encrypts all pointers while they reside in memory

and decrypts them only before they are loaded into CPU registers. Recent work has presented

a new data randomization technique that provides probabilistic protection against memory

exploits by XORing data with random masks (Cadar et al., 2008; Bhatkar and Sekar, 2008).

DSR can help to prevent ROP attacks by decrypting attacker-injected code pointers to

random addresses. However, data randomization requires recompilation of programs, which

hinders its practicality.

OS Interface Randomization: System call mappings, global library entry points, and

stack placement can all be randomized to mitigate buffer overflow attacks by increasing the

heterogeneity of computer systems (Chew and Song, 2002). Similarly, RandSys (Jiang et al.,

2007) combines ASLR and ISR to randomize the system service interface when loading a

program, and de-randomizes the instrumented interface for the correct execution at runtime.

Similar to ISR, OS interface randomization cannot prevent ROP attacks in which all the

attack code is drawn from the existing content of the victim address space.
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Multi-variant Systems: Our work is also related to N-variant systems (Cox et al., 2006;

Bruschi et al., 2007; Salamat et al., 2009), which likewise leverage diversification to improve

security. N-variant is an architectural framework that employs a set of automatically di-

versified variants to execute a common task. Any divergence among the outputs raises an

alarm and can hence detect the attack. DieHard (Berger and Zorn, 2006) is a simplified

multi-variant framework that uses heap object randomization to make the variants generate

different outputs in case of error or attack. Exterminator (Novark et al., 2007) extends this

idea to derive runtime patches and automatically fix program bugs. Multi-variant systems

frustrate ROP attacks by forcing the attacker to simultaneously subvert all the running

variants, but require source code information in order to successfully apply comprehensive,

semantics-preserving diversification of large applications.

Randomization and implementation-aware attacks: The work most closely related

to O-CFI (see Chapter 7) is the concurrently developed Oxymoron system (Backes and

Nürnberger, 2014). Oxymoron uses a pure code-randomization approach to resist JIT-ROP

attacks. By generating code that does not contain any direct references to other code pages,

it impedes the JIT-ROP attack step that recursively infers new code page addresses by

disassembling leaked code pages. Instead of direct code references, inter-page references use

an indirection table similar to our BLT, whose base address is stored in an x86 segment

register to protect it from accidental disclosure.

However, Oxymoron allows raw code addresses to flow into registers, into the heap,

and onto the stack (e.g., as return addresses pushed by call instructions). As a result, it

is vulnerable to buffer over-read attacks that disclose the stack contents (Strackx et al.,

2009), which can hold a wealth of raw return addresses and function pointers, each of which

potentially reveals a 4K page of gadgets for attackers to abuse. In contrast, we pessimistically

assume that many or all code addresses will eventually leak to attackers (because they are
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stored in too many places). Instead, O-CFI conceals the control-flow policy graph, whose

details can be much more easily protected from disclosure.

Giuffrida et al. (2012) present a comprehensive compiler-based software diversification

approach that allows live re-randomization. With this approach, programs are distributed

as pre-linked LLVM bitcode and native machine code. To randomize a running process, the

host compiles a new program variant using the bitcode which includes meta-data to allow

state migration from the old to the new process. A dedicated randomization manager uses

this meta-data to transfer the state from the old process to its newly created counterpart.

The resulting overheads depend on the re-randomization frequency. Snow et al. (2013) report

that JIT-ROP attacks can run in as little as 2.3 seconds. Re-randomizing every two seconds,

however, adds an overhead of about 20%.

8.9 ROP Defenses

In addition to diversification defenses, there are other techniques that specifically target

ROP attacks. DROP (Chen et al., 2009) instruments program binary code and monitors the

frequency of return instructions, which tend to rise during ROP attacks that rely heavily

upon stack pointers to hijack control-flows. While DROP has been shown to be effective for

ROP shell code detection, it suffers up to 5× performance overhead on average.

ROPdefender (Davi et al., 2011) is another binary instrumentation-based technique,

which duplicates return addresses on a shadow stack and further evaluates each return

instruction during program execution to detect mismatched calls and returns. ROPdefender

is quite effective, and unlike DROP it only introduces 2× performance overhead. Other

defenses, such as return-less kernels (Li et al., 2010) and gadget-less binaries (Onarlioglu

et al., 2010), eliminate return instructions during compilation.

There are also two compiler-based approaches to defeating ROP attacks. G-Free (Onarli-

oglu et al., 2010) removes gadgets from program binaries at compile time by eliminating all
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unaligned free-branch instructions and protecting the remaining aligned free-branch instruc-

tions. The other compiler approach generates return-less code by removing the ret opcode

to prevent gadget formation (Li et al., 2010).

Most recently, IPR (Pappas et al., 2012) and ILR (Hiser et al., 2012) have been proposed

to alleviate the problem of ROP attacks. IPR uses in-place code randomization and instruc-

tion replacement to eliminate gadgets. Since its transformations are strictly in-place, it can

only eliminate gadgets for which a semantics-preserving, size-invariant code transformation

can be found. On average, 77% of gadgets meet this requirement, and can therefore be

eliminated or broken by the technique. However, with large binaries that contain more than

100K gadgets, this is not enough to ensure secure execution. Also, IPR is difficult to deploy

since each randomized application copy must be separately distributed.

ILR adopts a highly dynamic approach that first statically randomizes most instruction

addresses and then dynamically guides control-flows through the randomized layout at

runtime using a VM equipped with a fall-through map. However, like IPR, it is unable to

move all instructions (mainly due to indirect branches), and therefore consistently preserves

the locations of some gadgets. In addition, its dependence on a VM inevitably leads to

higher performance overheads than purely static approaches.

STIR and O-CFI are orthogonal and complementary to these techniques in that they can

be transparently applied to legacy code without code-producer cooperation.



CHAPTER 9

CONCLUSIONS

This dissertation presented a two-fold method to advance software defenses to better combat

future threats. First, it drew attention to the inability of current defenses to scale up to

next-generation malware obfuscations by presenting two obfuscation techniques in Part I

that bypass today’s malware detection tools. Chapter 3 programmatically exploits the

Microsoft Windows antivirus interface as a side-channel to infer a machine learning model

that accurately predicts defense classification decisions. This model is then used to make

directed changes to a malware to ensure it is classified as benign by the tool. Frankenstein,

described in Chapter 4, constructs malware entirely out of code sequences harvested from

benign binaries—ensuring that a feature-based classifier cannot reliably detect it without

also flagging the benign donor binaries as malicious.

Second, Part II presented three new defenses that can be used to secure binaries against

both current and future threats. All defenses are capable of protecting binaries without

access to source code or debug symbols, and are thus compatible with both legacy and

commercial-off-the-shelf (COTS) applications. Chapter 5 introduced Reins, which rewrites

binaries using an approach similar to PittSFIeld to provide Software Fault Isolation (SFI).

This is leveraged to in-line guard instructions that constrain runtime behavior by monitoring

API calls. Reins comes with a policy language and policy synthesis engine that allows end-

users to specify custom API-based security policies for rewritten binaries. Reins also comes

with a separate verifier consisting of just 1500 lines of OCaml code, allowing Reins itself to

be placed outside of the trusted computing base. All this is achiveable with an overhead of

only 2.5% for rewritten binaries.

167
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Chapter 6 presented STIR, a mechanism to secure both Windows and Linux binaries

against ROP attacks. STIR introduces the concept of fine-grained randomization, rewriting

binaries so that the order of their basic-blocks is randomized on each execution. Binaries

secured with STIR only incur an overhead of 1.4%, making it extremely efficient in practice.

Opaque CFI (O-CFI) was presented in Chapter 7. O-CFI uses a combination of fine-

grained randomization and control-flow integrity to bound where indirect branches are

allowed to jump. The allowed range for each branch is minimized using a combination

of target clustering and nexuses, providing a high degree of probabilistic protection against

implementation-aware attacks such as JIT-ROP and BROP. By implementing the bounds

as ranges rather than discrete values, O-CFI is able to guard branches efficiently, inducing

less than 5% overhead overall.

Computer security has never been a fixed battlefield. It evolves constantly as defenders

and attackers constantly vie to outdo each other. However, even a dynamic environment

such as this is marked by periods of significant change—where one side must adapt quickly

or risk major losses. We believe that we are currently in the midst of such a period. For

confirmation, one need only consider the number of security breaches occurring in companies

worldwide on a weekly basis, or the recurrent unearthing of new activist-targeting malware,

or the ongoing revelations about state-funded weaponized software.

Better fundamental techniques for safeguarding software are prerequisites for solving this

crisis. Defensive tools must move away from their current reliance on structural information

for their classification decisions and embrace a more semantics-aware approach that promises

to be more resilient to next-generation malware threats and zero-days alike.
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