
HoneyV: A Virtualized Honeynet System Based on
Network Softwarization

Bahman Rashidi∗, Carol Fung∗, Kevin W. Hamlen§, Andrzej Kamisiński∗∗
∗Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA

{rashidib, cfung}@vcu.edu
§Department of Computer Science, The University of Texas at Dallas, Richardson, TX, USA

hamlen@utdallas.edu
∗∗Department of Telecommunications, AGH University of Science and Technology, Kraków, Poland

kamisinski@kt.agh.edu.pl

Abstract—Intrusion detection in modern enterprise networks
faces challenges due to the increasing large volume of data and
insufficient training data for anomaly detections. In this work,
we propose a novel network topology for improved intrusion
detection through multi-phase data monitoring system. Rather
than the all-or-nothing approach to terminate all sessions identi-
fied as suspicious, the topology route traffic to different servers
replicas with different monitoring intensity level based on their
likelihood of attacks. This topology leverages recent advances in
software-defined networking (SDN) to dynamically route such
sessions into risk-appropriate computing environments. These
environments offer enhanced training opportunities intrusion
detection systems (IDSes) by exposing data streams that would
not have been observable had the session merely been terminated
at the first sign of maliciousness. They also afford defenders finer-
grained risk management by supporting a continuum of endpoint
environments, ranging from fully trusted, to semi-trusted, to fully
untrusted, for example.

I. INTRODUCTION

Anomalous activity at the host level (e.g., unusual process
control-flows or file access sequences) can be typically identi-
fied as potentially symptomatic of attacks. However, retaining
and analyzing all features of all incoming traffic is prohibitively
expensive in terms of both storage and computational resources.
It might not be an option in practice due to limited computation
resource. A means of rapidly collecting realistic data and
prioritizing it by its potential analysis value is therefore
important for achieving acceptable accuracy and false alarm
rates in practice.

However, a critical missing piece of this strategy is a means
to rapidly and transparently choose what level of monitoring
and confinement to apply to each malicious or suspicious
session in a large, distributed network in real time; and to
revise such choices as the session evolves. Prior work has
mainly considered an all or nothing approach that assumes that
each session is either monitored or unmonitored; little work has
considered differentiated levels of monitoring. Likewise, prior
work endeavors to store all or most details of all malicious
streams; a means to scale the degree of monitoring based
on the suspicious level of the stream. potentially much more
analysis value than sessions from sources that has never been

detected to launch attacks in the past. When resources are finite,
prioritizing the storage and analysis of the former over the
latter has the potential to greatly improve IDS effectiveness.

In this paper, we propose a novel approach for fine-grained
session monitoring based on an SDN network, called HoneyV,
which leverages automated network softwarization technology
for a highly efficient and automated intrusion detection. More
specifically, the system equips each VM with different level
of monitoring intensity based on the level of trust of the
sessions that this VM handles. Namely, these VMs are called
trusted, semi-trusted, and untrusted. The incoming flows are
automatically assigned different levels of trust and directed
to servers with different monitoring intensities. For example,
an incoming flow with high likelihood of being attacking
traffic will be directed to a VM which is equipped with
heavy monitoring sensors to handle untrusted sessions, so
that malicious activities are more likely to be detected. Traffic
from trusted sources are lightly monitored to save computation
resource.

The contribution of the paper can be summarized as follows:
(1) we propose a novel architecture design to enhance network
security using SDN and NFV technologies; (2) we propose a
novel approach that provides fine-grained monitoring control for
flows with different trust levels; and (3) we use a simulation
approach to provide a proof of concept evaluation on the
advantage of multi-level monitoring and the performance of
the proposed architecture.

II. RELATED WORK

There are some recent works that utilize network softwariza-
tion technologies for intrusion detection and honeypotting.
SDNIPS [6] is an SDN-based IPS solution that is a full
lifecycle solution including detection and prevention in the
cloud networks. HonetMix [4] leverages the programmability
of SDN to circumvent attackers’ detection mechanisms and
enables fine-grained data control for Honeynet. VGuard [3]
utilizes the flexibility of the NFV framework to prioritize flows
to defend against DDoS attacks.

Bohatei [2] is an SDN and NFV-based solution to defence
networks against DDoS attacks. It copes with the expensive-
ness of hardware appliances of the existing solutions. Using978-1-5386-3416-5/18/$31.00 c© 2018 IEEE

Fig. 1: HoneyV system architecture

its resource manager component, Bohatei assigns available
network resources to the defense VMs once suspicious traffic
is detected. Because Bohatei is using a limited amount of
network resources (to launch VMs), it is ineffective in cases
where the incoming attack traffic’s strength is heavier than what
it can handle. In contrast, in CoFence, in addition to utilizing
NFV technology, allows attack victims to receive external help
from their collaborators in terms of network resources.

In contrast to these related works, HoneyV focuses on
detecting and mitigating misuse attacks rather than DDoS
attacks. It does so by leveraging SDN and NFV to efficiently
rereoute sessions and reassign workloads to an array of servers
with varying levels of privilege, information access, sensors,
and security controls.

III. HONEYV SYSTEM DESIGN

The HoneyV system leverages a typical SDN concept [5].
It assumes that the network control plane is decoupled from
the data plane. In the proposed architecture shown in Figure 1,
the control plane is represented by the Logically-Centralized
Controller and the set of applications, while the data plane
includes SDN-compatible network devices that participate in
the forwarding of traffic flows, such as switches and security
appliances.

A. Architecture overview

The HoneyV system is an architecture of achieveing fine-
grained data flow monitoring based on their level of trust-
worthiness. The system consists of three parts. The first part
is pre-filtering, where data flows will have to pass firewall
and network-based intrusion prevention system to remove
sessions from known sources or with known attack pattern.
The flows pass the pre-filtering will be dispatched by the
forwarding devices to the servers for processing. The second
part is forwarding, which consists of an SDN-compatible
switch, an SDN controller and a HoneyV app running on the
controller. The HoneyV app will determine where to forward
each flow. The last but not least part is servers, which consists
of multiple virtual servers and a virtual feedback aggregator.
The servers virtual machines that are equipped with host-based
intrusion detection system (sensors) with different levels of

monitoring intensity. The servers will process the requests
and also monitor the behaviors induced by the flows. The
security alerts generated by sensors from all servers are sent to
feedback aggregator, which will collect, aggregate and forward
the results to the administrator for analysis.

B. Forwarding

The forwarding decision making is a key challenge for
HoneyV. The routing decisions will be made by the HoneyV
application and executed by the SDN switch. The internal
algorithms of decision making rely on data fetched from the
following two sources:
• Logically-Centralized Controller — information about

traffic flows, the current routing scheme, statistics, and
network state;

• Feedback Aggregator — specific information delivered
by servers and related to the observed signs or evidence
of malicious activity.

The Feedback Aggregator is a service that acts as a data
gateway, collecting relevant information from all servers in the
network and passing it to the HoneyV application.

Algorithm 1: Recieving/Dispatching Alg.
1: Input :
2: Incoming flow sequence fi
3: Output :
4: [i, s] : assigned server to a flow
5: Notations :
6: ωi : weight to flow i
7: ti : trust level of flow i
8: R : the switch’s link rate
9: Ri the data rate of flow i

10: Q : the queue of flows
11: //initialize parameters
12: ωi, ti ← 1
13: //queuing incoming flows
14: repeat
15: if there is a new flow then
16: ti ←measureTrust(fi)
17: Ri ←measureDataRate(fi, ωi)
18: Qt/st/u.enqueue(fi, ti.Ri)
19: end if
20: until (true)
21: //dispatching queued flows
22: repeat
23: if Q.inNotEmpty() then
24: Q.dequeue()
25: end if
26: until (true)

Get the level
of trust

Interrupt

START

Receive an
incoming

flow

Is new?

Assign the
default level

of trust

Route based
on the current

trust level

Wait for the
next flow

STOP

HoneyV
Component

NO

YES Up
da

te
 re

co
rd

Ho
ne

yV
 M

an
ag

em
en

t
Lo

gi
ca

lly
 C

en
tra

liz
ed

 C
on

tro
lle

r

(b)

…Dispatcher

…

…
Incoming

Flows

QT

QST

QU

(a)

Fig. 2: HoneyV dispatching overview

1) Dispatching algorithm: In order to dispatch incoming
data flows to the servers, we have designed a weighted fair
queueing (WFQ) algorithm. A weighted fair algorithm is a data
flow scheduling/queueing algorithm used in different network
flow schedulers [1]. Unlike fair queueing that tries to give the
flows equal shares, at least within the limits of actual demand,
in WFQ, the flows receive resources based on an assigned
weight (ωi). The higher weight assigns to a flow, the more
resource the flow receives. The key factor that has the highest
impact on the amount of resources received by flow is the
data rate (Ri). Ri is computed using Equation 1 in which N
is the number of incoming flows and R is the data link rate.
The data rate is computed upon receiving new incoming flows
to the system. Algorithm 1 shows the process of dispatching
flows to VMs and allocating resources. There are a certain
number of queues depending on the number of servers’ types.

In our model, because we have three types of servers, so there
are three queues. Depending on flow’s trust level the flow is
sent to its corresponding queue. Figure 2(a) shows the HoneyV
dispatcher and predefined queues and Figure 2(b) shows an
overview flowchart of distributing incoming flows to different
servers.

It is worth noting that the weights can be defined manually
or automatically depending on the model’s strategy. As an
example of configuring the model automatically, the weights
can be defined using proportionally fairness principle. Using

this principle, we can set the weights to ωi =
1

ci
, where ci is

the cost per data packets of data flow i.

Ri =
ωi

N∑
j=1

ωj

R (1)

C. Servers

Traffic flows forwarded through the network are handled
by different sets of servers. The servers are equipped with
different number of sensors to detect malicious activities. In
our proposal, four different types of servers are defined:
• Trusted Servers — all servers having access to

potentially-sensitive information, to which only highest-
confidence, non-malicious flows should be directed;

• Semi-Trusted Servers — servers isolated from the most
sensitive information, but open to all non-malicious flows
and equipped with better monitoring mechanisms;

• Untrusted Servers — servers open to all flows and having
more sophisticated monitoring and protection mechanisms;

• Honeypots — servers with advanced threat detection and
analysis components, used mainly to deceive attackers
and gather detailed information about their activity.

Figure 3 shows the servers’ migration actions spaces. When
a anomaly detection alarm is triggered, the server decides
to take an action from its action space. As we see in the
trusted server’s action space (Figure 3(a)), if the signature-
based sensors detect an attack, the server redirects the attack
flow to the honeypot. Otherwise, if the anomaly-based sensors
detect suspicious activities, it will migrate the session to the
untrusted server for further diagnosis with full set of sensors. If
no detection sensor is triggered on an attack flow, the damage
cost induced is d1(see the middle rows of the Figure). Similarly,
the semi-trusted server also performs migration for suspicious
flows which are detected by anomaly sensors but not signature-
based sensor. Note that the damage induced by missed attack
flows should follow d1 > d2 > d3 since highly guarded servers
will lead to less damage.

S A
x - H
- - d1
- x U

S A
x - H
- - d2
- x U

S A
x - H
- - d3
- x U, d3

(a) (b) (c)
Fig. 3: Servers and the corresponding actions in the case of an attack. The first column
is signature-based (S) detection outcome; second volume is anomaly-based (A) detection
outcome; and third column is actions: (a) Trusted Server; (b) Semi-Trusted Server; (c)
Untrusted Server.

IV. EVALUATION

To demonstrate the benefit of the fine-grained flow monitor-
ing system design, we conducted a series of experiments to
evaluate the performance of the system using simulation.

TABLE I: Summary of Notations.

Notation Meaning

T, S, U,
H

Trusted, Semi-Trusted, Untrusted, and HoneyPot Servers

di Damage of attack on server i
Rpf Required resource to assess the risk of a flow
TPs,
FPs

True and False Positive of the Signature-based sensor

TPa,
FPa

True and False Positive of the Anomaly-based sensor

L, M, H Incoming flows categories (Low, Medium and High risks)
S,A The signature-based and anomaly-based sensors

Table I shows the notations we use throughout the evaluation
section. Table II shows the configuration we defined for the
experiments. Considering our assumptions that servers have
various levels of monitoring intensity, we assigned different
detection ratios to servers. Due to the risk analysis for
the anomaly-based and the signature-based detection sensors
process, a certain amount of resources are consumed for each
incoming flow. In our experiments, we define the resource
units to be an integer value. Depending on the number of
sensors that each server has, the amount of resources used
per flow is different. For example, a server with more sensors
allocates more resources per flow to be analyzed. We define the
amount of resources to be allocated per flow (Trusted=1, Semi-
Trusted=5, and Untrusted=10). since signature-based detection
is known to be accurate once it detects an attack (though they
may miss many obfuscated attacks).

TABLE II: Servers’ Configurations

Metric Rpf TPs FPs TPa FPa d

Server
Trusted 1 .5 0 .1 .01 d1 = 10
Semi-Trusted 5 .7 0 .15 .008 d2 = 5
Untrusted 10 .9 0 .2 .006 d3 = 1

A. Accuracy and Reliability

For the accuracy and reliability experiments, we generated
a set of flows as our testbed. We decided to categorize them into
flows with Low (L), Medium (M), and High (H) with risks 0.1,
0.5, and 0.9, respectively. As an assumption to the experiments,
we generated 1000 flows per each risk category and 3000 flows
in total. To have a combination of packets in terms of security
risks in every group of flows, we generated the flow groups in
a way that 1%, 10%, and 50% of the flows were attacks for
the low, medium, and high risk flows, respectively. Since we
only planned to evaluate the accuracy of the model, we set the
servers’ resources to be unlimited.

In the first experiment, we evaluated the accuracy of the
system in terms of detecting the attacks (malicious flows).
We ran the experiment for different levels of accuracy of
the HoneyV application. Figure 4(a) shows the accuracy, true
positive and false positive ratios of the system. The observed

(a) (b)
Fig. 4: The performance of the model in terms of accuracy and true positive ratio: (1) the
accuracy, true positive and false positive ratios of the HoneyV model; (b) the accuracy,
true positive and true negative ratios of the model per group.

(a) (b)

(c)
Fig. 5: Impact of the risk assessment sensors on the accuracy and true positive ratio of
the model: (a) the impact of the signature-based sensor on the true positive ratio; (b)
the impact of the anomaly-based sensor on the true positive ratio of the model; (c) the
amount of damage on the servers.

detection accuracy and true positive ratio both increase with
increasing accuracy of the HoneyV application.

In the second experiment, we evaluated the detection
accuracy, true positive, and true negative of the system per each
group of incoming flows (Low, Medium, and High). In this
experiment, we set the HoneyV application’s accuracy to be
100% and because of this, low risk flows were directed to the
trusted server, while medium and high risk flows were directed
to the semi-trusted server. Figure 4(b) shows the results of this
experiment. It can be observed that the true negative ratio is
very high and almost the same for all the groups. The true
positive ratio for the low risk flows is around 50% but it has
a high accuracy. The reason is that only 1% of the low risk
flows were attacks, so it does not have a high impact on the
accuracy ratio. In contrast, because the number of attack flows
in the medium and high risk flows is higher so more attack
flows pass the sensors and that has an impact on the accuracy
and it is lower than the accuracy for the low risk flows group.

In the third experiment, we evaluated the amount of damage
on the servers. Figure 5(c) shows the results of this experiment.
The amount of damage on the trusted and semi-trusted servers
changed with increasing accuracy of the HoneyV application.
We can see that the damage ratio on the trusted server decreases
and it is because when the HoneyV has higher accuracy, more
benign flows are redirected to the trusted server and the damage
goes down. In contrast, the damage ratio on the semi-trusted
server increases, because more attack flows (medium and high

TABLE III: HoneyV and Uniform Server Comparison

Metric TP FP Accuracy Resource Usage Capacity

Server
Trusted .51 .01 .9 3000 20000
Semi-Trusted .74 .01 .94 15000 4000
Untrusted .92 .01 .98 30000 2000
HoneyV .73 .01 .94 11240 5340

risk flows groups) are redirected to the server. The damage
ratio for the untrusted server stays almost the same and low,
because not many flows are transferred to it, and also its
sensor’s accuracy is high (0.9%) and attack flows can easily
be detected.

In the fourth experiment, the impact of the signature-based
and anomaly-based sensors’ true positive ratio was evaluated.
We also ran the experiment under different settings of the
HoneyV’s accuracy. We fixed the configuration for one type of
the sensors and generated three different configurations for the
other sensor. This way, we can see the impact of the sensors on
the true positive ratio. Figure 5(a) shows the results when the
anomaly-based configuration is fixed and the signature-based
sensor configuration varies. Figure 5(b) also shows the results
when the signature-based sensor’s true positive is fixed. It can
be observed that the more accurate the sensors, the higher the
true positive ratio. We also see that the impact of the signature-
based sensor on the true positive ratio is higher than in the
case of the anomaly-based one.

Finally, we decided to compare the performance of our
model with three uniform servers. Servers’ configurations are
as described in Table II. We computed the capacity of the
model when each model had only 20000 resource units. We
define the capacity to be the number of flows that a server can
handle at a time. We used the same flows test-bed for all of
the four models. Table III shows the comparison results. There
are a few important facts about the results. First, in terms of
accuracy, our model is close to the semi-trusted uniform server,
but our model is more cost-effective and reliable because of less
resource usage and higher capacity. Second, compared to the
untrusted uniform server, our model is also more cost-effective
and handles much higher number of flows.

V. CONCLUSION

In this paper, we introduced HoneyV: a new honeynet
architecture leveraging the flexibility of SDN and NFV to
detect and deal with malicious traffic flows in the network.
Unlike the existing proposals, HoneyV redirects traffic flows to
different types of servers based on the level of trust assigned
to each flow, as well as the threat monitoring capabilities of
particular servers. The level of trust is adjusted dynamically
based on the information about the flow’s activity, collected
from network servers equipped with various sets of threat
sensors. The number, kind, effectiveness, and complexity of
sensors installed on network servers may be different for each
group of servers, depending on the specific requirements related
to safety, privacy, sensitivity of stored information, and other
factors.

REFERENCES

[1] Cisco. Qos congestion management (queueing). https://www.cisco.com/c/
en/us/tech/quality-of-service-qos/qos-congestion-management-queueing/
index.html. Last Visit September 2017.

[2] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey. Bohatei: Flexible
and elastic DDoS defense. In Proc. 24th USENIX Security Sym., pages
817–832, 2015.

[3] C. J. Fung and B. McCormick. VGuard: A distributed denial of service
attack mitigation method using network function virtualization. In Proc.
11th IEEE Int. Conf. Network and Service Management (CNSM), pages
64–70, 2015.

[4] W. Han, Z. Zhao, A. Doupé, and G.-J. Ahn. HoneyMix: Toward SDN-
based intelligent honeynet. In Proc. ACM Int. Work. Security in Software
Defined Networks & Network Function Virtualization, pages 1–6, 2016.

[5] Open Networking Foundation. Software-defined networking (SDN)
definition. https://www.opennetworking.org/sdn-resources/sdn-definition.
Retrieved 7/17.

[6] T. Xing, Z. Xiong, D. Huang, and D. Medhi. SDNIPS: Enabling software-
defined networking based intrusion prevention system in clouds. In Proc.
10th Int. Conf. Network and Service Management (CNSM), pages 308–311,
2014.

