2017 |EEE International Conference on Big Data (BIGDATA)

Unsupervised Deep Embedding for Novel Class Detection over Data Stream

Ahmad M. Mustafa, Gbadebo Ayoade, Khaled Al-Naami,
Latifur Khan, Kevin W. Hamlen, Bhavani Thuraisingham

Department of Computer Science
The University of Texas at Dallas
Richardson, Texas 75080

Frederico Araujo
IBM Research
Thomas J. Watson Research Center
Yorktown Heights, NY 10598
frederico.araujo @ibm.com

{ahmad.mustafa, gbadebo.ayoade, khaled.al-naami,
lkhan, hamlen, bhavani.thuraisingham} @utdallas.edu

Abstract—Data streams are continuous flows of data points.
Novel class detection is an important part of data stream
mining. A novel class is a newly emerged class that has
not previously been modeled by the classifier over the input
stream. This paper proposes deep embedding for novel class
detection—a novel approach that combines feature learning
using denoising autoencoding with novel class detection. A
denoising autoencoder is a neural network with hidden layers
aiming to reconstruct the input vector from a corrupted version.
A nonparametric multidimensional change point detection
approach is also proposed, to detect concept-drift (the change
of data feature values over time). Experiments on several real
datasets show that the approach significantly improves the
performance of novel class detection.

Keywords-Stream Mining; Novel Class Detection; Concept-
drift; Deep Learning

I. INTRODUCTION

Data stream classification has been a major research thrust
for the past several years because of increasing demand
in many business and security applications, such as credit
card transaction monitoring, online blog or micro-blog (e.g.,
twitter message) categorization, and evolving malicious code
detection. Traditional batch classification techniques are not
applicable to data stream classification problems because of
the evolving nature of the data. Data streams are continuous
flows of data. Typical examples of data streams include
network traffic, sensor data, and call center records, among
others. Their sheer volume and throughput speed pose a great
challenge for the data mining community to extract useful
knowledge from such streams.

Data streams induce several unique properties when
compared with traditional datasets, such as infinite length,
concept-drift, and concept-evolution. Concept-drift occurs in
data streams when the underlying concept of data changes
over time [1], [2]. Concept-evolution occurs when new classes
emerge in the data stream [3]. Multi-step techniques and
multi-scan algorithms that are suitable for typical knowledge
discovery and data mining cannot be readily applied to data
streams due to well-known limitations [4], such as unbounded
memory to handle infinite length, online data processing to

978-1-5386-2715-0/17/$31.00 ©2017 |EEE 1830

handle concept-drift, and the need for one-pass techniques
(i.e., forgotten raw data).

Stream classification falls into three categories: single
model, ensemble classification, and hybrid. Single model
classification techniques maintain and incrementally update
the single classification model and effectively respond to
concept-drift [5]. In ensemble based techniques, a collection
of classification models are maintained, and over time some
outdated classification models are replaced by new models [3].
Hybrid methods combine the strength of single and ensemble
models [6]. Current state-of-the-art techniques suffer from a
high number of misclassifications, such as missing novel class
instances (false negatives) or incorrectly identifying existing
classses as novel (false positives).

Concept-drift refers to the change of data feature values
over time. To prevent significant performance degradation
due to concept-drift, the classification model needs continual
updating and maintenance via retraining. However, given that
model updating is time consuming and requires labeled data,
which is usually scarce, determining appropriate retraining
frequencies becomes critical. A naive approach is to retrain
the classifier periodically [4]. However, this strategy results
in unnecessary updates and missed drifts, which can degrade
performance. Such limitations can be avoided by retraining
only when the distribution of the data changes [7]. Toward
this end, change point detection (CPD) techniques can be
applied to observe and detect distributional changes.

CPD can also be applied to partition the data stream.
The state-of-the-art stream classification techniques divide
data streams in equal sizes (i.e., fixed size) [8], [1]. These
approaches fail to capture concept-drift and concept-evolution
immediately. Moreover, if the data chunk is too small, such
techniques can engender models of poor quality (few training
data points) and/or additional computational overhead to
update the ensemble. Conversely, for large chunk sizes, these
approaches must wait much longer to build the next classifier.
As a result, the ensemble is updated less frequently than
desired, meaning the ensemble remains outdated for a longer
period of time. This ultimately causes increased error rates.

To overcome these disadvantages, our approach monitors

data streams to determine the chunk size dynamically by
promptly tracking distributional changes. Most of the CPD
algorithms assume that distributions of data before and after
the change are known [9], [10]. However, in practice, this
assumption may not always hold. If the distributions of data
before and after are unknown entirely, these approaches are
not applicable. For this specific case, methods have been
developed for detecting change points nonparametrically over
single-dimensional data [11], [12]. If data is multidimensional,
these approaches detect changes after reducing the number
dimensions (e.g., using PCA in [13]). In contrast, our proposed
CPD approach can be scaled over multidimensional data
without reducing dimensionality. Moreover, since it is a
nonparametric approach, we do not assume a particular data
distribution—it can detect change points regardless of the
distribution of the data. In addition, current state-of-the-art
CPD techniques [7], [14] require the availability of class labels
for some or all data points. Our proposed CPD technique is
unsupervised and does not require class labels.

In addition to CPD, both clustering and outlier detection
are essential parts of our novel class detection. Studies have
shown that using deep learning techniques in classification,
clustering and outlier detection have significantly outperformed
conventional methods [15], [16], [17]. Motivated by such
successes, we investigate the application of deep learning
methods to novel class detection. In particular, we employ
autoencoders for feature learning. Several papers have
proposed outlier detection methods using autoencoders [17],
[18]. Prior work has also shown that autoencoders can obtain
stable and effective clustering [19], [16]. The aforementioned
approaches have proved the effectiveness of autoencoders
in both clustering and outlier detection. However, previous
approaches have not used deep learning techniques in the
context of novel class detection over stream data.

Denoising Autoencoders (DAEs) have been used in several
studies for their ability to extract abstract features that can
outperform the original input feature representation when used
in classification or other tasks [20], [15]. A DAE is a type
of neural network with hidden layers aiming to reconstruct
the input vector from a corrupted version with minimum
error. It is an unsupervised learning method. When designed
with multiple hidden layers, DAEs can learn deep abstract
features. In this paper, we propose to combine learning deep
features using DAEs with novel class detection enhanced with
nonparametric, multidimensional CPD.

Our contributions can be summarized as follows: First, to the
best of our knowledge, this is the first study to combine deep
learning with novel class detection in stream data. Second,
we introduce a nonparametric multidimensional change point
detection to detect concept-drift. Third, our proposed approach
enriches traditional classification models with a novel class
detection mechanism and unsupervised deep learning method,
combining the strength of these techniques. Finally, we apply
our technique on both synthetic and real-world data and obtain

1831

much better results than state-of-the-art stream classification
algorithms.

The rest of the paper is organized as follows. Section II gives
an overview on DAEs. Sections III and IV provide the details
of our approach and Section V discusses baseline approaches.
Section VI then describes the datasets and experimental
evaluation of our technique. Discussions about our approach
are provided in Section VII. Section VIII presents related
work. Finally, Section IX concludes with directions to future
works.

II. BACKGROUND: DENOISING AUTOENCODER (DAE)

An autoencoder consists of two functions: encoder f and
decoder g. The encoding function f(z) = o(Wxz+b) encodes
input 2 € R? to a hidden representation z € R”. Function
a(s) = (1 + exp(s))~! is the sigmoid, W is the weight
matrix, and b is the bias. Multiple hidden layers can be
added to incorporate deeper features. Let d be the number of
dimensions of the input vector x, and let p < d be the number
of dimensions of the deepest hidden layer. The decoding
function g(z) = o(W72+b) decodes z to 2. Autoencoders
aim to minimize the reconstruction error. We use cross entropy
as the cost function of the reconstruction error:

d
L(z,2')=— ka log(x},) + (1 — xx) log(1 — z},)
k=1

which can be minimized by gradient descent.

DAE:s are autoencoders trained to reconstruct a clean input
from a corrupted version [15]. To create a corrupted version
Z of x, we use the additive Gaussian noise corrupting
method [21]. This method adds a random value v to each
feature in x, in which Zy = xy + vg, where k = [1...d]
and v, ~ N(0,02). Encoder f encodes input Z to z. The
decoder function g decodes z to x’ while minimizing the
error of reconstructing the original (clean) input x.

III. NOVEL CLASS DETECTION

This section describes our approach to detect novel class
data points and classify points that belong to existing classes.

A novel class is a new class that has not been modeled by
the classifier. Before describing our novel class detector, we
give an informal definition of the data stream classification
problem. We assume that a data stream is a continuous flow
of data D = x4,...,x,, where x; is the ith instance (i.e.,
data point) in the stream. Assuming that the class labels of
all the instances in D are unknown, the problem is to predict
their class labels. Let y; and ¢; be the actual and predicted
class labels of x;, respectively. If §; = y;, then the prediction
is correct; otherwise it is incorrect. The goal is to minimize
the prediction error. The predicted class labels are then used
for various purposes depending on the application.

We maintain an ensemble of multiple classification models.
An unlabeled instance is classified by taking a majority vote
among the classifiers in the ensemble. Concept-drift is handled

Ensemble Creating/Updating

‘ Model Training

Purity-based

urity-base Create | Add model
Deep seudopoints| | to ensemble

Clustering P !

Data Stream Classification

" . Measure .
Outlier Filtered X Cohesive
X . Cohesion and) Novel Class
Detection | Outliers N Outliers
Separation
T

Cohesion < threshold

Multi-class
Normal Points Existing Class —Classify- Ensemble H
Classification

Monitloring Distributional Changes

r Training Data Ensemble

Extract
Deep
Features

Data Stream

Training a .
new model Change Point
Detection -
Predictions|
Use Predicted | C>t
Labels If Change is Confidence CaIFuIate
Detected values Confidences |+~
Get True Ce<rt ©
Labels
Figure 1. Our Approach for Novel Class Detection

by continuously updating the ensemble so that it represents the
most recent concept in the stream. The update is performed
as follows: As soon as a distributional change is detected, a
new model is trained and it replaces the oldest existing model
in the ensemble.

Our approach provides a solution to the concept-evolution
problem by enriching each classifier in the ensemble with a
novel class detector. If all of the classifiers discover a novel
class, then arrival of a novel class is declared, and potential
novel class instances are separated and classified as members
of the novel classes. Thus, a novel class can be automatically
identified without manual intervention.

The main concern with data stream classification is building
the classification model and keeping it up-to-date by frequently
updating the model with the most recent labeled data. Several
ensemble-based methods address this concern [4], [7]. We
present our ensemble-based novel class detection method
below, in which each classifier in the ensemble integrates
multi-class classification with outlier detection.

Overview. Our approach combines several techniques to
detect novel class instances, as illustrated in Figure 1. The
first n;,;: instances of the stream are used to build an initial
ensemble and to train a DAE to extract deep abstract features.
These instances are labeled. We apply purity-based (or semi-
supervised) deep clustering to cluster these instances (see
Figure 1). This clustering method uses deep abstract features
extracted using the DAE. It aims to minimize both intra-cluster
dispersion and cluster impurity. We keep a summary of the
boundaries of each resultant cluster, called a pseudopoint. It
consists of centroid, radius, and class frequencies. We use
pseudopoints as models for both classification and outlier
detection. When an instance is outside the boundaries of all
pseudopoints it is labeled as an outlier.

Pseudopoints can be used for classification of existing
classes. When an instance « is inside a pseudopoint, x takes the

1832

label of the most frequent class in the pseudopoint. Multiple
chunks of instances create multiple models. An ensemble
combines the results of these models. These models are
replaced with new ones once changes in data distribution are
detected.

During the classification of new unlabeled instances (the
data stream in Figure 1), we use the ensemble to detect
outliers. If all models in the ensemble declare an instance
x an outlier, we call x a filtered outlier. Next, a silhouette
coefficient measures the cohesion and separation of the filtered
outliers. Instances that are not detected as outliers or have
a silhouette coefficient less than a specified threshold are
considered members of an existing class and classified using
the ensemble (i.e., using the most frequent class of the nearest
pseudopoint). We then calculate the confidence C of each
classification.

While we classify new data points, a nonparametric multidi-
mensional change point detection procedure keeps monitoring
the incoming data. Once a change in the distribution of the
data is detected, a set of new training data is formed using
the recently classified instances to build a new model. This
set of new training instances is labeled using two ways. The
instances with low confidence values are labeled using their
true labels. High confidence instances, on the other hand, are
labeled using predicted labels. This labeling process reduces
the dependency on human annotation because the use of the
predicted labels minimizes the amount of true labeling, which
requires human effort. The newly built model replaces the
oldest one in the ensemble.

The rest of this section details the approach.

Ensemble Creation. We build an ensemble of classifiers with
the first n;,;; labeled data points, and we keep updating the
classifiers with the new data. Each classifier in the ensemble
uses a k-NN type classification model. A naive approach
to build such a model is to store all the training data in
memory. However, this is inefficient and does not scale to
real operating environments. To optimize space utilization
and time performance, our approach uses a semi-supervised
(purity-based) clustering technique based on Expectation
Maximization (E-M) [4], which minimizes both intra-cluster
dispersion and cluster impurity, and caches a summary of each
cluster (centroid and frequencies of data points belonging to
each class), discarding the raw data points. We call a cluster’s
summary a pseudopoint.

We cluster data using their deep abstract features learned
from the original data features using the DAE.

Deep Feature Extraction using the DAE. To extract deep
features, we compute DAE weights (W and b) from the
original input features by training the DAE with the instances
of the first n;,;; data. We keep the learned W and b to
transform the feature values of the rest of stream instances,
and denote the transformation of the features of instance
r€RYt02€RP as 2= o(Wz +b).

Note that we learn the weights (I and b) using the first
few chunks and we do not update them during the stream,
because updating DAE weights requires performing more
time-consuming back propagation. This makes our approach
faster, especially since the number of transformed features is
significantly less than the original. The ensemble models and
all our techniques use data points in deep feature dimensional
space.

QOutlier Detection using Pseudopoints. Figure 2 illustrates
pseudopoints of one model in the ensemble. The axes represent
features. There are 4 groups of pseudopoints (A, B, C, and
D). Each pseudopoint is labeled based on the most frequent
class label. The pseudopoints of groups A and B are labeled
negative because most of the labeled instances located inside
its boundaries (i.e., during clustering) are negative. Similarly,
the pseudopoints of groups C and D are labeled positive.
When a new unlabeled test instance emerges, the ensemble
is used to classify the instance. A classifier labels the instance
based on whether it is inside or outside the decision boundaries
of the pseudopoints. For example, in Figure 2, X* is located
inside the boundaries of a pseudopoint, unlike X7. We therefore
call X7 a raw outlier (or Routlier). If all classifiers of the
ensemble label an instance a Routlier, we identify the instance
as a filtered outlier (or Foutlier) (see Figure 3). If the test
instance is identified as a Foutlier, it is temporarily stored
in a buffer buf for further inspection. Otherwise, if it is not
Foutlier, it is classified as one of the existing classes using
k-NN (i.e., the most frequent class of the nearest pseudopoint).

Detecting a Novel Class. The buffer buf is periodically
checked to see whether a novel class has appeared. The
central concept of our novel class detection technique is that
the data points belonging to a common class should be closer
to each other (cohesion) and should be far apart from the
data points belonging to other classes (separation). When buf
is examined for novel classes, we look for strong cohesion
among the outliers in buf, and large separation between the
outliers and ensemble’s pseudopoints. If such strong cohesion
and separation is found, we declare a novel class. We estimate
the g-Neighborhood Silhouette Coefficient, or ¢-NSC [3].
This is defined based on the ¢, c-neighborhood of a Foutlier
z (g, ¢(x) in short), which is the set of ¢ instances from class
c that are nearest to x. Parameter ¢ is user defined.

Let D.,, ,(z) be the mean distance of a Foutlier x to
its g-nearest Foutlier neighbors. Also, let D, ,(x) be the
mean distance from z to ¢,c(x), and let D, ,(z) be the
minimum among all D ,(x) for existing classes c. In other
words, ¢, cnin 1S the nearest existing class neighborhood of
x. Then ¢-NSC [8] of x is given by:

D, (z) = D q(2)
q-NSC(I) — mimq Couts (1)
max(De,,;,q(2); Deyyig())
@-NSC considers both cohesion and separation, and yields a
value between —1 and +1. A positive value of g-NSC indicates

1833

o4 X
E%D § C

Feature 1
Figure 2. An example of a classifier in the ensemble. The circles represent
the pseudopoints.

Testing instance X

")
@j Routlier True
@_Routliera AND
H Routlier
(:)l False

!Ensemble of L modelsi
[

X is Foutlier

X is an existing
class instance

Figure 3. Using the ensemble to detect and filter outliers

that the Foutliers are closer to other Foutlier instances stored
in the buffer (more cohesion), and farther away from the
instances from existing classes (more separation). The g-
NSC(x) value of an Foutlier x must be computed separately
for each classifier M; in ensemble M. we declare emergence
of a novel class if we find at least ¢’ > g Foutliers having a
positive g-NSC score for all the classifiers M; € M.

Ensemble Updating. We update the ensemble models when
a change in the distribution of the data points is detected.
During the classification of any instance z, we estimate the
confidence of each individual model M; € M by calculating
two measurements: association A; and purity P;.

o A; = R(hip) — Djp(x), where R(h;p) is the radius of
the pth pseudopoint (h;;,) in model M;, assuming hy, is
the nearest pseudopoint to instance x, and D;,(x) is the
distance between x and the center of h;p.

« P, = W’ where |£;,] is the sum of all frequencies
in hp, and |Lip(cm)| is the frequency of the most
frequent class (cy,) in hjp.

Once the true labels of instances are available, we create

a vector v; for each model M;. If M, classifies instance x
correctly, then vy = 1; otherwise vy = 0. After v;, A;, and
P; are calculated for model M; over multiple instances, we
calculate Pearson’s correlation coefficients between v; and both
A; and P, resulting in values r 4 and rp, respectively. During
classification of any instance x, we compute the confidence
CF for model M;, C¥ = AY x4 + BY * rp. Similarly, we
calculate C¥ for other models M; in the ensemble. Then the
scores are normalized and the average confidence of models
is taken (C%).

As the data stream instances are being classified, we keep
monitoring the distributional changes of the stream data.
Nonparametric Change point detection is used (Section IV).
Once a significant change is detected, we update the ensemble
by replacing the oldest model with a new one. The new model
is trained using the recently classified instances. We require
the true labels of the instances that have confidence values
less than a threshold 7. On the other hand, for instances with
confidence greater than 7 the predicted labels are used. Both
sets are then used to train a new classifier.

IV. CHANGE POINT DETECTION ALGORITHM

Change point detection (CPD) is used to detect abrupt
changes in characteristics of data at unknown time instants.
Abrupt changes arise when changes in characteristics occur
very fast with respect to the sampling period of the measure-
ments. Change point detection is particularly useful for quality
control, system monitoring, and fault detection. In this paper,
we use this technique to detect changes in distribution param-
eters of the data points. Identifying a change point triggers
training a new model to replace the oldest one in the ensemble.

Let {x;} be a sequence of data points, where z; has a
distribution F' for j < v and a distribution G otherwise. The
problem of change point detection is to discover a change
and to estimate the change point parameter v from these data.
CPD algorithms in general can be divided into two categories:
parametric and nonparametric algorithms. Parametric CPD
algorithms assume that the distribution families before and
after the change point are known beforehand. However, in
many applications, although one may know the distribution
before the change, when the process is “in control,” it is
usually impossible to know the distribution after the change,
when the process goes “out of control.” It may also be the
case that distribution families both before and after the change
point are unknown. In those cases, nonparametric change point
detection algorithms are used to detect the change point in data.

Several nonparametric change point estimation approaches
have been proposed in the literature [11]. The pre- and post-
change empirical distributions are usually compared for each
k=1,...,n, where n is the number of data points. Then the
point v that maximizes some predefined metric or measure of
diversity between these distributions is used as an estimator
of the actual change point v.

Prior work has established an efficient nonparametric
change point detection method based on log-likelihood ratio
random walk, which is mathematically proven to achieve high
accuracy [12]. It can be summarized as follows.

Let Xj ... X and Xg41 ... X, be the pre and post-change
sequence of data points, where X; is the ith element in the
data sequence. Let X1.x and X(;41):, be the histograms (of
r number of bins) modeling X; ... Xy and Xy ...X,,
respectively. For any potential change point k, let pm) be
the ratio of the number of points in bin m of X;.; to the
total number of points k. Similarly, pgﬁl):n is the ratio in

1834

bin m of X(k-l—l):n' Note that Zm p(lnlz) o

(m) _
Zm p(kikl):n =L
The log-likelihood ratio is calculated by:

(m)

(m) p<k+1>:n
Z Pkt 1)n b (m) @
pl:k

Skn— n—

We monitor changes in multidimensional data points
(X; € RP) and estimate Sk.n for each dimension separately.
In other words, for each dimension d, the data values X fdg

of dimension d are used to estimate S(d) We refer to

the dimensional S, ,, as S() . The maximum S() in each
dimension d is estimated usmg the following formula

W= max

S vie D 3
N <h<n—ry k,n ()

where v = n° is a cushion distance and 0 < € < 1. The
maximal Wff across all dimensions is calculated (W,,):

W, = max W,‘f 4)
1<d<D

We record the dimension of the maximum change:

mazrd = arg max Wff 5)
1<d<D
If W,, exceeds threshold h, defined by
h = —log(a) (6)

then change point v is declared, where « is the probability
of false alarm. A probability of o = 0.05 is commonly used
in the literature.

v = argmax S krzaxd) 7
Y<k<n—vy

The time complexity of detecting change is O(Dxnxr),
where D is the number dimensions, n is the number of
examined data points, and r is the number of bins of
estimated histogram.

This change point detection technique is suitable for
detecting distributional changes in the incoming data points.
As the incoming data points keep emerging, we transform
the data points into deep abstract feature space and store
them in a queue-type sliding window S. We invoke our CPD
algorithm to monitor instances in S. Once a change point
is detected, we train a new model with the data points in S.
However, instead of requesting true labels of all the instances,
we get true labels only for the instances with low confidence
value. Instances with high confidence are labeled using the
predicted class.

V. BASELINE APPROACHES

To evaluate the performance of our approach we compare
it to other approaches. In this section we present these
baseline approaches. The first two are considered the current
state-of-the-art.

A. ECSMiner

ECSMiner [4] is an ensemble-based novel class detection
approach that divides the data stream into equal-size chunks.
The ensemble classifies each chunk and detects novel classes.
True labels are revealed periodically. Once they are revealed,
a new model is trained using true labels. Then the new model
replaces the model with the lowest accuracy. Unlike our
approach, ECS-Miner does not exploit deep features, and
does not detect changes.

B. ECHO

ECHO [7] utilizes change point detection to detect concept-
drift. However, this change detection technique monitors the
classifier’s confidence estimates instead of the original data
stream. The assumption is that a change in the classifier’s
confidence indicates occurrence of a concept-drift. Therefore,
if there is a significant change in confidence estimates, a
concept-drift is detected and the ensemble is updated. Using
this approach requires prior knowledge of the distribution
family of monitored data (i.e., confidence values). In other
words, the user must identify the data distribution. This work
proposes a nonparametric change detection technique, which
operates on any data distribution family without the need to
specify a particular distribution.

Furthermore, ECHO detects novel classes and classifies
the data points in the original input feature space. It does not
extract deep features.

C. One-class SVM Ensemble

In this approach, we build an ensemble of one-class SVM
classifiers. One-class SVM classifier is an unsupervised
learning method. It learns the decision boundary of training
instances and is used to predict whether an instance is inside
or outside the learned boundary [3]. We train one classifier
for each class. For instance, if our training data consist of
instances of C classes, our ensemble must contain C' one-class
SVM classifiers.

During classification, once a new unlabeled instance x
emerges, we classify it using all the one-class SVM classifiers
in the ensemble, as follows:

1) If all classifiers predict x as outside the boundary, we
label it as a novel class instance.

2) If one classifier predicts = as inside the boundary, we
label z as the class of that classifier.

3) If more than one one classifier predicts = as inside the
boundary, we label x as the class of the classifier with
highest confidence.

We build our ensemble using the first n;,;+ chunks. During
the classification of the stream, once new labeled (novel
class or existing) instances emerge, we train new classifiers
(i.e., one classifier for each class of the emerged instances).
Then we add them to the ensemble without removing the old
classifiers.

1835

D. Denoising Autoencoder Ensemble

Several previous works have suggested using autoencoders
for outlier detection [17], [18]. The main idea is as follows.
By training an autoencoder with instances of a certain class
(e.g., b), we expect that the reconstruction error (£) for any
instance of the class b will be less than £ for instances from
any other classes (not b). We extend this idea to detect novel
class instances in data streams by using an ensemble of DAE:s.
Each DAE detects outliers from its perspective. The results of
the DAEs are combined to determine the class of the tested
instance and whether it is a novel class. We present this
technique and compare it with our approach.

We build an ensemble of DAEs using the instances of the
first n;,;; data points by training one DAE for each class of
the C classes in n;,;; data. As a result, our initial ensemble
contains C' DAEs, where each DAE? is trained with class
b instances. Training is done using gradient descent after
applying data corruption as described in Section II. To predict
whether an instance z is an instance of class b, we feed forward
x in DAE® and calculate the resulting reconstruction error,
which can be computed using cross-entropy (£ in Section II).
If L is less than a threshold h, we classify it as inside the
boundary of DAE?. Otherwise, it is outside (or Routlier). In our
experiments, we assume that we know the best threshold value.

If all DAEs in the ensemble classify x as Routlier, we
classify = as novel class instance. Otherwise, if at least one
DAE classifies = as inside, we classify x as the class of the
DAE with the minimum L.

The ensemble is updated by adding new DAEs to the
ensemble whenever the labels of new instances are revealed. In
our experiments we assume the labels are revealed periodically.

Notice that in this approach we use DAEs as outlier
detectors, not as feature transformers.

VI. RESULTS

We have conducted several experiments to evaluate our
approach. Our novel class detection approach (here referred
to as NovelDetector®AE) is described in Section III. We
claim that using deep abstract features extracted using DAEs
boosts the performance of detecting novel classes. We tested
NovelDetector®AF against the four other approaches described
in Section V: ECS-Miner, ECHO, OneSVM Ensemble, and
DAE Ensemble.

Datasets. Our experiments are applied to two synthetic
datasets and five real datasets of several types. Table I
summarizes the datasets. We have used MOA [14] to generate
synthetic datasets with RandomRBFGeneratorDrift, 7 classes,
70 attributes, 100,000 instances, 12 centroids, and 0.002 drift
value for dataset Synl and 0.003 for Syn2. We show results
on two security datasets: Packets and SystemCalls [22],
[23]. These two datasets are from network attacks targeting
a web server over a period of time. The goal is to detect
the novel and existing attacks. Each one of the two datasets
has about 6,000 numeric features and 28 classes (12 benign

—
254 —
20}) e—

x)_

wn 15 —

w0 — m——

© —_—

°
10 ——

5 — —

0

0 1000 2000 3000 4000 5000
Instance #

Figure 4. Distribution of class instances over time

and 16 attacks). The Packets dataset consists of packets sizes,
time, and counts [24]; and the SystemCalls dataset is system
call N-grams. We have additionally tested our approach on
Forest CoverType (Fcover) and Physical Activity Monitoring
(PAMAP2) datasets. The latter contains sensory data from
18 different physical activities. Finally, the Internet Movie
database (IMDB), which consists of textual reviews, is used
to predict the authors of the reviews (i.e., author attribution).
For all datasets, we normalized features between 0 and 1 and
treat Os and 1s in binary features as numeric. We transformed
network packets into feature vectors [25].

Table I
SUMMARY OF THE DATASETS

Dataset # Classes # Dims # Samples
Synl 7 70 100,000
Syn2 7 70 100,000
Packets 28 6,000 5,600
SystemCalls 28 6,000 5,600
Fcover 7 54 150,000
IMDB 15 1000 15,000
PAMAP2 6 53 150,000

Data Shuffling. In our experiments, novel classes appear
gradually. One or more concurrent novel classes may appear
along with existing classes. Figure 4 shows the distribution
of Packets dataset instances and their classes over time. The
X-axis represents time (or instance number) and the y-axis
records the classes of the instances. As time increases, new
instances emerge. Each instance is represented as a point
(blue). Each X indicates concurrent novel classes. For example,
the first X shows the emergence of novel classes 6 and 7.
At the same time, classes 4 and 5 are considered existing
classes. At instance number 2,700 (indicated by XX), three
concurrent novel classes emerge. Note that old classes in the
Packets dataset disappear (Figure 4), but in other datasets
like Fcover old classes do not disappear.

The Metrics. We measured the performance of the approaches
by calculating False Positive Rate (FPR%), False Negative
Rate (FNR%), and Error (ERR%). False positives are instances

1836

incorrectly classified as novel class instances. False Negatives
are novel class instances misclassified as belonging to an
existing class. ERR is the total classification error, including
multi-class misclassifications (e.g., misclassifying instance A
as B, regardless of A and B being novel or existing).

The metrics are measured as the average over all points.
More specifically, after we classify a test instance, we estimate
the accuracy. Later we use the instance in building new classifi-
cation model during training and update the existing ensemble.

Note that the first n;y,;; data points are used to initialize
the ensemble. These labeled points are not counted in the
calculation of our metrics.

NovelDetector®*® Parameters. NovelDetector®*E was

applied with deep abstract features extracted using a DAE
with two hidden layers (where the number of features in the
first hidden layer is 2/3 the original features, and in the second
is 1/3 the first hidden layer) and using additive Gaussian
noise where o = 1.1. The results are shown in Table II.

Observations. NovelDetector®*F outperforms other ap-

proaches in all metrics. FPR, FNR, and the total error are less
than 3% on all datasets. On the other hand, the performance
degrades using ECS-Miner (e.g., 34.89% FPR, 23.64% FNR,
and 49.98% ERR for SystemCalls), whereas ECHO scored
6.11% FPR, 27.5% FNR, and 30.38% ERR. Also, our approach
shows significant improvement on results of the synthetic
datasets generated with concept-drift. The performance of One-
class SVM Ensemble fluctuates depending on the dataset, but
is always less than NovelDetector®*F. We tested One-class
SVM Ensemble with and without DAE features.

Impact of varying NovelDetector®*" parameters. We

have varied the number of DAE hidden layers, number of
abstract features in the hidden layers, the cost function, and
corruption amount o2, We have observed that the cost function
significantly affects performance. For example, when using
L2 norm instead of cross entropy as a cost function, FPR
increases from 2% to 70.31%, FNR to 7.61%, and ERR
to 70.59% for the Synl dataset. The number of layers also
affects performance if we use less than two layers; using two
or more layers yields significant improvement. On the other
hand, the number of features has less performance impact
for NovelDetector® . We report the results of applying
NovelDetectorP®*F with these variations in Table III. Note
that d in the table equals the number of original features.
The accuracy of NovelDetector®*F increases when we
increase the amount of corruption in the DAE. We have
tested the impact of varying the noise amount by changing
the variance o2 of the additive Gaussian noise corrupting
method. (See Section II for more details about the corrupting
method.) We have evaluated the behavior by testing the
performance of NovelDetectorP2F with abstract features
extracted using a DAE with one hidden layer on the Synl
data. We set the number of abstract features to equal the
original features. The results are reported in Table IV. They

show that increasing the amount of noise leads to better
performance of NovelDetectorP®AE, That is, the total error,
FPR, and FNR significantly improve when using ¢ > 1.0.
For example, using o = 1.9 yields 0.01% FPR, 0.07% FNR,
and 0.02% ERR.

VII. DISCUSSION

The new abstract deep features generated using the DAE ap-
proach significantly boost the performance of novel class detec-
tion in our experiments. Moreover, the experiments show that
increasing the amount of noise significantly improves DAE ac-
curacy. This noise is randomly sampled from N(0, o2). Such
noise corrupts the original features and the decision boundaries
of the pseoudopoints (clusters). The DAE produces the weights
W and biases b, which correct this corruption. These weights
produce pseoudopoints robust to noise and drift that may occur
in the original input data (yielding better generalization). This
explains the increase in the accuracy of NovelDetectorPAF
on all the tested datasets, and mainly the synthetic data which
are generated using a random radial basis function with drift.

Since the DAE reduces the number of dimensions signif-
icantly, novel class detection becomes much faster. Note that
the DAE learns weights only one time (during the first 1,
chunks) without updating or retraining. In other words, DAE
training can be done offline as a warm up phase while building
the initial ensemble. So, DAE training time does not negatively
affect the processing time after the first n;,;; chunks.

In our experiments, the nonparametric change point
detection technique monitors the data in deep abstract feature
space. However, the user can choose to detect changes in the
original input space or can monitor other variables, such as
the distribution of the classifier’s confidence values or class
labels (if available).

The results of NovelDetector on the security datasets
demonstrate that we can successfully detect novel types
of attacks. Our work can be extended to address zero-day
attacks. Such attacks have not been modeled by the classifier.
However, our approach also identifies new benign classes.
In future work, we want to enable NovelDetector®2E to
distinguish between novel attacks and novel benign classes.

DAE

VIII. RELATED WORK

Our novel class detection technique differs from traditional
one-class novelty detection techniques [26] that can only
distinguish between normal and anomalous data. Traditional
novelty detection techniques assume that there is only
one normal class, and any instance that does not belong
to the normal class is an anomaly/novel class instance.
Therefore, they are unable to distinguish among different
types of anomaly. Our approach overcomes this limitation by
employing a multi-class framework for the novelty detection
problem, which can distinguish between different classes of
normal and anomalous behavior, and discover new emerging
classes. In addition, traditional novelty detection techniques
identify data points as outliers that deviate from the normal

1837

class. Conversely, our approach discovers whether a group
of such outliers constitutes a new class by displaying strong
cohesion. Therefore, our approach synergizes with a multi-
class classification model and a novel class detection model.

Unlike other novel class detection methods (cf., [4], [3]), our
approach does not divide data steams into fixed-size chunks,
but instead uses a sliding window. This allows our approach to
capture concept-drift immediately. Many approaches that use
a sliding window (e.g., [27]) detect changes in classification
error, and hence require true labels of classified instances
(i.e., supervised). To minimize dependency on true labeling,
ECHO [7] estimates the classifier’s confidence values in an
unsupervised way without requiring true labels. Assuming
that confidence values can capture concept-drift, ECHO
monitors the change in these values. However, the user must
have prior knowledge about the distribution family of the
confidence values. Our change detection method monitors
the distributional changes in the original data stream, so it
requires no prior knowledge about the distribution, and does
not require true labels.

Prior work [2] has proposed a method to classify multi-
stream data points. The method applies supervised and unsu-
pervised change point detection techniques. The supervised
technique is used for labeled streams by monitoring changes
in the labels. On the other hand, the unsupervised one is
used for unlabeled streams by monitoring changes in the
distribution of classifier confidence values (as in ECHO).
Novel class detection is not addressed in this prior work.

None of previous approaches have considered deep learning
in novel class detection over data streams. However, several
papers have proposed feature learning with autoencoders to
perform different tasks in various domains. In image process-
ing, higher level representations learned by stacked DAEs help
boost the performance of SVMs [15]. Adaptive DAEs for unsu-
pervised domains have also been proposed [28]. Recursive au-
toencoders have been leveraged to generate vector space repre-
sentations for variable-sized phrases [29]. Prior work [17], [18]
has proposed outlier detection methods using autoencoders
(but not for novel class detection). Combining autoencoders
with clustering has been shown to outperform typical clustering
methods [19], [16]. Marginalized DAEs [21] marginalize out
corruption during training with fewer training epochs.

In our approach, we propose to use DAEs rather than other
types of autoencoders because of their ability to generate
robust features for clustering and novel class detection in
data streams, where outliers, noise, and drifts are challenges.
DAEs work well in such environments [30].

IX. CONCLUSION
In this paper we presented a novel class detection ap-
proach that combines deep learning, outlier detection, and
ensemble-based classification techniques. We also presented a
multidimensional nonparametric change point detection. Our
approach outperforms current state-of-the-art methods.

Table II
SUMMARY RESULT ON ALL DATASETS

Metric Novel Class Detector Synl Syn2 Packets SystemCalls Fcover PAMAP2 IMDB
FPR % NovelDetectorPAE 2.01 2.01 1.01 1.01 1.82 1.01 0.01
ECS-Miner 71.04 71.63 26.66 34.89 4.64 18.01 0.01
ECHO 14.90 15.21 0.01 6.11 2.83 4.97 0.01
OneSVM (DAE) 5.17 4.09 85.61 71.50 7.16 88.50 79.99
OneSVM (Original) 70.16 46.05 31.88 45.14 30.74 91.62 46.97
DAE Ensemble 65.74 38.24 26.31 48.33 28.16 99.01 34.91
FNR % NovelDetectorPAE 2.01 2.34 1.52 1.30 1.05 0.02 1.01
ECS-Miner 2.03 17.43 25.09 23.64 4.38 0.05 29.14
ECHO 44.27 21.19 91.25 27.50 7.43 0.11 33.00
OneSVM (DAE) 80.62 98.01 23.47 19.91 93.84 8.25 21.06
OneSVM (Original) 39.91 61.87 55.94 45.75 28.86 0.01 35.12
DAE Ensemble 66.31 57.14 63.29 52.13 35.12 0.64 42.26
ERR % NovelDetectorPAP 2.02 2.06 1.46 1.26 1.97 1.58 2.46
ECS-Miner 89.64 86.37 42.53 49.98 6.99 17.38 12.93
ECHO 31.19 27.49 75.52 30.38 5.09 5.37 9.78
OneSVM (DAE) 97.52 97.28 78.59 63.08 87.18 94.83 71.05
OneSVM (Original) 95.85 94.31 64.98 61.90 72.56 94.63 65.17
DAE Ensemble 95.00 92.21 69.10 62.92 68.91 98.35 61.90
Table 11T
THE IMPACT OF VARYING DAE PARAMETERS ON NOVELDETECTORPAE RESULTS
Metric Layers Dimensions Cost Synl Syn2 Packets SystemCalls Fcover PAMAP2 IMDB62
FPR % 3 (1/13)d entropy 2.03 2.01 1.01 1.01 1.01 1.01 0.01
2 (1/5)d entropy 2.01 2.01 1.01 1.01 1.82 1.01 0.01
1 d entropy 5.10 2.82 1.01 20.05 5.37 1.01 0.04
1 (2/3)d entropy 7.16 2.57 1.01 21.88 5.38 1.01 0.04
1 (1/3)d entropy 3.23 2.51 1.01 19.59 3.30 1.01 0.01
1 d L2 70.31 43.25 34.13 26.09 6.54 5.88 0.13
FNR % 3 (1/13)d entropy 2.01 2.01 1.52 1.33 1.04 0.04 1.01
2 (1/5)d entropy 2.01 2.34 1.52 1.30 1.05 0.02 1.01
1 d entropy 2.07 20.17 16.77 8.11 1.61 0.04 1.25
1 (2/3)d entropy 6.92 2.31 16.27 8.90 1.01 0.02 1.27
1 (1/3)d entropy 2.03 2.03 17.01 4.48 1.02 0.01 1.10
1 d L2 7.61 52.54 17.48 22.69 3.16 0.05 32.14
ERR % 3 (1/13)d entropy 2.06 2.03 1.46 1.28 1.06 1.61 2.5
2 (1/5)d entropy 2.02 2.06 1.46 1.26 1.97 1.58 2.46
1 d entropy 6.01 4.17 5.23 22.72 5.40 1.12 1.17
1 (2/3)d entropy 8.56 3.00 5.21 20.81 5.33 1.10 1.18
1 (1/3)d entropy 3.92 2.73 5.32 16.11 3.13 1.01 1.04
1 d L2 70.59 48.04 41.02 44.74 7.45 5.87 14.93
Table IV
THE IMPACT OF VARIANCE 02 IN ADDITIVE GAUSSIAN NOISE WHEN ACKNOWLEDGMENTS

APPLYING NOVELDETECTORPAE ON SYN1 DATA

02 FPR% FNR% ERR%
0.05 92.30 2.13 93.15
0.1 86.58 8.80 90.30
0.3 70.13 40.66 71.71
0.5 18.51 41.09 22.70
0.7 9.75 41.62 12.29
0.9 6.63 41.78 9.42
1.1 5.1 2.07 6.01
1.3 2.5 2.03 3.01
1.9 0.01 0.07 0.02
2.9 0.01 0.07 0.01
4.9 0.01 0.07 0.01
5.9 0.01 0.07 0.01

In the future we would like to investigate efficient ways to
update DAE weights incrementally and to extend our work
to detect zero-day attacks.

Funding for this work came from the National Science
Foundation under Grant Numbers SBE-SMA-1539302, DMS-
1737978 and the Air Force Office of Scientific Research under

Award No. FA9550-14-1-0173.

[1] C. C. Aggarwal and P. S. Yu, “On classification of high-
cardinality data streams,” in Proc. SIAM Int. Conf. Data Mining
(SDM), 2010, pp. 802-813.

REFERENCES

[2] S. Chandra, A. Haque, L. Khan, and C. Aggarwal, “An adaptive
framework for multistream classification,” in Proc. 25th ACM
Int. Conf. Information and Knowledge Management (CIKM),
2016, pp. 1181-1190.

1838

(3]

(4]

[5

—

[6

—_

[7

—

(8]

(91

(10]

(11]

[12]

(13]

[14]

[15]

[16]

T. Al-Khateeb, M. M. Masud, K. Al-Naami, S. E. Seker, A. M.
Mustafa, L. Khan, Z. Trabelsi, C. C. Aggarwal, and J. Han,
“Recurring and novel class detection using class-based ensemble
for evolving data stream,” IEEE Trans. Knowledge and Data
Engineering (TKDE), vol. 28, no. 10, pp. 2752-2764, 2016.

M. M. Masud, T. M. Al-Khateeb, L. Khan, C. Aggarwal, J. Gao,
J. Han, and B. Thuraisingham, “Detecting recurring and novel
classes in concept-drifting data streams,” in Proc. 11th IEEE
Int. Conf. Data Mining (ICDM), 2011, pp. 1176-1181.

Y. Yang, X. Wu, and X. Zhu, “Combining proactive and reactive
predictions for data streams,” in Proc. 11th ACM SIGKDD Int.
Conf. Knowledge Discovery in Data Mining (KDD), 2005, pp.
710-715.

D. Brzezinski and J. Stefanowski, “Combining block-based and
online methods in learning ensembles from concept drifting
data streams,” Information Sciences, vol. 265, pp. 50-67, 2014.

A. Haque, L. Khan, and M. Baron, “SAND: Semi-supervised
adaptive novel class detection and classification over data
stream,” in Proc. 13th AAAI Conf. Artificial Intelligence, 2016,
pp. 1652-1658.

M. M. Masud, J. Gao, L. Khan, J. Han, and B. M. Thurais-
ingham, “Classification and novel class detection in concept-
drifting data streams under time constraints,” IEEE Trans.
Knowledge and Data Engineering (TKDE), vol. 23, no. 6, pp.
859-874, 2011.

M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes:
Theory and Application. Englewood Cliffs, NJ: PTR Prentice-
Hall, Inc., 1993.

J. Chen and A. K. Gupta, Parametric Statistical Change Point
Analysis: With Applications to Genetics, Medicine, and Finance.
Boston, MA: Birkhiuser, 2012.

D. Ferger, “Nonparametric change-point detection based on
U-statistics,” Ph.D. dissertation, University of Giessen, Hesse,
Germany, 1991.

M. 1. Baron, “Nonparametric adaptive change point estimation
and on line detection,” Sequential Analysis, vol. 19, no. 1-2,
pp. 1-23, 2000.

A. A. Qahtan, B. Alharbi, S. Wang, and X. Zhang, “A PCA-
based change detection framework for multidimensional data
streams: Change detection in multidimensional data streams,”
in Proc. 21th ACM SIGKDD Int. Conf. Knowledge Discovery
and Data Mining (KDD), 2015, pp. 935-944.

A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA:
Massive online analysis,” J. Machine Learning Research,
vol. 11, pp. 1601-1604, 2010.

P. Vincent, H. Larochelle, 1. Lajoie, Y. Bengio, and P.-A.
Manzagol, “Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising
criterion,” J. Machine Learning Research, vol. 11, pp. 3371-
3408, 2010.

J. Xie, R. B. Girshick, and A. Farhadi, “Unsupervised deep
embedding for clustering analysis,” CoRR, vol. abs/1511.06335,
2015.

1839

(7]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

M. Sakurada and T. Yairi, “Anomaly detection using autoen-
coders with nonlinear dimensionality reduction,” in Proc. 2nd
Work. Machine Learning for Sensory Data Analysis (MLSDA),
2014.

O. Mazhelis, “One-class classifiers: A review and analysis of
suitability in the context of mobile-masquerader detection,”
South African Computer J. (SACJ), vol. 36, pp. 29-48, 2006.

C. Song, F. Liu, Y. Huang, L. Wang, and T. Tan, “Auto-encoder
based data clustering,” in Proc. 18th Iberoamerican Congress
Progress in Pattern Recognition, Image Analysis, Computer
Vision, and Applications (CIARP), 2013, pp. 117-124.

F. Weninger, S. Watanabe, Y. Tachioka, and B. Schuller, “Deep
recurrent de-noising auto-encoder and blind de-reverberation
for reverberated speech recognition,” in Proc. IEEE Int. Conf.
Acoustics, Speech and Signal Processing (ICASSP), 2014, pp.
4623-4627.

M. Chen, K. Q. Weinberger, F. Sha, and Y. Bengio, “Marginal-
ized denoising auto-encoders for nonlinear representations,”
in Proc. 31st Int. Conf. Machine Learning (ICML), 2014, pp.
1476-1484.

F. Araujo, “Engineering cyber-deceptive software,” Ph.D.
dissertation, The University of Texas at Dallas, Richardson,
Texas, 2016.

F. Araujo, K. W. Hamlen, S. Biedermann, and S. Katzenbeisser,
“From patches to honey-patches: Lightweight attacker misdi-
rection, deception, and disinformation,” in Proc. 21st ACM
Conf. Computer and Communications Security (CCS), 2014,
pp. 942-953.

K. Alnaami, G. Ayoade, A. Siddiqui, N. Ruozzi, L. Khan, and
B. Thuraisingham, “P2v: Effective website fingerprinting using
vector space representations,” in 2015 IEEE Symposium Series
on Computational Intelligence, Dec 2015, pp. 59-66.

K. Al-Naami, S. Chandra, A. M. Mustafa, L. Khan, Z. Lin,
K. W. Hamlen, and B. M. Thuraisingham, “Adaptive encrypted
traffic fingerprinting with bi-directional dependence,” in Proc.
32nd Annual Computer Security Applications Conf. (ACSAC),
2016, pp. 177-188.

M. Markou and S. Singh, “Novelty detection: A review,” Signal
Processing, vol. 83, no. 12, pp. 2481-2521, 2003.

A. Bifet and R. Gavalda, “Adaptive learning from evolving
data streams,” in Proc. 8th Int. Sym. Intelligent Data Analysis:
Advances in Intelligent Data Analysis (IDA), 2009, pp. 249-260.

J. Deng, Z. Zhang, F. Eyben, and B. Schuller, “Autoencoder-
based unsupervised domain adaptation for speech emotion
recognition,” IEEE Signal Processing Letters, vol. 21, no. 9,
pp. 1068-1072, 2014.

P. Li, Y. Liu, and M. Sun, “Recursive autoencoders for ITG-
based translation,” in Proc. Conf. Empirical Methods in Natural
Language Processing (EMNLP), 2013, pp. 567-577.

C. Xing, L. Ma, and X. Yang, “Stacked denoise autoencoder
based feature extraction and classification for hyperspectral
images,” J. Sensors, vol. 2016, 2016.

