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Abstract

This paper describes the design of a peer-to-peer net-
work that supports integrity and confidentiality labeling of
shared data. A notion of data ownership privacy is also
enforced, whereby peers can share data without revealing
which data they own. Security labels are global but the
implementation does not require a centralized label server.
The network employs a reputation-based trust management
system to assess and update data labels, and to store and
retrieve labels safely in the presence of malicious peers.
The security labeling scheme preserves the efficiency of net-
work operations; lookup cost including label retrieval is
O(log N), where N is the number of agents in the network.

1. Introduction

Ever since Napster [1] was introduced, peer-to-peer
(P2P) systems have become a ubiquitous technology for
data dissemination. Napster focused exclusively on music
exchange, but later more general-purpose systems followed,
including Gnutella [2], KaZaA [3], LimeWire [4], and many
others. Such P2P systems have enjoyed great success in
numerous application domains because they offer load bal-
ancing of computational resources, redundant storage, data
permanence, and low-cost deployment.

However, existing P2P systems offer relatively few se-
curity guarantees to users. Data shared over these networks
has low confidentiality because it might potentially be di-
vulged to any peer, and it has low integrity because peers
can lie about the content of the data they serve. For ex-
ample, malicious peers can easily propagate (low-integrity)
malicious code over today’s P2P networks by publishing it
under a misleading name. Recent studies [5, 6] have con-
cluded that at as much as 68% of all executable content in
KaZaA and 15% of all files exchanged over LimeWire con-
tain malware.

These P2P network implementations also offer only
weak privacy guarantees. Malicious peers can with low
overhead generate a list of all data served by any given peer,
and can generate a list of all peers that serve any partic-
ular item of data. These drawbacks make traditional P2P
network implementations unsuitable for venues where pri-
vacy, data confidentiality, and data integrity are important
to users.

In order to address these deficiencies, we have developed
Penny, a P2P network in which data objects are augmented
with reputations in the form of confidentiality and integrity
labels. These reputations provide peers a basis for decid-
ing whether or not to serve or download data. For example,
data with a low integrity label is more likely to contain a
virus or corrupted content, so peers might avoid download-
ing it. Dually, peers might refuse to serve data with a high
confidentiality label to peers that they do not trust. To help
peers evaluate the trustworthiness of other peers, Penny in-
cludes a reputation-based trust management system based
on EigenTrust [7]. Penny also allows peers to withhold ob-
ject ownership information from other peers in the network,
allowing them to publish data anonymously.

Object and peer reputations are centralized in Penny such
that each reputation is a function of the individual opin-
ions of all peers. However, these centralized reputations
are stored in a decentralized fashion such that the computa-
tional expense of tracking and communicating global repu-
tations is spread roughly evenly across all peers in the net-
work. In particular, for each object or peer, Penny assigns
k peers to track its global reputation, where k is a constant
chosen at network initialization. Peers cannot choose which
reputations they are assigned to track, so with high proba-
bility at least k/2 of these peers report the reputation accu-
rately, preventing malicious peers from effectively subvert-
ing the reputation.

We are currently implementing Penny client software in
Java, and our early prototyping has significantly influenced
the network design presented in this paper. Penny clients
function like typical P2P clients except that the list of ob-
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jects displayed to the user in response to a query is aug-
mented with a global integrity and confidentiality label for
each object, and the list of servers that offer each object is
augmented with a global trust value for each server. Users
can choose which object to download (if any) based on its
integrity label, and can choose which server to download it
from based on the server’s trust value. They can also choose
whether to serve an object to a particular requester based
on the object’s confidentiality label and the requester’s trust
value. Peers can provide feedback after each transaction,
which influences the labels and trust values reported for fu-
ture queries submitted to the network.

In the analysis of our system, we consider four classes of
attacks:

• A malicious peer or collective might spread corrupt or
incorrect data. For example, the malicious peer or col-
lective might spread malicious code or circulate false
facts.

• A malicious peer or collective might attach incorrect
security labels to data. In particular, low-integrity
data might be assigned a high-integrity label, or
high-confidentiality data might be assigned a low-
confidentiality label.

• A malicious peer or collective might attempt to learn
which peers own certain data, perhaps as a prelude to
staging additional attacks against those peers.

• A malicious peer or collective might attempt to gener-
ate a list of all data served by a particular peer, violat-
ing that peer’s privacy.

We do not consider attacks upon the network overlay it-
self, such as message misrouting, message tampering, or
denial of service attacks. These attacks are beyond the
scope of this paper, but could be addressed with various
techniques, such as digital signatures, delivery receipts, and
non-deterministic routing. In addition, security labels in our
system are treated as advice to peers rather than enforced se-
curity policies. That is, we do not enforce the requirement
that high-trust peers never obtain low-integrity data, or that
low-trust peers never obtain high-confidentiality data. En-
forcing such policies using our labeling scheme is the sub-
ject of future work.

The organization of this paper is as follows. Related
work is discussed in §2. An overview of Penny’s design
is provided in §3. In §4, the Penny algorithm is defined in
detail, and we discuss security properties enforced by the
design in §5. The paper is summarized with directions for
future work in §6.

2. Related Work

P2PRep [8] implements integrity labels and reputation-
based trust management for the Gnutella [2] P2P network.
Integrity labels and trust values are acquired in P2PRep by
polling a large number of peers using broadcast messages.
Poll responses are then aggregated by the requesting peer
to estimate the desired integrity label or trust value (along
with trust values for all peers whose opinions were acquired
by polling). This strategy has the advantage of being imple-
mentable atop the existing Gnutella network protocol, but
it has the disadvantage that labels and trust values are not
global and are not guaranteed to converge. That is, the in-
tegrity label or trust value obtained will depend on which
agents were polled, which in turn depends upon the poller’s
placement within the P2P network. Two peers at different
locations in the network might therefore consistently derive
different reputations for the same resource. Broadcast mes-
sages can also be expensive, requiring O(bd) messages to
be sent, where b is the branching factor of the network and
d is a time to live parameter dictating the maximum depth
of the tree of peers being polled.

Penny’s algorithm for efficiently circulating data is based
on the Chord algorithm [9]. Chord assigns an identifier to
each peer, and arranges peers in a ring structure sorted by
identifier. Each peer maintains a finger table of size m,
where 2m is the size of the identifier space. This enables
peers to locate and contact the peer with a given identifier in
O(log N) message hops, where N is the number of agents
in the network. Each shared data object also has a single
key-holder peer, who is charged with directing requesters
of that object to peers that own it. To request an object, a
peer can locate its key-holder in O(log N) message hops,
whereupon the key-holder responds with a list of servers
from which the object can be downloaded.

Alternatives to Chord include CAN [10], Pastry [11], and
Tapestry [12]. These systems offer distributed, scalable, and
efficient search systems for P2P networks; however, they
do not include data security or privacy enforcement mecha-
nisms. Our work extends Chord by providing a framework
for maintaining centralized security labels for data shared
over a Chord network.

Trust management systems are a useful tool for identify-
ing warning signs for potential malicious behavior. Such
systems typically assign trust levels to principals as var-
ious actions appear in the system. In this way they pre-
dict future behavior based on the past experiences of other
users. There are three major types of trust management
systems. Reputation-based systems use knowledge of a
peer’s reputation (gathered through personal or indirect ex-
perience) to determine the trustworthiness of another peer.
Some examples of reputation-based trust management sys-
tems are EigenTrust [7], DMRep [13], P2PRep/XRep [8],



Sporas and Histos [14], PeerTrust [15], NICE [16], and
DCRC/CORC [17]. In contrast, policy-based trust manage-
ment systems, such as PolicyMaker [18], derive a trust level
for each peer based on supplied credentials. Finally, trust
management systems based on social networks determine
trust by analyzing a complex social network. Of this type,
Marsh [19] was one of the first to formally express trust
from a sociological and psychological perspective. Some
other examples of social network systems are Regret [20]
and NodeRanking [21].

Penny incorporates a reputation-based trust management
system based on EigenTrust [7]. EigenTrust is a secure, dis-
tributed trust management system that maintains a global-
ized trust value for each peer. These globalized trust values
are obtained by an iterative computation that approximates
the left eigenvector v of the matrix T of all local trust values
in the network. That is, if we define element Tij to be the
degree to which peer ai trusts peer aj , then the left eigen-
vector v of matrix T measures each peer a’s global trust
based on how much each peer trusts a, how much each peer
trusts the peers who trust a, etc.

To keep the algorithm scalable and robust, eigenvector v
is computed in a distributed and redundant fashion, where
k different peers are responsible for computing each ele-
ment of v. Whenever peers ai and aj are involved in a
transaction, they report feedback to the peers responsible
for computing eigenvector elements vi and vj . These peers
are referred to as score-managers for agents ai and aj be-
cause elements vi and vj are the global trust values of peers
ai and aj , respectively. Score-managers for a given peer
are determined via a family of k hash functions applied to
the peer’s identifier. Thus, acquiring a peer’s trust value re-
quires O(k log N) messages in an EigenTrust system built
atop Chord. Penny improves upon this performance. In §3.2
we show that using the Penny protocol trust values can be
retrieved using only O(log N + k) messages.

Penny peers desiring confidentiality must send some
messages anonymously to other peers. Anonymizing tun-
nels are a powerful technology for accomplishing this
within peer-to-peer networks. Penny therefore supports
the Tarzan system [22, 23], which implements anonymiz-
ing tunnels for Chord networks. In Tarzan, a peer desiring
anonymity routes its messages through a tunnel of randomly
chosen peers. Multilayer encryption and randomly gener-
ated cover traffic are used to prevent any peer in the tunnel
from learning whether its successor is the message origina-
tor or just another hop in the tunnel. Tarzan tunnels are bidi-
rectional, allowing recipients of anonymous messages to re-
ply without knowing the identity of the message originator.
The approach has proved to be both flexible and scalable,
requiring little overhead above that incurred by Chord’s ex-
isting message-routing protocol.

3. System Overview

In this section, we provide a high-level overview of the
structure of a Penny network, beginning with definitions of
important concepts. Details of the algorithm are presented
in §4.

3.1. Definitions

Agents. We refer to the peers in a P2P network as agents.
Each agent a is assigned an identifier ida by applying a
one-way, deterministic hash function to its IP address and
port number. We assume that identifiers are unique and that
agents cannot influence which identifier they are assigned.
An agent’s identifier determines its position in the network’s
ring structure. When agents are arranged in a ring, each
agent has a predecessor pred(a) and a successor succ(a).
We refer to the interval [ida, id succ(a) − 1] as the identifier
range of agent a.

Objects and keys. An object o is an atomic item of data
(e.g., a file) shared over a P2P network. Each object also
has a unique identifier ido (e.g., a file name). Objects can
be owned by multiple agents. A single key is associated
with each object and each agent. The keys for object o and
agent a are defined by keyo := h(ido) and keya := h(ida)
respectively, where h is a one-way, deterministic hash func-
tion over the domain of identifiers.

Local confidentiality and integrity labels. Each object
o is labeled with a measure of its integrity and confidential-
ity levels. We denote the integrity and confidentiality labels
assigned to object o by agent a as ia(o) and ca(o), respec-
tively. Integrity labels measure data quality; confidentiality
labels measure who should be permitted to own the data.
In Penny, confidentiality and integrity labels are modeled as
real numbers from 0 to 1 inclusive, with 0 denoting lowest
confidentiality and integrity and 1 denoting highest confi-
dentiality and integrity.

Local trust values. Trust measures the belief that one
agent has that another agent will behave as expected or
promised. Each ordered pair of agents (a1, a2) has a lo-
cal trust value denoted ta1(a2) that measures the degree to
which agent a1 trusts agent a2. Like confidentiality and
integrity labels, trust values range from 0 to 1 inclusive.
EigenTrust [7] is an example of a trust management system
that employs trust values normalized to this range.

Key-holders and score-managers. Each agent a1 in the
Penny network is assigned a (not necessarily unique) key
range, denoted kr(a1). Agent a1 is charged with tracking



the integrity and confidentiality labels assigned to all ob-
jects o that satisfy keyo ∈ kr(a1). In addition, agent a1

tracks the trust values assigned to all agents a2 satisfying
keya2

∈ kr(a1). Whenever keyo ∈ kr(a1) holds, we refer
to agent a1 as a key-holder for object o, and we refer to ob-
ject o as a daughter object of agent a1. Likewise, whenever
keya2

∈ kr(a1) holds we refer to a1 as a score-manager
for agent a2, and we refer to agent a2 as a daughter agent
of agent a1. Every peer in a Penny network acts as both a
key-holder for some objects and a score-manager for some
peers.

Global labels and trust values. Key-holders with a com-
mon key-range use the local integrity and confidentiality
labels reported to them by other agents in the network to
collectively compute global integrity and confidentiality la-
bels, denoted io and co respectively, for objects o whose
keys fall within that range. Similarly, score-managers with
a common key-range collectively compute global trust val-
ues, denoted ta, for agents a whose keys fall within that
range. Specifically, io, co, and ta are defined by

io := median {iakh
(o) | keyo ∈ kr(akh)} (1)

co := median {cakh
(o) | keyo ∈ kr(akh)} (2)

ta := median {tasm
(o) | keya ∈ kr(asm)} (3)

Thus, the global labels for any object o and the global trust
value for any agent a can be computed by any agent in the
network by contacting all key-holders akh for object o, or
all score-managers asm for agent a.

3.2. Network Design

A Penny ring is like a Chord ring, with Penny’s iden-
tifier ranges being equal to Chord’s key-ranges. However,
a Penny agent’s key-range strictly subsumes its identifier
range, and agent key-ranges are not unique. Key-ranges
are assigned in a Penny ring so that for every agent a,
there are between k and 2k agents in the ring whose key-
ranges are equal to kr(a) (unless the entire network in-
cludes less than k total agents), where k is a fixed constant
defined at network initialization. Bounding the number of
potential key-holders from below by k limits the influence
of malicious agents, because it ensures that a single key-
holder determines at most 1/kth of the votes in Equations 1
and 2 that determine an object’s global labels, and a sin-
gle score-manager determines at most 1/kth of the votes
in Equation 3 that determine an agent’s global trust value.
Bounding the number of potential key-holders from above
by 2k ensures that lookup will not become too costly, and it
bounds the storage overhead for finger tables.

This O(k) redundancy of score-managers is similar to
the EigenTrust algorithm [7], but unlike EigenTrust, Penny

ensures that all key-holders and score-managers for a given
key-range are always located in adjacent positions on the
Chord ring. This is achieved by ensuring that each agent’s
key-range always includes its identifier range. An agent
can therefore contact all score-managers for a particular
agent a, or all key-holders for a particular object o, us-
ing O(log N + k) messages. The first O(log N) messages
propagate the message using the Chord algorithm [9] to the
agent whose identifier range includes keya or keyo. This
agent then forwards the message directly to the other O(k)
agents whose key-ranges also include keya or keyo. Penny
therefore reduces the overhead of all network operations
that involve contacting key-holders and score-keepers by a
factor of k over the EigenTrust algorithm. When k is a large
constant, such as k = 16, this can mean a significant reduc-
tion in network traffic.

To maintain the invariant that the number of score-
managers for each key-range lies between k and 2k, a Penny
network must occasionally split or merge key-ranges as
agents join and leave the network. If a join operation causes
the number of score-managers in a range to rise above 2k,
the Penny protocol splits that key-range into two smaller
key-ranges. Dually, if a leave operation causes the number
of score-managers for a range to descend below k, Penny
reassigns those agents (and some agents in an adjacent key-
range) a larger key-range.

Unlike Penny, a Chord network requires each key-holder
to maintain a list of the agents who own the key-holder’s
daughter objects. These lists are reported to any agent who
requests the object, divulging the identities of all agents
who own a particular object. To address this privacy vulner-
ability, Penny conceals information associating agents with
the objects they own by splitting that information amongst
key-holders and score-managers. A malicious key-holder
and a malicious score-manager must therefore collaborate
to learn that a particular server owns a particular object. Op-
portunities for such collaboration are limited because key-
holders and score-managers cannot choose their key-ranges.
It is therefore unlikely that a malicious collective will oc-
cupy both a key-range that includes a particular victim ob-
ject’s key and a key-range that includes a particular victim
agent’s key.

4. The Penny Algorithm

The Penny algorithm describes the key assignment pro-
cess, agent joins and departures, requesting objects, offer-
ing new or downloaded objects with confidentiality and in-
tegrity labels, and updating confidentiality and integrity la-
bels as data is exchanged.



4.1. Message Routing

As in Chord, each agent a in a Penny ring maintains a
finger table that is used to route messages efficiently. For
each i ∈ 0 . . .m−1, agent a’s finger table includes the agent
whose identifier range includes (ida + 2i) mod 2m (where
2m is the size of the agent identifier space). In addition,
agent a’s finger table also includes an entry for each agent
whose key-range coincides with a’s key-range. We refer
to a set of agents with equal key-ranges as a neighborhood.
The size of each finger table is therefore O(m+k), where k
is a constant dictating the number of redundant key-holders
assigned to each key.

The protocols for joining and leaving a Penny network
are similar to those for joining and leaving a Chord net-
work [9], but Penny’s addition of non-unique key-ranges
requires special consideration. When an agent anew joins
a Penny ring, it is by default assigned a key-range identi-
cal to its successor’s. Its successor informs all agents in
its neighborhood that they should update their finger tables
to include anew . However, if this would result in a neigh-
borhood of size greater than 2k, a split occurs. The first k
agents and the last k + 1 agents in the neighborhood each
become their own neighborhoods. The key-ranges of the
new neighborhoods are the unions of the identifier ranges
of the agents within each.

Figure 1 illustrates a join operation with a split. Iden-
tifiers are labeled next to each agent outside the ring, and
agent key-ranges are labeled inside the ring. In this exam-
ple, k = 2, so when the agent with identifier 61 joins, key-
range [15, 63] has more than 2k agents and must be split.

Figure 2 shows an example of the propagation of a Penny
message through the resulting ring. Agent 0 wishes to send
a message to all agents whose key-range includes identi-
fier 28. First, the message is propagated along the ring ac-
cording to the Chord algorithm to the agent whose identi-
fier range includes 28 (agent 23). This involves first send-
ing the message to the agent whose identifier range includes
0+24 = 16, and next to the agent whose identifier range in-
cludes 16 + 23 = 24 (agent 23). Once the message reaches
an agent whose key-range includes 28, that agent forwards
the message directly to all other agents in its neighborhood.
These are all agents in the ring whose key-ranges include
28.

When an agent aold leaves a Penny ring, it informs its
predecessor apred and the other agents in aold ’s neighbor-
hood. If apred is in a different (adjacent) neighborhood,
apred must inform the other agents in that neighborhood that
the neighborhood’s key-range has grown to include identi-
fiers up to and including id succ − 1 (where asucc is aold ’s
successor). Likewise, agents in aold ’s neighborhood must
shrink their key-ranges so that they begin with id succ .

If the departure of aold causes aold ’s neighborhood to

have fewer than k members, two adjacent neighborhoods
must be merged. Let Hold and Hpred be aold ’s and apred ’s
neighborhoods, respectively. If |Hold | < k, then the agent
in Hold whose predecessor is in Hpred sends a merge re-
quest to its predecessor. That merge request is then for-
warded to all agents in Hpred . If |Hpred | ≤ k + 1 then both
neighborhoods merge to form a single neighborhood. Oth-
erwise, the rightmost 1

2 (|Hpred | − |Hold |) agents of neigh-
borhood Hpred join neighborhood Hold . The key-ranges
of the new neighborhoods are the unions of the identifier
ranges of the agents in the new neighborhoods.

Figure 3 illustrates an agent leave operation that requires
a key-range merge. Here, the departure of agent 15 from the
ring leaves fewer than k = 2 agents in its neighborhood.
Agent 16 therefore merges with its predecessor neighbor-
hood; agents in both neighborhoods extend their key-ranges
to include the identifier ranges of all agents in the new
neighborhood.

Whenever an agent’s key-range shrinks due to any of the
above operations, it must transfer any state associated with
keys not in its new range to other key-holders. Similarly,
whenever its key-range grows, it receives state associated
with new keys from the agents who previously occupied that
range. On average, k/2 agents must join or leave a neigh-
borhood before that neighborhood will need to be split or
merged. Thus, by initializing k to a large constant, the fre-
quency of these state transfer operations can be reduced.

4.2. Agent Local State

In addition to routing messages, each agent in a Penny
network plays three different roles: It acts as a server when
sharing objects, it acts as a score-manager for agents whose
keys fall within its key-range, and it acts as a key-holder for
objects whose keys fall within its key-range. For each of
these roles, the agent maintains some internal state:

• To act as a server, an agent a maintains a list of the
identifiers ido, and local integrity and confidentiality
labels ia(o) and ca(o) of each object o that it owns.
The agent also chooses a public key, private key pair
(Ka, ka).

• To act as a score-manager, agent a maintains a list of
daughter agents ad that satisfy keyad

∈ kr(a). These
are the agents for whom agent a is a score-manager.
For each daughter agent ad, agent a maintains a vector
of local trust values ta′(ad) reported by the agents a′

that have interacted with agent ad.

• To act as a key-holder, agent a maintains a list of the
identifiers of daughter objects o that satisfy keyo ∈
kr(a). These are the objects for which agent a is a
key-holder. For each such object o, agent a maintains
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a vector of integrity labels ia′(o) and confidentiality
labels ca′(o) reported by the agents a′ that have re-
ported feedback about object o. Agent a also main-
tains a list of the keys keysvr and public keys Ksvr of
agents that serve object o. Key-holders do not learn the
actual identifiers of agents a′ or asvr , only their keys.

4.3. Publishing and Downloading Objects

Once a Penny network has been initialized, agents inter-
act according to the protocol detailed below. The protocol
diagrams that follow use solid arrows to denote messages
that are sent directly from agent to agent without using the
P2P overlay, and dashed arrows for messages that use the
P2P overlay to find the message target based on its ring
identifier. Dashed arrows therefore actually entail sending
O(log N+k) total messages, where the first O(log N) mes-
sages are sent in series along the ring and the last O(k) mes-
sages are sent in parallel to the other agents in the receiving
agent’s neighborhood (see §4.1 for an example). Arrows
with double-heads could be sent anonymously—e.g., via an
anonymizing tunnel [22, 23]. Notation Ka denotes agent
a’s public key, and 〈. . .〉K denotes a message encrypted
with key K. Notation ∆tsvr (a) denotes feedback provided
by agent asvr after a particular (possibly anonymous) trans-
action with agent a. Such feedback is a boolean value indi-
cating whether the transaction was acceptable.

When an agent asvr wishes to share an object o, it must
first publish that object according to the protocol depicted
in Fig. 4. Agent asvr first obtains (possibly anonymously)
the public keys of all key-holders akh for object o. (Re-
call that score-managers for object o are defined as those
agents whose key-ranges include keyo.) Agent asvr next
encrypts the object identifier, local integrity and confiden-
tiality labels, and its own public key, with each of the key-
holders’ public keys. It asks one of its own score-managers
asm to forward the encrypted messages to the key-holders
akh . (Recall that score-managers for agent asvr are defined
as those agents whose key-ranges include keysvr .) Agent
asm conceals agent asvr ’s identity by sending only its key
to the key-holder rather than its identifier, along with global
trust value tsvr (computed via Equation 3).

Each key-holder then updates its local integrity and con-
fidentiality labels for o according to the formulas

ikh(o) :=
∑

a∈A(ta · ia(o))∑
a∈A ta

(4)

ckh(o) :=
∑

a∈A(ta · ca(o))∑
a∈A ta

(5)

where A is the set of agents (including asvr ) from whom
key-holder akh has received a local integrity and confiden-
tiality labels for object o. Note that key-holders will not

generally know the identifiers of agents in set A; they will
only know their keys, which is enough information to obtain
trust value ta from each agent’s score-managers.

To request an object (Fig. 5), requester areq first sends
the requested object’s identifier to all key-holders akh for
the object. Each key-holder responds with the object’s in-
tegrity label, the object’s confidentiality label, and a list of
the keys and public keys of the servers who offer the object.
Agent areq can then obtain the object from any server asvr

by sending a request to all score-managers for agent asvr . In
the request message, the identifier for the requested object is
encrypted with the server’s public key to avoid disclosing it
to the agent score-managers. The score-managers forward
the request to the server. The server can then anonymously
send the data directly to the requester. Once the transfer is
complete, the requester may report feedback on the transac-
tion to agent asvr ’s score-managers. The requester can also
report feedback on the integrity and confidentiality of the
data it received by following the publish protocol (Fig. 4).
(An obvious simplification of the publish protocol can also
be used to report feedback without publishing the object.)

Score-managers maintain a vector of local trust values
ta(ad) for each of their daughter agents ad. They use this
vector in accordance with the EigenTrust algorithm [7] to
compute a global trust value tad

for each daughter agent.

5. Discussion

Penny inhibits the spread of low-integrity data (e.g., mal-
ware) by maintaining a centralized integrity label for each
object shared over the network. Agents wishing to avoid
such data can therefore consult each object’s integrity la-
bel before downloading it. Thus, the problem of restraining
the spread of malware over a Penny network reduces to the
problem of efficiently maintaining and reporting accurate
integrity labels.

Label retrieval is efficient in Penny, requiring approxi-
mately the same number of messages as object lookup in a
Chord network. An agent can retrieve any object’s integrity
label by sending a single request message, which gets for-
warded at most O(log N+k) times throughout the network.
The request solicits O(k) response messages, which are
aggregated to compute the centralized integrity label (see
Equation 1).

An object’s centralized integrity label is determined by
the votes of other agents in the network (see Equation 4).
Votes are weighted by the reputation of each voter so that
the votes of agents who are widely regarded as trustworthy
are more influential than the votes of those who are not.
This makes it difficult for a malicious agent to attach a high-
integrity label to low-integrity data. In order for such an
attack to succeed, malicious agents must collectively have
such good reputations that they outweigh the votes of all



public key request --
Kkh��

akh , 〈ido, isvr (o), csvr (o),Ksvr 〉Kkh -
keysvr , tsvr ,

〈ido, isvr (o), csvr (o),Ksvr 〉Kkh -

asvr asm akh

Figure 4. Publish protocol.

ido --
ikh(o), ckh(o),

keysvr1 ,Ksvr1, keysvr2 , . . .��
keysvr , 〈ido〉Ksvr -

areq , 〈ido〉Ksvr -
datao��

keysvr ,∆treq(asvr ) -

areq akh asm asvr

Figure 5. Request protocol.

other voters. Penny uses the EigenTrust algorithm [7] to
track agent reputations and to prevent malicious agents from
accruing good reputations.

Penny employs both secure hashing and replication to
protect against malicious key-holders and score-managers
who might falsify an object’s centralized integrity labels or
an agent’s centralized trust value. Use of a secure hash
function for identifier assignment ensures that agents can-
not dictate the set of objects and agents for which they serve
as key-holders and score-managers. By ensuring that there
exist at least k key-holders and score-managers for every
key-range, Penny prevents any one agent from subverting
the reputation of any object or agent. At least k/2 agents
in a neighborhood must be malicious in order to subvert a
reputation.

Malicious peers cannot elevate their own reputations by
switching IP addresses or creating false network accounts
because, as in EigenTrust, all agent and object reputations
start at zero in Penny. A peer or object acquires a positive
reputation only by participating in positive transactions with
other peers. Peers with established reputations then report
positive feedback for those transactions, elevating the new
peer’s reputation.1 Changing IP addresses or creating a new
account therefore never results in an increase to the peer’s
reputation.

The protocol described in §4.3 also enforces a notion of
object ownership privacy by separating information linking

1This obviously means that if all peers in the network have reputation
zero, no reputations can be elevated. To prevent this, a root set of network
founders start with reputation 1 at network initialization.

a server to the objects it owns. Specifically, key-holders for
an object learn only the keys of servers who own the object
but not the identifiers themselves, whereas score-managers
learn the identities of the servers but not the identifiers of
the objects they own. A malicious score-manager asm and a
malicious key-holder akh can cooperate to learn that a par-
ticular server asvr owns a particular object o, but only if
keysvr ∈ kr(asm) and keyo ∈ kr(akh) both hold, which is
unlikely when the size of a malicious collective is not sig-
nificant relative to the size of the network.

Key-holders and score-managers can, of course, learn
ownership information through guessing attacks, but this is
prohibitively expensive when the space of object and agent
identifiers is large. For example, a malicious agent am

can discover if a particular object o is served by any agent
for which am serves as score-manager by requesting ido

and comparing the key-holders’ responses against its list of
daughter agents. However, am cannot easily produce a list
of all objects served by any of its daughter agents because
to do so it would have to search the entire space of object
identifiers. Likewise, am can discover if a particular server
asvr owns any object for which am serves as key-holder. To
do so, am computes keysvr and searches for that key in its
list of keys of servers that own am’s daughter objects. How-
ever, am cannot easily produce a list of all servers that own
any given object because it would have to search the entire
space of server identifiers.

In addition to integrity labels, Penny also maintains cen-
tralized confidentiality labels for objects. Agents can use
these labels as a basis for selectively serving data to other



peers—possibly based on the requester’s trust level or other
credentials. However, to enforce stronger confidentiality
policies, such as mandatory access control policies that pro-
hibit low-trust agents from obtaining high-confidentiality
data, agents need a means to detect confidentiality viola-
tions and report them to the trust management system. This
is necessary to force a misbehaving agent’s trust value to
decrease, preventing future violations. Detecting confiden-
tiality violations is a challenging research problem, and is
discussed in §6 as part of future work.

6. Conclusion and Future Work

Penny combines reputation-based trust management
(based on EigenTrust [7]), distributed hash tables (based on
Chord [9]), and anonymizing tunnels (based on Tarzan [22,
23]) to support secure integrity and confidentiality label-
ing of shared data as well as ownership privacy for object
servers. The protocol enforces these security guarantees in
an efficient manner that avoids broadcast messages or large-
scale polling of peers. Object lookup can be performed with
O(log N + k) messages, where N is the number of agents
in the network and k is a constant that controls how much
replication is used to protect against malicious agents.

We are in the process of implementing Penny client soft-
ware in Java. This ongoing research is aimed at evaluating
Penny in a practical setting to verify that the network struc-
ture is (i) efficient enough to handle realistic P2P network
traffic, and (ii) robust enough to prevent malicious collec-
tives from subverting integrity labels, confidentiality labels,
and trust values.

Future research should also consider how to enforce var-
ious information flow and access control policies based on
Penny’s integrity and confidentiality labeling system. For
example, Penny’s publish and request protocols might be
augmented with security checks that block the dissemina-
tion of objects whose integrity labels lie below a certain
threshold. This would have the effect of censoring known
malware from the network.

One might also enforce a corresponding confidentiality
policy that prohibits low-trust agents from obtaining high-
confidentiality data, but this is a more difficult research
challenge. In order to prevent future confidentiality vio-
lations, the trust management system must be informed of
past confidentiality violations. It is unclear how to ensure
that past confidentiality violations get reported, since typi-
cally the only witnesses of these violations are the malicious
agents involved in leaking the data. Enforcing strong con-
fidentiality policies in P2P networks therefore remains an
interesting open problem.

Our analysis did not consider attacks upon the P2P net-
work overlay itself, such as denial of service, message mis-
routing, message tampering, or traffic pattern analysis. Us-

ing trust values to change the routing structure (so as to
avoid routing messages through malicious agents) is an in-
teresting and active area of research that might address these
vulnerabilities. In addition, our network remains vulnerable
to certain Sybil attacks [24], wherein an individual mali-
cious agent masquerades as many different agents with dif-
ferent identifiers in an effort to control a large percentage
of the identifier space, or to cast multiple votes. Future
work should investigate augmenting the EigenTrust algo-
rithm with IP address clustering and other techniques aimed
at identifying malicious collectives that are actually com-
prised of many pseudonyms of a single peer.

Finally, Penny is one contribution to the larger research
question of how to combine anonymity with reputation-
based trust management. Anonymity and reputation-based
trust are often at odds because it is difficult to divulge an
agent’s reputation without also divulging its identity. Penny
illustrates one way to communicate and evaluate the repu-
tation of an agent without fully disclosing its identity; how-
ever, divulging the agent’s reputation might in some cases
reduce the anonymity of a transaction (e.g., in cases where
the attacker is powerful enough to search the space of all
agent reputations in the network for a match). Development
of more general-purpose algorithms for evaluating the trust-
worthiness of a message-sender without knowing its iden-
tity would allow P2P networks to safely enforce stronger
privacy policies in decentralized settings.
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