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Publication No.

Meera Sridhar, PhD
The University of Texas at Dallas, 2014

Supervising Professor: Dr. Kevin W. Hamlen

The formidable growth of the cyber-threat landscape today is accompanied by an imperative

need for providing high-assurance software solutions. In the last decade, binary instrumen-

tation via In-lined Reference Monitoring (IRMs) has been firmly established as a powerful

and versatile technology, providing superior security enforcement for many platforms. IRM

frameworks rewrite untrusted binary code, inserting runtime checks to produce safe, self-

monitoring code; IRMs are equipped with the ability to enforce a rich set of history-based

policies, without requiring access to source code. These immense capabilities, however, come

with a price—the power of most real-world IRM infrastructures is usually accompanied by

both enormity and complexity, making them prone to implementation errors. In most sce-

narios this is highly undesirable; in a mission-critical system, this is unacceptable.

Independent certification of two important properties of the IRM, namely soundness and

transparency, is extremely important for minimizing the error-space and providing formal

assurances for the IRM. Soundness demands that the instrumented code satisfy the policy,

whereas transparency demands that the behavior of policy-compliant code is preserved over

the instrumentation process. These Certifying In-lined Reference Monitors combine the

ix



power and flexibility of runtime monitoring with the strong formal guarantees of static

analysis, creating automated, machine-verifiable, high-assurance systems.

This dissertation demonstrates how the powerful software paradigm of model-checking can be

utilized to produce simple, elegant verification algorithms for the special domain of IRM code,

providing case-by-case verification of the instrumented code. The dissertation discusses the

challenges and subsequent success of developing model-checking IRM frameworks for various

platforms. An important result discussed is a new, more powerful class of web security

technologies that can be deployed and used immediately, without the need to modify existing

web browsers, servers, or web design platforms. Implementations demonstrating security

enforcement on a variety of fairly large-scale, real-world Java and ActionScript bytecode

applications are also discussed. Theoretical formalizations and proof methodologies are

employed to provide strong formal guarantees of the certifying in-lined reference monitoring

systems.
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CHAPTER 1

INTRODUCTION1

The last few decades have seen a relentless battle between software security attackers and

defenders. Part of the challenge that security defenders face is the formidable, constantly-

morphing attack space, complex source- and binary-level language features for writing soft-

ware, combined with lack of complete information concerning the software they are trying

to protect, such as source-level information.

For example, consider the web advertisement industry today. Web advertisements (ads)

are an indispensable source of revenue for most webpage publishers today. Many security-

sensitive websites, including websites for banking, health-care, and cloud-centered data man-

agement include web ads. Most web ads are derived from untrusted third-party ad-servers,

creating a serious threat landscape, including threats to confidentiality of private client data

(such as stealing cookies, hijacking sessions, etc.), integrity of the hosting webpage and

user-owned content, and availability of the hosting site services.

Security apprehensions have been further exacerbated due to the recent trend of web

environments, including ads, becoming aggressively heterogeneous (e.g., composed of mash-

ups that mix mobile code from many mutually distrusting sources). An extremely popular

combination of technologies for creating web ads is mixed JavaScript-ActionScript/Flash

content. The reason for this popularity arises from unique features available through each

platform, such as click-tracking and context customization in JavaScript, and sophisticated

multimedia features from ActionScript/Flash. However, the complexity and idiosyncrasies

1This chapter includes previously published (Sridhar and Hamlen, 2011) joint work with Kevin
W. Hamlen.
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of each language, environment, and their interactive capabilities increase the attack surface

significantly.

Traditional access control mechanisms built into modern web browsers do not suffice

to protect users from these threats without also disrupting non-malicious advertisement

functionality. For example, browsers can be configured to block all scripts or deny applets

all access to page content, but this breaks the behavior of advertisement-loading mechanisms

that consult page content when selecting relevant advertisements. Online advertising is a

lucrative market; for many publishers it is an economic necessity. In fact, many webpage

publishers today refuse access to content if ad-blockers are in place in the client-side browser.

Therefore, such draconian measures are not reasonable in practice. More flexible and precise

enforcement technologies are required to satisfy the security needs of webpage publishers

and clients, as well as the financial needs of advertisers.

In the web advertisement domain, the challenge is to provide solutions that balance

security and crucial revenue; other security scenarios, such as mission critical software, re-

quire providing solutions that balance environment-specific policy specification with iron-

clad safety guarantees. Stepping back, the important question that begs to be answered is

how to develop tools and technologies to aid security defenders that provide fine-grained,

flexible policy enforcement, that are efficient, robust, and yet provide strong assurances for

policy-adherence. This dissertation addresses several of these challenges.

1.1 In-lined Reference Monitoring

In-lined reference monitoring (cf., Yee et al., 2009; Chen and Roşu, 2005; Ligatti et al., 2005b;

Schneider, 2000) has become a well-established software security enforcement mechanism in

the last decade. In-lined Reference Monitors (IRMs) enforce safety policies by injecting run-

time security guards directly into untrusted binaries. The guards test whether an impending

operation constitutes a policy violation, taking corrective action to prevent the violation.
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The result is self-monitoring code that can be executed safely without external monitoring.

The approach is motivated by improved efficiency (since IRMs require fewer context switches

than external monitors), deployment flexibility (since in-lining avoids modifying the VM or

OS), and precision (since IRMs can monitor internal program operations not readily visible

to an external monitor).

IRM’s dynamically observe security-relevant events exhibited by the untrusted code they

monitor, and maintain persistent internal state between these observations, enabling them

to accept or reject based on the history of events observed. This allows them to enforce

powerful security policies, such as safety policies, that are not precisely enforceable by any

purely static analysis (Hamlen et al., 2006b). Additionally, IRM’s afford code consumers

the flexibility of specifying or modifying the security policy after receiving the code, whereas

purely static analyses typically require the security policy to be known by the code producer.

Figure 1.1 presents psuedocode for a very simple IRM that prohibits more than three

pop-up window opens. While the original and rewritten code is presented in source-style for

clarity, the IRM is implemented in bytecode in actuality. In this example, Popup.open() is

the security-relevant operation, the count variable maintains the history of security-relevant

events, and System.exit() is the chosen intervention; the IRM implementation can choose

other desired interventions.

L1: if (count ≤ 3)
L2: Popup.open(); L2: Popup.open();

L3: else
L4: System.exit();

L5: count++;

Figure 1.1. Original bytecode (left) that has been rewritten (right) with an IRM that pro-
hibits more than three pop-up window opens.

Most modern IRM systems are implemented using some form of aspect-oriented program-

ming (AOP) (Kiczales et al., 1997) (e.g., Viega et al., 2001; Shah and Hill, 2003; Dantas and
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Walker, 2006; Dantas et al., 2008; Hamlen and Jones, 2008). Aspects encode an IRM’s imple-

mentation as a collection of pointcuts, which identify potentially security-relevant program

operations, each paired with advice, which prescribes a local code transformation sufficient to

guard the operation. This localized code-rewriting approach has been shown to be sufficient

to enforce large, important classes of policies, including the safety policies (Schneider, 2000;

Hamlen et al., 2006b) and some liveness policies (Ligatti et al., 2005b). Additionally, AOP

enjoys an extensive support system and tool base, making it popular in many academic and

industrial settings. An important caveat to the approach is that there must be some way of

preventing circumvention of the injected guards by unrestricted control-flows or corruption

of the guard code by unrestricted memory accesses. Such protection can be afforded by a

type-safe bytecode language, such as Java (Chen and Roşu, 2005; Hamlen and Jones, 2008),

.NET (Hamlen et al., 2006a), or ActionScript (Sridhar and Hamlen, 2010b), or by applying

a sandboxing mechanism such as program shepherding (Kiriansky et al., 2002) or software

fault isolation (Yee et al., 2009; McCamant and Morrisett, 2006; Erlingsson et al., 2006;

Wartell et al., 2012; Sun et al., 2013).

1.2 Certifying In-lined Reference Monitors

As AOP-based IRM systems gain prominence, there is a foreseen need to enhance them with

certification. This need arises due to two main concerns: Firstly, the Trusted Computing

Base (TCB) of an AOP-style IRM framework can quickly become extremely large as the

size of the aspect library grows. When the IRM is intended to apply to large classes of

untrusted binaries rather than just one particular application, the required generality makes

them extremely difficult to write correctly, as past case-studies have demonstrated (Jones

and Hamlen, 2010). Moreover, the TCB also includes the compiler, aspect-weaver, and

possibly other support tools that can be difficult to verify formally. This frustrates attempts

to provide strong formal guarantees about the instrumented code produced by these systems.
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Secondly, in many practical settings, aspectually encoded policy implementations and the

rewriters that apply them to untrusted code are subject to frequent change. For example,

in the problem domain of web ad security (cf., Li and Wang, 2010; Sridhar and Hamlen,

2010a,b), as new attacks appear and new vulnerabilities are discovered, these IRM imple-

mentations rapidly change in their technical details (though not in their high-level approach

of guarding potentially dangerous operations with dynamic checks). Thus, the considerable

effort that might be devoted to verifying formally one particular IRM implementation quickly

becomes obsolete when the IRM is revised in response to a new threat.

Therefore, rather than proving that a particular IRM framework correctly modifies all

untrusted code instances, we instead consider the challenge of machine-certifying individual

instrumented code instances with respect to the original policy and untrusted code whence

they were derived. Specifically, we would like to prove that, for a given policy P , untrusted

code instance e, and rewritten code instance e′,

� Soundness: e′∈P ; i.e., rewritten code is policy-satisfying, and

� Transparency: if e ∈ P then e′ ≈ e, where ≈ denotes semantic program-equivalence;

i.e., the behavior of policy-satisfying code is preserved across rewriting.

The problem of certifying IRMs differs substantially from the more general problem of

verifying the safety of arbitrary code. This is because IRM certifiers need only be powerful

enough to provide rewriters a reasonable range of certifiable code to which to map untrusted

code instances. For example, while general-purpose model-checkers are often very large

(e.g., Holzmann, 2003), this dissertation shows that in the context of an IRM system, it

is possible to create extremely small, efficient model-checkers that are powerful enough to

verify large classes of IRMs formally (DeVries et al., 2009; Sridhar and Hamlen, 2010b). The

rewriters for these model-checking IRM systems simplify the certifier’s task when necessary

by inserting extra dynamic guards that obviate the proof of safety (at the expense of some
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additional runtime overhead for the rewritten code). The verifier therefore need only be

sufficiently sophisticated to identify the dynamic checks used by the IRM to guard dangerous

operations, and verify that they are not circumvented by unguarded control flows.

IRM certification also differs from proof-carrying code (PCC) (Necula and Lee, 1996;

Necula, 1997) in that PCC rewriters (certifying compilers) leverage source-level information

that is typically unavailable to binary rewriters. For example, a certifying compiler may prove

control-flow safety by refining a general proof of source-language control-flow safety down to

the compiled object code, whereas a binary-level rewriter lacks this source-level information.

This has interesting implications for IRM certification because effective IRM certifiers must

support a different class of rewritten code—those that are reliably implementable by binary-

level IRM rewriters but not necessarily typical of source-level rewriters.

IRM certification has been implemented successfully in the past through the use of type-

checking (Hamlen et al., 2006a) and contracts (Aktug and Naliuka, 2008). This dissertation

extends the state-of-the-art in IRM certification in the following respects:

My Thesis. The main contribution of this dissertation is a technology for achieving IRM

certification using model-checking. Model-checking is an extremely powerful software ver-

ification paradigm that fuels certification of properties more complex than those typically

expressible by type-systems and more semantically flexible and abstract than those typically

encoded by contracts. Challenges and subsequent success of developing model-checking IRM

frameworks for various platforms are discussed. Certification is achieved on a case-by-case

basis of instrumented code, allowing the IRM system itself to be completely untrusted. Cer-

tification is demonstrated for both soundness and transparency properties.

An important result discussed is a new, more powerful class of web security technolo-

gies that can be deployed and used immediately, without the need to modify existing web

browsers, servers, or web design platforms. Implementations demonstrating security enforce-

ment on a variety of fairly large-scale, real-world Java and ActionScript bytecode applications
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are also discussed. Solid theoretical formalizations and proof methodologies are employed to

provide strong formal guarantees of the certifier.

1.3 A Certifying IRM Example

Figure 1.2 shows an example of a certifying in-lined reference monitoring framework we de-

veloped for ActionScript Bytecode used in Adobe’s Flash, Adobe Integrated Runtime (AIR),

and related technologies. Chapters 2 and 7 motivate ActionScript security enforcement in

detail. Chapters 3, 4, and 5 develop the Soundness Verifier. Chapter 6 develops the Invariant

Generator and Transparency Verifier.

untrusted
ABC file

accept

code points

invariants

Untrusted Trusted

instrumented

ABC file

Original
SWF File ABC Extractor

Binary Rewriter

Transparency
Verifier

Soundness
Verifier

Security
Policy

∧

ABC Injector

Invariant
Generator

reject

safe, transparent
SWF File

Figure 1.2. A certifying ActionScript IRM architecture

Our framework includes a collection of rewriters that automatically transform untrusted

ActionScript bytecode into self-monitoring ActionScript bytecode. The untrusted code is

obtained from ShockWave Flash (SWF) binary archives, which package ActionScript code

with related data such as images and sound. Once the raw bytecode is extracted, a Definite

Clause Grammar (DCG) (Shapiro and Sterling, 1994) parser converts it to an annotated
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abstract syntax tree (AST) for easy analysis and manipulation. The rewriter then rewrites

the bytecode according to the security policy, adopting the typical strategy of injecting guard

code around potentially security-relevant bytecode instructions.

The ABC Injector tool re-packages the modified bytecode produced by the rewriter with

the original data to produce a new, safe SWF file. Policy adherence of the instrumented

code is independently verified by the soundness verifier, while behavioral preservation of

safe programs is confirmed by the transparency verifier. Only code that passes both tests is

reassembled with its data and executed.

In practice it is usually infeasible to develop only one binary rewriter that can efficiently

enforce all desired policies for all untrusted applications. Our IRM framework therefore

actually consists of a collection of rewriters that have been tailored to different policy classes

and rewriting strategies, and that are subject to change as new policies and runtime efficiency

constraints arise. All rewriters remain untrusted since their output is certified by a single,

trusted verifier. The verifier is more general than the rewriters, and therefore less subject to

change. This results in a significantly smaller trusted computing base than if all rewriters

were trusted.

1.4 Policy Specification for Effective Certification

Effective IRM certification requires a means of specifying policies in a way that admits

both effective enforcement by an IRM and separate, independent certification by a verifier.

Different approaches to this problem give rise to different notions of what it means to certify

an IRM against a policy.

One approach adopted by a large number of IRM systems is to express not just policy

enforcement as an aspect but the policies themselves as aspects or in an aspect-like language

(e.g., Chen and Roşu, 2005; Erlingsson, 2004; Kim et al., 2004; Aktug and Naliuka, 2008;

Bauer et al., 2005; Evans and Twynman, 1999). A distinguishing characteristic of these
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specification languages is that at least part of the specification consists of code fragments

(i.e., advice) that implements dynamic security checks, violation-precluding interventions,

or IRM state updates. These fragments are woven into the untrusted code by the rewriter;

the specification therefore defines a code-transformation recipe.

While this approach lends itself to rewriting, it makes meaningful certification difficult

because rewriting becomes a subproblem of certification and therefore leaks back into the

TCB. This is illustrated by recent work on IRM verification-by-contract (Aktug and Naliuka,

2008), which casts policy specifications as contracts that describe the intended security-

relevant behavior of the program. The contract is essentially an aspect-oriented program; it

consists of event clauses that function as pointcuts, and after clauses that supply advice.

A rewritten program e′ is checked against such a contract R by a process that essentially

applies R to the original code e and tests whether R(e) = e′.

However, this approach has three drawbacks: (1) Contracts constitute a potentially signif-

icant addition to the TCB because they must encode the essence of the rewriting algorithm.

(2) The certifier must therefore duplicate large portions of the rewriter in order to compute

R(e). (3) Verifying that the contract is sound returns us to the original problem of proving

that a general rewriting strategy is sound in all cases, which is more difficult than IRM

certification that verifies the safety of rewritten code on a case-by-case basis. It is therefore

unclear that this approach constitutes a meaningful reduction to the TCB.

A viable alternative approach is to express policies as types, so that certification can be

formalized as type-checking (Hamlen et al., 2006a). However, the resulting policy language

can be somewhat limiting in practice. Our experience indicates that while certification is

extremely elegant in such a system, it is not always easy to find types that express realistic,

high-level policies that constrain method argument values, field values, and relationships

between object instances within complex data structures. (But see related work on low-level

liquid types (Rondon et al., 2010) and dependent types (Coquand and Huet, 1988; Leroy,

2011) that may offer creative solutions to some of these problems.)
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A third approach is to specify policies purely declaratively using a temporal logic such

as LTL, or an automaton encoding such as security automata (Alpern and Schneider, 1986).

To express low-level binary program properties in such a language, atomic propositions and

edge labels can be written as pointcuts that identify security-relevant program operations.

Past work on this has yielded formal denotational semantics that reduce such specifications

to pure program properties (Hamlen and Jones, 2008).

This dissertation shows that these specification languages are well-suited as input to IRM

certification systems that decide soundness of rewritten code independently of the original

untrusted code, and without the need to duplicate the rewriter implementation within the

certifier. Typically the task of synthesizing a program that satisfies such a property is more

complex than verifying that an existing program satisfies the property, mainly because the

rewriter must support a much larger domain (arbitrary untrusted code) than the domain

supported by the certifier (rewriter-supplied, self-monitoring code). Moreover, the certifier in

such a framework does not regard the original untrusted code, leading to less code duplication

between the rewriter and the certifier. There is therefore good reason to believe that such

certification constitutes a meaningful reduction to the TCB, and a meaningful second line

of defense.

Additionally, in a purely declarative policy specification language the policies define what

security property to enforce without overspecifying how it is to be enforced. This charac-

teristic allows for a clear-cut separation between the IRM implementation and the certifier,

providing the former the choice of an optimal rewriting strategy customized according to

information available at rewrite-time but not necessarily certification-time.

1.5 Certifier Soundness and Completeness

An important consideration for IRM system developers is a qualifier for policy-adherence

assurance and computability limitations of IRM certification (Hamlen et al., 2006b). Specif-
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ically, the interplay between the static analysis (the certifier) and the dynamic analysis (the

rewriter) poses interesting mathematical relationships.

In this section, we present a mathematical framework for discussing these relationships.

We start by outlining preliminaries related to soundness and completeness of rewriters and

certifiers. This leads to a definition of P-verifiability that relates the two in the context of

a certifying IRM framework. We conclude the section by discussing treatment provided by

past IRM works on soundness and completeness.

In order to examine what it means for an IRM to correctly enforce a policy, it is important

to first define mathematically what an IRM is and what it does. An IRM rewriter R can be

conceptualized as a total, computable function R : M → M from programs to programs.

Rewriter R is said to be sound with respect to a policy P ′ if and only if R(M) ⊆ P ′.

Adding certification to an IRM framework removes a rewriter from the TCB, relieving us

of the burden of proving rewriter soundness. Instead, we introduce a certifier that rejects

any unsafe rewriter output on a case-by-case basis. Providing high assurance in this new

framework requires proving certifier soundness.

A certifier decides some other property P ⊆ M. The certifier is sound with respect

to policy P ′ if and only if P ⊆ P ′. That is, sound certifiers accept only policy-adherent

programs. Typically P is a strict subset of P ′. Programs in P ′ − P are conservatively

rejected; they are safe but unverifiable programs. Complete certifiers satisfy P ′ ⊆ P . Thus,

certifier soundness and completeness together imply that P ′ = P . However, for this to

be true, policy P ′ must be statically decidable (because P is decidable). Thus, for any

non-trivial policy P ′, P is a strict subset and the certifier is sound but not complete.

While full certifier completeness is therefore impossible to achieve in the context of non-

trivial policy languages, it is nevertheless important to obtain a certifier that is sufficiently

complete to allow effective, certified rewriting of arbitrary binary code for a reasonably large

class of security policies (e.g., the safety policies). We capture this idea a little more formally

below.
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Definition 1 (P-verifiable). Define M to be the universe of all programs and assume pro-

gram property P ⊆ M is statically decidable. A property P ′ ⊇ P is P-verifiable if there

exists a total, computable, rewriter R : M→M that is transparent with respect to P ′ and

that satisfies R(P ′) ⊆ P. That is, R maps any program satisfying P ′ to a member of P. A

class of properties C ⊆ 2M is P-verifiable if every member of C is P-verifiable.

Note that in the above definition, P is the property being verified and P ′ is the property

being enforced. Informally, we refer to P ′ as P-verifiable when there is a rewriter that

enforces P ′ and whose output can be certified by a verifier that decides P . Similarly, a class

C of policies is P-verifiable if a verifier for P suffices to certifiably enforce all policies in C

with one or more rewriters (possibly different rewriters for different policies in C and different

untrusted programs inM). Definition 1 is useful because the suitability of an arbitrary code

analysis P for purposes of IRM certification can be assessed by considering which policy

classes are P-verifiable. This provides a convenient and uniform means of connecting the

IRM certification problem to related work.

Past work on IRM systems without certification typically argues rewriter soundness in-

formally, due to the difficulty of formally verifying a full-scale rewriter implementation. For

example, the SASI system (Erlingsson and Schneider, 1999) includes an informal argument

that all control-flows that include potentially policy-violating operations in rewritten code

are protected by a guard operation derived from partially evaluating a security automaton.

In an AOP setting, the analogous proof involves showing correctness of the aspect-weaving

algorithm. However, formally proving that each guard operation is adequate to preclude all

policy-violations of the operations they protect in arbitrary untrusted code is much harder.

It essentially means proving the correctness of the aspects that are woven—an undecidable

problem in general.

Work on certifying IRMs (Hamlen et al., 2006a; Aktug and Naliuka, 2008; McCamant and

Morrisett, 2006; Yee et al., 2009; Sridhar and Hamlen, 2010b) tries to make these arguments
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more rigorous by formally proving soundness on a case-by-case basis instead of proving

soundness for the general rewriting mechanism. Conspec (Aktug and Naliuka, 2008) shifts

the burden of proving that guard instructions are adequate to the contract-writer. The

contract specifies which guard instructions are required and where; it is trusted to encode

an adequate implementation of the desired high-level policy. PittSFIeld (McCamant and

Morrisett, 2006) and NaCl (Yee et al., 2009) have an extremely rigorous proof of safety that

rests on a machine-checkable ACL2 proof showing that its guard instructions are adequate,

but only for a very specific, limited control-flow and memory-safety policy. Mobile (Hamlen

et al., 2006a) can verify far more general temporal properties, but is limited in which guards

it can verify. It requires a specific dynamic state representation scheme with limited aliasing

of security-relevant objects.

The model-checking approaches to IRM certification that are contributed by this disser-

tation (DeVries et al., 2009; Sridhar and Hamlen, 2010b; Hamlen et al., 2012; Sridhar et al.,

2014) use security automata (Alpern and Schneider, 1986) for constructing a lattice for ab-

stract interpretation. Policy violations are modeled as stuck states in the concrete small-step

operational semantics, and the presented proof of certifier soundness involves establishing

that the abstract machine is sound with respect to the concrete machine.

1.6 ActionScript Security

Many of the IRM implementations presented in this dissertation secure Adobe Flash binary

programs. Adobe Flash applets (Shockwave Flash programs) provide web developers a su-

perior platform for creating rich, dynamic web content such as web advertisements, online

games, streaming media and interactive webpage animations, resulting in a soaring popu-

larity of the technology on the web. Additionally, most of this content can also be made

available to the desktop using the Adobe Integrated Runtime (AIR) cross-platform environ-

ment. The following statistics (Adobe Systems Inc., 2013c; W3Techs, 2013) demonstrate the
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pervasive impact of Flash. More than 20,000 apps in mobile app stores such as Apple App

Store and Google Play are created using Flash. A staggering revenue of over US$70 million

per month is generated by the top nine Flash enabled games in China. Flash is used in 24

of the top 25 Facebook games. Flash is the choice of technology of more than three million

developers for creating interactive and animated web environments. Flash is used by 16.9%

of all websites.

The popularity of Flash combined with the complexity of its features has made it ex-

tremely attractive to attackers. The 2013 Cisco Annual Threat Report marks Adobe Flash

as the third highest in the top content types for malware distribution (Cisco Systems, Inc.,

2013). The 2013 Symantec Internet Security Threat Report mentions that of all plug-in

vulnerabilities between 2010 and 2012, Adobe Flash Player constitutes 18%, 20%, and 22%

in the years 2010, 2011, and 2012 respectively. Flash-powered attacks have successfully pen-

etrated some of the most security-hardened facilities in the world, such as the famous 2011

penetration of RSA (Mikko, 2011), and the massive Luckycat campaign that targeted an en-

tire spectrum of important U.S. industries such as aerospace, energy, engineering, shipping,

and military research, as well as top-level international organizations such as Indian military

research institutions, and groups in Japan and Tibet (Irinco, 2013).

One reason Flash security is so non-trivial is because of the feature-filled complexity of

the ActionScript bytecode language (Adobe Systems Inc., 2013b), which Flash uses inter-

nally. Like other ECMAScript languages, ActionScript includes language features such as

an object model, function calls, class inheritance, compile time and run-time type check-

ing, packages, namespaces, regular expressions, and direct access to security-relevant system

resources (Adobe Systems Inc., 2007). However, unlike JavaScript, ActionScript programs

are disseminated as compiled binary Flash files (.swf files) that pack images, sounds, text,

and bytecode in a webpage-embeddable form, which is then seamlessly JIT-compiled and/or

interpreted by the Adobe Flash Player browser plug-in when the page is viewed. This trans-
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parent purveyance of powerful binary content from Flash authors, through page publishers,

to end-users educes many security threats.

Security apprehensions have been further exacerbated due to the recent trend of web

environments becoming aggressively heterogeneous (e.g., composed of mash-ups that mix

mobile code from many mutually distrusting sources), which expand the attack vulnera-

bility surface area. Additionally, Flash’s deployment as plug-in VM tends to widen threat

windows due to patch lag. Newly discovered VM vulnerabilities are typically resolved by

patches released by Adobe, but many consumers are apathetic or inattentive in downloading

and installing the patches; in many large companies, older versions of the Flash plug-ins may

be required for compatibility with critical business systems, creating reluctance in updating

to the latest version. This lag in patch deployment rate has resulted in many home and large

organization systems prone to Flash-attacks (Symantec Corporation, 2013). Consequently,

effective intrusion detection of Flash-based attacks must consider a large array of past AVM

versions and configurations. Due to the lack of a consistent, systematic solution to the prob-

lem, many security advisories suggest disabling Flash altogether as a fool-proof protection

strategy (Sophos, 2013); unfortunately, this strategy is antithetical to the revenue models of

many businesses.

Despite significant causes for concern, attention given by the formal research community

has been disproportionately low compared to the gravity of the Flash security problem. For

example, between 2008 and 2013 only 1.4% of publications in the top six non-cryptography

security venues (ranked by Google Scholar h5-index) concerned Flash, and only one venue

(the IEEE Symposium on Security & Privacy) devoted a large fraction of web security

research (42%) to Flash-related threats (see Chapter 7 for a more detailed description of the

scientific research methodology that yielded these statistics).

The in-depth discussion of the ActionScript language and features throughout this disser-

tation serves a dual purpose: (1) ActionScript provides a rich, complex, prevalent platform
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for demonstrating many of the tools and techniques we developed for building certifying

IRMs. (2) Due to the same richness, complexity and popularity, there is an urgent need to

fill a void in formal study of the language, and tools for addressing the innumerable security

concerns the platform faces today. This dissertation makes substantial progress towards

developing robust security enforcement for ActionScript, building several formal analyses

techniques for the language. Moreover, our tools and methodology subsequently contribute

to achieving flexible, expressive security for mixed-content web advertisements, composed of

ActionScript/JavaScript mash-ups.

1.7 Roadmap

The rest of the dissertation proceeds as follows. Chapter 2 explores security issues in cross-

language web advertisement security, and proposes an IRM solution. Chapter 3 and Chap-

ter 4 present preliminary ideas en route to using model-checking for IRM soundness certi-

fication: Chapter 3 presents a light-weight ActionScript bytecode verifier constructed using

co-logic programming. Chapter 4 employs the ideas from Chapter 3 to create a prototype

model-checking IRM framework for ActionScript bytecode, where the model-checking algo-

rithm centers around a novel approach for using a security automaton to perform abstract

interpretation.

Chapter 5 presents a full-scale certifying IRM framework for the SPoX Java IRM system,

based on the algorithm developed in Chapter 4. Chapter 6 discusses IRM transparency

certification—the chapter presents the first automated transparency verifier for IRMs.

Chapter 7 focuses on contemporary issues in ActionScript security, presenting a survey

of ActionScript attack and vulnerability classes, and language/VM features that facilitate

them. Chapter 8 presents related work, and Chapter 9 discusses conclusions and future

work.



CHAPTER 2

SECURING MIXED JAVASCRIPT/ACTIONSCRIPT MULTI-PARTY WEB

CONTENT1

2.1 Overview

JavaScript (JS) and Adobe ActionScript (AS) (the language for authoring Flash applet

content) are two widely used platforms for developing web content. According to recent

surveys on w3techs.com, 92% of all websites use JS and 23% of them use AS, demonstrating

the popularity of these platforms for web development.

Due to these two platforms’ popularity, much third-party web today contains mixed

JS-AS content. By mixed AS-JS content, we refer to untrusted code that is primarily a

combination of AS and JS. Such code is extensively used in interactive advertisements, em-

bedded third-party videos, and plugins for content-management systems such as WordPress

and Joomla. The popularity of such content stems in part from interactive and multimedia

features that are uniquely available through each platform. Mixed AS-JS content leverages

the benefits of both platforms: the interactive features of JavaScript for click-tracking and

context customization, and the multimedia features of Flash for improving user experience.

Hosting sites that include such third-party content must deal with the security and pri-

vacy issues that such inclusions introduce. The most important security concerns tend to

be confidentiality of private client data (e.g., document cookies), integrity of the hosting

site and user-owned content, and availability of the hosting site services (e.g., ads must not

prevent or dissuade users from visiting the site).

1This chapter includes joint work (Phung et al., 2013) with Phu H. Phung, Maliheh Monshizadeh, Kevin
W. Hamlen and V.N. Venkatakrishnan.
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The prior literature includes extensive research on addressing such third-party inclusion

issues in the web. However, most of the solutions focus on third-party JS content. These in-

clude transformation of untrusted code (e.g., Google Caja, 2007; Microsoft Live Labs, 2009),

security reference monitors (e.g., Phung et al., 2009; Meyerovich and Livshits, Meyerovich

and Livshits; Cutsem and Miller, 2010; Heiderich et al., 2011; Meyerovich et al., 2010; Yu

et al., 2007), and safe subsets of JS (e.g. Facebook Developers, 2010; Maffeis and Taly, 2009;

Maffeis et al., 2009b; Finifter et al., 2010; Taly et al., 2011; Politz et al., 2011). To a lesser

extent, there have been efforts to address security issues in Flash/AS as well (Li and Wang,

2010). In spite of these recent efforts, the security of mixed AS-JS content is relatively less

researched.

Meanwhile, the abuse of mixed AS-JS content technologies to carry out malicious cam-

paigns is a significant rising threat for untrusted content currently in circulation (M86 Se-

curity, 2010). For example, a vulnerability uncovered in Gmail allowed attackers to steal

sessions by exploiting Gmail’s use of the AS-JS interface (Amit, 2010a). Another attack on

WordPress (CVE-2012-3414) exploits a vulnerable AS-to-JS interface call. A more recent

study showed that 64 of over 1000 top sites contain vulnerable Flash applications that are

exposed to JS XSS attacks (Acker et al., 2012). (Our evaluation discusses other real-world

attacks).

A deeper examination of these attacks reveals that any defense mechanism that aims to

prevent attacks arising from AS-JS interactions must adopt a holistic view of the security-

relevant actions happening on both platforms. Prior work developed for JavaScript or for

Flash has not been designed with this holistic perspective, and therefore does not satisfac-

torily address security issues arising from mixed AS-JS content. The problem of preventing

malicious behaviors that exploit the combined use of AS-JS technologies has therefore re-

mained open.
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Problem Scenario: To illustrate the security challenges outlined above, consider a page

publisher P who supports her site via embedded advertisements purveyed by an ad network

N . Publisher P trusts neither the ads (some of which may be malicious) nor N (which

may fail to filter some malicious ads, and whose ad-loading code might contain exploitable

vulnerabilities). To protect the integrity and reputation of her site and retain clientele, P

wishes to protect her clients from this malicious content.

Unfortunately, P cannot assume that all her clients take all available steps to protect

themselves from the dangers that malvertisements pose. For example, some clients probably

use un-patched browsers with known vulnerabilities. Finally, some of the policies P must

enforce are specific to P ’s site or page content. For example, on a page that uses pop-up

windows for legitimate navigation, P may wish to disallow all ad-generated pop-ups, which

could fool clients with phishing attacks that impersonate the legitimate pop-ups.2 P wishes

to protect her clients as much as possible given these realities.

To host ads, N requires P to copy some JS ad-loading code provided by N onto her

published pages. When this code is served to clients and executed, it dynamically modifies

the hosting page within the browser to display dynamically chosen ads (implemented in JS,

Flash, or both) served either by N or by the advertisers directly. Since the ad-loading code

requires dynamic read and write access to the hosting page, it must not be placed in a

protected iframe, nor may it be enclosed in any page element that disallows scripting. Such

measures effectively deactivate ads, depriving P of most or all ad revenue. Likewise, many ads

make heavy use of Flash-JS interaction (e.g., for click-tracking, contextual ad customization,

and multimedia); therefore the hosting page must not disable such interaction lest it block

many legitimate ads, losing significant ad revenue.

2Client-side pop-up blockers are not a viable defense, since P cannot assume that all clients use them or
that they are all configured to distinguish the legitimate pop-ups from the illegitimate ones.
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Our Approach: FlashJaX provides publisher P a means to enforce custom security poli-

cies on untrusted third-party ad and ad network content without deactivating the critical

functionalities, like scripting and JS-Flash interaction, required by most ads. To use Flash-

JaX, P adds a 〈script〉 tag near the top of her published pages, which dynamically loads

the FlashJaX IRM on client browsers before any other scripts run. She also statically labels

any trusted, protected page content (e.g., publisher-authored JS code or Flash objects) with

the owning principal (expressed as a principal-identifying html class attribute). Unlabeled

Flash and JS code is, by default, fully untrusted by FlashJaX. Finally, she may write page-

specific policies (detailed in Section 2.4) that define the events and event-traces that each

principal may exhibit. To secure untrusted Flash content, P also hosts or accesses a trusted

ad-proxy service that dynamically installs the FlashJaX IRM into untrusted Flash ads served

to clients.

At runtime, the FlashJaX IRM dynamically monitors all untrusted JS and Flash code ex-

ecuted on client machines to enforce P ’s policies. As an example of such monitoring, consider

the pop-up prevention policy mentioned above, which prohibits ad principals from exhibiting

pop-ups but permits trusted publisher code from doing so. Pop-ups are implemented via a

limited collection of JS Document Object Model (DOM) and Flash runtime API services.

FlashJaX monitors calls to these services by intercepting them with guard code that first

checks the impending operation against the acting principal’s policy. FlashJaX passes the

call through to the browser’s underlying JS/Flash VM only if the principal’s policy permits

it.

To track the current principal, FlashJaX enforces history-based policies that constrain

dynamically generated code and the events it exhibits. For example, a Flash ad owned by

principal A that dynamically generates JS code that creates a new script within a region of

the page owned by principal B must be successfully monitored by FlashJaX and constrained

by policy A, not B. Such dynamic script generation is extremely common; almost all real-

world ads and ad networks perform many layers of dynamic script generation and html tree
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manipulation as they execute. Therefore, monitoring and constraining history-based policies

(i.e., those that constrain event histories rather than just individual events in isolation)

over dynamically generated, cross-platform code is a critical challenge addressed by our

framework.

The remainder of the chapter is organized as follows: Section 2.2 sketches some attack

scenarios that motivate securing the AS-JS interface. Section 2.3 outlines the FlashJaX

architecture and technical approach. Design and implementation details are described in

Section 2.4, and a security analysis is summarized in Section 2.5. Section 2.6 evaluates the

implementation in terms of effectiveness, compatibility, and performance, and Section 2.7

discusses the relevance of FlashJaX to web security, and Section 2.8 concludes.

2.2 AS-JS Interface Attacks

In this section we describe the background of the AS-JS interface, and detail several moti-

vating attack scenarios that exploit this interface to effect damage.

2.2.1 AS-JS interfaces

AS-JS interaction is implemented by two methods in the Adobe Flash runtime’s ExternalIn-

terface class: call and addCallback. AS calls JS method f(a1, . . . , an) by invoking method

call(f, a1, . . . , an), where f is a string that is passed uncensored to the JS VM and evaluated

as JS code to obtain a JS function reference, and where arguments a1, . . . , an are arguments

passed as values. The evaluation of expression f as JS code at global scope is a root of many

vulnerabilities in AS-JS cross-language scripts. To permit JS to call AS, the AS code may

invoke addCallback(n, c), which registers AS function closure c as callable by JS under the

pseudonym n (a name that is added to the JS namespace of the html object that embeds

the AS script). Closure c may return a value, which is marshaled and passed by value back

to the JS caller. Together, these facilitate two-way communication between AS and JS.
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Security for this interface is provided by the allowScriptAccess property of the object

and embed tags of the embedding page. In particular, the call method requires the allowScr-

iptAccess property to be set to one of three options: always (full access), sameDomain (same

origin access), or never (none); same origin access is the default. Additionally, by default

JS may only call an AS closure registered with addCallback if the caller and callee originate

from the same domain. AS callees may adjust this restriction using the allowDomain method

of the Flash runtime’s Security class.

While useful in some settings, these security features are too coarse-grained to distinguish

malicious from non-malicious behavior in many contexts. Disallowing all AS-JS interaction

or limiting it to same origin access breaks a large percentage of legitimate advertisement

scripts. Therefore many ads and publishers resort to allowing all access, inviting attacks.

In the following subsection, we introduce some of the attacks that exploit the AS-JS

interface. Such attacks can only be prevented by enforcements that span both languages.

While the examples focus on AS-JS interface communication, FlashJaX is also designed to

prevent attacks that are launched purely from JS or AS. However, to highlight the novelty

of our system over prior works that can only guard each platform in isolation, we focus our

discussion here on attacks that involve the interface.

2.2.2 Attack scenarios

Attack #1: Circumvention of SOP

The AS and JS VMs both enforce Same Origin Policies (SOPs) that prohibit cross-

domain interactions. However, AS and JS SOPs have slightly different semantics (Zalewski,

2011a) due to their differing computation models, and these can presently be exploited to

circumvent SOP on either side.

For example, a malicious Flash ad can abuse the AS-JS interface to circumvent AS’s SOP

in order to contact a victim third-party site. To do so, the malicious Flash ad dynamically
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crafts a malicious JS script and passes it to the JS VM via Flash’s external interface. The

malicious JS script accesses the browser’s DOM API to create a new 〈script〉 node (e.g.,

using appendChild or document.write). This new node has a src attribute whose URL

references the third-party victim site. The URL can additionally contain information passed

from the AS applet to the third-party site. The new node is not subject to AS’s SOP, so it

successfully contacts the remote site and retrieves the result, which is communicated back

to the AS side using the external interface. Using this method, an attacker can escape the

AS’s SOP to perform two-way communication with the victim third-party site, which can

be exploited to launch click forgery, resource theft, or flooding attacks.

This malicious behavior cannot be recognized by single-platform detection tools on either

the AS or JS side, since AS permits (and ads regularly use) AS-to-JS communication, and

JS permits (and ads regularly use) dynamic script generation. A cross-platform solution is

required to link these two steps together and detect the SOP violation.

Attack #2: Malicious Payload Injection From Flash

Heap-spraying attacks are a form of code injection that first allocates large regions of

malicious payload code into a victim VM’s heap, and then exploits a control-flow hijack vul-

nerability (e.g., buffer overflow) in an effort to branch to the injected payload. Address space

randomization and other protections prevent attackers from reliably learning the addresses

of these injected payloads, but if the payload is large enough and has enough entry points,

a randomly corrupted control-transfer targets it with high probability.

Since some vulnerabilities are previously unknown (i.e., zero-day), signature-matching

malware protections often attempt to detect the payload injector instead, because it is larger

and easier to identify using monitoring mechanisms. However, malware authors have been

frustrating these defense efforts by using cross-language heap-spraying attacks (Wolf, 2009).

In this scenario, the attacker implements AS code that sprays the JS VM’s address space.

The exploit is then implemented separately in JS. Identification of such attacks requires
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cross-platform solutions that can piece together the two separate halves of the attack imple-

mentation.

Attack #3: Cross-Principal Resource Abuse

Sponsored pages often embed ads from more than one ad network. This exposes the

publisher and one ad network to attacks launched by the (possibly less trustworthy) ads

hosted by another network if those ads can abuse AS-JS interaction to hijack shared DOM

resources, or improperly access functions and services exposed by victim scripts.

Flash has facilities for controlling access to exposed functions. For instance, the allowDo-

main(〈domains〉) call permits JS code from 〈domains〉 to access AS functions. However, the

coarse granularity of these facilities makes it extremely common for ad developers to use

them imprudently, such as by supplying wildcard “*” for 〈domains〉, which permits universal

access (Elrom, 2010). This imprudent setting makes the AS functions accessible in the JS

global scope, and hence can be invoked by all untrusted JS code.

Hosting sites cannot effectively filter ads by the quality of their underlying implementa-

tions, so inevitably some vulnerable ads become embedded in the served pages on the client

side, exposing the clients to attack. For example, a malicious JS advertisement, even if sand-

boxed in the JS domain, can call such exported functions. This affords the ad illegitimate

access to DOM objects if the exposed AS functions access or manipulate those objects in the

DOM. Prevention of this attack requires the ability to attribute principals to actions across

the AS-JS interface.

The above scenarios illustrate the need for cross-language monitoring. It is quite clear

that JS sandboxing methods alone cannot prevent the attacks in scenarios #1–3. These

scenarios involve the AS-JS boundary, which is typically outside the scope of approaches

aimed at sandboxing purely JS or AS code. The next section describes how FlashJaX’s

architecture prevents these malicious scenarios.
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2.3 Architecture

2.3.1 System Introduction

FlashJaX affords publishers a fine-grained mechanism to safely embed untrusted JS and

AS content in their web pages. To avoid modifying the client browser or VMs (which

would introduce significant deployment barriers), we adopt an in-lined reference monitoring

approach.

The FlashJaX IRM consists of JS and AS code introduced by the embedding page. The

IRM code mediates security-relevant events exhibited on the client, permitting or denying

them based on a provider-specified policy.

A näıve design implements separate IRMs for the JS and AS platforms; however, this

approach has many drawbacks. To enforce policies involving a global event history, sepa-

rate IRMs must ensure that their security states are synchronized at every decision point.

This raises difficult race condition and TOCTTOU vulnerability challenges, and impairs

performance.

To avoid this, FlashJaX centralizes security state-tracking to the JS half of the IRM,

and implements an AS side that shifts the significant policy decisions to the JS side. This is

efficient because most security-relevant AS events include AS-JS communication as a sub-

component; the IRM therefore couples its AS-JS communications atop these existing ones

to avoid unnecessary context-switches.

Figure 2.1 summarizes the resulting architecture. The FlashJaX components (shaded)

consist of a JS-side event mediator, an AS-side event mediator, and a JS-side policy engine.

The first two components intercept events from untrusted JS and AS, respectively, whereas

the last tracks event history and makes policy decisions.

Step 1 of the figure depicts the exhibition of a security-relevant event op by the untrusted

JS or AS code, which is intercepted by the IRM. If the event occurs on the AS side, the AS



26

Advertisement
(principal p)

JavaScript

ActionScript ActionScript
IRM

JavaScript
IRM

Policy
Engine

op
1

op
1

delegate JS
operations

2

isAllowed(p, op)3 true/false 4

Figure 2.1. FlashJaX architecture. Trusted components are shaded; untrusted (monitored)
components are unshaded.

IRM implementation consults the JS side in step 2. The JS-side IRM intercepts the event or

AS-to-JS communication and consults a principal-specific policy in step 3. The policy engine

updates the security state and yields a true/false answer in step 4, causing the operation to

be permitted or suppressed.

As an example, an embedded AS ad might exhibit an op that spawns JS code that tries

to overwrite the publisher’s DOM. In a typical browser environment, there is nothing to

prevent a malicious ad from successfully attacking its embedding page in this way. However,

on a page equipped with FlashJaX, the ad’s JS code is intercepted by the IRM and executed

at a lower privilege level than the publisher. When the unprivileged write-operation is

intercepted, the policy engine determines that the acting principal lacks write-access to

publisher-owned content, and suppresses the operation.

2.3.2 Technical approach

The example above illustrates three essential capabilities of the IRM: It must (1) protect its

own programming and other publisher-provided page content from harm, (2) guard access to
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all security-relevant operations, and (3) attribute guarded events and page contents to act-

ing/owning principals. We henceforth refer to these three capabilities as IRM tamper-proofing

(i.e., integrity enforcement), complete mediation, and principal-tracking, respectively. In ad-

dition, to enforce multi-principal, history-based policies, the IRM must track both principal-

specific and global security states. This section discusses our technical approach to achieving

each of these goals.

FlashJaX implements a JS/AS cross-language IRM that constrains untrusted script ac-

cess to the DOM API—functions and data properties that JS scripts access to manipulate

the page and browser. AS code cannot access the DOM directly; instead, it submits strings

to the JS VM via Flash’s external interface, which are executed as JS code at global scope.

The heart of our IRM is therefore a JS-side implementation that guards access to the DOM

and tracks security state, while the AS half redirects external interface accesses to the JS

half.

In addition to tamper-proofing and complete mediation, which are established challenges

for any IRM implementation, our enforcement of multi-principal policies introduces signifi-

cant challenges associated with principal-tracking. Accurate principal-tracking is challenging

because modern ad scripts are highly dynamic, performing many layers of event-driven run-

time code generation as they execute. Solutions that conservatively reject or lose principal

information for dynamic code are therefore impractical because they break most ads.

We now describe each of these capabilities of FlashJaX at a high level. Section 2.4

discusses implementation details.

Tamper-proofing

Tamper-proofing ensures that the IRM’s internals are unavailable to untrusted content. This

is enforced differently at the JS and AS layers as described below.

At the JS layer, tamper-proofing is achieved by placing the majority of the IRM’s im-

plementation inside an anonymous JS function, as illustrated in Figure 2.2. Variable and
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function declarations beginning with the var keyword are strictly local to the anonymous

function’s scope, and therefore cannot be directly accessed by JS code outside that scope

unless the local scope explicitly exports global aliases to them. This enables the IRM to

export and enforce a protected interface for its internal implementation.

(function(){ // begin local scope
var principal = ”bottom”; // protected principal-tracking var
getPrincipal = function(){ // export global get-accessor

return principal; };
var wrap window = function(w) { // wrap security-relevant op

var o open = w.open;
w.open = function() {

if (isAllowed(principal, ”open”, arguments))
return wrap window(o open.apply(this, arguments));

else return null; }
return w; }

wrap window(window);
})(); // close and execute local scope

Figure 2.2. A tamper-proof local scope.

A similar approach suffices to tamper-proof the AS half of the IRM. The majority of the

in-lined AS code is implemented within a sealed, final, monitor class in a separate namespace.

Type-safety and object encapsulation of AS prevent untrusted AS code from accessing the

monitor class’s private members.

JavaScript Mediation

FlashJaX mediates DOM API events by wrapping them with guard functions that consult

the policy before forwarding the request to the DOM. To achieve complete mediation, the

IRM assigns wrappers to all aliases of these security-relevant functions before any untrusted

code runs. Aliases include static names and properties of dynamically created window objects

(e.g., frame and iframe). Although some static aliases are browser-specific, all aliases of a

given security-relevant operation can typically be captured by wrapping the properties of a

single root object atop the JS prototype inheritance chain (Magazinius et al., 2010). The
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wrapper assignment code is placed first on the page so that it is guaranteed to run prior

to any untrusted code. Dynamically generated aliases are captured by mediating all DOM

functions that can generate window objects, and wrapping any fresh aliases they introduce

before returning control to untrusted code.

Data property accesses are guarded using JS setters and getters, which trigger specified

handler code whenever an operation would otherwise read or write a given property.

ActionScript Mediation

The AS half of our IRM guards AS-to-JS control-flows by statically in-lining an external

interface wrapper class into untrusted AS code at the binary level. FlashJaX’s binary rewriter

automatically, statically replaces all bytecode operations that access the external interface

with ones that access the wrapper class instead. This affords the wrapper class complete

mediation of all AS-to-JS flows.

Static identification of external interface references can be complicated by the fact that

AS binaries frequently generate references to classes and their members dynamically (e.g.,

from strings). Malicious code can use such dynamic name generation to obfuscate references,

concealing them from static analysis tools.

To avoid these complications, our rewriter therefore guards references to the external

interface’s namespace rather than its classes or members. The namespace part of an external

interface reference is almost never generated dynamically. (The only AS mechanism for doing

so requires a static reference, making it statically identifiable.) This approach greatly reduces

the amount of in-lined code, improving performance and providing a natural resistance to

reference obfuscation attacks.

Thus, all JS events invoked by AS are labeled with the originating principal and mediated

by the JS IRM, so that the policy engine can apply the correct policy for each principal.

For example, to block attack scenario #1 (Flash circumvention of SOP), the AS IRM labels
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each AS-to-JS communication with the acting principal, allowing the JS IRM to enforce a

whitelist policy that maps each principal to the domains it may access.

Principal Tracking and Event Attribution

Since there are multiple ads within a publisher page, each ad principal must be constrained

by a distinct policy. We call this a multi-principal policy. Enforcing such policies is necessary

to prevent scenarios such as cross-principal resource abuse (scenario #3 of Section 2.2).

To enforce multi-principal policies, FlashJaX deploys principal tracking and event at-

tribution as follows. Whenever trusted code (e.g., the page publisher content) introduces

untrusted code (e.g., by loading an ad), the untrusted code is launched using the IRM’s runAs

method, which defines and maintains the code’s principal in a protected shadow stack. The

stack stores a list of principal identifiers, one for each runAs frame on the JS VM’s call

stack. The IRM’s runAs method is the only means by which the privilege level changes, and

is strictly local to the IRM; untrusted code may not call it directly. The policy manager can

read the shadow stack to identify the principal responsible for each event exhibited by the

code, and thus apply a principal-specific policy.

Dynamic runtime code generation is a great challenge for principal tracking. FlashJaX

addresses this challenge by catching all runtime code generation channels and wrapping them

in new calls to runAs. We discuss this in more detail in Section 2.4.3.

Policy Engine

FlashJaX enforces safety properties, and must therefore track security state based on past

events. Finite state automata (FSA) are a well-established formalism for doing so (Schneider,

2000; Ligatti et al., 2005a; Hamlen and Jones, 2008). FlashJaX therefore expresses policies

as languages of permissible traces, where a trace is a sequence of principal-event pairs, and

each event is a DOM operation parameterized by its argument values.
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This event alphabet affords fine-grained control to the embedding page. For example, ac-

cess permissions for page elements can restrict a principal’s access to entire element subtrees,

individual elements, or both. Our automata definitions are flexible enough to be used in any

arbitrary DOM structure and expressive enough to allow specification of stateful constraints.

Security state is tracked on both a per-principal and a global basis. For example, a policy

can specify that each principal may exhibit at most one pop-up window, and collectively they

may exhibit at most three. This facilitates enforcement of policies that restrict individual

principal behaviors as well as group behaviors.

Using this approach, FlashJaX is able to define and enforce not only policies for AS-JS

cross-language interaction but also history-based and multi-principal policies. These policies

are powerful enough to detect and prevent a wide range of attacks, including the attack

scenarios described earlier. For example, FlashJaX can monitor the data sent by each AS

principal to JS so that it can detect whether the cumulative transmission size and content

suggests a possible cross-language heap spraying attack (scenario #2 of Section 2.2). A de-

tailed exposition of policy specifications and their expressiveness is provided in Section 2.4.4.

2.4 Implementation

This section describes implementation details of FlashJaX that have been briefly introduced

in the previous section.

2.4.1 JavaScript Wrappers

FlashJaX implements wrappers to mediate DOM API access. Figure 2.2 illustrates a wrapper

that guards the window.open DOM function, which creates a pop-up window, by assigning

window.open = f , where f is a function that creates the requested window if and only if

the current principal’s policy permits it. Thereafter, all calls to window.open call wrapper

f instead.
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Näıve JS wrapper implementations are known to be vulnerable to a variety of attacks,

including prototype poisoning and caller-chain abuse (Magazinius et al., 2010; Meyerovich

et al., 2010; Meyerovich and Livshits, Meyerovich and Livshits). FlashJaX therefore em-

ploys secure wrapper implementations advanced by prior works (Magazinius et al., 2010) to

defend against these attacks. The safe wrappers (1) wrap all aliases of each security-relevant

operation, (2) explicitly coerce untrusted inputs to expected types, and (3) only call securely

stored copies of JS API methods (e.g., those of Function and Array), which are carefully

protected from attacker corruption. FlashJaX augments these secure wrapper implementa-

tions to additionally mediate events from AS, and to precisely attribute events to the correct

principal, even if the event-exhibiting code was generated dynamically.

In order to mediate data property accesses, FlashJaX leverages the defineProperty

function (ECMA International, 2011, §15.2.3.6) to define setters and getters for a given

property. All browsers compliant with the ECMAScript 5 standard3 support this function.

The getters and setters read and store values to protected, locally-scoped, principal-specific

copies of each guarded property. The guarded properties are set non-configurable so that

untrusted JS code cannot remove or change the guards. Global variables introduced by

scripts are similarly protected from abuse by other scripts by adding non-configurable getters

and setters to such variables during privilege-changes (i.e., within runAs from Section 2.3.2).

A special approach is required to adequately guard the DOM’s document.cookie prop-

erty, for which writes have the side-effect of creating or modifying browser cookies that may

persist across sessions, and reads yield lists of previously written cookies (possibly some from

prior sessions). FlashJaX employs two browser-dependent techniques to protect cookies: On

browsers that support cloning of the document node (e.g., FireFox and IE), FlashJaX creates

a local, protected copy of document, which the IRM’s wrappers can henceforth exclusively

3Safari does not currently comply with this part of the standard, preventing protection of data properties
on Safari. However, the rest of the DOM remains protected.
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access to safely read and write cookies. On browsers that implement cookie facilities as

browser-specific getters and setters of document.cookie (e.g., Opera), FlashJaX creates

local, protected copies of these getters and setters to mediate access to them.

In both cases, FlashJaX introduces replacement getters and setters on the global docume-

nt.cookie property to provide filtered, principal-specific views of the cookie store for each

untrusted principal. (The trusted hosting origin’s access is not filtered.) Each cookie’s

untrusted owning principal is added to the cookie’s name when stored, and checked when

retrieved. This confines each untrusted principal’s cookie accesses to its own cookies.

One browser we tested (Chrome) currently admits neither approach due to a known

browser bug,4 preventing us from protecting cookies on that browser. However, once this bug

is fixed, FlashJaX’s cookie-protection is expected to be compatible with all major browsers.

2.4.2 ActionScript Rewriter

We implemented a binary rewriter that automatically in-lines wrappers around all AS-to-

JS flows within AS bytecode applets. The in-lined wrapper class redirects all such flows

to a JS method named fromAS exposed by the JS IRM. For example, a JS call origi-

nally of the form f(a1, . . . , an) is translated by the wrapper into a JS call of the form

fromAS(id , s, f, a1, . . . , an), where id identifies the principal, s is a one-time secret (discussed

below), f is a JS expression identifying the callee, and a1, . . . , an are the arguments to f .

The fromAS method then executes f(a1, . . . , an) at privilege id .

Impersonation Attack & Defense. The fromAS function must protect itself from im-

personation attacks in which a malicious JS principal calls it with a false id. JS callees

cannot reliably identify their callers; incoming calls are essentially anonymous. Therefore,

the fromAS implementation calls-back the AS applet from which each incoming AS call

4http://code.google.com/p/chromium/issues/detail?id=45277

http://code.google.com/p/chromium/issues/detail?id=45277
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claims to originate, asking it to confirm the call. The AS-side IRM confirms by validating

secret s. Secret s is freshly chosen for each AS-to-JS call, exists only for the lifetime of the

confirmation process (just a few AS/JS instructions), is temporarily stored on the AS side

in a private field of the monitor class, and exists on the JS side only as a local argument to

fromAS. This keeps it safe from interception by attackers during the limited window when it

is valid.

2.4.3 Principal Tracking and Event Attribution

As mentioned earlier, FlashJaX tracks principals by maintaining a protected shadow stack,

whose implementation is sketched in Figure 2.3.

var shadowStack = [ ]; // Implement a shadow stack as a list.

// Other code may read (but not write) the current principal.
thisPrincipal = function(){

return (shadowStack.length < 1) ? ”bottom” :
shadowStack[shadowStack.length − 1];

}

// Execute closure f at a specified privilege level.
var runAs = function(principal,f) {

shadowStack.push(principal);
f.apply = js.Function.apply;
var r = f.apply(this,

js.Array.prototype.slice.call(arguments,2));
shadowStack.pop();
flush write(principal);
if (typeof r !== ”undefined”) return r;
}

Figure 2.3. Shadow stack code. Object js stores original native JS objects. Exception-
handling is not shown.

Principal-tracking Algorithm. To execute an untrusted function f at privilege level p,

the IRM invokes runAs(p, f), which pushes principal identifier p onto the shadow stack, runs

f to completion, pops p off the shadow stack, and returns the result. Note that since f is a
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closure with its own context, calling f within the lexical scope of the monitor does not give

it access to anything in the IRM’s local scope. Its scope continues to be whatever context it

had when it was created.

As f executes, it may exhibit security-relevant events, which are intercepted by the IRM.

The IRM’s guards consult thisPrincipal() to determine the principal to whom each event

should be attributed. Based on the result, a principal-specific policy is then consulted to

determine whether to grant or deny each event.

The (trusted) embedding page may label static code f with a principal identifier p,

causing the IRM to execute f at p’s privilege level. Trusted (non-ad), static code is therefore

typically labeled with identifier top (>), which grants it full privileges. Untrusted, static code

for ads is labeled with ad principals so that it executes with lesser privileges. Unlabeled code

runs with bottom (⊥) privileges by default—i.e., the intersection of all privileges granted to

all the principals in the system.

Dynamically Generated Code. As callee f runs, it may attempt to modify the page,

such as by adding new elements with event-handlers containing code. The DOM provides

several mechanisms for dynamic page modification (e.g., Node.appendChild), all of which

are monitored by the FlashJaX IRM. No special monitoring is required for eval, since the

code it generates inherits the context of the generating eval, preserving the contents of the

shadow stack. Thus, FlashJaX handles all dynamically generated code. To illustrate the

IRM’s handling of such dynamic code, we here consider the most common and most general

means of generation: document.write.

Operation document.write(s) pushes string s directly onto the head of the browser’s

input stream during page-loading. Browsers execute scripts as soon as they are parsed

during the page-loading process, so these dynamic scripts run sometime after the generating

script writes them but before the page is fully loaded. (The exact time of execution is
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browser-specific.) Ads depend on this behavior, so it is important to support and preserve

it.

To do so, FlashJaX intercepts and buffers strings passed to document.write (by storing

them in the write buffer variable as illustrated in Figure 2.4) without immediately commit-

ting them to the page. Once f completes, runAs calls the algorithm sketched in Figure 2.4

to parse these buffered strings, label the resulting HTML and JS code with the contributing

principal’s identifier, and commit it to the page. To avoid writing our own parser, we use a

trick: Assigning to the innerHTML property in line 3 leverages the browser’s built-in parser

to convert the string into an HTML tree that is placed in the body of an 〈ins〉 node object.

Figure 2.4 replaces all code in the new content with closures that recursively call runAs,

so they will run at the proper privilege level when triggered. For example, lines 11–13

replace event-handler e.a with such a closure. The JS closure semantics guarantee that

when this closure is executed, principal has the value that was passed to this invocation

of flush write (which might differ from the code that calls or triggers the closure), and

oldHandler executes at its original scope (not the IRM’s protected scope). Thus, dynami-

cally contributed code inherits the privileges of its creator.

Line 18 processes JS code contributed in the body of a dynamically generated 〈script〉

element. IRM subroutine makeFunction (implementation not shown) uses JS’s Function

constructor to convert its string argument into a closure that can be called by runAs. Closures

created with Function always have global lexical scope, and therefore safely exclude the

IRM’s local scope. The new closure is executed immediately, since that is how most browsers

treat dynamically contributed scripts.

In addition to the local 〈script〉 content handled by Figure 2.4, the full FlashJaX im-

plementation also handles remote scripts (specified as a URL in a src attribute) by loading

them through a proxy via XMLHttpRequest and processing the resulting string as a local

script. This step is omitted from the listing for brevity.
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1 var flush write = function(principal){
2 var i = document.createElement(”ins”);
3 i.innerHTML = write buffer[principal];
4 write buffer[principal] = ””;

6 foreach element e within i do {
7 // Enclose handlers in principal−preserving closures.
8 foreach attribute a of e do
9 if (typeof e.a == ”function”) {

10 var oldHandler = e.a;
11 e.a = function() {
12 var r = runAs(principal, oldHandler);
13 if (typeof r !== ”undefined”) return r; };
14 }

16 // Execute scripts at generating principal's privileges.
17 if (e is a 〈script〉 element) {
18 var newScript = makeFunction(e.textContent);
19 e.textContent = ””;
20 runAs(principal, newScript);
21 }

23 // Wrap any fresh aliases of security−relevant functions.
24 if (e is a 〈frame〉 or 〈iframe〉 element) {
25 wrap window(e.contentWindow);
26 wrap document(e.contentWindow.document);
27 }
28 }

30 i.owner = principal;
31 document.lastChild.appendChild(i); // Append i to page.
32 }

Figure 2.4. Wrapping dynamically-generated code.
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Finally, any dynamically generated window objects introduce fresh, unguarded aliases to

security-relevant operations protected by the IRM. These are wrapped with suitable guards

by lines 24–27.

2.4.4 Policy Definition and Enforcement

FlashJaX’s policy engine is implemented in three layers of JS as depicted in Figure 2.5.

The bottom layer provides two library classes, FSM and GlobalFSM, which are built on the

FSMJS library (Jähnig, 2010). They provide tools for defining and accessing policy files

within the policy engine.

The next layer defines global and per-principal policies. In a typical policy file, page

publishers define security states, the initial state, forbidden states (i.e., those rejected by the

security automaton) and the transition relation. There is typically one policy file per prin-

cipal, plus a global policy file that constrains all untrusted principals and their interactions.

Policy Engine Controller

Policy Definitions:

Principal1 Principal2 GlobalPolicy

FSM Lib GlobalFSM Lib

Figure 2.5. Policy enforcement system architecture

The third layer is the Policy Engine Controller, illustrated in Figure 2.6, which interfaces

the policy engine to the monitor. Publishers assign policies by adding policy class instances

to the Ctrl.policies array in the controller. At runtime, the controller calls checkPolicy

to test whether the global FSM and acting principal’s local FSM accept the impending event.

If so, the controller updates the FSM states; otherwise it rejects.

With this design, FlashJaX’s policy language accommodates history-based stateful poli-

cies on events triggered by various principals. These events include API calls or getter/setter
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Ctrl.checkPolicy = function(principal, event, obj, flags){
localFSM = Ctrl.policies[principal][FSM CTRL];
return localFSM.checkPolicy(event, obj, flags) &&

globalFSM.checkPolicy(principal, event, obj, flags);
}

Figure 2.6. Policy engine controller

functions with various arguments such as DOM objects or global variables. Some expressive

policy examples are illustrated below.

Formal Description. FlashJaX defines and enforces safety policies expressible as security

automata (Alpern and Schneider, 1986) or edit automata (Ligatti et al., 2005a) that intervene

by suppressing policy-violating events. (Other interventions are possible, but we have found

suppression to be the most useful and practical for our policies.) Formally, a FlashJaX policy

is a quadruplet 〈P,E, S,G〉 where P is the universe of principal identifiers, E is the universe

of events, S : P → RE is a mapping from principals p ∈ P to regular expressions over

alphabet {p} × E, and G is a regular expression over alphabet P × E. Regular expression

S(p) specifies the language of permissible traces for principal p, and G specifies the language

of globally permissible traces. The system-wide policy is therefore given by regular expression⋂
p∈P S(p) ∩ G. Intuitively, the policy identifies the set S(p) of event sequences that each

individual principal p may exhibit, and an additional set G that all untrusted principals as

a collective may exhibit.

Policy Example. Figure 2.7 shows a policy that prevents cross-platform heap-spraying

attacks (scenario #2 of Section 2.2). Such attacks conceal themselves by implementing the

spray entirely in AS so that it is not visible to JS analysis tools. The sprayed payload is then

passed across the AS-JS boundary, allowing malicious JS code to branch to the payload via

a JS-side exploit not visible to AS analysis tools.

The FSA in Figure 2.7 prevents such behavior by tracking the cumulative size of data

passed from AS to JS by each untrusted principal p. When the cumulative transmission
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〈p, send(x)〉
i+ |x| ≤ n

i i+|x|

Figure 2.7. A local FSA for a policy preventing heap-sprays.

size reaches bound n, future transmissions are rejected. The policy therefore conservatively

rejects applets that pass suspiciously large quantities of data from AS to JS. Our experience

is that only malicious ads exhibit such behavior, but a more refined policy could additionally

apply malware detection heuristics to the passed payloads to support non-malicious ads that

pass large quantities of data to JS for legitimate purposes.

The FSA for this policy consists of n + 1 states, where n is the maximum cumulative

transmission bound. (The number of states is not an implementation burden, since all n+ 1

can be expressed as a single integer whose values range from 0 to n.) For brevity, we draw the

FSA using the notation of extended finite automata (XFAs) (Smith et al., 2008) in Figure 2.7

to visually depict the automaton.

In the same way, a global policy can also be defined to limit the total size of cumulative

data transmissions by all principals by using * (denoting any principal) on the edges. This

blocks heap spraying through collusion.

Multi-principal Policies. FlashJaX’s label-based attestation (Section 2.4.3) facilitates

enforcement of some sophisticated write-protection policies, which can be leveraged to ad-

dress cross-principal resource abuse (e.g., scenario #3 of Section 2.2). FlashJaX’s label-based

〈p2, read(∗, p1)〉
〈p2, read(∗, p2)〉

FSA for p2

〈p3, read(∗, p1)〉
〈p3, read(∗, p3)〉

FSA for p3

Figure 2.8. Local FSAs for a policy that permits ads p2 and p3 to read data owned by ad
network p1 but not data owned by each other.
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attestation (Section 2.4.3) facilitates enforcement of some sophisticated write-protection poli-

cies, which can be leveraged to address cross-principal resource abuse (e.g., scenario #3 of

Section 2.2). Figure 2.8 shows an example with three principals: an ad network p1, and two

ads p2 and p3 served by the network. Event read(e, p) denotes a read from element e labeled

p. The label is assigned dynamically by the IRM’s attestation mechanism. The FSA on

the left allows p2 to read p1’s data and its own data, but not p3’s data. Similarly, the FSA

on the right prohibits p3 from reading p2. Thus, ads may consult the ad network but not

each other. Wildcard ∗ is used to denote edge labels ranging over all principals and event

arguments ranging over all values. Self-edges for events that do not affect the security state

are not shown.

Other Policy Examples. Using this policy language, we designed and implemented poli-

cies that address several attack scenarios, including the three attack scenarios described in

Section 2.2, which abuse AS-JS interactions. These are described below. As mentioned

earlier, these attacks cannot be prevented by mechanisms in JS or AS alone. Other policies

are discussed in Section 2.6.3.

To stop Flash circumvention of SOP (scenario #1), FlashJaX enforces a principal-based

whitelist policy: Each principal may only communicate with sites defined in a whitelist.

FlashJaX’s principal-tracking and event attribution mechanisms attribute all JS code called

from AS. Therefore, FlashJaX is able to identify whether the JS event originates from an AS

principal, and apply an appropriate policy. The security policy enforces SOP by accepting

communications with whitelisted sites and suppressing other communications.

To inhibit cross-language heap sprays (scenario #2), FlashJaX enforces a multi-principal,

history-based, resource-bound policy: The cumulative AS-JS data transmission by each prin-

cipal may not exceed a per-principal bound defined by the policy, and the total transmission

by all principals may not exceed a global bound defined by the policy. The size of transmis-

sions by each AS principal is tallied by the policy engine. If it exceeds the limit, FlashJaX

destroys the violating Flash object by removing it from the page to prevent the attack.
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To block cross-principal resource abuse (scenario #3), FlashJaX enforces principal-based

access control policies: Each principal may only access particular page elements. The le-

gitimate accesses for each principal are defined by a whitelist of DOM objects. The IRM

monitors all DOM tree accesses and disallows accesses that originate from unauthorized

principals.

2.5 Security Analysis

FlashJaX enforces rewrite-enforceable safety policies (Hamlen et al., 2006b)—i.e., trace prop-

erties that stipulate that some observable, decidable “bad thing” (possibly contingent upon

the history of past events) must not happen. Security-relevant events consist of JS API

calls and member accesses, parameterized by their arguments and a principal identifier.

Prior work has shown that such policies can be formalized as aspect-oriented security au-

tomata (Hamlen and Jones, 2008). Principals are defined by the embedding page, which

provides a trusted mapping from untrusted scripts to principal identifiers. Dynamically

generated scripts inherit the identifier of the code that generates them.

The IRM’s ability to enforce these policies is contingent upon its ability to (1) maintain

IRM integrity (i.e., tamper-proofing), (2) completely mediate security-relevant events, and

(3) accurately attribute events to principals. The enforcement strategy for each of these

goals forms the foundation for enforcing the next, as illustrated in Figure 2.9. Each tier of

security is described below.

INTEGRI
TY

MEDIATION
ATTRI

BUTION

Figure 2.9. Three tiers of FlashJaX security.
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IRM Integrity. IRM integrity follows from two core language features: lexical scoping on

the JS side, and object encapsulation (type-safety) on the AS side. That is, on the JS side, all

security-critical data and code are stored within the local scope of an anonymous JS function.

This prevents any access to them except via closures exported from the anonymous function

as global variables. This closure collection constitutes the protected interface to the IRM.

Similarly, on the AS side, all security-critical data and code are stored as private members

of a final, sealed AS class. Integrity of the AS portion of the IRM therefore follows from the

type-safety and object encapsulation guarantees of the AS bytecode language.

Complete Mediation. Complete mediation of JS API calls is achieved by moving all

security-relevant API method pointers inside the protected lexical scope before any untrusted

code runs. For a given security-relevant API method, FlashJaX systematically explores and

wraps all its aliases, including static names and dynamic aliases (Section 2.3.2). Furthermore,

FlashJaX also wraps all channels generating JS code at runtime (Section 2.4.3). Thus, IRM

integrity implies complete mediation of these events; once they are inside the local scope,

they can only be accessed via the protected IRM interface.

Mediation of data property accesses is via non-configurable JS getters and setters, whose

complete mediation is guaranteed by the JS VM (ECMA International, 2011). This setting

makes it impossible for untrusted code to change or delete the properties of wrapped objects.5

Complete mediation on the AS side is achieved by statically rewriting all references to the

flash.external, flash.net, and flash.utils namespaces (except those within the trusted

IRM class) before any AS code runs. This makes it impossible for any untrusted AS code to

acquire a direct reference to any external interface member; all JS accesses must therefore

use the AS IRM.

5In earlier versions of Mozilla browsers, deleting a wrapped object could result in silent restoration the
original object (Phung et al., 2009), however this is no longer possible with the non-configurable feature in
the current ECMAScript specification (ECMA International, 2011).
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Accurate Event Attribution. This follows from complete mediation of security-relevant

events, which include all page- and code-write operations. The IRM’s write-mediation labels

all dynamically written content with the authoring principal. JS code is labeled by dynami-

cally replacing it with a closure that preserves the principal. Thus, when it runs, it inherits

the privileges of its author.

For this labeling to succeed, the IRM must account for all possible locations where JS

code can be dynamically submitted and stored. For example, if the JS setTimeout method

is inadvertently omitted from the list of mediated methods, scripts could use it to escape

the labeling mechanism and run unlabeled code. Since in practice the JS API has a broad,

browser-specific, and ever evolving surface, we consider this to be the most attackable portion

of our system. To make FlashJaX robust against such omissions, unlabeled code therefore

always runs at the lowest privilege level (defined as the intersection of permissions granted

to all principals in the system). Thus, a principal-tracking failure could lead to conservative

rejection, but never a policy violation.

Correctness of the guard code that enforces each principal’s policy is facilitated by our

choice of an automaton-based policy formalism whose semantics, expressive power, and cor-

rect implementation are extremely well-established in the literature (cf., Schneider, 2000;

Hamlen et al., 2006b; Ligatti et al., 2005a; Martinell, 2006; Hamlen and Jones, 2008). Our

implementation leverages these solid design principles for high assurance.

2.6 Evaluation

2.6.1 Code and Experiment Settings

The core JS IRM is a 300-line static script atop the hosting page that wraps DOM functions

before untrusted code runs. The wrappers consist of about 600 more lines that mediate

security-relevant events, including dynamic writes, by consulting the policy engine. The
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policy engine implements FSMs using an adaptation of the fsmjs library (Jähnig, 2010)

(about 9K LOC). Each individual FSM-controller contributes less than 100 LOC.

Our AS binary rewriter is implemented as a small (< 1K SLOC) stand-alone Java ap-

plication that uses no external libraries except the Java standard libraries. It injects the

wrapper class (about 700 bytes of pre-compiled AS bytecode) and redirects all external in-

terface references to the injected wrapper methods. Rewriting is fast; the median rewriting

time was 0.62ms/K (averaged across 57 Flash ads on a 2.93 GHz, Intel quad core desktop

running 64-bit JDK 1.7.0 atop Windows 7 SP1 with 4 GB ram), and rewriting increased the

binary size of ads by just 1.24%.

The FlashJaX code and experiments described in this section are available at http:

//securemashups.net/flashjax. (The site does not collect any information regarding its visi-

tors.)

2.6.2 Compatibility

Our compatibility experiments test whether FlashJaX preserves existing, policy-adherent

content in JS, AS, and mixed AS-JS ads. We performed two sets of experiments to test a

cross-section of ads from various sources:

1. In the first set of experiments, we deployed FlashJaX with ad scripts from four pop-

ular ad networks: Google AdSense, Yahoo! Network, Microsoft Media Network, and

Clicksor. The first three of these were among the top 15 networks in U.S. market reach

in April 2012, with market reach of 92.2%, 80.3%, and 76.9%, respectively (comScore,

2012).

We ran these ads with and without FlashJaX to observe their rendering results. All ren-

der correctly with no visible distinctions introduced by monitoring. User interactions

with the JS and Flash content also result in unmodified behaviors. This shows that our

prototype can be deployed with real-world ad networks without loss of functionality.

http://securemashups.net/flashjax
http://securemashups.net/flashjax
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2. In addition to the ad network code, we tested our AS binary rewriter on 57 Flash ads

harvested from browsing sessions on popular browsers over several weeks, intended to

reflect ads observed by typical users. Of the 57 ads, 32 interact with JS using Flash’s

external interface to perform tasks such as cookie manipulation, pop-up creation, click

tracking, or information exchange with JS-side ad network support code. Our AS

rewriting mechanism is able to successfully inject IRMs into all 57 samples.

2.6.3 Security

To evaluate FlashJaX’s resilience against attack, FlashJaX was deployed and tested against

several malicious JS and AS programs. These include several real-world attacks reported

on CVE (http://cve.mitre.org/), the attack scenarios introduced throughout the paper, and

other attacks related to wrapper implementation, confidentiality, integrity, and ad-specific

attacks. Each experiment was conducted by first running the malicious code without Flash-

JaX to verify that the attack is successful. Then the same script was run with FlashJaX to

test whether it was blocked. The attacks and defenses are categorized and described below,

and summarized in Table 2.1.

Table 2.1. Attack scenarios and FlashJaX prevention

Attacks Policy applied
FlashJaX
prevents?

AS Circum- vention of
SOP

Principal-specific whitelist X

Cross-language
Heap-spraying

Principal-specific and history-based X

Cross-Principal Resource
Abuse

Principal-specific access control X

Wrapper vulnerabilities Wrapping all aliases X
Confidentiality and

integrity
Principal-specific & fine- grained access

control
X

Ad-specific
Principal-specific & fine- grained access

control
X

http://cve.mitre.org/
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Real-world attacks

We studied two recent real-world attacks reported on CVE, including CVE-2012-3414 (“XSS

vulnerability in SWFUpload 2.2.0.1 and earlier”) and CVE-2012-2904 (“XSS vulnerability

in LongTail JW Player 5.9”):

CVE-2012-3414 is an attack reported as a vulnerability in Wordpress 3.3.2 installations.

It allows reflected XSS via a Flash parameter derived from user input. The attacker can

inject arbitrary JS code by passing it to the applet as a malicious URL string, resulting in

execution of the injected code at the privileges of the hosting page. However, with FlashJaX

added to the content produced by WordPress, the attack fails. The JS code injected by the

attacker is labeled and executed with the lower privilege of the untrusted Flash, disallowing

attacker access to protected JS functions and page content.

CVE-2012-2904 is a vulnerability in LongTail JW Player 5.9, which is active on over one

million web sites. Exploits inject script text as a parameter of the Flash, provoking execution

of the payload at the privileges of the hosting page. FlashJaX, however, successfully labels

the injected code with the untrusted Flash principal, causing it to execute at the lower

(untrusted) privilege level and denying it access to publisher-protected resources. Thus, all

prohibited JS operations in the payload are suppressed by the monitor, foiling the attack.

Simulated Attacks

Attack scenarios. We implemented and validated policies that were discussed in Sec-

tion 2.4.4. These policies address all three attack scenarios described in Section 2.2. These

FlashJaX policies prevent these attacks.

Wrapper Attacks. We implemented wrapper attacks identified by prior works (Magazinius

et al., 2010; Meyerovich et al., 2010; Meyerovich and Livshits, Meyerovich and Livshits),

which defeat näıve JS wrapper implementations by abusing static aliases, dynamic aliases,
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and caller-chains. When successful, the attacks pop up an unmediated alert box. All the

attacks failed since FlashJaX wraps these channels.

Script injection. FlashJaX does not prohibit script injections; it downgrades them to an

untrusted privilege level so that they cannot perform policy-violating actions. We tested

all script injection channels, including remote script files, script code, event handlers via

document.write, eval, and script inclusion via appendChild and insertBefore. The ex-

periments show that our principal-tracking mechanism attributes correct privileges to all the

dynamically-generated code. We note here again that scripts with an unidentified principal

run with lowest privileges, and therefore never violate any principal’s policy.

Confidentiality and integrity attacks. These attacks steal or modify sensitive data of

the hosting page, such as cookies and protected content. To evaluate these attacks, we

deployed a web email page with a fine-grained access control policy that prohibits ads from

reading the contact list or changing the email content. Ads that try to do so are successfully

blocked by FlashJaX in the experiment.

Cookie protection. FlashJaX does not prohibit cookie access, but each principal may only

read and write its own cookies. Malicious code that attempts to steal cookies belonging to

another principal was evaluated and found to be unsuccessful.

Ad-specific attacks. We tested numerous attacks specific to web ads, including clickjack-

ing, oversized/arbitrary ad positioning, and resource abuse. Each is described below.

Clickjacking attacks create an invisible iframe that injects a remote page with an invisible

click button (Hansen and Grossman, 2008). FlashJaX prevents this by enforcing a policy

that disallows creating invisible iframes.

Malicious ads often generate content that is larger than the maximum allowed by the

ad network, or that is positioned inappropriately on the page (e.g., covering other content).

These actions are prevented by FlashJaX by placing the ad in a fixed-sized 〈div〉 element
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whose size it write-protects. The policy additionally forces the offset of any ad-generated

content to 0×0 and write-protects the offset, preventing the ad from popping up misplaced

or mis-sized dynamic content.

In addition, we enforced other fine-grained policies that disallow or limit calls, and that

filter call arguments to a whitelist of API methods that are frequently targets of resource

abuse attacks. These include pop-up creators like window.alert and window.open. Flash-

JaX correctly prevented these resource abuse attacks.

2.6.4 Performance

Macro-benchmarks. We evaluated the rendering overhead of ads in unmonitored and

FlashJaX environments to understand the costs incurred by our monitor. The test machine

is a 1.6 GHz AMD Athlon Neo MV-40 Processor laptop with 2 GB RAM running Chrome

19.0.1084.52m on Windows 7. The results are illustrated in Figure 2.10. We measure the

total render time to load the page.

The rendering overhead imposed by FlashJaX varies widely based on the content from

various ad networks. For Microsoft Media Network and Yahoo! Ads, the additional over-

head is around 55%. However, for Google Adsense and Clicksor, we consistently observe

rendering times that are actually faster with FlashJaX than without. We investigated this

and found that Microsoft and Yahoo! generate Flash content, whereas Google and Clicksor

generate iframes that make heavy use of runtime-generated JS content. Our buffering of

dynamic write operations (see Section 2.4.3) improves the performance of these dynamic

writes, speeding rendering.

Micro-benchmarks. To evaluate the overhead imposed by the monitors, we performed a set

of microbenchmark experiments that measure the overhead of five monitored JS operations

called from AS. JS’s eval method was selected to test JS property reading and writing

(e.g., reading and writing document.cookie), since the AS-JS interface only provides for JS
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Figure 2.10. Rendering overheads (in ms) of unmonitored vs. FlashJaX-monitored ads.

method access. Each test ran a tight loop for 1000 iterations, and we averaged the results

over five trials. On the original (unmodified) test files, the time was recorded in AS both

before and after calling to JS. Then the same measurements were performed on IRM-injected

Flash files both with and without the JS-side IRM. Table 2.2 shows the slow-down ratio of

the rewritten flash without (column 2) and with (column 3) JS-side monitoring.

Table 2.2. FlashJaX micro-benchmarks measuring the ratio of the runtimes of FlashJaX-
rewritten Flashes to originals without (column 2) and with (column 3) JS-side monitoring.

Operation
Rewritten

Flash
FlashJaX

document.appendChild 3.52 3.59
document.getElementById 4.47 5.17
toString() 4.26 4.47
eval("document.cookie='test'") 3.67 5.91
eval("document.cookie") 3.07 6.33

The table shows a 3.07–4.47 times overhead for AS-JS boundary communications. This

range compares favorably with similar microbenchmarks reported by related works (e.g.,
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overheads of 1–324 times (Reis et al., 2006), or 0.09–19.54 times (Phung et al., 2009)). The

inclusion of the JS IRM (column 3) results in a small additional overhead that is similar,

except for the two eval tests. The overhead is higher for the eval tests because each iteration

invokes the JS IRM twice (once for the eval and once for its content).

2.7 Discussion

In this section, we discuss the relevance of FlashJaX to the larger landscape of web applica-

tion security.

Context and Relevance. A plethora of threats are faced by web applications today; the

most common ones include script injection attacks, heap spraying, drive-by downloads, UI

spoofing, and clickjacking. Extensive research in both server-side and browser-side defense

techniques have been developed for mitigating these threats. The work presented in this

paper exposes a relatively unexplored threat vector (compared to the threats mentioned

above, which have been well explored).

We have also developed a systematic defense for this threat using the principled approach

of IRMs. Our work can be seen as a defense that sits in conjunction with existing browser

defenses, including those for JS (e.g., Meyerovich and Livshits, Meyerovich and Livshits),

XSS attacks, and heap-spraying. FlashJaX strengthens those defenses by adding protection

against a significant attack vector that these defenses do not address.

Other related browser plugins. Recent surveys indicate that Flash is the most com-

monly used plugin in browsers.6 FlashJaX provides a systematic way to enforce security

on Flash-JS content. Similar content can be authored in other plugins, such as Java and

Silverlight. Our work could be extended to Silverlight, for instance, using similar IRM-based

techniques that have been used for .NET binary rewriting (Hamlen et al., 2006a).

6http://www.statowl.com/plugin overview.php

http://www.statowl.com/plugin_overview.php
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Deployment. Research efforts such as FlashJaX point out that the nature of attack sur-

faces will continue to evolve as browsers evolve to support new features. As a result, the

nature of policies that security engineers want to enforce is continuously evolving as well,

and there will always be a need to enforce policies that current browsers do not universally

support. FlashJaX’s approach to security through IRM enforcement allows for a principled

defense mechanism that can be flexibly adapted to address future threats, while remaining

compatible with existing browsers.

2.8 Conclusion

We present FlashJaX, a solution for enforcing security policies on third-party mixed JS/AS

web content using an IRM approach. FlashJaX allows publishers to define and enforce fine-

grained, multi-principal access policies on JS-AS third party content and runtime-generated

code. Moreover, it can be easily deployed in practice without requiring browser modifica-

tion. Experiments show that FlashJaX is effective in preventing attacks related to AS-JS

communication, and its lightweight IRM approach exhibits low overhead for mediations. It

is also compatible with advertisements from leading ad networks.



CHAPTER 3

ACTIONSCRIPT BYTECODE VERIFICATION USING CO-LOGIC

PROGRAMMING1

3.1 Overview

The long-term objective of this dissertation is to augment in-lined referencing monitoring

with powerful yet elegant certification algorithms. With regard to this, the three main goals

of this chapter are: (1) experimenting with building light-weight model-checkers amenable

to integration with in-lined reference monitoring frameworks; (2) experimenting with co-

logic programming (Co-LP) (Simon et al., 2006; Gupta et al., 2007; Bansal, 2007) to provide

and effective certifier development environment; and (3) contribute useful formal analysis

techniques for studying the ActionScript language and its security implications, which is

helpful for analyzing security vulnerabilities and threats in ActionScript bytecode binaries.

In this chapter, we report on preliminary work toward developing an ActionScript ver-

ifier, with an LTL model-checker at its core written using co-logic programming. Co-logic

programming is a cutting-edge logic programming technology that combines tabled and coin-

ductive logic programming and allows extremely elegant and succinct formalization of prop-

erties defined in terms of least and greatest fixed-points. Such properties lie at the heart of

many model-checking analyses, such as those that regard potentially non-terminating loops.

Our verifier expresses security policies using Linear Temporal Logic (LTL) (Pnueli, 1977),

which extends propositional logic with temporal operators. LTL underpins many modern

software model checking technologies, and allows us to conveniently draw upon existing

1This chapter includes previously published (DeVries et al., 2009) joint work with Brian W. DeVries,
Gopal Gupta, Kevin W. Hamlen and Scott Moore.
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techniques from the field. With LTL, policy writers can specify security policies in a purely

declarative and compositional manner; furthermore, formal analysis techniques, such as sat-

isfiability checking (Rozier and Vardi, 2007), assist the policy writer in creating semantically

valid policies.

Our work demonstrates how the verifier can be unusually small but powerful, minimizing

the TCB of our framework. The declarative nature of co-logic programming helps keep the

verifier code base concise and straightforward to encode semantic rules such as the encoding

of ActionScript language semantics from the AVM2 Specification (Adobe Systems Inc., 2007),

thus providing a certification technology ideal for integration with an IRM framework. We

develop such integration in subsequent chapters.

Experiments demonstrate that our prototype can efficiently verify simple but interesting

history-based policies for small ActionScript programs.

The chapter proceeds as follows. Section 3.2 discusses related work. Section 3.3 gives

a detailed introduction to our system, including its high-level design and main features.

Section 3.4 presents the details of our implementation. Section 3.5 discusses the results of a

few preliminary experiments. Section 3.6 concludes.

3.2 Background and Related Work

Prolog is an attractive language for implementing program analysis tools, as program seman-

tics and decision procedures can be efficiently written in a concise and declarative manner.

At least two major extensions to the standard resolution semantics of Prolog have further en-

hanced its usefulness in this area in recent years: tabled logic programming and coinductive

logic programming—collectively, co-logic programming.

Tabled logic programming (Chen and Warren, 1996; Tamaki and Sato, 1986) extends

Prolog’s standard inductive semantics with memoization and termination of cyclically infinite

search paths. As a tabled recursive predicate executes, calls and intermediate solutions are



55

automatically stored in a table. If a variant (duplicate) call is encountered that would

normally cause the computation to cyclically diverge, the call is replaced by a previously

discovered solution, if it exists; otherwise, the call is suspended while other alternatives

are tried. Any solutions found by these alternatives are stored in the table and can be

substituted for the suspended calls as well. This substitution process can be repeated until

no new solutions can be found, indicating that the tabled solutions correspond to the least

fixed-point of the original call. Any suspended calls will fail at this point, as no new solutions

can be found inductively.

Coinductive logic programming (Simon et al., 2006; Gupta et al., 2007; Bansal, 2007)

allows Prolog to reason about cyclically infinite data structures and proof trees. When a

recursive call to a coinductive predicate is made, the call stack is searched for a unifiable

ancestor call; if found, the call is unified with its ancestor and succeeds. The solution

obtained from the unification corresponds to the greatest fixed-point interpretation of the

original call, meaning a coinductive predicate can generate a proof without encountering—or

even specifying—a base case.

Because tabled logic programming and coinductive logic programming correspond to the

least and greatest fixed-point semantics of proof derivations, respectively, they are useful for

implementing program analyses. In particular, program loops are by nature cyclic structures

for which both inductive and coinductive properties are important for establishing policy-

adherence. While many interesting coinductive properties can be proved by the absence of

an inductive counter-example, the use of coinductive logic programming allows constructive

proofs of these properties to be computed. Co-LP, which subsumes both of these strategies,

is therefore particularly well-suited because it allows least and greatest fixed-point analyses

to be combined in a well-defined and semantically meaningful manner.
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3.3 System Introduction

ActionScript source code is typically compiled to ActionScript Virtual Machine (AVM) byte-

code (Adobe Systems Inc., 2007) and subsequently interpreted by the AVM. Our verifier

models the AVM in Prolog and extends the semantics of each AVM instruction to include

security-relevant state. It takes as input a program in ActionScript ByteCode (ABC) format

and a security policy (expressed in LTL) and conservatively decides whether every program

execution satisfies the policy.

We derive a particularly elegant implementation for our verifier by observing that an

abstract interpreter with coinductive semantics facilitates the realization of a model checker.

That is, where an interpreter loops on non-terminating programs, a model-checker based on

co-LP succeeds (and terminates) when it revisits an abstract state that constitutes a valid

loop invariant. This reduces much of the machinery normally required for model-checking

to the relatively simple framework required for a standard abstract interpreter.

Both tabled and coinductive aspects of co-LP are useful in our approach. Using tabled

LP, we implement model-checking as a search for a counter-example. Tabled LP semantics

yield such a counterexample when this search succeeds. In the case of model-checking, the

counter-example is a policy-violating sequence of AVM instructions that can be useful to a

developer wishing to produce policy-adherent code. Coinductive LP yields a constructive

proof of correctness when the search for a counter-example fails. Such a proof could be

attached to the verified bytecode for use with a Proof-Carrying Code (PCC) system (Necula

and Lee, 1996; Necula, 1997). While our current prototype does not yet produce a complete,

machine-readable proof automatically, most of the machinery necessary for implementing this

feature has already been completed as a natural result of our use of co-LP as the foundation

for the verifier. We therefore expect to add this feature relatively painlessly in future work.

Policies are expressed as LTL formulas encoding the set of all permissible sequences of

security-relevant events. To reflect the reality that a real process may terminate at any
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point (e.g., due to practical issues like hardware failures or power outages), we model every

program state as potentially terminating. This model limits our system to verifying safety

policies; non-safety LTL properties are conservatively rejected. While LTL is therefore a

more expressive language than necessary for our purposes, it is nonetheless convenient due

to its familiarity in the model-checking community and the existence of many well-developed

tools for writing and reasoning about LTL-specified policies.

1 event(callpropvoid(open,[File,_Mode]),open) :-

2 in_directory(File,`~/secret_files/').

3 event(callpropvoid(readByte,_Args),read).

4 event(callpropvoid(readUTF,_Args),read).

5 event(callpropvoid(writeByte,_Args),send).

7 ltl_policy(g(impl(open,g(impl(read,not(f(send))))))).

Figure 3.1. A policy prohibiting network-sends after file-reads from a restricted directory.

As an example, Figure 3.1 specifies a policy that prohibits network-send operations after a

file in a specific directory has been opened. This policy often appears in the IRM literature

as a canonical example of a history-based policy that enforces data confidentiality. The

event predicate defines three security-relevant events: open, read, and send. Method calls

to writeByte (regardless of arguments) constitute send events. Method calls to readByte

or readUTF constitute read events, demonstrating that events can abstract across multiple

actions. The open event is defined as a call to the open method, where the first argument

(the name of the file to open) satisfies the predicate in_directory. Here, the predicate

in_directory checks whether the file name given resides within the prohibited directory.

The policy on line 7 encodes the LTL formula G(open → G(read → ¬Fsend)). In-

formally, it stipulates that no execution may contain the sequence (open . . . read . . . send).

This specification has been simplified for expository purposes, but a discussion of how to

elaborate the specification for a real application is available in (Jones and Hamlen, 2009).

To keep the verifier implementation tractable, we make several important assumptions

about untrusted programs that simplify the analysis. First, we assume that the compiled
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ABC code is syntactically valid. This can be verified separately by the AVM bytecode

verifier. We also assume that AVM programs do not perform runtime code generation, since

our analysis is limited to the statically observable code. Since runtime code generation is

only available to ABC programs via a limited set of system calls, this assumption can be

enforced in policy specifications by prohibiting calls to those methods.

Our dataflow analysis is conservative in the sense that it abstracts away certain details

of the heap and program variables. This can cause some policy-adherent code to be conser-

vatively rejected (though it never results in policy-violating code being accepted). However,

we argue that this limitation can be overcome by an IRM system that inserts additional

security guards that ease the verification process. The security guards effectively reduce the

state space by explicitly ruling out unrealizable control flows and their associated data flows.

Our early prototype does not yet implement an interprocedural analysis. This limits our

current experiments to simple programs whose security-relevant behavior does not involve

method calls. In Chapters 4 and 5, we discuss certifiers that perform interprocedural and

intermodular analysis.

3.4 Implementation

There are three major components to our verifier: a parser for ActionScript ByteCode, an

encoding of AVM semantics, and an LTL model-checker. Each component’s implementation

is described throughout the remainder of the section.

3.4.1 ABC File Parser

Since typical code consumers do not have access to the original ActionScript source code, we

verify compiled ActionScript Bytecode (ABC) files directly. Our ABC parser is a Definite

Clause Grammar (DCG) that transforms a file in ABC binary format (Adobe Systems Inc.,
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2007) to an annotated abstract syntax tree (AST). For more information about DCGs and

their Prolog implementations, the reader is invited to consult (Shapiro and Sterling, 1994).

3.4.2 AVM 2 Semantics

The AVM2 semantics module is a declarative implementation of an ActionScript VM derived

from the AVM2 small-step semantics (Adobe Systems Inc., 2007). Using these semantics,

we translate an ABC program into a transition system for use with the model-checker. The

transition system (Baier and Katoen, 2008) consists of a set of states that model the VM

state at each point in program execution, and a transition relation that relates each state

to the states reachable from the current instruction. We encode the transition relation as a

Prolog predicate that is invoked by the model-checker as it explores the state space.

To avoid state space explosion, we use an abstract interpretation rather than a concrete

interpretation. A concrete data model is inadequate because it requires every possible AVM

memory configuration to be represented by a unique state in the transition system, and

searching the resulting state space becomes intractable. In contrast, an abstract interpre-

tation allows a collection of possible variable values to be represented by a single abstract

state. The precision of this abstraction determines the power of our analysis. For instance,

modeling all program values as unknown results in a simple control-flow analysis. While this

would ensure that every policy-violating program is rejected, it would conservatively reject

many policy-adherent programs, severely limiting the usefulness of the verifier. In particular,

since IRMs enforce security policies by tracking security state in injected program variables,

a control-flow analysis cannot verify that IRM-inserted guards that consult these variables

suffice to prevent policy violations.

To avoid this limitation, we use concrete values where they can be statically determined

and use the abstract state > otherwise. Our AVM2 semantics are therefore extended with

transitions for >. For instance, the ifeq instruction semantics in Figure 3.2 model the
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possibility of executing either branch when the outcome of the conditional expression cannot

be determined statically; otherwise only the statically inferred branch is interpreted. Note

that since model-checking explores each execution trace independently, the set of statically

inferable values is much larger than would be available in a more traditional static analysis.

The more powerful data-flow analysis provided by this abstraction captures relationships

between data values and event sequences that the program might exhibit at runtime. As a

result, the verifier can track the values of IRM security state variables.

1 % trans/3 encodes the transition relation

2 % EE is the current execution environment: the scope

3 % stack, the operand stack, the register file, and

4 % the current instruction.

5 % NewEE is the resulting execution environment

6 trans(ifeq,state(H,[EE|EEs]),state(H,[NewEE|EEs])) :-

7 EE =.. [env, SS, [V1,V2|Os], RF, Instr],

8 equal(V1, V2, TruthValue),

9 next_instr(TruthValue,Instr,NewInstr),

10 NewEE =.. [env, SS, Os, RF, NewInstr].

12 % equal/3 returns true or false if equality between

13 % the arguments can be determined, otherwise top (tt)

14 equal(int(V1), int(V1), bool(true)).

15 equal(int(V1), int(V2), bool(false)) :- V1 =\= V2.

16 equal(V1, V2, tt) :- V1 \= int(_X); V2 \= int(_Y).

18 % next_instr/3 gives the next instruction to be

19 % executed, based on the result of the comparison.

20 % If the result is top, both branches are searched.

21 next_instr(bool(true), Instr, NewInstr) :-

22 get_property(Instr, jumplabel, NewInstr).

23 next_instr(bool(false), Instr, NewInstr) :-

24 get_property(Instr, next, NewInstr).

25 next_instr(tt, Instr, NewInstr) :-

26 get_property(Instr, jumplabel, NewInstr).

27 next_instr(tt, Instr, NewInstr) :-

28 get_property(Instr, next, NewInstr).

Figure 3.2. The ifeq transition relation clause
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3.4.3 Model Checker

The LTL model checker module takes as input a security policy specified as an LTL for-

mula and the transition system supplied by the AVM2 semantics. Recall that LTL extends

propositional logic with temporal operators; the logical propositions correspond to the indi-

vidual security-relevant events, and the temporal operators specify the valid event sequences.

Given two LTL formulae a and b, the formula Xa mandates that a holds in the next state,

Fa mandates a holds in some future state, Ga mandates that a holds globally (i.e., in the

current and all subsequent states), aUb mandates that b holds in some future state and a

holds in every state until that point, and aRb mandates that b holds in the current and all

subsequent states until this requirement is released by a state where a and b both hold.

The expansion rules for the LTL operators (Baier and Katoen, 2008) provide a declara-

tive semantics for the interpretation of LTL formulae by constraining the current state and

immediate successor states. These rules can be encoded directly in Prolog to obtain an

interpreter for LTL formulae, as seen in Figure 3.3. To check whether a path through the

transition system satisfies a given LTL formula, the model checker recursively invokes the

expansion rules, first checking the requirements placed on the current state, then making a

transition to the next state on the path and repeating the process.

Using these expansion rules, we can cleanly separate the temporal operators into two

categories: X , F , and U are inductive, as their expansion rules provide base cases for deciding

whether a path satisfies the operator, while G and R are coinductive, as they are satisfied by

a cyclically infinite execution path. Based on this distinction, our implementation relies on

tabling and coinduction to reason about loops encountered when traversing the transition

system—without these extensions, loops would cause the model checker to diverge in an

attempt to construct the proof for a formula. Tabling terminates the proof search with a

failure if an inductive formula does not hold for a loop, while coinduction terminates the

search with the infinite-length proof when a coinductive formula holds.
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1 % verify/2 takes a state and an existentially

2 % quantified LTL formula and checks

3 % whether the formula holds for that state.

4 %

5 % Atomic Propositions are labeled by `ap'.

6 %

7 % holds/2 is true when the atomic proposition holds

8 % in the current state

9 %

10 % ftype/2 is a mapping from top-level temporal

11 % operators to their interpretation semantics

12 %

13 % The clause for `a and b' should ensure that `a' and

14 % `b' hold on the same execution path. For simplicity

15 % of presentation, we omit this check here.

17 verify(State, F) :- ftype(F, inductive),

18 verify_inductive(State, F).

19 verify(State, F) :- ftype(F, coinductive),

20 verify_coinductive(State, F).

22 :- tabled verify_inductive/2.

23 verify_inductive(S, ap(AP)) :- holds(S,AP). % p

24 % Logical operators

25 verify_inductive(S, not(ap(AP))) :- % not(p)

26 \+ holds(S, AP).

27 verify_inductive(S, or(A,B)) :- % a or b

28 verify(S, A) ; verify(S, B).

29 verify_inductive(S, and(A,B)) :- % a and b

30 verify(S, A), verify(S, B).

31 % Inductive temporal operators

32 verify_inductive(S, x(A)) :- % X(a)

33 trans(S, S1), verify(S1, A).

34 verify_inductive(S, f(A)) :- % F(a)

35 verify(S, A); verify(S, x(f(A))).

36 verify_inductive(S, u(A,B)) :- % a U b

37 verify(S, B);

38 verify_inductive(S, and(A, x(u(A,B)))).

40 :- coinductive verify_coinductive/2.

41 % Coinductive temporal operators

42 verify_coinductive(S, g(A)) :- % G(a)

43 verify(S, and(A, x(g(A))).

44 verify_coinductive(S, r(A,B)) :- % a R b

45 verify(S, and(A,B)).

46 % {a and b both occur, releasing b}

47 verify_coinductive(S, r(A,B)) :-

48 verify(S, and(B, x(r(A,B)))).

49 % {a does not hold, so b is not released}

Figure 3.3. A simple Co-LP LTL model checker
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3.5 Experiments

As a preliminary test of our prototype, we verified three small test programs against the

policy specified in Figure 3.1, which disallows network-send operations after a file has been

read from a certain restricted directory. The three test programs—Unsafe.as, Safe.as,

and Loop.as—were each compiled from ActionScript source code. The first, Unsafe.as,

exhibits policy-violating behavior when executed. The second, Safe.as, was obtained by

instrumenting Unsafe.as with runtime security guards similar to those that an IRM system

would typically insert as part of the binary-rewriting process. This involved adding an

additional program variable that tracks the current security state at runtime, along with

instructions that test and update the variable as security-relevant events occur. The third

program, Loop.as, enclosed the security-relevant operations of the second program in an

infinite loop, allowing us to test our loop analysis. The source code of all three programs

can be seen in Figure 3.4. Code inserted to generate Safe.as is marked in the listing with

*, and the additional code in Loop.as is marked with #.

In this program the value of flag cannot be inferred statically, so our analysis con-

servatively assumes that it can take on any integer value. Thus, the outcome of the test

(flag > 0) in line 12 is not statically known, leading to a possible policy violation at the

network-send operation in line 18 if no runtime security guards were present. Lines 14 and

17, however, update and test (respectively) a new program variable security that tracks

the current security state. In this case the state is 1 if a file has previously been read and 0

otherwise. Thus, testing (security != 1) in line 17 before each network-send event suffices

to prevent a policy violation.

We ran each of these tests 10 times on an Intel Pentium Core 2 Duo machine with

4GB of RAM running Ubuntu Intrepid and Yap Prolog v5.1.4 (LIACC/Universidade do

Porto and COPPE Sistemas/UFRJ, 2009). The median runtimes are reported in Table 3.5.
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1 public function Test(flag:int) {

2 var socket:Socket = new Socket();

3 var file:File = new File("secret.txt");

4 var fileStream:FileStream = new FileStream();

5 * var security:int = 0;

7 fileStream.open(file, FileMode.READ);

9 socket.connect("example.com", 1234);

11 # while (true) {

12 if (flag > 0) {

13 fileStream.readByte();

14 * security = 1;

15 }

17 * if (security != 1) {

18 socket.writeByte(0);

19 * }

20 # }

22 socket.close();

23 fileStream.close();

24 }

Figure 3.4. Source code of the test programs

Unsafe.as was correctly identified as policy-violating, while Safe.as and Loop.as were

correctly identified as policy-adherent.

Unsafe.as 0.093s
Safe.as 0.110s
Loop.as 0.101s

Figure 3.5. Experimental Results

3.6 Conclusion

In this chapter, we describe preliminary work toward developing a security policy verifier for

Adobe ActionScript bytecode programs. Our verifier consists of an interpreter for Action-

Script bytecode and an LTL model-checker, both written in Prolog extended with tabling
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and coinduction. Experiments demonstrate that our prototype can efficiently verify simple

but interesting history-based policies for small ActionScript programs.

Verifiers are typically part of a secure system’s trusted computing base. It is therefore

important that the verifier itself be amenable to formal verification. The declarative nature of

co-LP Prolog yields several significant advantages in this regard. First, our verifier code base

is very concise—the parser is 2 kSLOC while the AVM2 semantics and the model-checker

are each 1 kSLOC. Second, our experiences indicate that it is straightforward to encode

semantic rules, such as those from the AVM2 Specification (Adobe Systems Inc., 2007), as

a relation between program states (see Figure 3.2). Finally, implementing the expansion

rules for LTL in co-LP avoids a great deal of tedious and error-prone implementation work

by relying upon the well-defined termination semantics of tabling and coinduction in Prolog

(see Figure 3.3).

Like all static analysis techniques, our verifier conservatively rejects some policy-adherent

programs. Subesequent chapters (Chapters 4 and 5) extend this analysis to reduce this con-

servative rejection rate. This involves introducing richer abstractions to model data depen-

dencies and data flows. We also use constraint logic programming to elegantly implement

these abstractions while minimizing the state space that must be explored to verify useful

security properties.

Additionally, these subsequent chapters provide a means by which a code producer or

enforcement mechanism can supply hints to the verifier. These hints greatly increase the

efficiency of the verifier by pre-computing the set of possible variable values at particular

points in the program. These precomputed values need not be trusted since the verifier can

ignore hints that are inconsistent with its analysis.

In future work, we plan to generate explicit policy-adherence proofs. This involves en-

hancing current implementations of coinductive Prolog (Gupta et al., 2007) to support enu-

meration of all coinductive proofs of a goal. After completing these efforts, generating these

proofs should require minimal changes to our system.
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There is a large body of existing work on optimizing LTL formulae used in model checking

(e.g., Daniele et al., 1999; Etessami and Holzmann, 2000; Sebastiani and Tonetta, 2003). We

also intend to explore the use of other temporal logics, especially Computation Tree Logic

(CTL) and the µ-calculus (Jr. et al., 1999), for the specification of security policies. The

method mentioned in (Dillon and Ramakrishna, 1996) suggests a means of modularizing the

temporal logic engine out of the model-checker, allowing the same model-checking system

to be used for multiple temporal logics by changing which temporal logic engine is used.

Examining how to use several of these engines at once seems a promising direction for our

tool as well.



CHAPTER 4

A PROTOTYPE MODEL-CHECKING IRM SYSTEM FOR

ACTIONSCRIPT BYTECODE1

4.1 Overview

Certifying IRM systems (Hamlen et al., 2006a; Aktug and Naliuka, 2008) verify that IRMs

generated by a binary rewriter are policy-adherent2. In Chapter 3, we presented a gen-

eral model-checking system for ActionScript bytecode implemented using co-logic program-

ming (DeVries et al., 2009), (Simon et al., 2006). This chapter extends that work by intro-

ducing new formalisms specific to the verification of safety policies enforced by IRMs.

Past work has implemented IRM certifiers using type-checking (Hamlen et al., 2006a)

and contracts (Aktug and Naliuka, 2008). Model-checking is an extremely powerful software

verification paradigm that is useful for verifying properties that are more complex than those

typically expressible by type-systems (Hamlen et al., 2006a) and more semantically flexible

and abstract than those typically encoded by contracts (Aktug and Naliuka, 2008). Yet,

prior to the work presented in this dissertation, model-checking had not been applied to

verify IRMs. In this chapter we describe and implement a technique for doing so. The

work’s main contributions are as follows:

� We present the design and implementation of a prototype IRM model-checking frame-

work for ActionScript bytecode.

1This chapter includes previously published (Sridhar and Hamlen, 2010b,a) joint work with Kevin
W. Hamlen.

2Throughout this chapter, for simplicity, the terminology IRM certification refers to IRM soundness
certification. Transparency certification of IRMs is discussed in Chapter 6.
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� Our design centers around a novel approach for constructing a state abstraction lattice

from a security automaton (Alpern and Schneider, 1986), for precise yet tractable

abstract interpretation of IRM code.

� Rigorous proofs of soundness and convergence are formulated for our system using

Cousot’s abstract interpretation framework (Cousot and Cousot, 1977).

� The feasibility of our technique is demonstrated by enforcing a URL anti-redirection

policy for ActionScript bytecode programs.

The chapter proceeds as follows. Section 4.2 discusses related work. Section 4.3 gives

an overview of our IRM framework, including an operational semantics and the abstract

interpretation algorithm. Section 4.4 provides a formal soundness proof for our algorithm

and a proof of fixed point convergence for the abstract machine. Section 4.5 discusses the

details of our implementation of the system for ActionScript bytecode. Section 4.6 concludes.

4.2 Related Work

To our knowledge, ConSpec (Aktug and Naliuka, 2008) and Mobile (Hamlen et al., 2006a)

are the only IRM systems to yet implement automatic certification. The ConSpec verifier

performs a static analysis to verify that pre-specified guard code appears at each security-

relevant code point; the guard code itself is trusted. Mobile implements a more general

certification algorithm by type-checking the resulting Mobile code. While type-checking has

the advantage of being light-weight, it comes at the expense of limited computational power.

For instance, Mobile cannot enforce certain dataflow-sensitive security policies since its type-

checking algorithm is strictly control-flow based. While the security policies described by

these systems are declarative and therefore amenable to a more general verifier, both use a

verifier tailored to a specific rewriting strategy.
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4.3 System Introduction

untrusted
ABC file

accept

code points

invariants

Untrusted Trusted

instrumented

ABC file

Original
SWF File ABC Extractor

Binary Rewriter

Transparency
Verifier

Soundness
Verifier

Security
Policy

∧

ABC Injector

Invariant
Generator

reject

safe, transparent
SWF File

Figure 4.1. Certifying ActionScript IRM architecture

Figure 4.1 is re-presented from Chapter 1, and depicts the core of our IRM framework.

The rewriter implementation is discussed in Section 4.5; the remainder of this section dis-

cusses the soundness verifier. The transparency veriifer and invariant generator are discussed

in Chapter 6.

4.3.1 Verifier Overview

The verifier is an abstract machine that non-deterministically explores all control-flow paths

of untrusted code, inferring an abstract state for each code point. This process continues,

bottom-up, until it converges to a (least) fixed point. The model-checker then verifies that

each inferred abstract state is policy-satisfying.

A standard challenge in implementing such an abstract interpreter is to choose an ex-

pressive yet tractable language of state abstractions for the abstract machine to consider. A
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highly expressive state abstraction language allows very precise reasoning about untrusted

code, but might cause the iteration process to converge slowly or not at all, making verifica-

tion infeasible in practice. In contrast, a less expressive language affords faster convergence,

but might result in conservative rejection of many policy-adherent programs due to informa-

tion lost by the coarseness of the abstraction.

In what follows, we describe a state abstraction that is suitably precise to facilitate

verification of typical IRMs, yet suitably sparse to facilitate effective convergence. Section

4.4 proves these soundness and convergence properties formally. To motivate our choice

of abstractions, we begin with a discussion of an important implementation strategy for

IRMs—reified security state.

In order to enforce history-based security policies, IRMs typically maintain a reified

abstraction of the current security state within the modified untrusted code. For example,

to enforce a policy that prohibits event e2 after event e1 has already occurred, the IRM

framework might inject a new boolean variable that is initialized to false and updated to

true immediately after every program operation that exhibits e1. The framework then injects

before every e2 operation new code that dynamically tests this injected variable to decide

whether the impending operation should be permitted.

When security policies are expressed as security automata (Alpern and Schneider, 1986),

this reification strategy can be generalized as an integer variable that tracks the current

state of the automaton. Security automata encode security policies as Büchi automata that

accept the language of policy-satisfying event sequences. Formally, a deterministic security

automaton A = (Q,Σ, q0, δ) can be expressed as a set of states Q, an alphabet of security-

relevant events Σ, a start state q0 ∈ Q, and a transition relation δ : Q × Σ → Q. For the

purpose of this paper, we assume that Q is finite.3 The automaton accepts all finite or infinite

3Any actual implementation of an IRM must have a finite Q since otherwise the IRM would require
infinite memory to represent the current security state.
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sequences for which δ has transitions. Security automata therefore accept policies that are

prefix-closed. That is, to prove that infinite executions of an untrusted program satisfy such

a policy, it suffices to prove that every finite execution prefix satisfies the policy. We therefore

define the set of finite prefixes P of the security policy denoted by a deterministic security

automaton as follows.

Definition 2 (Security Policy). Let A = (Q,Σ, q0, δ) be a deterministic security automaton.

The security policy PA for automaton A is defined by PA = ResA(Q), where notation ResA(q)

denotes the residual (Denis et al., 2001) of state q in automaton A—that is, the set of finite

sequences that cause the automaton to arrive in state q—and we lift ResA to sets of states

via ResA(Q) = ∪q∈QResA(q). When automaton A is unambiguous, we will omit subscript

A, writing P = Res(Q).

Our verifier accepts as input security policies expressed as security automata and IRMs

that implement reified security state as integer automaton states. To verify that the un-

trusted code accurately maintains these state variables to track the runtime security state,

our abstract states include an abstract trace and abstract program variable values defined in

terms of this automaton.

Definition 3 (Abstract Traces). The language SS of abstract traces is SS = {(Res(Q0), τ) |

Q0 ⊆ Q, τ ∈ Σ∗, |τ | ≤ k} ∪ {>SS} where >SS = Σ∗. Abstract traces are ordered by subset

relation ⊆, forming the lattice (SS ,⊆).

Intuitively, Definition 3 captures the idea that an IRM verifier must track abstract secu-

rity states as two components: a union of residuals Res(Q0) and a finite sequence τ of literal

events. Set Res(Q0) encodes the set of possible security states that the untrusted program

might have been in when the reified state variable was last updated by the IRM to reflect the

current security state. The actual current security state of the program can potentially be

out of sync with the reified state value at any given program point because IRMs typically
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cannot update the state value in the same operation that exhibits a security-relevant event.

Thus, trace τ models the sequence of events that have been exhibited since the last update

of the state value. In general, an IRM may delay updates to its reified state variables for

performance reasons until after numerous security-relevant events have occurred. Dynamic

tests of reified state variables therefore reveal information about an earlier security state that

existed before τ occurred, rather than the current security state. This distinction is critical

for accurately reasoning about real IRM code.

We limit the length of τ in our definition to a fixed constant k to keep our abstract inter-

pretation tractable. This means that when an IRM performs more than k security-relevant

operations between state variable updates, our verifier will conservatively approximate traces

at some program points, and might therefore conservatively reject some policy-adherent pro-

grams. The choice of constant k dictates a trade-off between IRM performance and veri-

fication efficiency. A low k forces IRMs to update security state variables more frequently

in order to pass verification, potentially increasing runtime overhead. A high k relaxes this

burden but yields a larger language of abstract states, potentially increasing verification

overhead. For our implementation, k = 1 suffices.

Reified state values themselves are abstracted as integers or >VS (denoting an unknown

value). For simplicity, our formal presentation treats all program values as integers and

abstracts them in the same way.

Definition 4 (Abstract Values). Define VS = Z∪{>VS} to be the set of abstract program

values, and define value order relation ≤VS by (n ≤VS n) and (n ≤VS >VS ) ∀n ∈ VS.

Observe that (VS ,≤VS ) forms a height-2 lattice.

4.3.2 Concrete Machine

The abstract states described above abstract the behavior of a concrete machine that models

the actual behavior of ActionScript bytecode programs as interpreted by the ActionScript
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χ ::= 〈L : i, σ, ν,m, τ〉 (configurations)

L (code labels)

i ::= ifle L | getlocal n | setlocal n | jmp L |
event e | setstate n | ifstate n L

(instructions)

σ ::= · | v :: σ (concrete stacks)

v ∈ Z (concrete values)

ν : Z→ v (concrete stores)

m ∈ Z (concrete reified state)

e ∈ Σ (events)

τ ∈ Σ∗ (concrete traces)

χ0 = 〈L0 : p(L0), ·, ν0, 0, ε〉 (initial configurations)

ν0 = Z× {0} (initial stores)

P ::= (L, p, s) (programs)

p : L→ i (instruction labels)

s : L→ L (label successors)

Figure 4.2. Concrete machine configurations and programs

virtual machine. We define the concrete machine to be a tuple (C, χ0, 7→), where C is the set

of concrete configurations, χ0 is the initial configuration, and 7→ is the transition relation in

the concrete domain. Figure 4.2 defines a configuration χ = 〈L : i, σ, ν,m, τ〉 as a labeled

instruction L : i, an operand stack σ, a local variable store ν, a reified security state value

m, and a trace τ of security-relevant events that have been exhibited so far during the

current run. A program P = (L, p, s) consists of a program entrypoint label L, a mapping p

from code labels to program instructions, and a label successor function s that defines the

destinations of non-branching instructions.

To simplify the discussion, we here consider only a core language of ActionScript bytecode

instructions. Instructions ifle L and jmp n implement conditional and unconditional jumps,

respectively, and instructions getlocal n and setlocal n read and set local variable values,

respectively. Instruction event e models a security-relevant operation that exhibits event e.
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The setstate n and ifstate n L instructions set the reified security state and perform

a conditional jump based upon its current value, respectively. While the real ActionScript

instruction set does not include these last three operations, in practice they are implemented

as fixed instruction sequences that perform security-relevant operations (e.g., system calls),

store an integer constant in a safe place (e.g., a reserved private field member), and condi-

tionally branch based on that stored value, respectively. The bytecode language’s existing

object encapsulation and type-safety features are leveraged to prevent untrusted code from

corrupting reified security state.

n1 ≤ n2

〈L1 : ifle L2, n1::n2::σ, ν,m, τ〉 7→ 〈L2 : p(L2), σ, ν,m, τ〉
(CIflePos)

n1 > n2

〈L1 : ifle L2, n1::n2::σ, ν,m, τ〉 7→ 〈s(L1) : p(s(L1)), σ, ν,m, τ〉
(CIfleNeg)

〈L : getlocal n, σ, ν,m, τ〉 7→ 〈s(L) : p(s(L)), ν(n)::σ, ν,m, τ〉
(CGetlocal)

〈L : setlocal n, n1::σ, ν,m, τ〉 7→ 〈s(L) : p(s(L)), σ, ν[n := n1],m, τ〉
(CSetlocal)

〈L1 : jmp L2, σ, ν,m, τ〉 7→ 〈L2 : p(L2), σ, ν,m, τ〉
(CJmp)

τe ∈ P
〈L : event e, σ, ν,m, τ〉 7→ 〈s(L) : p(s(L)), σ, ν,m, τe〉

(CEvent)

〈L : setstate n, σ, ν,m, τ〉 7→ 〈s(L) : p(s(L)), σ, ν, n, τ〉
(CSetstate)

〈L1 : ifstate n L2, σ, ν, n, τ〉 7→ 〈L2 : p(L2), σ, ν, n, τ〉
(CIfstatePos)

m 6= n

〈L1 : ifstate n L2, σ, ν,m, τ〉 7→ 〈s(L1) : p(s(L1)), σ, ν,m, τ〉
(CIfstateNeg)

Figure 4.3. Small-step operational semantics for the concrete machine

Figure 4.3 provides a complete small-step operational semantics for the concrete machine.

Observe that in Rule (CEvent), policy-violating events cause the concrete machine to enter

a stuck state. Thus, security violations are modeled in the concrete domain as stuck states.

The concrete semantics have no explicit operation for normal program termination; we model

termination as an infinite stutter state. The soundness proof in Sect. 4.4 shows that any
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program that is accepted by the abstract machine will never enter a stuck state during any

concrete run; thus, verification is sufficient to prevent policy violations.

4.3.3 Abstract Machine

χ̂ ::= ⊥ | 〈L : i, σ̂, ν̂,m, (Res(qm), τ̄)〉 | 〈L : i, σ̂, ν̂,>VS , τ̂〉 (abstract configs)

σ̂ ::= · | v̂ :: σ̂ (evaluation stacks)

v̂ ∈ VS (abstract values)

ν̂ : Z→ v̂ (abstract stores)

m̂ ∈ Z ∪ >VS (abstract reified state)

τ̄ ∈ ∪n≤kΣn (bounded traces)

τ̂ ∈ SS (abstract traces)

Figure 4.4. Abstract machine configurations

⊥ ≤χ̂ χ̂ · ≤VS ·
σ̂ ≤VS σ̂

′ ν̂ ≤VS ν̂
′ Rmτ ⊆ Rmτ

′

〈L : i, σ̂, ν̂,m, (Rm, τ)〉 ≤χ̂ 〈L : i, σ̂′, ν̂ ′,m, (Rm, τ ′)〉
σ̂1 ≤VS σ̂2 va1 ≤VS va2

va1 :: σ̂1 ≤VS va2 :: σ̂2

σ̂ ≤VS σ̂
′ ν̂ ≤VS ν̂

′ τ̂ ⊆ τ̂ ′

〈L : i, σ̂, ν̂, m̂, τ̂〉 ≤χ̂ 〈L : i, σ̂′, ν̂ ′,>, τ̂ ′〉
ν̂1(n) ≤VS ν̂2(n) ∀n ∈ Z

ν̂1 ≤VS ν̂2

Figure 4.5. State-ordering relation ≤χ̂

We define our abstract machine as a tuple (A, χ0, ), where A is the set of configurations

of the abstract machine, χ0 is the same initial configuration as the concrete machine, and

 is the transition relation in the abstract domain. Abstract configurations are formally

defined in Figure 4.4. Figure 4.5 lifts the ≤VS relation to operand stacks and stores to form a

lattice (A,≤χ̂) of abstract states. That is, stacks (stores) are related if their sizes (domains)

are identical and their corresponding members are related.

The small-step operational semantics of the abstract machine are given in Figure 4.6.

When the abstract machine can infer concrete values for operands, as in Rule (AIfle-
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n1 ≤ n2

〈L1 : ifle L2, n1::n2::σ̂, ν̂, m̂, τ̂〉 〈L2 : p(L2), σ̂, ν̂, m̂, τ̂〉
(AIflePos)

n1 > n2

〈L1 : ifle L2, n1::n2::σ̂, ν̂, m̂, τ̂〉 〈s(L1) : p(s(L1)), σ̂, ν̂, m̂, τ̂〉
(AIfleNeg)

>VS ∈ {va1, va2} L′ ∈ {L2, s(L1)}
〈L1 : ifle L2, va1::va2::σ̂, ν̂, m̂, τ̂〉 〈L′ : p(L′), σ̂, ν̂, m̂, τ̂〉

(AIfleTop)

〈L : getlocal n, σ̂, ν̂, m̂, τ̂〉 〈s(L) : p(s(L)), ν̂(n)::σ̂, ν̂, m̂, τ̂〉
(AGetlocal)

〈L : setlocal n, va1::σ̂, ν̂, m̂, τ̂〉 〈s(L) : p(s(L)), σ̂, ν̂[n := va1], m̂, τ̂〉
(ASetlocal)

〈L1 : jmp L2, σ̂, ν̂, m̂, τ̂〉 〈L2 : p(L2), σ̂, ν̂, m̂, τ̂〉
(AJmp)

τ̂ e ⊆ τ̂ ′ ⊆ P
〈L : event e, σ̂, ν̂, m̂, τ̂〉 〈s(L) : p(s(L)), σ̂, ν̂, m̂, τ̂ ′〉

(AEvent)

τ̂ ⊆ Res(qn)

〈L : setstate n, σ̂, ν̂, m̂, τ̂〉 〈s(L) : p(s(L)), σ̂, ν̂, n, (Res(qn), ε)〉
(ASetstate)

m̂ ∈ {n,>}
〈L1 : ifstate n L2, σ̂, ν̂, m̂, (S, τ)〉 〈L2 : p(L2), σ̂, ν̂, n, (Res(qn), τ)〉

(AIfstatePos)

m̂ 6= n (S − Res(qn))τ ⊆ τ̂

〈L1 : ifstate n L2, σ̂, ν̂, m̂, (S, τ)〉 〈s(L1) : p(s(L1)), σ̂, ν̂, m̂, τ̂〉
(AIfstateNeg)

Figure 4.6. Small-step operational semantics for the abstract machine

Pos), it performs a transition resembling the corresponding concrete transition. How-

ever, when operand values are unknown, as in Rule (AIfleTop), the abstract machine

non-deterministically explores all possible control flows resulting from the operation.

The premises of rules (AEvent), (ASetstate), and (AIfstateNeg) appeal to a model-

checker that decides subset relations for abstract states according to Definition 3. Thus, the

abstract machine enters a stuck state when it encounters a potential policy violation (see

Rule (AEvent)). Abstract stuck states correspond to rejection by the verifier.

Rule (ASetstate) requires that acceptable programs must maintain a reified security

state that is consistent with the actual security state of the program during any given

concrete execution. This allows the (AIfstatePos) and (AIfstateNeg) rules of the abstract

machine to infer useful security information in the positive and negative branches of program
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operations that dynamically test this state. The verifier can therefore reason that dynamic

security guards implemented by an IRM suffice to prevent runtime policy violations.

4.3.4 An Abstract Interpretation Example

Abstract interpretation involves iteratively computing an abstract state for each code point.

Multiple abstract states obtained for the same code point are combined by computing their

join in lattice (A,≤χ̂). This process continues until a fixed point is reached.

���� ����
0 1-e-

L1 : ifstate 0 L3 〈. . . , 0, ε〉 t 〈. . . , 1, e〉 = 〈. . . ,>, ε+ e〉
L2 : jmp L2 ⊥ t 〈. . . ,>, e〉 = 〈. . . ,>, e〉
L3 : event e 〈. . . , 0, ε〉 t 〈. . . , 0, ε〉 = 〈. . . , 0, ε〉

setstate 1 〈. . . , 0, e〉 t 〈. . . , 0, e〉 = 〈. . . , 0, e〉
jmp L1 〈. . . , 1, e〉 t 〈. . . , 1, e〉 = 〈. . . , 1, e〉

Figure 4.7. An abstract interpretation example

To illustrate this, we here walk the abstract interpreter through the simple example

program shown in the first column of Figure 4.7, enforcing the policy ε + e whose security

automaton is depicted at the top of the figure. Abstract states inferred on first entry to

each code point are written to the left of the t in the second column. (All but the reified

state value 0 and trace ε are omitted from each configuration since they are irrelevant to

this particular example.) Abstract states inferred on second entry are written after the t,

and the resulting join of these states is written in the third column. In this example a fixed

point is reached after two iterations.

The abstract interpreter begins at entrypoint label L1 in initial configuration χ0 =

〈. . . , 0, ε〉. Since the reified state is known, the abstract machine performs transition (AIf-

statePos) and arrives at label L3. Operation event e appends e to the trace, operation
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setstate 1 updates the reified state, and operation jmp L1 returns to the original code

point.

The join of these two states yields a new configuration in which the reified state is un-

known (>), so on the second iteration the abstract machine non-deterministically transitions

to both L2 and L3. However, both transitions infer useful security state information based

on the results of the dynamic test. Transition (AIfstatePos) to label L3 refines the ab-

stract trace from ε+ e to Res(q0) = ε, and transition (AIfstateNeg) to label L2 refines it to

ε+ e−Res(q0) = e. These refinements allow the verifier to conclude that all abstract states

are policy-satisfying. In particular, the dynamic state test at L1 suffices to prevent policy

violations at L3.

4.4 Analysis

4.4.1 Soundness

The abstract machine defined in Section 4.3.3 is sound with respect to the concrete ma-

chine defined in Section 4.3.2 in the sense that each inferred abstract state χ̂ conservatively

approximates all concrete states χ that can arise at the same program point during an execu-

tion of the concrete machine on the same program. This further implies that if the abstract

machine does not enter a stuck state for a given program, nor does the concrete machine.

Since concrete stuck states model security violations, this implies that a verifier consistent

with the abstract machine will reject all policy-violating programs.

σ ≤VS σ̂ ν ≤VS ν̂ τ ∈ τ̂
〈L : i, σ, ν,m, τ〉 ∼ 〈L : i, σ̂, ν̂,>, τ̂〉

(SoundTop)

σ ≤VS σ̂ ν ≤VS ν̂ τ ∈ Res(qm)τ ′ τ ∈ Sτ ′

〈L : i, σ, ν,m, τ〉 ∼ 〈L : i, σ̂, ν̂,m, (S, τ ′)〉
(SoundInt)

Figure 4.8. Soundness relation ∼
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We define the soundness of state abstractions in terms of a soundness relation (Cousot

and Cousot, 1992) written ∼⊆ C ×A that is defined in Figure 4.8. Following the approach

of (Chang et al., 2006), soundness of the operational semantics given in Figs. 4.3 and 4.6 is

then proved via progress and preservation lemmas. The preservation lemma proves that a

bisimulation of the abstract and concrete machines preserves the soundness relation, while

the progress lemma proves that as long as the soundness relation is preserved, the concrete

machine does not enter a stuck state. Together, these two lemmas dovetail to form an

induction over arbitrary length execution sequences, proving that programs accepted by the

verifier will not commit policy violations.

In the next part of this section, we sketch interesting cases of the progress and preservation

proofs, and subsequently delineate the proof of soundness. We have recently completed fully

machine-verified proofs for all cases of the progress and preservation lemmas, and the proof

of soundness using the Coq proof assistant (INRIA, 2014).

Lemma 1 (Progress). For every χ ∈ C and χ̂ ∈ A such that χ ∼ χ̂, if there exists χ̂′ ∈ A

such that χ̂ χ̂′, then there exists χ′ ∈ C such that χ 7→ χ′.

Proof. Let χ = 〈L : i, σ, ν,m, τ〉 ∈ C, χ̂ = 〈L : i, σ̂, ν̂, m̂, τ̂〉 ∈ A, and χ̂′ ∈ A be given,

and assume χ ∼ χ̂ and χ̂  χ̂′ both hold. Proof is by a case distinction on the derivation

of χ̂  χ̂′. The one interesting case is that for Rule (AEvent), since the corresponding

(CEvent) rule in the concrete semantics is the only one with a non-trivial premise. For

brevity, we show only that case below.

Case (AEvent): From Rule (AEvent) in the abstract semantics, we have i = event e

and χ̂′ = 〈s(L) : p(s(L)), σ̂, ν̂, m̂, τ̂ ′〉, where τ̂ e ⊆ τ̂ ′ ⊆ P holds. Choose configuration

χ′ = 〈s(L) : p(s(L)), σ, ν,m, (τ, e)〉. From χ ∼ χ̂ we have τ ∈ τ̂ . It follows that τ̂ e ⊆ P

holds. By Rule (CEvent), we conclude that χ 7→ χ′ is derivable.

The remaining cases are straightforward, and are therefore omitted.
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Lemma 2 (Preservation). For every χ ∈ C and χ̂ ∈ A such that χ ∼ χ̂, if there exists a

non-empty A′ ⊆ A such that χ̂  A′, then for every χ′ ∈ C such that χ 7→ χ′ there exists

χ̂′ ∈ A′ such that χ′ ∼ χ̂′.

Proof. Let χ = 〈L : i, σ, ν,m, τ〉 ∈ C, χ̂ = 〈L : i, σ̂, ν̂, m̂, τ̂〉 ∈ A, and χ′ ∈ C be given such

that χ 7→ χ′. Proof is by case distinction on the derivation of χ 7→ χ′. For brevity we sketch

only the most interesting cases below.

Case (CEvent): From Rule (CEvent) in the concrete semantics, we have i = event e

and χ′ = 〈s(L) : p(s(L)), σ, ν,m, τe〉. Since A′ is non-empty, we may choose χ̂′ =

〈s(L) : p(s(L)), σ̂, ν̂, m̂, τ̂ ′〉 such that τ̂ e ⊆ τ̂ ′ ⊆ P by (AEvent). We can then obtain

a derivation of χ′ ∼ χ̂′ from the derivation of χ ∼ χ̂ by appending event e to all of the

traces in the premises of (SoundTop) or (SoundInt), and observing that the resulting

premises are provable from τ̂ e ⊆ τ̂ ′.

Case (CSetstate): From Rule (CSetstate) in the concrete semantics, i = setstate n and

χ′ = 〈s(L) : p(s(L)), σ, ν, n, τ〉. Since A′ is non-empty, we may choose χ̂′ = 〈s(L) :

p(s(L)), σ̂, ν̂, n, (Res(qn), ε)〉 such that τ̂ ⊆ Res(qn) holds by Rule (ASetstate). From

χ ∼ χ̂ we have τ ∈ τ̂ . Thus, τ ∈ Res(qn) holds and relation χ′ ∼ χ̂′ follows from Rule

(SoundInt).

Case (CIfstatePos): From Rule (CIfstatePos) in the concrete semantics, we have i =

ifstate n L2 and χ′ = 〈L2 : p(L2), σ, ν, n, τ〉. If m̂ = n 6= >, then τ̂ = (S, τ̄) by

(AIfstatePos), so choose a′ = 〈L2 : p(L2), σ̂, ν̂, n, (Res(qn), τ̄)〉. Relation χ ∼ χ̂ proves

χ′ ∼ χ̂′ by (SoundInt). Otherwise m̂ = >, so choose χ̂′ = 〈L2 : p(L2), σ̂, ν̂,>, τ̂〉.

Relation χ ∼ χ̂ proves χ′ ∼ χ̂′ by (SoundTop).

Case (CIfstateNeg): From Rule (CIfstateNeg) in the concrete semantics, we have i =

ifstate n L2 and χ′ = 〈s(L1) : p(s(L1)), σ, ν,m, τ〉, where n 6= m. If m̂ 6= > then
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τ̂ = (S, τ̄) by (AIfstateNeg), so choose χ̂′ = 〈s(L1) : p(s(L1)), σ̂, ν̂, m̂, τ̂ ′〉 such that

(S−Res(qn))τ̄ ⊆ τ̂ ′ holds by (AIfstateNeg). In any deterministic security automaton,

every residual is disjoint from all others. Thus, m̂ 6= n implies that τ̂ 6∈ Res(qn)τ̄ , and

therefore τ̂ ⊆ (S − Res(qn))τ̄ . A derivation of χ′ ∼ χ̂′ can therefore be obtained from

the one for χ ∼ χ̂ using (SoundInt). Otherwise m̂ = >, and the rest of the case

follows using logic similar to the case for (CIfstatePos).

Theorem 1 (Soundness). If the abstract machine does not enter a stuck state from the

initial state χ0, then for any concrete state χ ∈ C reachable from the initial state χ0, the

concrete machine can make progress. If state χ is a security-relevant event then this progress

is derived by the rule for the event instruction in the concrete operational semantics, whose

premise guarantees that the event does not cause a policy violation. Thus, any program

accepted by the abstract machine does not commit a policy violation when executed.

Proof. The theorem follows from the progress and preservation lemmas by an induction on

the length of an arbitrary, finite execution prefix.

4.4.2 Convergence

In practice, effective verification depends upon obtaining a fixed point for the abstract ma-

chine semantics in reasonable time for any given untrusted program. The convergence rate of

the algorithm described in Sect. 4.3.4 depends in part on the height of the lattice of abstract

states. This height dictates the number of iterations required to reach a fixed point in the

worst case. All components of the language of abstract states defined in Figure 4.4 have

height at most 2, except for the lattice SS of abstract traces. Lattice SS is finite whenever

security automaton A is finite; therefore convergence is guaranteed in finite time. In the
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proof that follows we prove the stronger result that lattice SS has non-exponential height—

in particular, it has height that is quadratic in the size of the security automaton. As with

the soundness proof, we have recently completed the following fully machine-verified proof

of convergence using the Coq proof assistant (INRIA, 2014).

Theorem 2. Let A = (Q,Σ, δ) be a deterministic, finite security automaton. Lattice (SS ,⊆)

from Definition 3 has height O(|Q|2 + k|Q|).

Proof. Let Q1, Q2 ⊆ Q and τ1, τ2 ∈ ∪n≤kΣn be given. For all i ∈ {1, 2} define Li = Res(Qi)τi,

and assume ∅ ( L1 ( L2 ⊆ P . Define

m(L) = (|Q|+ 1)|suf (L)| − |Pre(L)|

where suf (L) = max{τ ∈ Σ∗ | L ⊆ Σ∗τ} is the largest common suffix of all strings in

non-empty language L and Pre(L) = {q ∈ Q | Res(q)suf (L) ∩ L 6= ∅} is the set of possible

automaton states that an accepting path for a string in L might be in immediately prior to

accepting the common suffix. We will prove that m(L1) > m(L2). By the pumping lemma,

|suf (Li)| = |suf (Res(Qi)τi)| is at most |Q|+k, so this proves that any chain in lattice (SS ,⊆)

has length at most O(|Q|2 + k|Q|).

We first prove that Res(Pre(Li))suf (Li) = Li ∀i ∈ {1, 2}. The ⊇ direction of the

proof is immediate from the definition of Pre; the following proves the ⊆ direction. Let

τ ∈ Res(Pre(Li))suf (Li) be given. There exists q ∈ Pre(Li) and τ ′ ∈ Res(q) such that

τ = τ ′suf (Li). Since Li = Res(Qi)τi, τi is a suffix of suf (Li), so there exists τ ′i ∈ Σ∗ such that

suf (Li) = τ ′iτi. From q ∈ Pre(Li) we obtain Res(q)suf (Li) ∩ Li = Res(q)τ ′iτi ∩ Res(Qi)τi =

(Res(q)τ ′i ∩ Res(Qi))τi 6= ∅. Thus, there is an accepting path for τ ′i from q to some state in

Res(Qi). It follows that τ ′τ ′i ∈ Res(Qi), so τ = τ ′τ ′iτi ∈ Res(Qi)τi = Li. We conclude that

Res(Pre(Li))suf (Li) ⊆ Li.

From this result we prove that m(L1) > m(L2). Since L1 ( L2, it follows that suf (L2)

is a suffix of suf (L1). If it is a strict suffix then the theorem is proved. If instead suf (L1) =
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suf (L2) = x, then we have the following:

L1 ( L2

Res(Pre(L1))x ( Res(Pre(L2))x

Res(Pre(L1)) ( Res(Pre(L2))

Since A is deterministic and therefore each residual is disjoint, we conclude that Pre(L1) (

Pre(L2) and therefore m(L1) > m(L2).

4.5 Implementation

The binary rewriter and verifier are both implemented in Prolog, while the ABC Extrac-

tor and Injector are implemented in C. The rewriting framework uses a Definite Clause

Grammar (DCG) (Shapiro and Sterling, 1994) parser that converts extracted ActionScript

bytecode to an annotated abstract syntax tree (AST) for easy analysis and manipulation.

We implemented this parser in Prolog so that the same code functions as a code generator

due to the reversible nature of Prolog predicates (DeVries et al., 2009).

We used our implementation to enforce and certify three different policies on a collec-

tion of real-world Flash applets and AIR applications. Experimental results are shown in

Figure 4.9. All tests were performed on an Intel Pentium Core 2 Duo machine running Yap

Prolog v5.1.4.

Program
Tested

Policy
Enforced

Size
Before

Size
After

Rewriting
Time

Verification
Time

countdownBadge redir 1.80 KB 1.95 KB 1.429s 0.532s
NavToURL redir 0.93 KB 1.03 KB 0.863s 0.233s
fiona redir 58.9 KB 59.3 KB 15.876s 0.891s
calder redir 58.2 KB 58.6 KB 16.328s 0.880s
posty postok 112.0 KB 113.0 KB 54.170s 2.443s
fedex flimit 77.3 KB 78.0 KB 39.648s 1.729s

Figure 4.9. Experimental results
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The redir policy prohibits malicious URL-redirections by ABC ad applets. Redirections

are implemented at the bytecode level by navigateToURL system calls. The policy requires

that method check url(s) must be called to validate destination s before any redirection to

s may occur. Method check url has a trusted implementation provided by the ad distrib-

utor and/or web host, and may incorporate dynamic information such as ad hit counts or

webpage context. Our IRM enforces this policy by injecting calls to check url into untrusted

applets. For better runtime efficiency, it positions some of these calls early in the program’s

execution (to pre-validate certain URL’s) and injects runtime security state variables that

avoid potentially expensive duplicate calls by tracking the history of past calls.

Policy postok sanitizes strings entered into message box widgets. This can be helpful in

preventing cross-site scripting attacks, privacy violations, and buffer-overflow exploits that

affect older versions of the ActionScript VM. We enforced the policy on the Posty AIR

application, which allows users to post messages to social networking sites such as Twitter,

Jaiku, Tumblr, and Friendfeed.

Policy flimit enforces a resource bound that disallows the creation of more than n files

on the user’s machine. We enforced this policy on the FedEx Desktop AIR application, which

continuously monitors a user’s shipment status and sends tracking information directly to

his or her desktop. The IRM implements the policy by injecting a counter into the untrusted

code that tracks file creations.

4.6 Conclusion

This chapter discusses preliminary work on certifying IRMs through model-checking. Our

technique derives a state abstraction lattice from a security automaton to facilitate precise

abstract interpretation of IRM code. Formal proofs of soundness and convergence guarantee

reliability and tractability of the verification process. We demonstrate the feasibility of our

technique by enforcing a URL anti-redirection policy for ActionScript bytecode programs.
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We also demonstrate the elegance of using Prolog for implementing a certifying IRM sy-

setm. Using Prolog resulted in faster development and simpler implementation due to code

reusability from reversible predicates and succinct program specifications from declarative

programming. This resulted in a smaller trusted computing base for the overall system.

While our algorithm successfully verifies an important class of IRM implementations

involving reified security state, it does not support all IRM rewriting strategies. Reified

security state that is per-object (Hamlen et al., 2006a) instead of global, or that is updated

by the IRM before the actual security state changes at runtime rather than after, are two

examples of IRM strategies not supported by our model. In the next chapter, Chapter 5, we

generalize our approach to cover these cases.

One area of future work remaining is augmenting our system with support for recursion

and mutual recursion, which is currently not handled by our implementation.



CHAPTER 5

FULL-SCALE CERTIFICATION FOR THE SPOX JAVA IRM SYSTEM1

5.1 Overview

Aspect-oriented Programming (AOP) has been recognized as a natural and elegant fit for

developing IRM systems. It additionally enjoys an extensive support system and tool base,

thus gaining significant popularity in the IRM world. This rise in prominence is paralleled

with a strong desire by the IRM community to to enhance AOP-based IRMs with formal

verification. To provide exceptionally high assurance guarantees, recent work has sought to

separately machine-verify the self-monitoring code that the AOP IRMs produce (Hamlen

et al., 2006a; Aktug et al., 2008; Sridhar and Hamlen, 2010b, 2011). For example, the S3MS

project uses a contract-based verifier (Aktug et al., 2008) to avoid trusting the the much

larger in-liner, usually over 900K lines of Java code if one includes the underlying AspectJ

system (Kiczales et al., 2001), that generates the IRMs.

However, TCB-minimization of large AOP-IRM systems has been frustrated by the in-

evitable inclusion of significant, trusted code within the AOP-style policy specifications them-

selves. Verifiers for these systems can prove that the IRM system has correctly in-lined the

policy-prescribed advice code but not that this advice actually enforces the desired policy.

Past case studies have demonstrated that such advice is extremely difficult to write correctly,

especially when the policy is intended to apply to large classes of untrusted programs rather

than individual applications (Jones and Hamlen, 2010). Moreover, in many domains, such

as web ad security, policy specifications change rapidly as new attacks and vulnerabilities

1This chapter includes previously published (Hamlen et al., 2012, 2011) joint work with Kevin W. Hamlen
and Micah Jones.
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are discovered (cf., Li and Wang, 2010; Sridhar and Hamlen, 2010a,b). Thus, the consider-

able effort that might be devoted to formally verifying one particular aspect implementation

quickly becomes obsolete when the aspect is revised in response to a new threat.

To address this open challenge, we present Cheko : the first IRM-certification framework

that verifies full, AOP-style IRMs against purely declarative policy specifications without

trusting the code that implements the IRM2. Cheko uses light-weight model-checking and

abstract interpretation to verify untrusted (but verifiably type-safe) Java bytecode bina-

ries against trusted policy specifications that lack advice. Policies declaratively specify how

security-relevant program operations affect an abstract system security state. Unlike con-

tracts, which denote code transformations, policies in our system therefore denote pure code

properties. Such properties can be enforced by untrusted aspects that dynamically detect

impending policy violations and take corrective action. The woven aspects are verified (along

with the rest of the self-monitoring code) against the trusted policy specification prior to its

execution.

Cheko was inspired by our prior work on model-checking IRMs (Sridhar and Hamlen,

2010b,a; DeVries et al., 2009) (see Chapters 3 and 4), but includes numerous substantial

theoretic and pragmatic leaps beyond those earlier works. These include:

� support for a full-scale Java IRM framework (the SPoX IRM system Hamlen and Jones,

2008; Jones and Hamlen, 2009) that includes stateful (history-based) policies, event

detection by pointcut-matching, and IRM implementations that combine (untrusted)

before- and after-advice insertions;

� a novel approach to dynamic pointcut verification using Constraint Logic Programming

(CLP) (Jaffar and Maher, 1994); and

2Throughout this chapter, for simplicity, the terminology IRM certification refers to IRM soundness
certification. Transparency certification of IRMs is discussed in Chapter 6.
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� proofs of correctness based on Cousot’s abstract interpretation framework (Cousot and

Cousot, 1977) that link the denotational semantics of SPoX policies to the operational

semantics of the abstract interpreter.

The chapter proceeds as follows. Section 5.2 discusses related work. Section 5.3 begins

with a discussion of the SpoX policy language and rewriter. Section 5.4 presents a high-

level description of the verification algorithm. Section 5.6 presents in-depth case-studies of

several security policy classes that we enforced on numerous real-world applications, and

discusses challenges faced in implementing and verifying these policies. Section 5.5 discusses

the formal model. Section 5.7 concludes.

5.2 Related Work

Machine-certification of IRMs was first proposed as type-checking (Walker, 2000)—an idea

that was later extended and implemented in the Mobile system (Hamlen et al., 2006a).

Mobile transforms Microsoft .NET bytecode binaries into safe binaries with typing annota-

tions in an effect-based type system. The annotations constitute a proof of safety that a

type-checker can separately verify to prove that the transformed code is safe. Type-based

IRM certification is efficient and elegant but does not currently support dynamic pointcut

matching. It has therefore not been applied to AOP-style IRMs to our knowledge.

ConSpec (Aktug and Naliuka, 2008; Aktug et al., 2008) adopts a security-by-contract

approach to AOP IRM certification. Its certifier performs a static analysis that verifies

that contract-specified guard code appears at each security-relevant code point. While

certification-via-contract facilitates natural expression of policies as AOP programs, it has

the disadvantage of including the potentially complex advice code in the TCB.

Our prior work (Sridhar and Hamlen, 2010b) (presented in Chapter 4) is the first to adopt

a model-checking approach to verify such IRMs without trusted guard code. The prototype
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IRM certifier in (Sridhar and Hamlen, 2010b) supports reified security state, but it does not

support dynamic pointcuts and its support for advice is limited to a very constrained form of

before-advice. It therefore does not support real-world IRM systems or their policies, which

regularly employ dynamic pointcuts and after-advice.

In contrast, the verifier presented in this work targets SPoX (Hamlen and Jones, 2008;

Jones and Hamlen, 2009), a fully featured, purely declarative AOP IRM system for Java

bytecode. SPoX policies are advice-free; any advice that implements the IRM remains

untrusted and must therefore undergo verification. Policy specifications consist of pointcuts

and declarative specifications of how pointcut-matching events affect the security state. The

abstract security state-changes specified by SPoX policies are significantly higher-level and

simpler than the arbitrary advice code admitted by non-declarative AOP languages. Thus,

SPoX policies are a significant TCB reduction over AOP contracts that implement them.

5.3 Policy Language and Rewriter

5.3.1 SPoX Background

SPoX (Security Policy XML) is a purely declarative, aspect-oriented policy specification lan-

guage (Hamlen and Jones, 2008). A SPoX specification denotes a security automaton (Alpern

and Schneider, 1986)—a finite- or infinite-state machine that accepts all and only those event

sequences that satisfy the security policy.

Security-relevant program events are specified in SPoX by pointcut expressions similar

to those found in other aspect-oriented languages. In source-level AOP languages, pointcuts

identify code join points at which advice code is to be inserted. SPoX derives its pointcut

language from AspectJ, allowing policy writers to develop policies that regard static and

dynamic method calls and their arguments, object pointers, and lexical contexts, among

other properties.
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In order to remain fully declarative, SPoX omits explicit, imperative advice. Instead,

policies declaratively specify how security-relevant events change the current security au-

tomaton state. Rewriters then synthesize their own advice in order to enforce the prescribed

policy. The use of declarative state-transitions instead of imperative advice facilitates formal,

automated reasoning about policies without the need to reason about arbitrary code (Jones

and Hamlen, 2010). State-transitions can be specified in terms of information gleaned from

the current join point, such as method argument values, the call stack, and the current lex-

ical scope. This allows advice typically encoded imperatively in most other aspect-oriented

security languages to be declaratively encoded in SPoX policies. Typically this results in a

natural translation from these other languages to SPoX, making SPoX an ideal target for

our analysis.

The remainder of this section outlines SPoX syntax as background for the case studies

in Section 5.6. A formal denotational semantics can be found in Section 5.5. We here use a

simplified Lisp-style syntax for readability; the implementation uses an XML-based syntax

for easy parsing, portability, and extensibility.

A SPoX policy specification (pol in Figure 5.1) is a list of security automaton edge

declarations. Each edge declaration consists of three parts:

� Pointcut expressions (Figure 5.2) identify sets of related security-relevant events that

programs might exhibit at runtime. These label the edges of the security automaton.

� Security-state variable declarations (sd in Figure 5.1) abstract the security state of

an arbitrary program. The security state is defined by the set of all program state

variables and their integer3 values. These label the automaton nodes.

3Binary operator / in Figure 5.1 denotes integer division.
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n ∈ Z integers

c ∈ C class names

sv ∈ SV state variables

iv ∈ IV iteration vars

en ∈ EN edge names

pn ∈ PCN pointcut names

pol ::= np∗sd∗e∗ policies

np ::= (pointcut name="pn" pcd) named pointcuts

sd ::= (state name="sv") state declarations

e ::= edges

(edge name="en" [after] pcd ep∗) edgesets

| (forall "iv" from a1 to a2 e
∗) iteration

ep ::= edge endpoints

| (nodes "sv" a1,a2) state transitions

| (nodes "sv" a1,#) policy violations

a ::= a1+a2 | a1-a2 | b arithmetic

b ::= n | iv | b1*b2 | b1/b2 | (a)

Figure 5.1. SPoX policy syntax

� Security-state transitions (e in Figure 5.1) describe how events cause the security au-

tomaton’s state to change at runtime. These define the transition relation for the

automaton.

An example policy is given in Figure 5.3. Edges are specified by edge structures, each

of which defines a set of edges in the security automaton. Each edge structure consists of

a pointcut expression (Lines 5 and 9) and at least one nodes declaration (Lines 6 and 10).

The pointcut expression defines a common label for the edges in the set, while each nodes

declaration imposes a transition pre-condition and post-condition for a particular state vari-

able. The pre-condition constrains the set of source states to which the edge applies, and

the post-condition describes how the state changes when an event satisfying the pointcut

expression and all pre-conditions is exhibited. Events that satisfy none of the outgoing edge
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re ∈ RE regular expressions

md ∈ MD method names

fd ∈ FD field names

pcd ::= pointcuts

(call mo∗ rt c.md) method calls

| (execution mo∗ rt c.md) callee executions

| (get mo∗ c.fd) field get

| (set mo∗ c.fd) field set

| (argval n vp) stack args (values)

| (argtyp n c) stack args (types)

| (target c) object refs

| (withincode mo∗ rt c.md) lexical contexts

| (pointcutid "pn") named pc refs

| (cflow pcd) control flows

| (and pcd∗) conjunction

| (or pcd∗) disjunction

| (not pcd) negation

mo ::= public | private | · · · modifiers

rt ::= c | void | · · · return types

vp ::= (true) value predicates

| (isnull) object predicates

| (inteq n) | (intne n) integer predicates

| (intle n) | (intge n)

| (intlt n) | (intgt n)

| (streq re) string predicates

Figure 5.2. SPoX pointcut syntax
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1 (state name="s")

2

3 (forall "i" from 0 to 9

4 (edge name="count"

5 (call "Mail.send")

6 (nodes "s" i,i+1)))

7

8 (edge name="10emails"

9 (call "Mail.send")

10 (nodes "s" 10,#))

Figure 5.3. A policy permitting at most 10 email-send events

labels of the current security state leave the security state unchanged. Policy-violations are

identified with the reserved post-condition “#”.

Multiple, similar edges can be introduced with a single edge structure by enclosing them

within forall structures, such as the one in Line 3. These introduce iteration variables

(e.g., i) that range over the integer lattice points of closed intervals. Thus, Figure 5.3 allows

state variable s to range from 0 to 10, while an 11th send event triggers a policy violation.

Such a policy could be useful for preventing spam.

A syntax for a subset of the SPoX pointcut language is given in Figure 5.2. SPoX

pointcut expressions consist of all pointcuts available in AspectJ (The AspectJ Team, 2003)

except for those that are specific to AspectJ’s advice language.4 This includes all regular

expression operators available in AspectJ for specifying class and member names. Since

SPoX policies are applied to Java bytecode binaries rather than to source code, the meaning

of each pointcut expression is reflected down to the bytecode level. For example, the target

pointcut matches any Java bytecode instruction whose this argument references an object

of class c.

Instead of AspectJ’s if pointcut (which evaluates an arbitrary, possibly effectful, Java

boolean expression), SPoX provides a collection of effect-free value predicates that permit

4For example, AspectJ’s advicexecution() pointcut is omitted because SPoX lacks advice.
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dynamic tests of argument values at join points. These are accessed via the argval predicate

and include object nullity tests, integer equality and inequality tests, and string regular ex-

pression matching. Regular expression tests of non-string objects are evaluated by obtaining

the toString representation of the object at runtime. (The call to the toString method

itself is a potentially effectful operation and is treated as a matchable join point by the SPoX

enforcement implementation. However, subsequent use of the returned string within injected

security guard code is non-effectful.)

5.3.2 Rewriter

The SPoX rewriter takes as input a Java binary archive (JAR) and a SPoX policy, and out-

puts a new application in-lined with an IRM that enforces the policy. The high-level in-lining

approach is essentially the same as the other IRM systems discussed in Section 5.2. Each

method body is unpacked, parsed, and scanned for potential security-relevant instructions—

i.e., those that match the statically decidable portions of one or more pointcut expressions

in the policy specification. Sequences of guard instructions are then in-lined around these

potentially dangerous instructions to detect and preclude policy-violations at runtime. The

runtime guards evaluate the statically undecidable portions of the pointcut expressions in

order to decide whether the impending event is actually security-relevant. For example, to

evaluate the pointcut (argval 1 (intgt 2)), the rewriter might guard method calls of the

form m(x) with the test x > 2.

In-lined guard code must also track event histories if the policy is stateful. To do so, the

rewriter reifies abstract security state variables (e.g., s in Figure 5.3) into the untrusted code

as program variables. The guard code then tracks the abstract security state by consulting

and updating the corresponding reified state. To protect reified state from tampering, the

variables are typically added as private fields of new classes with safe accessor methods. This

prevents the surrounding original bytecode from corrupting the reified state and thereby

effecting a policy violation.
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The left column of Figure 5.4 gives pseudocode for an IRM that enforces the policy in

Figure 5.3. For each call to method Mail.send, the IRM tests two possible preconditions:

one where 0 ≤ s ≤ 9 and another where s = 10. In the first case, it increments s; in the

second, it aborts the process.

Observe that in this example security state s has been reified as two separate fields of

class Policy—s and temp s. This reflects a reality that any given policy has a variety of

IRM implementations, many of which contain unexpected quirks that address non-obvious,

low-level enforcement details. In this case the double reification is part of a mechanism for

resolving potential join point conflicts in the source policy (Jones and Hamlen, 2010). A

certifier must tolerate such variations in order to be generally applicable to many IRMs and

not just one rewriting strategy.

5.4 Verifier

Our verifier takes as input (1) a SPoX security policy, (2) an instrumented, type-safe

Java bytecode program, and (3) some optional, untrusted hints from the rewriter (detailed

shortly). It either accepts the program as provably policy-satisfying or rejects it as potentially

policy-violating. Type-safety is checked by the JVM, allowing our verifier to safely assume

that all bytecode operations obey standard Java memory-safety and well-formedness. This

keeps tractable the task of reliably identifying security relevant operations and field accesses.

The main verifier engine uses abstract interpretation to non-deterministically explore all

control-flow paths of the untrusted code, inferring an abstract program state at each code

point. A model-checker then proves that each abstract state is policy-adherent, thereby

verifying that no execution of the code enters a policy-violating program state. Policy-

violations are modeled as stuck states in the operational semantics of the verifier—that is,

abstract interpretation cannot continue when the current abstract state fails the model-

checking step. This results in conservative rejection of the untrusted code. The verifier is
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expressed as a bisimulation of the program and the security automaton. Abstract states

in the analysis conservatively approximate not only the possible contents of memory (e.g.,

stack and heap contents) but also the possible security states of the system at each code

point.

The heart of the verification algorithm involves inferring and verifying relationships be-

tween the abstract program state and the abstract security state. When policies are stateful,

this involves verifying relationships between the abstract security state and the correspond-

ing reified security state(s). These relationships are complicated by the fact that although

the reified state often precisely encodes the actual security state, there are also extended

periods during which the reified and abstract security states are not synchronized at run-

time. For example, guard code may preemptively update the reified state to reflect a future

security state that will only be reached after subsequent security-relevant events, or it may

retroactively update the reified state only after numerous operations that change the security

state have occurred. These two scenarios correspond to the insertion of before- and after-

advice in AOP IRM implementations. The verification algorithm must be powerful enough

to automatically track these relationships and verify that guard code implemented by the

IRM suffices to prevent policy violations.

To aid the verifier in this task, we modified the SPoX rewriter to export two forms

of untrusted hints along with the rewritten code: (1) a relation ∼ that associates policy-

specified security state variables s with their reifications r, and (2) marks that identify code

regions where related abstract and reified states might not be synchronized according to the

following definition:

Definition 5 (Synchronization Point). A synchronization point (SYNC ) is an abstract pro-

gram state with constraints ζ such that proposition ζ ∧
(∨

r∼s(r 6= s)
)

is unsatisfiable.

Cheko uses these hints (without trusting them) to guide the verification process and to

avoid state-space explosions that might lead to conservative rejection of safe code. In par-
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ticular, it verifies that all non-marked instructions are SYNC -preserving, and each outgoing

control-flow from a marked region is SYNC -restoring. This modularizes the verification task

by allowing separate verification of marked regions, and controls state-space explosions by

reducing the abstract state to SYNC throughout the majority of binary code which is not

security-relevant. Providing incorrect hints causes Cheko to reject (e.g., when it discov-

ers that an unmarked code point is potentially security-relevant) or converge more slowly

(e.g., when security-irrelevant regions are marked and therefore undergo unnecessary extra

analysis), but it never leads to unsound certification of unsafe code.

A Verification Example. Figure 5.4 demonstrates a verification example step-by-step.

The pseudocode constitutes a marked region in the target program, and the verifier requires

that the abstract interpreter is in the SYNC state immediately before and after. At each

code point, the verifier infers an abstract program state that includes one or more conjunc-

tions of constraints on the abstract and reified security state variables. These constraints

track the relationships between the reified and abstract security state. Here, variable A

represents the abstract state variable s from the policy in Figure 5.3. Reifications Policy.s

and Policy.temp s are written as S and T , respectively, with S ∼ A and T ∼ A. Thus,

state SYNC is given by constraint expression (A = S ∧ A = T ) in this example.

The analysis begins in the SYNC state, as shown in constraint list 0.1. Line 1 is a

conditional, and thus spawns two new constraint lists, one for each branch. The positive

branch (1.1) incorporates the conditional expression (S ≥ 0 ∧ S ≤ 9) in Line 2, whereas the

negative branch (2.2) incorporates the negation of the same conditional. The assignment in

Line 2 is modeled by alpha-converting T to T ′ and conjoining constraint S = T + 1; this

yields constraint list 2.1.5

5The + here denotes two’s-complement addition to handle arithmetic overflows.
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Unsatisfiable constraint lists are opportunistically pruned to reduce the state space. For

example, list 3.1 shows the result of applying the conditional of Line 3 to 2.1. Conditionals 1

and 3 are mutually exclusive, resulting in contradictory expressions S ≤ 9 and S = 10;

therefore, 3.1 is dropped. Similarly, 3.2 is dropped because no control-flows exit Line 4.

To interpret a security-relevant event such as the one in Line 6, the verifier simulates the

traversal of all edges in the security automaton. In typical policies, any given instruction fails

to match a majority of the pointcut labels in the policy, so most are immediately dropped.

The remaining edges are simulated by conjoining each edge’s pre-conditions to the current

constraint list and modeling the edge’s post-condition as a direct assignment to A. For

example, edge count in Figure 5.3 imposes pre-condition (0 ≤ I ≤ 9) ∧ (A = I), and its

post-condition can be modeled as assignment A := I + 1. Applying these to list 5.1 yields

list 6.1. Likewise, 6.2 is the result of applying edge 10emails to 5.1, and 6.4 and 6.5 are the

results of applying the two edges (respectively) to 5.2.

Constraints 6.3 and 6.6 model the possibility that no explicit edge matches, and therefore

the security state remains unchanged. They are obtained by conjoining the negations of all

of the edge pre-conditions to states 5.1 and 5.2, respectively. Thus, security-relevant events

have a multiplicative effect on the state space, expanding n abstract states into at worst

n(m+ 1) states, where m is the number of potential pointcut matches.

If any constraint list is satisfiable and contains the expression A = #, the verifier cannot

disprove the possibility of a policy violation and therefore conservatively rejects. Constraints

6.2 and 6.5 both contain this expression, but they are unsatisfiable, proving that a violation

cannot occur. Observe that the IRM guard at Line 3 is critical for proving the safety of this

code because it introduces constraint S ′ 6= 10 that makes these two lists unsatisfiable. If

Lines 3–4 were not included, the verifier would reject at this point because constraints 6.2

and 6.5 are satisfiable with A = # without clause S ′ 6= 10.

At all control-flows from marked to unmarked regions, the verifier requires a constraint list

that implies SYNC . In this example, constraints 6.1 and 6.6 are the only remaining lists that
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are satisfiable, and conjoining them with the negation of SYNC expression (A = S)∧(A = T )

yields an unsatisfiable list. Thus, this code is accepted as policy-adherent.

(A=S ∧ A=T ) 0.1
1 x = 1;

(A=S ∧ A=T ∧X=1) 1.1
2 if (Policy.s == 0 && x > 2)

(A=S ∧ A=T ∧X=1 ∧ S=0 ∧X>2) 2.1
3 System.exit()

(A=S ∧ A=T ∧X=1 ∧ (S 6=0 ∨X≤2) 3.1
4 call secure method(x);

(A′=S ∧ A′=T ∧X=1 ∧ (S 6=0 ∨X≤2) ∧ A′=0 ∧X>2 ∧ A=#) 4.1
(A′=S ∧ A′=T ∧X=1 ∧ (S 6=0 ∨X≤2) ∧ A′ 6=0 ∨X≤2) ∧ A′=A) 4.2

A= abstract security state
S= reified security state Policy.s

T= reified security state Policy.temp s

Figure 5.5. An example verification with dynamically decidable pointcuts

Dynamically Decided Pointcuts. Verification of events corresponding to statically un-

decidable pointcuts (such as argval) requires analysis of dynamic checks inserted by the

rewriter, which consider the contents of the stack and local variables at runtime.

An example is shown in Figure 5.5, which enforces a policy that prohibits calls to method

secure method with arguments greater than 2. Verifying this IRM requires the inclusion of

abstract state variable X in constraint lists to model the value of local program variable x.

The abstract interpreter therefore tracks all numerically typed stack and local variables, and

incorporates Java bytecode conditional expressions that test them into constraint lists.

Numeric comparisons are translated directly into constraint expressions; for example,

the instruction if(x>2) introduces clause X > 2 for the positive branch and X ≤ 2 for

the negative branch. Non-numeric dynamic pointcuts (e.g., streq pointcut expressions) are

modeled by reducing them to equivalent integer encodings. For example, to support dynamic

string regexp-matching, Cheko introduces a boolean-valued variable Xre for each string-

typed program variable x and policy regexp re. Program operations that test x against
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re introduce constraint Xre = 1 in their positive branches and Xre = 0 in their negative

branches. An in-depth verification example involving dynamically decidable pointcuts is

provided in the companion technical report (Hamlen et al., 2011).

Limitations. Our verifier supports most forms of Java reflection, but in order to safely

track write-accesses to reified security state fields, the verifier requires such fields to be

static, private class members, and it conservatively rejects programs that contain reflective

field-write operations within classes that contain reified state. Thus, in order to pass ver-

ification, rewriters must implement reified state fields within classes that do not perform

write-reflection. This is standard practice for most IRM systems including SPoX, so did not

limit any of our tests. Instrumented programs may detect and respond to the presence of

the IRM through read-reflection, but not in a way that violates the policy.

Our system supports IRMs that maintain a global invariant whose preservation across the

majority of the rewritten code suffices to prove safety for small sections of security-relevant

code, followed by restoration of the invariant. Our experience with existing IRM systems

indicates that most IRMs do maintain such an invariant (SYNC ) as a way to avoid reasoning

about large portions of security-irrelevant code in the original binary. However, IRMs that

maintain no such invariant, or that maintain an invariant inexpressible in our constraint

language, cannot be verified by our system. For example, an IRM that stores object security

states in a hash table cannot be certified because our constraint language is not sufficiently

powerful to express collision properties of hash functions and prove that a correct mapping

from security-relevant objects to their security states is maintained by the IRM.

To keep the rewriter’s annotation burden small, our certifier also uses this same invariant

as a loop-invariant for all cycles in the control-flow graph. This includes recursive cycles in

the call graph as well as control-flow cycles within method bodies. Most IRM frameworks do

not introduce such loops to non-synchronized regions. However, this limitation could become
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problematic for frameworks wishing to implement code-motion optimizations that separate

security-relevant operations from their guards by an intervening loop boundary. Allowing

the rewriter to suggest different invariants for different loops would lift the limitation, but

taking advantage of this capability would require the development of rewriters that infer and

express suitable loop invariants for the IRMs they produce. To our knowledge, no existing

IRM systems yet do this.

While our certifier is provably convergent (since it arrives at a fixpoint for every loop

through enforcing SYNC on loop back-edges), it can experience state-space explosions that

are exponential in the size of each contiguous, unsynchronized code region. Typical IRMs

limit such regions to relatively small, separate code blocks scattered throughout the rewritten

code; therefore, we have not observed this to be a significant limitation in practice. However,

such state-space explosions could be controlled without conservative rejection by applying

the same solution above. That is, rewriters could suggest state abstractions for arbitrary

code points, allowing the certifier to forget information that is unnecessary for proving safety

and that leads to a state-space explosion. Again, the challenge here is developing rewriters

that can actually generate such abstractions.

Our current implementation and theoretical analysis are for purely serial programs; con-

currency support is reserved for future work. Analysis, enforcement, and certification of

multithreaded IRMs is an ongoing subject of current research with several interesting open

problems (cf., Dam et al., 2009).

5.5 System Formal Model

The certifier in our certifying IRM framework forms the centerpiece of the trusted computing

base of the system, allowing the monitor and monitor-prod-ucing tools to remain untrusted.

An unsound certifier (i.e., one that fails to reject some policy-violating programs) can lead to
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system compromise and potential damage. It is therefore important to establish exceptionally

high assurance for the certification algorithm and its implementation.

In this section we address the former requirement by formalizing the certification algo-

rithm as the operational semantics of an abstract machine. For brevity, we here limit our

attention to a core subset of Java bytecode that is representative of important features of

the full language.6 We additionally formalize the JVM as the operational semantics of a

corresponding concrete machine over the same core subset. These two semantics together

facilitate a proof of soundness in Section 5.5.6. The proof establishes that executing any

program accepted by the certifier never results in a policy violation at runtime.

5.5.1 Java Bytecode Core Subset

ifle L conditional jump

getlocal ` read field given in static operand

setlocal ` write field given in static operand

jmp L unconditional jump

eventy n security-relevant operation

Figure 5.6. Core subset of Java bytecode

Figure 5.6 lists the subset of Java bytecode that we consider. Instruction ifle L imple-

ments conditional jumps, instruction jmp n implements unconditional jumps, and instruc-

tions getlocal n and setlocal n read and set local variable values, respectively. Instruction

eventy n models a security-relevant operation that exhibits event n and pops y arguments

off the operand stack. While the real Java bytecode instruction set does not include eventy,

in practice it is implemented as a fixed instruction sequence that performs a security-relevant

operation (e.g., a system call).

6The implementation supports the full Java bytecode language (see Section 5.6).
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pol ::= edg∗

edg ::= (forall v̂=e1..e2 edg) | (edge pcd ep∗)

pcd ::= (or pcc∗)

pcc ::= (and pct∗)

pct ::= pca | (not pca)

pca ::= (eventy n) | (arg n1 (intleq n2))

ep ::= (nodes a e1 e2)

e ::= n | ` | r | a | v̂ | e1+e2 | e1−e2 | e1∗e2 | e1/e2 | (e)

Figure 5.7. Core subset of SPoX

Figure 5.7 defines a core subset of SPoX for the Java bytecode language in Figure 5.6.

Without loss of generality, it assumes all pointcuts are expressed in disjunctive normal form.

5.5.2 Concrete Machine

χ ::= 〈L : i, ρ, σ〉 (configurations)

L (code labels)

i (Java bytecode instructions)

Σ : (r ] a ] `) ⇀ Z (concrete store mappings)

σ ∈ Σ (concrete stores)

ρ ::= · | x :: ρ (concrete stack)

x ∈ Z (concrete program values)

χ0 (initial configurations)

P ::= (L, p, s) (programs)

p : L −→ i (instruction labels)

s : L −→ L (label successors)

Figure 5.8. Concrete machine configurations and programs

We start out by formalizing the JVM as the operational semantics of a concrete machine

over our core Java bytecode subset. Following the framework established in (Sridhar and

Hamlen, 2010b), Figure 5.8 defines the concrete machine as a tuple (C, χ0, 7→), where C is the
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set of concrete configurations, χ0 is the initial configuration, and 7→ is the transition relation

in the concrete domain. A concrete configuration χ ::= 〈L:i, ρ, σ〉 is a triple consisting of a

labeled bytecode instruction L:i, a concrete operand stack ρ, and a concrete store σ. The

store σ maps heap and the local variables `, abstract security state variables a, and reified

security state variables r to their integer values. A security automaton state is σ restricted

to the abstract state variables, denoted σ|a.

x2 ≤ x1

〈L1 : ifle L2, x1 :: x2 :: ρ, σ〉 7→ 〈L2 : p(L2), ρ, σ〉
(CIflePos)

x2 > x1

〈L1 : ifle L2, x1 :: x2 :: ρ, σ〉 7→ 〈s(L1) : p(s(L1)), ρ, σ〉
(CIfleNeg)

〈L : getlocal `, ρ, σ〉 7→ 〈s(L) : p(s(L)), σ(`) :: ρ, σ〉
(CGetlocal)

〈L : setlocal `, x :: ρ, σ〉 7→ 〈s(L) : p(s(L)), ρ, σ[` := x]〉
(CSetlocal)

〈L1 : jmp L2, ρ, σ〉 7→ 〈L2 : p(L2), ρ, σ〉
(CJmp)

σ′ ∈ δ(σ|a, 〈eventy n, x1 :: x2 :: · · · :: xy :: ·, 〈〉〉)
〈L : eventy n, x1 :: x2 :: · · · :: xy :: ρr, σ〉 7→ 〈s(L) : p(s(L)), ρr, σ[a := σ′(a)]〉

(CEvent)

Figure 5.9. Concrete small-step operational semantics

Figure 5.9 provides the small-step operational semantics of the concrete machine. Policy-

violating events fail to satisfy the premise of Rule (CEvent); therefore the concrete semantics

model policy-violations as stuck states. The concrete semantics have no explicit operation

for normal program termination; we model termination as an infinite stutter state. The

soundness proof in Section 5.5.6 shows that any program that is accepted by the abstract

machine will never enter a stuck state during any concrete run; thus, verified programs do

not exhibit policy violations when executed.

5.5.3 SPoX Concrete Denotational Semantics

A SPoX security policy denotes a security automaton whose alphabet is the universe JP of all

join points. We refer to such an automaton as an aspect-oriented security automaton. A join
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o ∈ Obj (objects)

v ::= o | null (values)

jp ::= 〈〉 | 〈k, x∗, jp〉 (join points)

k ::= call c.md | get c.fd | set c.fd (join kinds)

Figure 5.10. Join points

point, defined in Figure 5.10, is a recursive structure that abstracts the control stack (Wand

et al., 2004). Join point 〈k, v∗, jp〉 consists of static information k found at the site of the

current program instruction, dynamic information v∗ including any arguments consumed by

the instruction, and recursive join point jp modeling the rest of the control stack. The empty

control stack is modeled by the empty join point 〈〉.

The denotational semantics in Figure 5.11 transform a SPoX policy into an aspect-

oriented security automaton, which accepts or rejects (possibly infinite) sequences of join

points. We use ] for disjoint union, Υ for the class of all countable sets, 2A for the power

set of A, v and t for the partial order relation and join operation (respectively) over the

lattice of partial functions, and ⊥ for the partial function whose domain is empty. For par-

tial functions f and g we write f [g] = {(x, f(x)) | x ∈ Dom(f)\Dom(g)} t g to denote the

replacement of assignments in f with those in g.

Security automata are modeled in the literature (Schneider, 2000) as tuples (Q,Q0, E, δ)

consisting of a set Q of states, a set Q0 ⊆ Q of start states, an alphabet E of events,

and a transition function δ : (Q × E) → 2Q. Security automata are non-deterministic; the

automaton accepts an event sequence if and only if there exists an accepting path for the

sequence. In the case of aspect-oriented security automata, Q is the set of partial functions

from security-state variables to values, Q0 = {q0} is the initial state that assigns 0 to all

security-state variables, E = JP is the universe of join points, and δ is defined by the set of

edge declarations in the policy (discussed below).
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q ∈ Q = a→ Z (security states)

S ∈ SM = SV ⇀ Z (state-variable maps)

ψ ∈ Ψ = v̂ ⇀ Z (meta-variable maps)

µ ∈ Ψ× Σ (abstract-concrete map pairs)

P : pol →
(
Υ× 2Q ×Υ× (policy denotations)

((Q× JP)→ 2Q)
)

ES : edg → Ψ→ 2(JP→{Suceed,Fail})×SM×SM (edgeset denotations)

PC : pcd → JP → {Succ, Fail} (pointcut denotations)

EP : s→ Ψ→ (SM × SM ) (endpoint constraints)

E : e −→ (Ψ× Σ) −→ Z (expression denotations)

P [[edg1 . . . edgn]] = (Q, {q0}, JP , δ)
where q0 = SV × {0}
and δ(q, jp) = {q[S ′] | (f, S, S ′) ∈ ∪1≤i≤nES[[edg i]]⊥, S v q, f(jp) = Succ}

ES[[(forall v̂ from a1 to a2 edg)]]ψ =
∪A[[a1]]ψ≤j≤A[[a2]]ψ ES[[edg ]](ψ[j/v̂])

ES[[(edge pcd ep1 . . . epn)]]ψ ={
(PC[[pcd ]], t1≤j≤nSj, t1≤j≤nS

′
j)
}

where ∀j ∈ N . (1 ≤ j ≤ n)⇒ ((Sj, S
′
j) = EP [[epj]]ψ)

PC[[pcd ]]jp = match-pcd(pcd)jp

EP [[(nodes "sv" a1,a2)]]ψ =(
{(sv , E [[a1]](ψ,⊥))}, {(sv , E [[a2]](ψ,⊥))}

)
E [[n]]µ = n

E [[x]](ψ, σ) = σ(x) (x ∈ r ] a ] `)
E [[v̂]](ψ, σ) = ψ(v̂)

E [[e1 + e2]]µ = E [[e1]]µ+ E [[e2]]µ

E [[e1 − e2]]µ = E [[e1]]µ− E [[e2]]µ

E [[e1 · e2]]µ = E [[e1]]µ · E [[e2]]µ

E [[e1/e2]]µ = E [[e1]]µ/E [[e2]]µ

Figure 5.11. Denotational semantics for SPoX
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match-pcd((call c.md))〈call c.md , v∗, jp〉 = Succ

match-pcd((get c.fd))〈get c.fd , v∗, jp〉 = Succ

match-pcd((set c.fd))〈set c.fd , v∗, jp〉 = Succ

match-pcd((argval n vp))〈k,v0 ···vn ···, jp〉
= Succ if vp=(true) or (vp=(isnull) and vn=null)

match-pcd((and pcd1pcd2))jp =
match-pcd(pcd1)jp ∧match-pcd(pcd2)jp

match-pcd((or pcd1pcd2))jp =
match-pcd(pcd1)jp ∨match-pcd(pcd2)jp

match-pcd((not pcd))jp = ¬match-pcd(pcd)

match-pcd((cflow pcd))〈k, v∗, jp〉 =
match-pcd(pcd)〈k,v∗, jp〉∨match-pcd((cflow pcd))jp

match-pcd(pcd)jp = Fail otherwise

Succ ∨ Succ = Succ Succ ∧ Succ = Succ ¬Succ = Fail
Fail ∨ Fail = Fail Fail ∧ Fail = Fail ¬Fail = Succ
Succ ∨ Fail = Succ Succ ∧ Fail = Fail
Fail ∨ Succ = Succ Fail ∧ Succ = Fail

Figure 5.12. Matching pointcuts to join points

Each edge declaration in a SPoX policy defines a set of source states and the destination

state to which each of these source states is mapped when a join point occurs that matches the

edge’s pointcut designator. The denotational semantics in Figure 5.11 defines this matching

process in terms of the match-pcd function from the operational semantics of AspectJ (Wand

et al., 2004). We adapt a subset of pointcut matching rules from this definition to SPoX

syntax in Figure 5.12.

5.5.4 Abstract Machine

In order to statically detect and prevent policy violations, we model the verifier as an abstract

machine. The abstract machine is defined as a triple (A, χ̂0, ), where A is the set of

configurations of the abstract machine, χ̂0 ∈ A is an initial configuration, and  is the
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χ̂ ::= ⊥ | 〈L:i, ζ, ρ̂, σ̂〉 (abstract configs)

ζ ::=
∧

i=1...n

ti (n ≥ 1) (constraints)

t ::= T | F | e1 ≤ e2 (predicates)

ρ̂ ::= · | e :: ρ̂ (abstract stack)

Σ̂ : (r ] `) −→ e (abstract store mappings)

σ̂ ∈ Σ̂ (abstract stores)

χ̂0 (initial abstract config)

Figure 5.13. Abstract machine configurations

transition relation in the abstract domain. Figure 5.13 defines abstract configurations χ̂ to

be either ⊥ (denoting an unreachable state) or a tuple 〈L:i, ζ, ρ̂, σ̂〉, where L:i is a labeled

instruction, ζ is a constraint list, and ρ̂ and σ̂ model the abstract operand stack and abstract

store, respectively. The domains of ρ̂ and σ̂ consist of symbolic expressions instead of integer

values.

〈L1 : ifle L2, ζ, e1 :: e2 :: ρ̂, σ̂〉 〈L2 : p(L2), ζ ∧ (e2 ≤ e1), ρ̂, σ̂〉
(AIflePos)

〈L1 : ifle L2, ζ, e1 :: e2 :: ρ̂, σ̂〉 〈s(L1) : p(s(L1)), ζ ∧ (e2 > e1), ρ̂, σ̂〉
(AIfleNeg)

〈L : getlocal `, ζ, ρ̂, σ̂〉 〈s(L) : p(s(L)), ζ, σ̂(`) :: ρ̂, σ̂〉
(AGetlocal)

v̂ is fresh

〈L : setlocal `, ζ, e :: ρ̂, σ̂〉 〈s(L) : p(s(L)), ζ[v̂/`], ρ̂[v̂/`], σ̂[v̂/`][` := e[v̂/`]])〉
(ASetlocal)

〈L1 : jmp L2, ζ, ρ̂, σ̂〉 〈L2 : p(L2), ζ, ρ̂, σ̂〉
(AJmp)

ζ2 ∈ P̂ [[θ(pol)]]〈eventy n, e1 :: e2 :: · · · :: ey :: ·, 〈〉〉
〈L : eventy n, ζ1, e1 :: e2 :: · · · :: ey :: ρ̂r, σ̂〉 

〈s(L) : p(s(L)), ζ1[θ(a)/a] ∧ ζ2[θ(a)/a0], ρ̂r, σ̂)〉

(AEvent)

Figure 5.14. Abstract small-step operational semantics

The small-step operational semantics of the abstract machine are given in Figure 5.14.

Rules (AIflePos), (AIfleNeg), and (AEvent) are non-deterministic—the abstract machine
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non-deterministically explores both branches of conditional jumps and all possible security

automaton transitions for security-relevant events.

P̂ : pol → ĴP → 2ζ

ÊS : edg → ĴP → 2ζ

P̂CD : pcd → ĴP → 2ζ

P̂CC : pcc → ĴP ⇀ ζ

ÊP : ep → ζ

P̂ [[edg1 . . . edgn]]ĵp =
n⋃
i=1

ÊS[[edg i]]ĵp

ÊS[[forall v̂=e1..e2 edg ]]ĵp = {(v̂ ≥ e1) ∧ (v̂ ≤ e2) ∧ ζ | ζ ∈ ÊS[[edg ]]ĵp}

ÊS[[edge pcd ep1 . . . epn]]ĵp = {ζ ∧ (∧ni=1ÊP [[epi]]) | ζ ∈ P̂CD[[pcd ]]ĵp}

P̂CD[[or pcc1 . . . pccn]]ĵp = {P̂CC[[pcci]]ĵp | 1 ≤ i ≤ n}

P̂CC[[and pct1 . . . pctn]]ĵp =
n∧
i=1

P̂CC[[pct i]]jp

P̂CC[[not pca]]ĵp = ¬(P̂CC[[pca]]ĵp)

P̂CC[[eventy n]]〈eventz m, e∗, ĵp〉 = (n=m)

P̂CC[[arg n (intleq m)]]〈k, e1:: · · · ::en::e∗, ĵp〉 = (en ≤ m)

ÊP [[nodes a e1 e2]] = (a0 = e1) ∧ (a = e2)

Figure 5.15. Abstract Denotational Semantics

Rule (AEvent) is the model-checking step. Its premise appeals to an abstract denota-

tional semantics P̂ for SPoX, defined in Figure 5.15, to infer possible security automaton

transitions for policy-satisfying events. Policy-violating events (for which there is no transi-

tion in the automaton) therefore correspond to stuck states in the abstract semantics.

In Figure 5.15, ĵp ∈ ĴP denotes an abstract join point—a join point (see Figure 5.10)

whose stack consists of symbolic expressions instead of values. Valuation function P̂ accepts

as input a policy and an abstract join point that models the current abstract program state.
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It returns a set of constraint lists, one list for each possible new abstract program state. If

ζ1 is the original constraint list, then the new set of constraint lists is

{ζ1[θ(a)/a] ∧ ζ2[θ(a)/a0] | ζ2 ∈ P̂ [[θ(pol)]]ĵp}

Here, θ : (a ] v̂) → v̂ is an alpha-converter that assigns meta-variables fresh names. We

lift θ to policies so that θ(pol) renames all iteration variables in the policy to fresh names.

Meta-variable a0 is a reserved name used by P̂ to denote the old value of a. Substitution

[θ(a)/a0] replaces it with a fresh name, and substitution [θ(a)/a] re-points all old references

to a to the same name.

5.5.5 Abstract Interpretation

T : e −→ 2Ψ×Σ

T [[T ]] = Ψ× Σ

T [[F ]] = ∅
T [[e1 ≤ e2]] = {µ ∈ Ψ× Σ | E [[e1]]µ ≤ E [[e2]]µ}

C : ζ −→ 2Ψ×Σ

C[[
∧

i=1...n

ti]] =
⋂

i=1...n

T [[ti]]

E [[e1]](C[[ζ1]]) ⊆ E [[e2]](C[[ζ2]])

(ζ1, e1) �e (ζ2, e2)

C[[ζ1]] ⊆ C[[ζ2]]

(ζ1, ·) �ρ (ζ2, ·)
(ζ1, e1) �e (ζ2, e2) (ζ1, ρ̂1) �ρ (ζ2, ρ̂2)

(ζ1, e1 :: ρ̂1) �ρ (ζ2, e2 :: ρ̂2)

σ̂←1 = σ̂←2 ∀x ∈ σ̂←.E [[σ̂1(x)]](C[[ζ1]]) ⊆ E [[σ̂2(x)]](C[[ζ2]])

(ζ1, σ̂1) �σ (ζ2, σ̂2)

C[[ζ1]] ⊆ C[[ζ2]] (ζ1, ρ̂1) �ρ (ζ2, ρ̂2) (ζ1, σ̂1) �σ (ζ2, σ̂2)

χ̂1 = 〈L : i, ζ1, ρ̂1, σ̂1〉 ≤χ̂ χ̂2 = 〈L : i, ζ2, ρ̂2, σ̂2〉

Figure 5.16. State-ordering relation ≤χ̂
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Abstract interpretation is implemented by applying the abstract machine to the un-

trusted, instrumented bytecode until a fixed point is reached. When multiple different ab-

stract states are inferred for the same code point, the state space is pruned by computing

the join of the abstract states. State lattice (A,≤χ̂) is defined in Figure 5.16. This reduces

the number of control-flows that an implementation of the abstract machine must explore.

5.5.6 Soundness

µ, ρ̂ |= ρ µ, jp |= ĵp

µ, 〈k, ρ̂, ĵp〉 |= 〈k, ρ, jp〉
(Jp-Sound)

µ, 〈〉 |= 〈〉
(EmpJp-Sound)

µ, · |= ·
(EmpStk-Sound)

E [[e]]µ = n µ, ρ̂ |= ρ

µ, e::ρ̂ |= n::ρ
(Stk-Sound)

σ← = σ̂← ∀x ∈ σ←.E [[σ̂(x)]]µ = σ(x)

µ, σ̂ |= σ
(Str-Sound)

µ ∈ C[[ζ]] µ, ρ̂ |= ρ µ, σ̂ |= σ

〈L : i, ρ, σ〉 ∼ 〈L : i, ζ, ρ̂, σ̂〉
(Sound)

Figure 5.17. Soundness relation ∼

The abstract machine (defined in Section 5.5.4) is sound with respect to the concrete

machine (defined in Section 5.5.2) in the sense that each inferred abstract state χ̂ conserva-

tively approximates all concrete states χ that can arise at the same program point during

an execution of the concrete machine on the same program. The soundness of state ab-

stractions is formally captured in terms of a soundness relation (Cousot and Cousot, 1992)

written ∼⊆ C ×A, defined in Figure 5.17.

Our proof of soundness relies upon a soundness relationship between the concrete and

abstract denotational semantics of SPoX policies. This soundness relation is described by

the following theorem.
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Theorem 3 (SPoX Soundness). If P [[pol ]] = (. . . , δ) and (ψ, σ), ĵp |= jp holds, then σ′ ∈

δ(σ|a, jp) if and only if there exist ζ ′ ∈ P̂ [[θ(pol)]]ĵp and (ψ′′, σ′′) ∈ C[[ζ ′]] such that ψ′′(a0) =

σ(a) and σ′′(a) = σ′(a).

Proof. The proof can be decomposed into the following series of lemmas that correspond to

each of the SPoX policy syntax forms. Without loss of generality, we assume for simplicity

that alpha-conversion θ is the identity function.

Lemma 3. If EP [[ep]]ψ = (σ, σ′) then there exists (ψ′′, σ′) ∈ C[[ÊP [[ep]]]] such that ψ′′ v

ψ[a0 = σ(a)] and ψ′′(a0) = σ(a).

Lemma 4. If (ψ, σ), ĵp |= jp then PC[[or . . . ]]jp = Succ if and only if there exists ζ ∈

P̂CD[[or . . .]]ĵp such that (ψ′′,⊥) ∈ C[[ζ]] and ψ′′ v ψ.

Lemma 5. If (ψ, σ), ĵp |= jp then PC[[pcc]]jp = Succ if and only if (ψ′′,⊥) = C[[P̂CC[[pcc]]ĵp]]

where ψ′′ v ψ.

Lemma 6. If (ψ, σ), ĵp |= jp and f(jp) = Succ then (f, σ|a, σ′) ∈ ES[[edg ]]ψ if and only if

there exists ζ ′ ∈ ÊS[[edg ]]ĵp such that (ψ′′, σ′′) ∈ C[[ζ ′]], σ′′(a) = σ′(a), and ψ′′(a) = σ(a).

Proof. Proofs of Lemmas 3–6 follow from a straightforward expansion of the definitions in

Figures 5.11 and 5.7.

Soundness of the abstract machine with respect to the concrete machine is proved via

preservation and progress lemmas for a bisimulation of the abstract and concrete machines.

The preservation lemma proves that the bisimulation preserves the soundness relation, while

the progress lemma proves that as long as the soundness relation is preserved, the abstract

machine anticipates all policy violations of the concrete machine. Together, these two lem-

mas dovetail to form an induction over arbitrary length execution sequences, proving that

programs accepted by the verifier will not violate the policy.
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Lemma 7 (Progress). For every χ ∈ C and χ̂ ∈ A such that χ ∼ χ̂, if there exists χ̂′ =

〈Lχ̂′ : iχ̂′ , ζ
′, ρ̂′, σ̂′〉 ∈ A such that χ̂  χ̂′ and C[[ζ ′]] 6= ∅, then there exists χ′ ∈ C such that

χ 7→ χ′.

Proof. Let χ = 〈L : i, ρ, σ〉 ∈ C, χ̂ = 〈L : i, ζ, ρ̂, σ̂〉 ∈ A, and χ̂′ ∈ A be given, and assume

χ ∼ χ̂ and χ̂ χ̂′ both hold. Proof is by case distinction on the derivation of χ̂ χ̂′.

Case (AIflePos): The rule’s premises prove that χ̂ = 〈L : ifle L′, ζ, e1::e2::ρ̂r, σ̂〉 and

χ̂′ = 〈L′ : p(L′), ζ ∧ (e2 ≤ e1), ρ̂r, σ̂〉, Relation χ ∼ χ̂ implies that ρ is of the form

x1::x2::ρr. Choose configuration χ′ = 〈L′ : p(L′), ρr, σ〉. If x2 ≤ x1, then χ 7→ χ′

is derivable by Rule (CIflePos). If x2 > x1, then χ 7→ χ′ is derivable by Rule

(CIfleNeg).

Case (AIfleNeg): Similar to (AIflePos), omitted.

Case (AGetLocal): The rule’s premises prove that χ̂ = 〈L : getlocal `, ζ, ρ̂, σ̂〉 and

χ̂′ = 〈s(L) : p(s(L)), ζ, σ̂(`)::ρ̂, σ̂〉. Relation χ ∼ χ̂ implies that ` ∈ σ←. Choos-

ing configuration χ′ = 〈s(L) : p(s(L)), σ(`)::ρ, σ〉 allows χ 7→ χ′ to be derived by Rule

(CGetLocal).

Case (ASetLocal): The rule’s premises prove that χ̂ = 〈L : setlocal `, ζ, e::ρ̂, σ̂〉 and

χ̂′ = 〈s(L) : p(s(L)), ζ[v̂/`], ρ̂[v̂/`], σ̂[v̂/`][` := e[v̂/`]])〉, where v̂ is fresh. Rela-

tion χ ∼ χ̂ implies that ρ has the form x::ρr. Choosing configuration χ′ = 〈s(L) :

p(s(L)), ρr, σ[` := x]〉 allows χ 7→ χ′ to be derived by Rule (CSetLocal).

Case (AJmp): Trivial, omitted.

Case (AEvent): The (AEvent) rule’s premises prove that abstract configuration χ̂ = 〈L :

eventy n, ζ1, e1::e2:: · · · ::ey::ρ̂r, σ̂〉 and χ̂′ = 〈s(L) : p(s(L)), ζ ′, ρ̂r, σ̂〉, where ζ ′ =

ζ1[θ(a)/a]∧ζ2[θ(a)/a0] with ζ2 ∈ P̂ [[θ(pol)]]ĵp, and ĵp = 〈eventy n, e1::e2:: · · · ::ey::·, 〈〉〉.
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To derive χ 7→ χ′ using Rule (CEvent), one must prove that there exists σ′ ∈ δ(σ|a, jp)

where jp = 〈eventy n, x1::x2:: · · · ::xy::·, 〈〉〉. Once this is established, we may choose

configuration χ′ = 〈s(L) : p(s(L)), ρr, σ[a := σ′(a)]〉 to derive χ 7→ χ′ by Rule

(CEvent).

We will prove σ′ ∈ δ(σ|a, jp) using Theorem 3. The premises of the derivation of χ ∼ χ̂

suffice to derive µ, ĵp |= jp by Rule (Jp-Sound). Denotation C[[ζ ′]] is non-empty by

assumption; therefore we may choose (ψ0, σ0) ∈ C[[ζ ′]] and define ψ′′ = ψ0[a0 := σ(a)]

and σ′′ = σ0. Observe that the definition of ζ ′ in terms of ζ2 proves that (ψ′′, σ′′) ∈

C[[ζ2]]. Furthermore, since σ′ is heretofore unconstrained, we may define σ′(a) = σ′′(a).

Theorem 3 therefore proves that σ′ ∈ δ(σ|a, jp).

The following substitution lemma aids in the proof of the Preservation Lemma that

follows it.

Lemma 8. For any expression e0, mappings (ψ, σ), variables ` ∈ σ← and v̂ 6∈ σ←, and value

x, E [[e0]](ψ, σ) = E [[e0[v̂/`]]](ψ[v̂ := σ(`)], σ[` := x]).

Proof. Proof is by a straightforward induction over the structure of e0, and is therefore

omitted.

Lemma 9 (Preservation). For every χ ∈ C and χ̂ ∈ A such that χ ∼ χ̂, for every χ′ ∈ C

such that χ 7→ χ′ there exists χ̂′ ∈ A such that χ̂ χ̂′ and χ′ ∼ χ̂′.

Proof. Let χ = 〈L : i, ρ, σ〉 ∈ C, χ̂ ∈ A, and χ′ ∈ C be given such that χ 7→ χ′. Proof is by

case distinction over the derivation of χ 7→ χ′.

Case (CIflePos): Rule (CIflePos) implies that i = ifle L′, stack ρ has the form x1::x2::ρr,

and χ′ = 〈s(L) : p(s(L)), ρr, σ〉. Relation χ ∼ χ̂ proves that χ̂ has the form 〈L :

ifle L′, ζ, e1::e2::ρ̂r, σ̂〉. Choose χ̂′ = 〈s(L) : p(s(L)), ζ ∧ (e2 ≤ e1), ρ̂r, σ̂〉 and observe

that χ̂ χ̂′ is derivable by Rule (AIflePos).
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Relation χ ∼ χ̂ implies (1) µ ∈ C[[ζ]], (2) µ, ρ̂ |= ρ, and (3) µ, σ̂ |= σ. Proving χ′ ∼ χ̂′

requires deriving the three premises of Rule (Sound):

(A) To derive µ ∈ C[[ζ ∧ (e2 ≤ e1)]], observe that C[[ζ ∧ (e2 ≤ e1)]] = C[[ζ]]∩T [[e2 ≤ e1]].

It follows from (1) above that µ ∈ C[[ζ]]. By definition, T [[e2 ≤ e1]] = {µ′ ∈ Ψ×Σ |

E [[e2]]µ′ ≤ E [[e1]]µ′}. Rule (Str-Sound) proves that E [[σ̂(n)]]µ = σ(n) ∀n ∈ {1, 2}.

Thus, E [[e1]]µ = x1 and E [[e2]] = x2. Since x2 ≤ x1 (from Rule (CIflePos)), this

implies E [[e2]]µ ≤ E [[e1]]µ. From the definition of T , it follows that µ ∈ T [[e2 ≤ e1]].

(B) µ, ρ̂r |= ρr follows directly from (2) above and Rule (Stk-Sound).

(C) µ, σ̂ |= σ follows directly from (3) above.

Case (CIfleNeg): Similar to (CIflePos), omitted.

Case (CGetLocal): Rule (GetLocal) proves that i = getlocal `, and χ′ = 〈s(L) :

p(s(L)), σ(`)::ρ, σ〉. Relation χ ∼ χ̂ proves χ̂ has form 〈L : getlocal `, ζ, σ̂(`)::ρ̂, σ̂〉.

Choose χ̂′ = 〈s(L) : p(s(L)), ζ, ρ̂, σ̂〉, and observe that χ̂  χ̂′ is derivable by Rule

(AGetLocal).

Relation χ ∼ χ̂ implies (1) µ ∈ C[[ζ]], (2) µ, ρ̂ |= ρ, and (3) µ, σ̂ |= σ. Proving χ′ ∼ χ̂′

requires deriving the three premises of Rule (Sound):

(A) µ ∈ C[[ζ]] follows directly from (1) above.

(B) µ, σ̂(n)::ρ̂ |= σ(`)::ρ can be derived with Rule (Stk-Sound) by putting together

E [[σ̂(`)]]µ = σ(`) (from Rule (Str-Sound)) and (2) above.

(C) µ, σ̂ |= σ follows directly from (3) above.

Case (CSetLocal): Rule (SetLocal) proves that i = setlocal `, that ρ has the form x::ρr,

and that χ′ = 〈s(L) : p(s(L)), ρr, σ[` := x]〉. Relation χ ∼ χ̂ implies that χ̂ has the

form 〈L : setlocal `, ζ, e::ρ̂r, σ̂〉.
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Choose χ̂′ = 〈s(L) : p(s(L)), ζ[v̂/`], ρ̂r[v̂/`], σ̂[v̂/`][` := e[v̂/`]])〉 where v̂ is a fresh

meta-variable, and observe that χ̂ χ̂′ is derivable by Rule (ASetLocal).

Relation χ ∼ χ̂ implies (1) µ ∈ C[[ζ]], (2) µ, e::ρ̂r |= x::ρr, and (3) µ, σ̂ |= σ. Proving

χ′ ∼ χ̂′ requires deriving the three premises of Rule (Sound), where µ′ = (ψ[v̂ :=

σ(`)], σ[` := x]):

(A) By a trivial induction over the structure of ζ, if µ = (ψ, σ) ∈ C[[ζ]] and v̂ does not

appear in ζ, then µ′ = (ψ[v̂ := σ(`)], σ[` := x]) ∈ C[[ζ[v̂/`]]].

(B) By Rule (Stk-Sound), the derivation of (2) contains a sub-derivation of µ, ρ̂r |=

ρr. A trivial induction over ρ̂r therefore proves that µ′, ρ̂r[v̂/`] |= ρr.

(C) Deriving µ′, σ̂[v̂/`][` := e[v̂/`]] |= σ[` := x] requires deriving the two premises of

Rule (Str-Sound):

(C1) To prove σ[` := x]← = σ̂[v̂/`][` := e[v̂/`]]←, observe that σ[` := x]← =

σ← ∪ {`} and σ̂[v̂/`][` := e[v̂/`]]← = σ̂← ∪ {`}. From (3) above and Rule

(Str-Sound), it follows that σ← = σ̂←; therefore σ← ∪ {`} = σ̂← ∪ {`}.

(C2) To prove ∀y ∈ σ[` := x]← . E [[σ̂[v̂/`][` := e[v̂/`]](y)]]µ′ = σ[` := x](y), let

y ∈ σ← ∪ {`} be given:

� If y = ` then E [[σ̂[v̂/`][` := e[v̂/`]](`)]] = E [[e[v̂/`]]]. Applying Lemma 8

with e0 = e yields E [[e[v̂/`]]]µ′ = E [[e]]µ. By (2) above, and Rule (Stk-

Sound), E [[e]]µ = x = σ[` := x](`).

� If y 6= ` then E [[σ̂[v̂/`][` := e[v̂/`]](y)]] = E [[σ̂[v̂/`](y)]]. Applying Lemma 8

with e0 = σ̂(y) yields E [[σ̂[v̂/`](y)]]µ′ = E [[σ̂(y)]]µ. By Rule (Str-Sound)

and (3) above, E [[σ̂(y)]]µ = σ(y) = σ[` := x](y).

Case (CJmp): Trivial, omitted.
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Case (CEvent): From Rule (CEvent), we have that i = eventy n, that ρ has the form

x1::x2:: · · · ::xy::ρr, and that χ′ = 〈s(L) : p(s(L)), ρr, σ[a := σ′(a)]〉, where σ′ ∈

δ(σ|a, 〈eventy n, x1::x2:: · · · ::xy::·, 〈〉〉).

Relation χ ∼ χ̂ implies that χ̂ = 〈L : eventy n, ζ1, e1::e2:: · · · ::ey::ρ̂r, σ̂〉 and that

for some µ = (ψ, σ): (1) µ ∈ C[[ζ1]], (2) µ, e1::e2:: · · · ::ey::ρ̂r |= x1::x2:: · · · ::xy::ρr, and

(3) µ, σ̂ |= σ. Theorem 3 therefore implies that there exists ζ ′ ∈ P̂ [[θ(pol)]]ĵp and

(ψ′′, σ′′) ∈ C[[ζ ′]] such that (4) σ′′(a) = σ′(a) and (5) ψ′′(ao) = σ(a).

Choose χ̂′ = 〈s(L) : p(s(L)), ζ1[θ(a)/a] ∧ ζ ′[θ(a)/a0], ρ̂r, σ̂〉 and observe that χ̂ χ̂′ is

derivable by Rule (AEvent). Deriving χ′ ∼ χ̂′ requires deriving the three premises of

Rule (Sound), where µ′ = (ψ ] ψ′′[θ(a)/a0], σ[a := σ′(a)]):

(A) µ′ ∈ C[[ζ1[θ(a)/a] ∧ ζ ′[θ(a)/a0]]] is provable in two steps:

� µ′ ∈ C[[ζ1[θ(a)/a]]] follows from (1) and (5) above.

� µ′ ∈ C[[ζ ′[θ(a)/a0]]] follows from (4) above.

(B) µ′, ρ̂r |= ρr is derivable by an induction on the height of stack ρ̂r (which is equal

to the height of stack ρr by (2) above). The base case of the induction follows

trivially from Rule (EmpStk-Sound). The inductive case is derivable from Rule

(Stk-Sound) provided that E [[e]](ψ ] ψ′′[θ(a)/a0], σ[a := σ′(a)]) = E [[e]](ψ, σ). To

prove this, observe that e mentions neither a0 (because by the definition of P̂ , a0

is a reserved meta-variable name that is not available to programs) nor a (because

the abstract state is not directly readable by programs, and therefore cannot leak

to the stack). A formal proof of both follows from an inspection of the rules in

Figure 5.14.

(C) µ′, σ̂ |= σ[a := σ′(a)] is derivable by Rule (Str-Sound) by deriving its two

premises:
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� σ[a := σ′(a)]← = σ̂← follows trivially from a ∈ σ←.

� ∀x ∈ σ[a := σ′(a)]← . E [[σ̂(x)]]µ′ = σ[a := σ′(a)](x) follows from (3) above,

whose derivation includes a derivation of premise ∀x ∈ σ← . E [[σ̂(x)]]µ = σ(x).

Theorem 4 (Soundness). Every program accepted by the abstract machine does not commit

a policy violation when executed.

Proof. By definition of abstract machine acceptance, starting from initial state χ̂0 the ab-

stract machine continually makes progress. By a trivial induction over the set of finite prefixes

of this abstract transition chain, the progress and preservation lemmas prove that the con-

crete machine also continually makes progress from initial state χ0. Every security-relevant

event in this concrete transition chain therefore satisfies Rule (CEvent) of Figure 5.9, whose

premise guarantees that the event does not violate the policy.

5.6 Implementation and Case Studies

Our prototype verifier implementation consists of 5200 lines of Prolog and 9100 lines of Java.

The Prolog code runs under 32-bit SWI-Prolog 5.10.4, which communicates with Java via

the JPL interface. The Java side parses SPoX policies and Java bytecode, and compares

bytecode instructions to the policy to recognize security-relevant events. The Prolog code

forms the core of the verifier, and handles control-flow analysis, model-checking, and linear

constraint analysis using CLP. Model-checking is only applied to code that the rewriter has

marked as security-relevant. Unmarked code is subjected to a linear scan that ensures that

it lacks security-relevant instructions and reified security state modifications.

We have used our prototype implementation to rewrite and then successfully verify sev-

eral Java applications, discussed throughout the remainder of the section. Statistics are
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Table 5.1. SPoX IRM Certifier Experimental Results

Total Model
File Sizes (KB) # Classes Rewrite # Verif. Check

Program Policy old / new/ libs old / libs Time (s) Evts. Time (s) Time (s)

EJE NoExecSaves 439/ 439/ 0 147/ 0 6.1 1 202.8 16.3
RText 1264/ 1266/ 835 448/ 680 52.1 7 2797.5 54.5
JSesh 1923/ 1924/ 20878 863/ 1849 57.8 1 5488.1 196.0
vrenamer NoExecRename 924/ 927/ 0 583/ 0 50.1 9 1956.8 41.0
jconsole NoUnsafeDel 35/ 36/ 0 33/ 0 0.6 2 115.7 15.1
jWeather NoSndsAftrRds 288/ 294/ 0 186/ 0 12.3 46 308.2 156.7
YTDownload 279/ 281/ 0 148/ 0 17.8 20 219.0 53.6
jfilecrypt NoGui 303/ 303/ 0 164/ 0 9.7 1 642.2 2.8
jknight OnlySSH 166/ 166/ 4753 146/ 2675 4.5 1 650.1 3.0
Multivalent EncrpytPDF 1115/ 1116/ 0 559/ 0 129.9 7 3567.0 26.9
tn5250j PortRestrict 646/ 646/ 0 416/ 0 85.4 2 2598.2 23.6
jrdesktop SafePort 343/ 343/ 0 163/ 0 8.3 5 483.0 17.8
JVMail TenMails 24/ 25/ 0 21/ 0 1.6 2 35.1 8.0
JackMail 165/ 166/ 369 30/ 269 2.5 1 626.7 8.9
Jeti CapLgnAttmpts 484/ 484/ 0 422/ 0 15.3 1 524.3 8.8
ChangeDB CapMembers 82/ 83/ 404 63/ 286 4.3 2 995.3 12.0
projtimer CapFileCreat 34/ 34/ 0 25/ 0 15.3 1 56.2 6.1
xnap NoFreeRide 1250/ 1251/ 0 878/ 0 24.8 4 1496.2 56.4
Phex 4586/ 4586/ 3799 1353/ 830 69.4 2 5947.0 172.7
Webgoat NoSqlXss 429/ 431/ 6338 159/ 3579 16.7 2 10876.0 120.0
OpenMRS NoSQLInject 1781/ 1783/ 24279 932/ 17185 78.7 6 2897.0 37.3
SQuirreL SafeSQL 1788/ 1789/ 1003 1328/ 626 140.2 1 3352.1 37.3
JVMail LogEncrypt 25/ 26/ 0 22/ 0 1.8 6 71.3 43.2
jvs-vfs CheckDeletion 277/ 277/ 0 127/ 0 4.4 2 193.9 6.3
sshwebproxy EncryptPayload 36/ 37/ 389 19/ 16 1.1 5 66.7 7.0

summarized in Table 5.1. All tests were performed on a Dell Studio XPS notebook com-

puter running Windows 7 64-bit with an Intel i7-Q720M quad core processor, a Samsung

PM800 solid state drive, and 4 GB of memory. A more detailed description of each applica-

tion can be found in (Hamlen et al., 2011).

In Table 5.1, file sizes are expressed in three parts: the original size of the main program

before rewriting, the size after rewriting, and the size of system libraries that needed to

be verified (but not rewritten). Verification of system library code is required to verify the

safety of control-flows that pass through them. Likewise, each cell in the classes column

has two parts: the number of classes in the main program and the number of classes in the

libraries.

Six of the rewritten applications listed in Table 5.1 (vrenamer, jWeather, jrdesktop,

Phex, Webgoat, and SQuirreL) were initially rejected by our verifier due to a subtle security

flaw that our verifier uncovered in the SPoX rewriter. For each of those cases, a bytecode
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analysis revealed that the original code contained a form of generic exception handler that

can potentially hijack control-flows within IRM guard code. This could cause the abstract

and reified security state to become desynchronized, breaking soundness. We corrected this

by manually editing the rewritten bytecode to exclude guard code from the scope of the outer

exception handler. This resulted in successful verification. Our fix could be automated by

in-lining inner exception handlers for guard code to protect them from interception by an

outer handler.

Rewriting actually reduced the size of many programs, even though code was added and

no code was removed. This is because SPoX removes unnecessary metadata from Java class

files during parsing and code-generation.

This section partitions our case-studies into eight policy classes. SPoX code is provided

for each class in a general form representative of the various instantiations of the policy that

we used for specific applications. The instantiations replace the simple pointcut expressions

in each figure with more complex, application-specific pointcuts that are here omitted for

space reasons.

1 (edge name="saveToExe"

2 (nodes "s" 0,#)

3 (and (call "java.io.FileWriter.new")

4 (argval 1 (streq ".*\.(exe|bat|...)"))

5 (withincode "FileSystem.saveFile")))

Figure 5.18. NoExecSaves policy

Filename guards. Figure 5.18 shows a generalized SPoX policy that prevents file-creation

operations from specifying a file name with an executable extension. This could be used to

prevent malware propagation.

The regular expression in the streq predicate on Line 4 matches any string that ends in

“.exe”, “.bat”, or a number of other disallowed file extensions. There is a very large number
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of file extensions that are considered to be executable on Windows. For our implementation,

we included every extension listed at (FileInfo.com, 2011).

This policy was enforced on three applications: EJE, a Java code editor; RText, a text

editor; and JSesh, a heiroglyphics editor for use by archaeologists. After rewriting, each

program halted when we tried to save a file with a prohibited extension.

Another policy that prevents deletion of policy-specified file directories (not shown) was

enforced on jconsole. The policy monitors directory-removal system API calls for argu-

ments that match a regular expression specifying names of protected directories.

We enforced a similar policy on vrenamer, a mass file-renaming application, prohibiting

renaming of files to names with executable extensions. Our initial attempt to verify vrenamer

failed. Analysis of the failure revealed that the original application implements a global

exception handler that can potentially hijack control-flows within certain kinds of SPoX-

generated IRM guard code if the guard code throws an exception. This could allow the

abstract and reified security state to become desynchronized, leading to policy violations.

The verification failure is therefore attributable to a security flaw in the SPoX rewriter.

The flaw could be fixed by in-lining inner exception handlers for guard code to protect them

from interception by a pre-existing outer handler. In order to verify the application for this

instance, we manually edited the rewritten bytecode to exclude the guard code from the

scope of the outer exception handler. This resulted in successful verification.

1 (state name="s")

2 (edge name="FileRead"

3 (nodes "s" 0,1)

4 (and (call "java.io.File.*")

5 (argval 1 (streq "[A-Za-z]*:\\windows\\.*"))))

6 (edge name="NetworkSend"

7 (nodes "s" 1,#)

8 (call "java.net.Socket.getOutputStream"))

Figure 5.19. NoSendsAfterReads policy
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Event ordering. Figure 5.19 encodes a canonical information flow policy in the IRM

literature that prohibits all network-send operations after a sensitive file has been read.

Specifically, this policy prevents calls to Socket.getOutput-Stream after any java.io.File

method call whose first parameter accesses the windows directory.

We enforced this policy on jWeatherWatch, a weather widget application, and YouTube

Downloader, which downloads videos from YouTube. Neither program violated the policy,

so no change in behavior occurred. However, both programs access many files and sockets,

so SPoX instrumented both programs with a large number of security checks.

For multivalent, a document browsing utility, we enforced a policy that disallows saving

a PDF document until a call has first been made to its built-in encryption method. The

two-state security automaton for this policy is similar to the one in the figure.

1 (state name="s")

2 (edge name="no gui"

3 (nodes s 0,#)

4 (and (call "jfilecrypt.GuiMainController.new")

5 (withincode "jfilecrypt.Application.main")))

Figure 5.20. NoGui policy

Pop-up protection. The NoGui policy in Figure 5.20 prevents applications from opening

windows on the user’s desktop. We enforced the NoGui policy on jfilecrypt, a file encryp-

t/decrypt application. Similar policies can be used to prohibit access to other system API

methods and place constraints upon their arguments.

Port restriction. Policies such as the one in Figure 5.21 limit which remote network ports

an application may access. This particular policy, which we enforced on the Telnet client

tn5250j, restricts the port to the range from 20 to 29, inclusive. Attempting to open a

connection on any port outside that range causes a policy violation.
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1 (state name="s")

2 (edge name="badPort"

3 (nodes "s" 0,#)

4 (and (set "Config.port")

5 (or (argval 1 (intgt 29))

6 (argval 1 (intlt 20)))))

Figure 5.21. SafePort policy

We also enforced a similar policy on jrdesktop, a remote desktop client, prohibiting the

use of ports less than 1000. For jknightcommander, an FTP-capable file manager currently

in the pre-alpha release stage, we enforced a policy that prohibits access to any port other

than 22, restricting its network access to SFTP ports.

Resource bounds. In Section 5.3.1, we described a policy which prohibits an email client

from sending more than 10 emails in a given execution, as seen in Figure 5.3. We enforced

this policy on the email clients JVMail and JackMail.

We enforced similar resource bound policies on various other programs. For Jeti, a

Jabber instant messaging client, we limited the number of login attempts to 5 in order to

deter brute-force attempts to guess a password for another user’s account. For ChangeDB, a

simple database system, we limited the number of member additions to 10. For projtimer,

a time management system, we limited the number of automatic file save operations to 5,

preventing the application from exhausting the user’s file quota.

No freeriding. Figure 5.22 specifies a more complex counting policy that prohibits freerid-

ing in the file-sharing clients xnap and Phex. State variable s tracks the difference between

the number of downloads and the number of uploads that the application has completed.

That is, downloads increment s, while uploads decrement it. If the number of downloads

exceeds 2 greater than the number of uploads, a policy violation occurs. This forces the

software to share as much as it receives.
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1 (state name="s")

2 (forall "i" from -10000 to 1

3 (edge name="download"

4 (nodes "s" i,i+1)

5 (call "Download.download")))

6 (forall "i" from -9999 to 2

7 (edge name="upload"

8 (nodes "s" i,i-1)

9 (call "Upload.upload")))

10 (edge name="too many downloads"

11 (nodes "s" 2,#)

12 (call "Download.download"))

Figure 5.22. NoFreeRide policy

1 (state name="s")

2 (edge name="SQL Injection occurred"

3 (nodes "s" 0,#)

4 (and (call "Login.login")

5 (not (argval 1 (streq "[a-zA-Z0-9]*")))))

6 (edge name="XSS injection occurred"

7 (nodes "s" 0,#)

8 (and (call "Employee.new")

9 (not (and (argval 2 (streq "[A-Za-z_0-9,.\-\s]*"))

10 (argval 3 (streq "[A-Za-z_0-9,.\-\s]*"))

11 ...

12 (argval 16 (streq "[A-Za-z_0-9,.\-\s]*"))))))

Figure 5.23. NoSqlXss policy

Malicious SQL and XSS protection. SPoX’s use of string regular expressions facilitates

natural specifications of policies that protect against SQL injection and cross-site scripting

attacks. One such policy is given in Figure 5.23. This figure is a simplified form of a

policy that we enforced on Webgoat, an educational web application that is designed to

be vulnerable to such attacks. The policy uses whitelisting to exclude all input characters

except for those listed by the regular expressions (alphabetical, numeric, etc.).

The XSS injection occurred edge starting on Line 6 includes a large number of dynamic

argval pointcuts—12 in the actual policy. Nevertheless, verification time remained roughly

linear in the size of the rewritten code because the verifier was able to significantly prune the
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search space by combining redundant constraints and control-flows during model-checking

and abstract interpretation.

A similar policy was used to prevent SQL injection in OpenMRS, a web-based medical

database system. Injection was prevented for the patient search feature. The library por-

tion of this application is extremely large but contains no security-relevant events. Thus,

the separate, non-stateful verification approach for unmarked code regions was critical for

avoiding state-space explosions in this case.

We also enforced a blacklisting policy (not shown) on the database access client SQuirreL,

preventing SQL commands which drop, alter, or rename tables or databases. Specifically,

the policy identified all SQL commands matching the regular expression

.*(drop|alter|rename).*(table|database).*

as policy violations.

Ensuring advice execution. Most other aspectual policy languages, for example, Java-

MOP (Chen and Roşu, 2005), allow explicit prescription of advice code that implements

IRM guards and interventions. Such advice is typically intended to enforce some higher-

level security property, though it can be difficult to prove that it enforces the actual policy

that was intended. SPoX excludes trusted advice for this reason; however, untrusted advice

that is not part of the policy specification may nevertheless be in-lined by rewriters to enforce

SPoX policies. Cheko can then be applied to verify that this advice actually executes under

policy-prescribed circumstances to enforce the policy. This promotes separation of concerns,

reducing the TCB so that it does not include the advice.

We simulated the use of advice by manually inserting calls to specific encrypt and log

methods prior to email-send events in JVMail. Our intent was for each email to be encrypted,

then logged, then sent, and in that order. A simplified SPoX specification for the policy is



127

1 (state name="logged")

2 (state name="encrypted")

3 (forall "i" from 0 to 1

4 (edge name="encrypt"

5 (nodes "encrypted" 0,1)

6 (nodes "logged" 0,0)

7 (call "Logger.encrypt"))

8 (edge name="badOrderEncryptSecond"

9 (nodes "encrypted" 0,#)

10 (nodes "logged" 1,#)

11 (call "Logger.encrypt"))

12 (edge name="transaction"

13 (nodes "encrypted" 1,0)

14 (call "SMTPConnection.sendMail"))

15 (edge name="badEncrypt"

16 (nodes "encrypted" 1,#)

17 (nodes "logged" i,i)

18 (call "Logger.encrypt"))

19 (edge name="bad transaction1"

20 (nodes "encrypted" 0,#)

21 (call "SMTPConnection.sendMail"))

22 (edge name="log"

23 (nodes "logged" 0,1)

24 (nodes "encrypted" 1,1)

25 (call "Logger.log"))

26 (edge name="badOrderLogFirst"

27 (nodes "logged" 0,#)

28 (nodes "encrypted" 0,#)

29 (call "Logger.log"))

30 (edge name="bad log"

31 (nodes "logged" 1,#)

32 (nodes "encrypted" i,i)

33 (call "Logger.log"))

34 (edge name="bad transaction2"

35 (nodes "logged" 0,#)

36 (call "SMTPConnection.sendMail")))

Figure 5.24. LogEncrypt policy
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given in Figure 5.24. After inserting the advice, we applied the ordering policy using the

rewriter, and then used the verifier to prove that the rewritten JVMail application satisfies

the policy.

A similar policy was applied to the Java Virtual File System (jvs-vfs), which prohibits

deletion of files without first executing advice code that consults the user.

Finally, we enforced a mandatory encryption policy for the sshwebproxy application,

which allows users to use a web browser to access SSH sessions and perform secure file

transfers. To prevent the application from sending plaintext message payloads to the remote

host, our EncryptPayload policy requires the proxy to encrypt each message payload before

sending.

5.7 Conclusion

In this chapter, we developed Cheko —the first automated, model-checking-based certifier

for an aspect-oriented, real-world IRM system (Hamlen and Jones, 2008). Cheko uses

a flexible and semantic static code analysis, and supports difficult features such as reified

security state, event detection by pointcut-matching, combinations of untrusted before- and

after-advice, and pointcuts that are not statically decidable. Strong formal guarantees are

provided through proofs of soundness and convergence based on Cousot’s abstract interpreta-

tion framework. Since Cheko performs independent certification of instrumented binaries,

it is flexible enough to accommodate a variety of IRM instrumentation systems, as long as

they provide (untrusted) hints about reified state variables and locations of security-relevant

events. Such hints are easy for typical rewriter implementations to provide, since they typi-

cally correspond to in-lined state variables and guard code, respectively.

Our focus was on presenting main design features of the verification algorithm, and an

extensive practical study using a prototype implementation of the tool. Experiments revealed
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at least one security vulnerability in the SPoX IRM system, indicating that automated

verification is important and necessary for high assurance in these frameworks.

In future work we intend to turn our development toward improving efficiency and mem-

ory management of the tool. Much of the overhead we observed in experiments was traceable

to engineering details, such as expensive context-switches between the separate parser, ab-

stract interpreter, and model-checking modules. These tended to eclipse more interesting

overheads related to the abstract interpretation and model-checking algorithms. We also

intend to examine more powerful rewriter-supplied hints that express richer invariants. Such

advances will provide greater flexibility for alternative IRM implementations of stateful poli-

cies.



CHAPTER 6

CERTIFYING IRM TRANSPARENCY PROPERTIES1

6.1 Overview

Runtime software monitoring via binary instrumentation (a.k.a., in-lined reference moni-

toring) has gained much attention in the literature as a powerful, flexible, and efficient

approach to software security enforcement (e.g., Yee et al., 2009; Chen and Roşu, 2005; Lig-

atti et al., 2005b; Schneider, 2000; Chudnov and Naumann, 2010; Erlingsson and Schneider,

1999; Hamlen et al., 2006a; Aktug and Naliuka, 2008; Li and Wang, 2010; Dam et al., 2009;

Evans and Twynman, 1999; Kim et al., 2004; Bauer et al., 2005; Abadi et al., 2009, 2005;

Erlingsson et al., 2006; Yu et al., 2007; Dantas and Walker, 2006; Fredrikson et al., 2012;

Davis et al., 2012). In-lined reference monitors (IRMs) dynamically enforce security poli-

cies by injecting security guards into untrusted binary code. At runtime, the guards check

impending program operations and take corrective action if the operations constitute policy

violations. The result is a new program that efficiently self-enforces a customized security

policy.

For example, Figure 6.1 shows the implementation of a simple IRM in ActionScript (AS)

pseudo-code. The original bytecode on the left has been instrumented with an IRM as

shown on the right. The IRM prohibits more than 100 calls to security-relevant API method

NavigateToURL by counting its calls in program variable c and halting the program when c

exceeds bound 100. The AS VM is stack-based, so instruction get c pushes c’s value onto

the stack, and set c assigns c a value popped from the stack. (Real IRMs are typically much

1This chapter includes previously published (Sridhar et al., 2013a,b, 2014) joint work with Richard
Wartell and Kevin W. Hamlen, adapted, with permission from Elsevier.
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L1: push "http:// ..." L1: push "http:// ..."

× L2: get c
× L3: iflt 100, L5 // if c ≤ 100 goto L5

L4: call exit
L5: call NavigateToURL × L5: call NavigateToURL

× L6: get c
× L7: push 1
× L8: add
× L9: set c

L10: jmp L1 L10: jmp L1

Figure 6.1. Original bytecode (left) that has been rewritten (right) with an IRM that pro-
hibits more than 100 URL navigations

more complex, but we use this simple example as a running illustration for clarity. The ×

marks are referenced in Section 6.4.6.)

Correct IRMs must satisfy two requirements: soundness and transparency (Hamlen et al.,

2006b; Ligatti et al., 2005b). Soundness demands that the instrumented code satisfy the secu-

rity policy, whereas transparency demands that it preserve the behavior of policy-compliant

code. That is, adding the IRM to a program must not “break” its policy-compliant be-

haviors. To formally define policy-compliance, IRM policies are specified using a policy

specification language (e.g., Aktug and Naliuka, 2008; Bauer et al., 2005; Erlingsson, 2004;

Evans and Twynman, 1999; Kim et al., 2004; Yu et al., 2007; Dantas and Walker, 2006;

Hamlen and Jones, 2008), which typically leverages concepts from aspect-oriented program-

ming (AOP) (Kiczales et al., 1997) to abstractly identify security-relevant program oper-

ations. For example, the SPoX IRM system (Hamlen and Jones, 2008) expresses safety

policies encoded as aspect-oriented security automata.

Several past works have developed powerful technologies for formally machine-verifying

the soundness of IRMs (Sridhar and Hamlen, 2010a; Hamlen et al., 2012; Sridhar and Hamlen,

2010b, 2011; Aktug and Naliuka, 2008; Aktug et al., 2008; Hamlen et al., 2006a; Blech

et al., 2012). This is important for establishing high assurance, and for minimizing and

stabilizing the trusted computing base (TCB) of IRM systems. However, none have tackled

the dual problem of machine-verifying transparency (cf., Sridhar and Hamlen, 2011; Khoury
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and Tawbi, 2012). Transparency is a major concern for organizations that stand to lose

significant revenue or reputation from temporary functionality losses. For example, despite

high concerns about web advertisement security, advertisement distribution networks are

often unwilling to adopt any protection system that involves binary modification unless

there is overwhelming evidence that no safe advertisements are adversely affected by the

process. Even a temporary loss of functionality in a few advertisements could potentially

result in millions of dollars in lost revenue (Internet Advertising Bureau, 2013). Proof of

transparency is therefore a prerequisite for practical adoption of these security technologies.

The high difficulty of creating fully generalized, program-agnostic IRMs that correctly

preserve all safe applications justifies this call for strong evidence of transparency. It is

quite common for a monitor that works flawlessly when in-lined into most applications

to suddenly malfunction when it is in-lined into an unusual application, such as one that

overrides system methods called by the IRM, modifies the class-loader in an unusual way, or

adds event listeners that disrupt monitor control-flows. Such conflicts are very difficult to

identify manually at the binary level, motivating the need for automated assistance.

While the general problem of verifying program-equivalence is well known to be undecid-

able, we observe that the special case of verifying IRM transparency is more tractable due

to the way IRMs are produced. IRMs are typically generated by automated binary rewrit-

ers, which transform policy specifications into suitable code insertions. Since the rewriter’s

code analysis power is limited, it must limit itself to insertions that it can infer are sound

and transparent with respect to the target program. All rewriters therefore carry internal,

implicit evidence that their code transformations are not harmful. By making this evidence

explicit, we show that a verifier can independently confirm that code produced by the rewriter

preserves all safe flows (without trusting the rewriter or the evidence it presents).

This work therefore presents the design and implementation of the first automated

transparency-verifier for IRMs. Our main contributions include:
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� We show how prior work on verifying IRM soundness via model-checking (Hamlen

et al., 2012; Sridhar and Hamlen, 2010b) (presented in Chapters 4 and 5) can be

extended in a natural way to verify IRM transparency.

� We introduce the design and implementation of an untrusted, external invariant-

generator that can reduce the verifier’s state-exploration burden and afford it greater

generality than the more specialized rewriting systems it checks.

� Prolog unification (Shapiro and Sterling, 1994) and Constraint Logic Programming

(CLP) (Jaffar and Maher, 1994) are leveraged to keep the verifier implementation

simple and closely tied to the underlying verification algorithm.

� Proofs of correctness are formulated for the verification algorithm using the Cousots’

abstract interpretation framework (Cousot and Cousot, 1992).

� The feasibility of our technique is demonstrated through a prototype implementation

that targets the full AS bytecode language (please see Chapters 7 and 2 for detailed

motivation for choosing ActionScript) .

The rest of the chapter is organized as follows. We begin with a summary of prior work

that influences our system design in Section 6.2. Section 6.1 presents an overview of our

transparency verifier, and Section 6.4 details the verification and symbolic interpretation

algorithms. Section 6.5 presents implementation and results. Section 6.6 concludes.

6.2 Background and Related Work

The IRM technology has been well-established to be both powerful and adoptable: numerous

IRM frameworks have been developed for Java (Chen and Roşu, 2005; Ligatti et al., 2005b;

Aktug and Naliuka, 2008; Dam et al., 2009; Evans and Twynman, 1999; Kim et al., 2004;

Bauer et al., 2005; Hamlen and Jones, 2008), JavaScript (Yu et al., 2007; Fredrikson et al.,
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2012), .NET (Hamlen et al., 2006a), AS (Li and Wang, 2010; Hamlen and Jones, 2008),

Android (Davis et al., 2012), and x86/64 native code (Yee et al., 2009; Abadi et al., 2009,

2005; Erlingsson et al., 2006) architectures. Our experiments target SPoX-IRMs (Hamlen

and Jones, 2008), which rewrite Java and AS bytecode programs to satisfy declarative,

aspect-oriented security policies.

All of these systems rewrite untrusted binaries by statically identifying potentially policy-

violating program operations, and injecting guard code that dynamically decides whether

impending operations are safe. The exact implementation of the guard code varies widely

depending on policy, architectural, and application details. For example, to enforce stateful

policies (i.e., those in which each event’s permissibility depends on the history of past events)

the IRM may introduce new program variables, methods, and classes that track the history

of security-relevant events at runtime. Guard code then consults these reified state variables

in order to test for impending violations. In Figure 6.1, c is an example of a reified state

variable.

IRMs also typically make some effort to optimize their code insertions for better per-

formance, such as by hoisting checks out of loops or reorganizing basic blocks. Thus, a

mere syntactic comparison of original and rewritten code is not sufficient in general to verify

transparency of real IRMs. This influences the design of our verifier, since our goal is to

support a wide class of rewriting approaches.

In contrast to IRM soundness certification (see Chapters 4 and 5), transparency has

been less studied. IRM transparency is defined in terms of a trace-equivalence relation that

demands that the original and IRM-instrumented code must exhibit equivalent behavior on

equal inputs whenever the original obeys the policy (Hamlen et al., 2006b; Ligatti et al.,

2005b). Traces are equivalent if they are equal after erasure of irrelevant events (e.g., stutter

steps). Subsequent work has proposed that additionally the IRM should preserve violating

traces up to the point of violation (Khoury and Tawbi, 2012). For an in-depth discussion of

related work on IRM transparency, please see Chapter 8.
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6.3 System Introduction

Figure 6.2, re-presented from Chapter 1, depicts our certifying IRM framework, consisting of

a binary rewriter that automatically transforms untrusted AS bytecode into self-monitoring

bytecode, along with verifiers for soundness and transparency. The main contributions of

this chapter are the transparency-verifier and invariant generator; rewriting and soundness

verification for AS bytecode are presented in Chapters 3 and 4.

untrusted
ABC file

accept

code points

invariants

Untrusted Trusted

instrumented

ABC file

Original
SWF File ABC Extractor

Binary Rewriter

Transparency
Verifier

Soundness
Verifier

Security
Policy

∧

ABC Injector

Invariant
Generator

reject

safe, transparent
SWF File

Figure 6.2. A certifying ActionScript IRM architecture

To enforce stateful policies, the IRM introduces reified state variables that track the his-

tory at runtime. This is achieved by expressing the policy as a deterministic security automa-

ton (Alpern and Schneider, 1986; Schneider, 2000) that accepts the language of permissible

traces. By assigning integer labels to the automaton states, the IRM efficiently tracks the

security state using integer-valued fields. For example, the policy enforced in Figure 6.1 is ex-

pressible as a security automaton with 100 states numbered 0 to 99. The start state is 0, and

each state i ∈ [0, 98] has an outgoing edge to state i+1 labeled NavigateToURL(*). Thus, the

automaton accepts the language of traces that include at most 100 calls to NavigateToURL.
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Prior work has shown that all safety policies are expressible as security automata (Alpern

and Schneider, 1986; Schneider, 2000).

6.3.1 Defining IRM Transparency

Past work defines IRM transparency and policies in terms of traces (Hamlen et al., 2006b;

Ligatti et al., 2005b):

Definition 6 (Events, Traces, and Policies). A trace τ is a (finite or infinite) sequence

of observable events, where observable events are a distinguished subset of all program

operations—instructions parameterized by their arguments. Policies P denote sets of per-

missible traces.

The distinction between observable and unobservable events distinguishes IRM operations

that violate transparency from those that do not. For example, the IRM in Figure 6.1 safely

introduces unobservable operation L9 to policy-compliant runs, but must not introduce

observable operation L4 to such runs. Observability can be defined in various ways. In

our implementation, observable events include most system API calls and their arguments,

which are the only means in AS to affect process-external resources like the display or file

system. Policy specifications may identify certain API calls as unobservable by assumption,

such as those known to be effect-free.

Transparency can then be defined as equivalence of traces exhibited by a parallel simu-

lation of the original program and its IRM-instrumented counterpart. Intuitively, the simu-

lation runs both programs on equal inputs, non-deterministically stepping one or the other

on each computational step.

A state of such a simulation consists of a pair of VM states (one for the original pro-

gram and one for the rewritten one) and a pair of traces recording the observable events

that led to each state. We conceptually consider these traces to be fields of their respective
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VM states, for which interpreted programs have only one operation: append. Adequate for-

mal definitions of parallel simulations and their transparency must support non-terminating

computations (i.e., infinite traces), they must not demand that programs are lock-step be-

haviorally equivalent (since IRMs introduce new code and reorder existing code), and they

must not permit IRMs to infinitely delay original, safe computations (since that effectively

discards the original computation, violating transparency). This leads to the following defi-

nitions:

Definition 7 (Progressive). A flow w (i.e., sequence of consecutive states) in a parallel

simulation is progressive if both simulated programs step infinitely often (i.o.) in w. (To

support terminating computations, we model termination as an infinite stutter state.)

Definition 8 (Shuffle). Two flows w1 and w2 are shuffles of one another if πiw1 = πiw2 for

all i ∈ {1, 2}, where projection πiw denotes the sequence of program i’s steps and states in

flow w of the parallel simulation.

Definition 9 (Transparency). A state of a parallel simulation is transparent if its constituent

program states have observationally equivalent traces. The full simulation is transparent if

for every progressive flow w, there exists a shuffle of w whose states are i.o. transparent.

This definition of transparency permits IRMs to augment untrusted code with unobserv-

able stutter-steps (e.g., runtime security checks) and observable interventions (e.g., code that

takes corrective action when an impending violation is detected), but not new operations

that are observably different even when the original code does not violate the policy. The

IRM must also not insert potentially non-terminating loops to policy-adherent flows, since

these could suppress desired program behaviors.

As an illustration, the programs in Figure 6.1 exhibit traces consisting of navigateToURL

calls (the only observable event in that example). A simulation of that program-pair is trans-

parent because even though some of its possible flows are not observationally equivalent (e.g.,
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simulations that run the original program twice as fast as the rewritten one yield persistently

inequivalent pairs of traces), every such flow can nevertheless be reshuffled (e.g., to run both

programs at roughly the same rate) so that the traces are infinitely often equivalent.

6.3.2 Verifying Transparency

Our transparency verifier is a symbolic interpreter and model-checker that non-deterministic-

ally explores the cross-product of the state spaces of the original and rewritten programs.

To accommodate IRMs that introduce new methods, symbolic interpretation is fully inter-

procedural; calls flow into the bodies of callees. (Recursive and mutually recursive callees

require a loop invariant, discussed in Section 6.3.3, in order for this process to converge.)

Each abstract state includes a store that maps fields and local variables to symbolic

expressions, various other structures that model AS VM states (e.g., stacks), and an abstract

trace that describes the language of possible traces exhibited prior to the current state. They

additionally include linear constraints introduced by conditional instructions. For example,

the abstract states of control-flow nodes dominated by the positive branch of a conditional

instruction that tests (x<=y) typically contain the constraint x ≤ y.

Our approach to transparency verification is based on the observation that in order to

prove transparency of a particular program pair, it suffices to prove that there exists a set S of

transparent, abstract, states that are visited infinitely often in every policy-compliant parallel

simulation of the two programs. (Recall that policy-violating runs are intentionally modified

by the IRM, and therefore exempt from this obligation.) Such a set inductively establishes

that every safe computation is preserved, since it proves that the history of observable events

after rewriting is infinitely often equivalent to that of the original program. This observation

is formalized as follows:

Theorem 5 (Transparency). A parallel simulation is transparent if there exists a set S of

abstract states of the parallel simulation such that
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(1) S includes the abstract start state Γ̂0 of the parallel simulation;

(2) every state in S is transparent; and

(3) for every policy-compliant, progressive flow Γ̂0 · · · Γ̂w where Γ̂ ∈ S, there exists a

shuffle of suffix w that includes a member of S.

Proof. Assume there exists such a set S, and let w be a policy-compliant, progressive flow

of the parallel simulation. Flow w begins with start state Γ̂0, and Γ̂0 ∈ S by (1). Applying

(3) inductively proves that w has a shuffle in which states of S appear i.o. States of S are

transparent by (2), so w is transparent. Thus, all such flows are transparent, so the parallel

simulation is transparent.

By exhibiting such a set S, a rewriter can prove to an independent verifier that IRMs it

produces are transparent. The verifier confirms that S satisfies properties 1–3 of Theorem 5.

To confirm property 3, it abstract-interprets all flows from each state in S, confirming that

each has a shuffle that revisits S.

For example, one suitable set S for Figure 6.1 consists of all abstract states in which both

programs are at L1 and their traces are equal. Every policy-satisfying simulation that starts

in such a state eventually revisits it (with an appropriately progressive interleaving of the

two programs’ steps). This S therefore constitutes a loop invariant that proves the IRM’s

transparency.

6.3.3 Invariant Generation

It is feasible for IRM systems to infer and expose set S because it intuitively corresponds to

the code points where the in-lined IRM code ends and the application’s original programming

resumes. Thus, while general-purpose invariant-generation is not tractable for arbitrary

software, our approach benefits from the fact that IRM systems leave large portions of the

untrusted programs they modify unchanged for practical reasons. Their modifications tend
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to be limited to small, isolated blocks of guard code scattered throughout the modified

binary. Past work has observed that the unmodified sections of code tend to obey relatively

simple invariants (conjunctions of inequality relations over integers, and prefix relations

over traces) that facilitate tractable proofs of soundness for the resulting IRM (Sridhar and

Hamlen, 2010b; Hamlen et al., 2012).

We observe that a similar strategy suffices to generate invariants that prove transparency

for these IRMs. Specifically, an invariant-generator for a typical IRM system can assert that

if the two programs are observably equivalent on entry to each block of guard code, and the

original program does not violate the policy during the guarded block, then the traces are

equivalent on exit from the block. Moreover, the abstract states remain step-wise equivalent

outside these blocks. When the blocks occur within a loop, the generated invariant is an

invariant for the loop. This strategy reduces the vast majority of the search space that is

unaffected by the IRM to a simple, linear scan that confirms that the IRM remains dormant

outside these blocks (i.e., its state does not leak into the observable events exhibited by the

rewritten code).

Our framework lazily reveals S via an untrusted invariant-generator that gives the verifier

hints that help it more quickly confirm that S satisfies properties (1–3) of Theorem 5. For

each abstract code point Γ̂ in the cross-product state space, the invariant-generator suggests

(1) a state from S that abstracts Γ̂, and (2) a subset of S that post-dominates (Gupta,

1992) Γ̂ (i.e., where flows that pass through Γ̂ later exhibit equivalent shuffles). The former

abstracts away extraneous information inferred by the abstract interpreter that is irrelevant

for proving transparency. The latter is a witness that proves property 3 of Theorem 5.

6.3.4 Invariant Verification

Hints provided by the invariant-generator remain strictly untrusted by the verifier. They

are only accepted if they are implied by information already inferred by the verifier’s sym-

bolic interpreter. Over-abstractions can cause the verifier to discard information needed to
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prove transparency, resulting in conservative rejection of the code; but they never result

in acceptance of non-transparent code. This allows invariant-generation to potentially rely

on untrusted information, such as the binary rewriting algorithm, without including that

information in the TCB of the system.

For verifying abstract parallel simulation states suggested by the untrusted invariant-

generator, pruning policy-violating flows, and checking trace-equality, the heart of the trans-

parency verifier employs a model-checking algorithm that proves implications of the form

A⇒ B, where A is an abstract parallel simulation state inferred by the symbolic interpreter,

and B is an untrusted abstraction suggested by the invariant-generator. Model-checking con-

sists of two stages:

1. Unification. Program states include data structures, such as AS bytecode operand

stacks, objects, and traces. These are first mined for equality constraints through

unification. For example, if state A includes constraints ρ̂1 = v1::ŝ1, ρ̂2 = v2::ŝ2, and

ρ̂1 = ρ̂2, then unification infers additional equalities v1 = v2 and ŝ1 = ŝ2.

2. Linear constraint solving. The equality constraints inferred by step 1 are then combined

with any inequality constraints in each state to form a pure linear constraint satisfaction

problem without structures. A linear constraint solver verifies that sentence A′ ∧ ¬B′

is unsatisfiable, where A′ and B′ are the linear constraints from A and B, respectively.

Both unification and linear constraint solving can be elegantly realized in Prolog with Con-

straint Logic Programming (CLP) (Jaffar and Maher, 1994), making this an ideal language

for our verifier implementation.

Verification assumes bytecode type-safety of both original and rewritten code as a pre-

requisite. This assumption is checked by the AS VM type-checker. Assuming type-safety

allows the IRM and verifier to leverage properties such as object encapsulation, memory

safety, and control-flow safety to reduce the space of executions that must be anticipated.
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6.3.5 Limitations

We demonstrate experimentally (see Section 6.5) that generation of adequate invariants is

tractable for typical IRMs that enforce safety properties (Schneider, 2000); however, the

power of our approach remains limited by the power of the model-checker’s constraint lan-

guage. For example, an IRM that stores object security states in a hash table cannot be

verified by our system because our constraint language is not sufficiently powerful to express

collision properties of hash functions that are necessary for proving that such an IRM only

undertakes observable, corrective actions when a policy violation would otherwise result.

Our verifier cannot verify IRMs that insert non-trivial loops into policy-adherent flows.

The verifier conservatively rejects such loops because they lead to potentially infinite flows

with no finite prefix where the traces are equal. IRMs may, however, safely introduce loops

as part of interventions, since they are under no obligation to maintain transparency for

policy-violating flows. Loops in the original, unmodified code are also supported because

the verifier does not need to prove that they terminate; it simply proves that their termination

conditions are unchanged by the IRM.

AS does not presently support concurrency or threading; therefore, our verification algo-

rithm restricts its attention to purely serial flows.

Introspective (e.g., reflective) code has some interesting implications for transparency,

because code that self-inspects could discover the IRM and behave differently (without vi-

olating the policy). Such behavioral changes are often desirable; for example, a program

that reports its own memory consumption should be permitted to report its new memory

consumption after rewriting. Our transparency verifier permits such behavioral changes by

modeling introspection results as program inputs. That is, it verifies that the IRM preserves

the program logic that processes introspective inputs (e.g., printing them) even if the inputs

(e.g., the size) may change due to rewriting.
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6.4 Formal Approach

6.4.1 ActionScript Bytecode Core Subset

For expository simplicity, we express the verification algorithm and proof of correctness in

terms of a small (but Turing-complete), stack-based toy subset of AS that includes standard

arithmetic operations, conditional and unconditional jumps, integer-valued local registers,

and the special instructions listed in Figure 6.3. The implementation described in Section 6.5

supports the full AS bytecode language (subject to the limitations in Section 6.3.5).

apimn system API calls

apptracemn append to trace

assertmn assert policy-adherence of event

Figure 6.3. Non-standard core language instructions

Instruction apimn models a system API call, where m is a method identifier and n is

the method’s arity. Most API calls are assumed to be observable; these are modeled by

an additional apptrace instruction that explicitly appends the API call event to the trace.

Observable events can therefore be modeled as a macro obseventmn whose expansion is

given in Figure 6.4. In the rewritten code, the expansion appends the event to the trace and

performs the event. In the original code, it additionally asserts that the flow is unreachable

if the event violates the policy. This models our premise that transparency obligations are

waived when the IRM must intervene to prevent a violation, and prunes such flows from the

verifier’s search space.

In the Original Code In the Rewritten Code
obseventmn ≡ assertmn obseventmn ≡

apptracemn apptracemn
apimn apimn

Figure 6.4. Semantics of the obsevent pseudo-instruction
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The toy language models objects and their instance fields by reducing them to integer

encodings, and exceptions are modeled as conditional branches in the typical way. A formal

treatment of these is here omitted; their implementation in the transparency verifier is that

of a standard symbolic interpreter. For example, object references are modeled as integer

Skolem constants, and references to identically-named fields of compatibly-typed objects

may-alias. Field-writes assign fresh Skolem constants to all possible aliases.

The trace accumulated by apptrace instructions is conceptual; it is not actually im-

plemented and therefore not directly readable by programs. To track it, IRMs typically

introduce reified state variables as described in Section 6.2.

6.4.2 Concrete and Abstract Machines

Concrete and symbolic interpretation of programs are expressed as the small-step operational

semantics of a concrete and an abstract machine, respectively. Figure 6.5 defines a concrete

machine (program) state χ as a tuple consisting of a labeled bytecode instruction L:i, a

concrete operand stack ρ, a concrete store σ, and a concrete trace of observable events τ .

The store σ maps reified security state variables r and local variables ` to their integer

values (Sridhar and Hamlen, 2010b). Abstract machine (program) states χ̂ are defined

similarly, except that abstract stacks, stores, and traces are defined over symbolic expressions

instead of values. Expressions include integer-valued Skolem constants v̂ and return values

rvalm(e1:: · · · ::en) of API calls. Skolem constants ŝ and t̂ denote entire abstract stacks and

traces, respectively.

A program P = (L, p, s) consists of a program entry point label L, a mapping p from code

labels to program instructions, and a label successor function s that defines the destinations

of non-branching instructions.

Since transparency verification involves simulating the original and instrumented pro-

grams, Figure 6.6 extends the concrete and abstract program states described above to
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L (Code Labels)

i (Instructions)

P ::= (L, p, s) (Programs)

p : L→ i (Instruction Labels)

s : L ⇀ L (Label Successors)

m ∈ N (Method Identifiers)

n ∈ N (Method Arities)

σ : (r ] `) ⇀ Z (Concrete Stores)

ρ ::= · | x::ρ (Concrete Stacks)

x ∈ Z (Values)

τ ::= ε | τapim(x1:: · · · ::xn) (Concrete Traces)

sys : N× Z∗ → Z (API Return Values)

a : τ ⇀ N (Security Automaton State)

χ ::= 〈L : i, ρ, σ, τ〉 (Concrete Configurations)

e ::= n | v̂ | e1+e2 | . . . | (Symbolic Expressions)

rvalm(e1:: · · · ::en) | â(τ̂)

v̂, ŝ, t̂ (Value, Stack, & Trace Variables)

ρ̂ ::= · | ŝ | e::ρ̂ (Abstract Stacks)

σ̂ : (r ] `)→ e (Abstract Stores)

τ̂ := ε | t̂ | τ̂apim(e1:: · · · ::en) (Abstract Traces)

χ̂ ::= 〈L : i, ρ̂, σ̂, τ̂〉 (Abstract Configurations)

χ̂0 = 〈L0 : p(L0), ·, σ̂0, ε〉 (Initial Abstract Configurations)

Figure 6.5. Concrete and abstract program states
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states of a parallel simulation. Each such state includes both an original and a rewritten

program state. The abstract parallel-simulation state additionally includes a constraint list

ζ consisting of a conjunction of linear inequalities over expressions.

ζ ::=
∧
i=1..n

ti (n ≥ 1) (Constraints)

t ::= T | F | e1 ≤ e2 | τ̂1 = τ̂2 (Clauses)

Γ = 〈χO, χR〉 (Concrete Interpreter States)

Γ̂ = 〈χ̂O, χ̂R, ζ〉 (Symbolic Interpreter States)

〈C, 〈χO0 , χR0〉, 7→n
P 〉 (Concrete Interpreter)

〈A, 〈χ̂O0 , χ̂R0 , ζ0〉, n
P 〉 (Symbolic Interpreter)

Figure 6.6. Concrete and abstract parallel-simulation machines

The concrete machine semantics are modeled after the AS VM 2 semantics (Adobe Sys-

tems Inc., 2007); Figure 6.7 shows the semantics of the special instructions of Figure 6.3.

Relation χ 7→n
P χ′ denotes n steps of concrete interpretation of program P . Subscript P is

omitted when the program is unambiguous, and n defaults to 1 step when omitted.

x′ = sys(m,x1::x2:: · · · ::xn)

〈L : apimn, x1::x2:: · · · ::xn::ρ, σ, τ〉 7→ 〈s(L) : p(s(L)), x′::ρ, σ, τ〉
(CAPI)

ρ = x1::x2:: · · · ::xn::ρ′

〈L : apptracemn, ρ, σ, τ〉 7→
〈s(L) : p(s(L)), ρ, σ, τapim(x1::x2:: · · · ::xn)〉

(CAppTrace)

ρ = x1:: · · · ::xn::ρ′ τapim(x1:: · · · ::xn) ∈ P
〈L : assertmn, ρ, σ, τ〉 7→ 〈s(L) : p(s(L)), ρ, σ, τ〉

(CAssert)

χi 7→1 χ
′
i χj = χ′j i 6= j

〈χO, χR〉 7→ 〈χ′O, χ′R〉
(CBisim)

Figure 6.7. Concrete small-step operational semantics

Rule CAPI models calls to the system API using an opaque function sys that maps

method identifiers and arguments to return values. Any non-determinism in the system API

is modeled by extending the prototypes of system API functions with additional arguments.
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Rule CBisim lifts the single-machine semantics to a parallel-simulation machine that non-

deterministically chooses which machine to step next.

Figure 6.8 gives the corresponding semantics for symbolic interpretation. Each step

χ̂ χ̂′, ζ of symbolic interpretation yields both a new program state χ̂′ and a list ζ of new

constraints. These are conjoined into the master list of constraints by rule ABisim.

e′ = rvalm(e1::e2:: · · · ::en)

〈L : apimn, e1::e2:: · · · ::en::ρ̂, σ̂, τ̂〉 〈s(L) : p(s(L)), e′::ρ̂, σ̂, τ̂〉, T
(AAPI)

ρ̂ = e1:: · · · ::en::ρ̂′

〈L : apptracemn, ρ̂, σ̂, τ̂〉 
〈s(L) : p(s(L)), ρ̂, σ̂, τ̂apim(e1:: · · · ::en)〉, T

(AAppTrace)

ζ =
(
0 ≤ â(τ̂apim(e1:: · · · ::en))

)
〈L : assertmn, ρ̂, σ̂, τ̂〉 〈s(L) : p(s(L)), ρ̂, σ̂, τ̂〉, ζ

(AAssert)

χ̂O ⊆ χ̂′O χ̂R ⊆ χ̂′R ζ ⇒ ζ ′

〈χ̂O, χ̂R, ζ〉 〈χ̂′O, χ̂′R, ζ ′〉
(Abstraction)

χ̂i  χ̂′i, ζ
′ χ̂j = χ̂′j i 6= j

〈χ̂O, χ̂R, ζ〉 〈χ̂′O, χ̂′R, ζ ∧ ζ ′〉
(ABisim)

Figure 6.8. Abstract small-step operational semantics

Rule AAPI uses expression rvalm(· · ·) to abstractly denote the return value of API

call m. Rule AAssert introduces a new constraint that asserts that appending API call

m to the current trace yields a policy-adherent trace. The constraint uses the symbolic

expression â(τ̂ ′) to denote the security automaton state. Rule Abstraction allows the

symbolic interpreter to discard information at any point by abstracting the current state.

This facilitates pruning the search space in response to hints from the invariant-generator.

Discarding too much information can result in conservative rejection, but it never results in

incorrect acceptance of non-transparent code.



148

Algorithm 1 Verification

Input: Cache = {}, Horizon = {Γ̂0} // explored and unexplored states, respectively

Output: Accept or Reject
1: while Horizon 6= ∅ do // while reachable, unverified states remain

2: Γ̂← choose(Horizon) // choose unexplored abstract state

3: SΓ̂ ← VerificationSingleCodePoint(Γ̂) // reduce state to subgoals

4: if SΓ̂ = Reject then return Reject

5: Cache ← Cache ∪ {Γ̂} // mark state as explored

6: Horizon ← (Horizon ∪ SΓ̂)\Cache // mark subgoals as unexplored

7: end while
8: return Accept

Algorithm 2 VerificationSingleCodePoint

Input: Γ̂ = 〈χ̂1, χ̂2, ζ〉 // abstract simulation state

Output: SΓ̂ or Reject // set of proof subgoals

1: (Γ̂H ,DΓ̂, n)← InvariantGen(Γ̂) // query untrusted invariant-generator

2: SatValue ← ModelCheck(Γ̂, Γ̂H) // verify that Γ̂H abstracts Γ̂

3: if SatValue = Reject then return Reject
4: SΓ̂ ← AbsInn({Γ̂H},DΓ̂) // interpret from Γ̂H to get subgoals SΓ̂

5: if labels(SΓ̂) 6⊆ DΓ̂ then return Reject // verify that DΓ̂ post-dominates Γ̂H

6: for each Γ̂′ = 〈χ̂′1, χ̂′2, ζ ′〉 ∈ SΓ̂ do // for each subgoal

7: 〈 , , , τ̂ ′1〉 = χ̂′1
8: 〈 , , , τ̂ ′2〉 = χ̂′2
9: SatValue ← ModelCheck(Γ̂′, 〈χ̂′1, χ̂′2, ζ ′ ∧ (τ̂ ′1 = τ̂ ′2)〉)

10: if SatValue = Reject then return Reject // verify goal Γ̂′ is transparent

11: end for
12: return SΓ̂ // return subgoals

6.4.3 Verification Algorithm

Algorithms 1–2 present our transparency verification algorithm in terms of the symbolic

interpretation semantics. Algorithm 2 verifies an individual abstract parallel simulation

state, and Algorithm 1 calls it as a subroutine to verify transparency of all reachable control-

flows. We discuss each algorithm below.

Algorithm 1 takes as input a cache of previously explored abstract states and a horizon

of unexplored abstract states. Upon successful verification of all control flows, it returns

Accept ; otherwise it returns Reject . It begins by drawing an arbitrary unexplored state Γ̂
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from the Horizon (line 2) and passing it to Algorithm 2. Algorithm 2 returns a set SΓ̂ of

abstract states where simulation must continue in order to verify all control-flows proceeding

from Γ̂ (line 3). Every state of SΓ̂ that is not already in the Cache is added to the Horizon

(line 6). Verification concludes when all states in the Horizon have been explored.

Algorithm 2 takes an abstract state Γ̂ as input. It begins by asking the invariant-generator

for a hint (line 1), consisting of: (1) a new (possibly more abstract) state Γ̂H for Γ̂, (2) a

finite, generalized post-dominating set DΓ̂ for Γ̂ whose members are all transparent code

points, and (3) a stepping-bound n. A set S of abstract states is said to be generalized

post-dominating for Γ̂ if every complete control-flow that includes Γ̂ later includes at least

one member of S (Gupta, 1992). In our case, the complete flows are the infinite ones (since

termination is modeled as an infinite stutter state). The stepping bound n is an upper bound

on the number of steps required to reach any state in DΓ̂ from Γ̂H . Note that we express

the stepping-bound here as a single integer for simplicity. For efficient implementation, the

bound can be replaced with a pair of integers (n1, n2) with n1 + n2 = n, where ni represents

the exact number of steps machine i should step to reach any state in DΓ̂ from Γ̂H .

The hint obtained in line 1 is not trusted; it must therefore be verified. To do so, model-

checking first confirms that Γ̂H is a sound abstraction of Γ̂ according to the Abstraction

rule of the operational semantics (see Figure 6.8). Next, it performs symbolic interpretation

for n steps from Γ̂ to confirm post-dominance of DΓ̂. Function AbsInn(S,E) in line 4 performs

symbolic interpretation from S for n steps or until reaching a code label in E. Finally, the

model-checker confirms transparency of all members of SΓ̂ (line 10). If successful, set SΓ̂ is

returned.

6.4.4 Model-Checking

Verification of abstract parallel-simulation states suggested by the invariant-generator, prun-

ing of policy-violating flows, and verification of transparency are all reduced by Algorithm 2
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Algorithm 3 ModelCheck

Input: Γ̂ = 〈χ̂1, χ̂2, ζ〉, Γ̂′ = 〈χ̂′1, χ̂′2, ζ ′〉 // trusted abstract state, and untrusted abstraction of it

Output: Accept or Reject
1: ζU ← Unify(Γ̂, Γ̂′) // check structural compatibility

2: if ζU = Fail then return Reject
3: SatValue ← CLP(ζ ∧ ¬ζ ′ ∧ ζU) // verify unsatisfiability of implication negation

4: if SatValue = False then
5: return Accept
6: else
7: return Reject
8: end if

to proving implications of the form A ⇒ B. These are proved by the two-stage model-

checking procedure in Algorithm 3, consisting of unification followed by linear constraint

solving.

Unification Each abstract state χ̂ can be viewed as a set of equalities that relate state

components to their values. Many of these equalities relate structures; for example, each

operand stack is an ordered list of expressions. Given two abstract parallel-simulation states

Γ̂ = 〈χ̂1, χ̂2, ζ〉 and Γ̂′ = 〈χ̂′1, χ̂′2, ζ ′〉, the model-checker first uses Prolog unification to mine all

structural equalities for equalities over their contents. If unification fails, the model-checker

rejects. Successful unification yields a collection ζU of purely integer equalities.

Linear Constraint Solving The model-checker then verifies implication ζ ⇒ ζ ′ by apply-

ing constraint logic programming (CLP) to verify the unsatisfiability of sentence ζU ∧ζ∧¬ζ ′.

That is, it confirms that under the hypothesis ζU that Γ̂ and Γ̂′ abstract the same concrete

state, there is no instantiation of the free variables that falsifies ζ ⇒ ζ ′.

6.4.5 Invariant Generation

Recall from Section 6.4.3 that for every reachable code point (L1, L2) in the parallel simu-

lation’s state space, the verifier requires an (untrusted) hint consisting of: (1) an invariant
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for (L1, L2) in the form of an abstract state, (2) a finite, generalized post-dominating set for

(L1, L2) whose members are all transparent code points, and (3) a stepping-bound n.

In this section we outline a strategy for generating these invariants that allows our verifier

to prove transparency for IRMs produced by the SPoX rewriting system (Hamlen and Jones,

2008), and that can be used as a basis for transparency verification of many other similar

IRM systems.

SPoX implements IRMs as collections of small code blocks that guard security-relevant

operations. It also introduces new classes and methods that maintain and track reified

security state variables implemented as private class fields. The relationship between the

reified state variable and the state of the security automaton that encodes the policy consti-

tutes an invariant, termed synchronization (SYNC), that has been used to verify its sound-

ness (Hamlen et al., 2012). We observe that extending this invariant with an obligation to

restore trace-equivalence at a certain subset of synchronized points suffices to also verify

transparency.

Algorithms 4–5 generate such invariants by consulting a set of Marked code labels that

the IRM claims it has semantically modified. Marked regions include IRM guard code and

the security-relevant instructions they guard, but not IRM intervention code that responds

to impending violations. (Interventions remain unmarked since the verifier proves them

unreachable when the original code satisfies the policy.) The invariant-generator chooses

which invariant to return depending on whether the parallel-simulation state is marked.

Outside marked regions, it uses Algorithm 4 to generate a hint that asserts that the

original and rewritten machines are step-wise equivalent. That is, all original and rewritten

state components are equal except for state introduced by the IRM. It additionally asserts

that reified state variables introduced by the IRM accurately encode the current security

state; this is captured by clause r = â(t̂R) in line 6. This property is necessary to prove that

interventions are unreachable and therefore exempt from transparency.
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Algorithm 4 GenericInvariant

Input: χ̂1 = 〈L1 : i1, ρ̂1, σ̂1, τ̂1〉, χ̂2 = 〈L2 : i2, ρ̂2, σ̂2, τ̂2〉, ζ // abstract state

Output: 〈χ̂, χ̂′, ζ〉 // (more abstract) state

1: choose fresh Skolem constants v̂`, v̂
′
`, ŝ, ŝ

′, t̂, and t̂′

2: σ̂ ← {(`, v̂`) | σ̂1(`) = e1} // abstract all local and reified state variables to fresh vars

3: σ̂′ ← {(`, v̂′`) | σ̂2(`) = e2} ∪ {(r, σ̂2(r))}
4: χ̂← 〈L1 : i1, ŝ, σ̂, t̂〉 // abstract traces to trace vars

5: χ̂′ ← 〈L2 : i2, ŝ
′, σ̂′, t̂′〉

6: ζ ′ ← (ŝ=ŝ′) ∧
(∧

`∈σ̂←∩σ̂′← v̂`=v̂
′
`

)
∧ (r=â(t̂′)) ∧ (t̂=t̂′) // assert SYNC and transparency

7: return I = 〈χ̂, χ̂′, ζ ′〉

Algorithm 5 InvariantGen

Input: χ̂1 = 〈L1 : i1, ρ̂1, σ̂1, τ̂1〉, χ̂2 = 〈L2 : i2, ρ̂2, σ̂2, τ̂2〉, ζ // abstract state

Output: Γ̂H ,DΓ̂,n // more abstract state, post-dominating set, and step bound

1: if L2 6∈ Marked then // outside marked region

2: return (GenericInvariant(χ̂1, χ̂2), {(L1, L2)}, 1) // use Algorithm 4

3: else
4: Γ̂← 〈χ̂1, χ̂2, ζ〉 // don’t abstract the state

5: n← min{n | AbsInn({Γ̂},Marked) = AbsInn+1({Γ̂},Marked)} // find step bound

6: return (Γ̂, labels(AbsInn({Γ̂},Marked)), n)
7: end if

Within marked regions, the invariant-generator uses the last half of Algorithm 5, which

asserts that transparency is restored once parallel simulation exits the marked region. To

prove that execution does eventually exit the marked region, line 5 uses symbolic interpreta-

tion to find each control-flow’s exit point. As mentioned in Section 6.3.5, IRMs implementing

non-trivial loops outside of interventions may cause this step to conservatively fail.

While the invariant-generation algorithm presented here is specific to SPoX, it can be

adapted to suit other similar instrumentation algorithms by replacing constraint r = â(t̂R)

in Algorithm 4 with a different constraint that models the way in which the IRM reifies the

security state. Similarly, appeals to the Marked set can be replaced with alternative logic

that identifies code points where the transparency invariant is restored after the IRM has

completed any maintenance associated with security-relevant operations.
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6.4.6 A Verification Example

To illustrate transparency verification, we revisit the pseudo-bytecode listing in Figure 6.1.

Recall that the figure depicts an IRM that prohibits more than 100 calls to security-relevant

method NavigateToURL. Lines with an × are those in the Marked set described in Sec-

tion 6.4.5.

The verifier (Algorithm 1) begins exploring the cross-product space from point (L1, L1),

where both original and rewritten programs are at L1. Line 1 of Algorithm 2 consults the

(untrusted) invariant-generator, which suggests a hint that abstracts this to a clause asserting

c = â(t̂) (Algorithm 4, line 6), where Skolem constant t̂ denotes the current trace and â(t̂) is

the current security automaton state. This invariant recommends that the only information

necessary at L1 to infer transparency is that c correctly reflects the security automaton

state, and that all other state components are unchanged by the IRM. Since initially t̂ =

τ̂ = ε in both machines, the verifier confirms that c = 0 and â(τ̂) = 0 using Algorithm 3,

and therefore tentatively accepts c = â(τ̂) as a possible invariant for point (L1, L1). The

invariant-generator next supplies a post-dominating set {(L1, L2)} and stepping bound 1

(see Algorithm 5, line 2) to assert that all realizable flows from (L1, L1) have a shuffle

containing (L1, L2), and that (L1, L2) is reachable in 1 step. The verifier confirms this

(line 2 of Algorithm 2) and continues verification at (L1, L2).

When this process repeats at (L1, L2), we find that L2 is marked (×) so lines 4–6 of Algo-

rithm 5 generate the invariant of Algorithm 4. This returns post-dominating set {(L10, L10)}

and stepping bound 9, which advise the verifier to continue symbolic interpreting without

further abstracting the state until exiting the marked region. When interpretation reaches

the conditional at line 3, clause c = â(t̂) (see above) is critical for inferring that L4 is unreach-

able when the original code satisfies the policy. Specifically, the policy-adherence assumption

yields constraint â(τ̂) < 100 after L5, which contradicts negative branch condition c ≥ 100

introduced by L4 when c = â(τ̂), causing line 3 of Algorithm 3 to return False.
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Once the interpreter reaches (L10, L10), the invariant-generator supplies the same ab-

stract state as it did for L1. That is, it asserts that all shared state components (including

traces) are equal, and reified state variable c equals security automaton state â(t̂). The linear

constraint solver confirms that the incremented c (see L8) matches the incremented state

â(t̂ apiNavigateToURL), and therefore accepts the new invariant. Symbolic interpreting for an

additional step, it confirms that this matches the earlier invariant for L1, and accepts the

program-pair as transparent.

6.4.7 Proof of Verifier Correctness

Theorem 5 reduces correctness of the transparency verification algorithm to soundness of

the abstract interpreter and model-checker. That is, if the verifier’s abstract bisimulation of

the two programs (including the interpretation rules that perform model-checking) soundly

abstracts the programs’ actual, concrete executions, and if the verifier accepts, then the

set S described in Theorem 5 exists, and we conclude (from Theorem 5) that the IRM is

transparent.

This notion of soundness can be formally defined in terms of a denotational semantics D

of abstract states given in Figure 6.9. Soundness relation ∼T⊆ C ×A is then defined by

〈χO, χR〉 ∈ D[[〈χ̂O, χ̂R, ζ〉]]
〈χO, χR〉 ∼T 〈χ̂O, χ̂R, ζ〉

(Sound)

Following the approach of (Chang et al., 2006), soundness of the abstract interpreter is

proved via two lemmas that establish preservation and progress (respectively) for a bisim-

ulation of the abstract and concrete machines. The preservation lemma proves that the

bisimulation preserves the soundness relation, while the progress lemma proves that as long

as the soundness relation is preserved, the abstract interpreter covers all realizable flows.

Together, these two lemmas dovetail to form an induction over arbitrary length execution
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sequences. Both lemmas are proved by induction over the respective operational semantics

(Figs. 6.7 and 6.8). Soundness of the model-checker follows from soundness of the Prolog

CLP engine (Börger and Salamone, 1995).

The full proofs are lengthy, so we sketch only the most interesting cases below.

Lemma 10 (Progress). For all χ ∈ C and χ̂ ∈ A such that χ ∼T χ̂, if there exists χ′ ∈ C

such that χ 7→ χ′, then there exists χ̂′ = 〈Lχ̂′ : iχ̂′ , ρ̂
′, σ̂′, τ̂ ′〉 ∈ A such that χ̂ χ̂′.

Proof. The only non-trivial case is the one for assert. In that case, the second premise of

rule CAssert (Figure 6.7) proves that the asserted event does not violate the policy. This

suffices to prove that the denotation of â in the premise of rule AAssert (Figure 6.8) is

well-defined, and therefore the abstract machine takes a corresponding step.

Lemma 11 (Preservation). For every χ ∈ C and χ̂ ∈ A such that χ ∼T χ̂, for every χ′ ∈ C

such that χ 7→ χ′ there exists χ̂′ ∈ A such that χ̂ χ̂′ and χ′ ∼T χ̂′.

Proof. The proof first eliminates the Abstraction rule from consideration through a struc-

tural cut elimination argument (cf., Pfenning, 1995). Two interesting cases remain: that

for api instructions, and that for assert instructions. The case for assert is similar to

Proof 6.4.7. Preservation of api instructions follows from relating the denotation of the

rval expression in the premise of rule AAPI (Figure 6.8) to the system-modeling func-

tion sys in the premise of rule CAPI (Figure 6.7). This follows from the definition of

E [[rvalm(e1:: · · · ::en)]] in Figure 6.9.

Theorem 6 (Soundness). Starting from the initial abstract interpreter state, 〈χ̂O0 , χ̂R0 , ζ0〉,

if the abstract interpreter does not reject, then, for each concrete interpreter state in each

realizable flow starting from the initial concrete interpreter state 〈χO0 , χR0〉, there exists an

abstract interpreter state that soundly abstracts that concrete state.
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Proof. By the definition of abstract interpreter acceptance, starting from the initial state

〈χ̂O0 , χ̂R0 , ζ0〉 the abstract interpreter continually makes progress. By a trivial induction

over the set of finite prefixes of this abstract transition chain, the progress and preservation

lemmas prove that the concrete interpreter also continually makes progress from initial state

〈χO0 , χR0〉, and the abstract interpreter infers a sound abstraction at every code point.

6.5 Implementation and Results

Our implementation of the transparency verification algorithm detailed in Section 6.4 targets

the full AS bytecode language. It consists of 2500 lines of Prolog for 32-bit Yap 6.2 that parses

and verifies pairs of Shockwave Flash File (SWF) binary archives. YAP CLP(R) (Jaffar

et al., 1992) is used for constraint solving and Yap’s tabling for memoization. We have

made our tool, called FlashTrack (Flash TRAnsparency ChecKer), available for download

online (Sridhar et al., 2013a).

IRM instrumentation is accomplished via a collection of small binary-to-binary rewrit-

ers. They each augment untrusted AS code with security guards according to a security

policy, specified as a SPoX security automaton. For ease of implementation, each rewriter

is specialized to a particular policy class. For example, one rewriter enforces resource bound

policies that limit the number of accesses to policy-specified system API functions per run.

It augments untrusted code with counters that track accesses, and halts the applet when

an impending operation would exceed the bound. The rewriters are each about 200 lines of

Prolog (not including parsing) and the invariant-generators are about 100 lines each.

Each rewriter is accompanied by an invariant-generator that follows the algorithm de-

scribed in Section 6.4.5. The generated invariants match the details of each rewriter’s code-

transformation strategy, exhibiting no conservative rejection that we know of for any code

that the rewriters produce. We expect that adapting invariant generation to other similar

IRM systems will only require small modifications.
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I ∈ I = (v̂ → Z) ∪ (ŝ→ ρ) ∪ (t̂→ τ) (Interpretations)

E : e→ I→ Z (Expression Denotations)

E [[n]]I = n

E [[v̂]]I = I(v̂)

E [[e1 + e2]]I = E [[e1]]I + E [[e2]]I

E [[rvalm(e1:: · · · ::en)]]I = sys(m, E [[e1]]I:: · · · ::E [[en]]I)

E [[â(τ̂)]]I = a(E [[τ̂ ]]I)

DK : ρ̂→ I→ ρ (Stack Denotations)

DK[[·]]I = ·
DK[[ŝ]]I = I(ŝ)

DK[[e :: ρ̂]]I = E [[e]]I :: DK[[ρ̂]]I

DS : σ̂ → I→ σ (Store Denotations)

DS[[σ̂]]Ix = E [[σ̂(x)]]I (Store Denotations)

DT : τ̂ → I→ τ (Trace Denotations)

DT[[ε]]I = ε

DT[[t̂]]I = I(t̂)

DT[[apim(e1:: · · · ::en)τ̂ ]]I = apim(E [[e1]]I:: · · · ::E [[en]]I)DT[[τ̂ ]]

DC : χ̂→ I→ χ (Config. Denotations)

DC[[〈L : i, ρ̂, σ̂, τ̂〉]]I =

〈L : i,DK[[ρ̂]]I,DS[[σ̂]]I,DT[[τ̂ ]]I〉

T : e→ 2I (Term Denotations)

T [[T ]] = I
T [[F ]] = ∅
T [[e1 ≤ e2]] = {I | E [[e1]]I ≤ E [[e2]]I}

C : ζ → 2I (Constraint Denotations)

C[[
∧

i=1..n

ti]] =
⋂

i=1..n

T [[ti]]

D[[〈χ̂O, χ̂R, ζ〉]] =

{〈DC[[χ̂O]]I,DC[[χ̂R]]I〉 | I ∈ C[[ζ]]} (Bisim. State Denotations)

Figure 6.9. Denotational semantics for verifier states
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To demonstrate the versatility of FlashTrack, rewriters in our framework perform local-

ized binary optimizations during rewriting when convenient. For example, when original

code followed by IRM code forms a sequence of consecutive conditional branches, the entire

sequence (including the original code) is replaced with an AS multi-way jump instruction

(lookupswitch). Certifying transparency of the instrumented code therefore requires the

verifier to infer semantic equivalence of these transformations.

When implementing our IRMs we found the transparency verifier to be a significant aid

to debugging. Bugs that we encountered included IRMs that fail transparency when in-lined

into unusual code that overrides IRM-called methods (e.g., toString), IRMs that throw

uncaught exceptions (e.g., null pointer) in rare cases, IRMs that inadvertently trigger class

initializer code that contains an observable operation, and broken IRM instructions that

corrupt a register or stack slot that flows to an observable operation. All of these were

immediately detected by the transparency verifier.

We applied our prototype framework to rewrite and verify numerous real-world Flash

advertisements drawn from public web sites. The results are summarized in Table 6.1. For

each advertisement, the table columns report the policy type, bytecode size before and after

rewriting, the number of methods in the original code, and the rewriting and verification

times. All tests were performed on a Lenovo Z560 notebook computer running Windows 7

64-bit with an Intel Core I5 M480 dual core processor, 2.67 GHz processor speed, and 4GB

of memory.

Except for HeapSprayAttack (a synthetic attack discussed below) all tested advertise-

ments were being served by public web sites when we collected them. Some came from

popular business and e-commerce websites, but the more obtrusive ones with potentially

undesirable actions tended to be hosted by less reputable sites, such as adult entertain-

ment and torrent download pages. Potentially undesirable actions include unsolicited URL

redirections, large pop-up expansions, tracking cookies, and excessive memory usage. Ad-

vertisement complexity was not necessarily indicative of maliciousness; some of the most
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Table 6.1. FlashTrack Experimental Results

File Size (KB) Number of Rewriting Verification
Program Policy old new Methods Time (ms) Time (ms)

adult1 ResBnds 1 2 4 < 1 < 1
adult2 ResBnds 18 18 102 127 1201
atmos ResBnds 1 1 6 < 1 < 1
att ResBnds 22 22 147 156 1434
ecls ResBnds 2 3 6 16 < 1
eco ResBnds 2 3 6 < 1 16
flash ResBnds 3 4 12 < 1 62
fxcm ResBnds 2 2 12 16 16
gm ResBnds 21 22 142 157 1245
gucci ResBnds 2 2 6 15 16
iphone ResBnds 2 2 6 < 1 < 1
IPLad ResBnds 2 2 15 31 15
jlopez ResBnds 17 17 151 95 560
lowes ResBnds 34 34 181 218 16549
men1 ResBnds 33 34 237 203 3757
men2 ResBnds 40 40 270 297 4964
prius ResBnds 71 71 554 516 10359
priusm ResBnds 70 71 542 468 9951
sprite ResBnds 34 34 324 234 3075
utv ResBnds 21 21 155 151 1171
verizon1 ResBnds 3 4 25 < 1 37
verizon2 ResBnds 3 3 12 31 15
weightwatch ResBnds 4 4 34 47 47
wines ResBnds 185 185 926 904 35926
expandall NoExpands 3 4 17 47 79
cookie NoCookieSet 3 3 8 31 16
CookieSet NoCookieSet 1 1 4 < 1 < 1
HeapSprAttk NoHeapSpray 1 1 4 15 15
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complex advertisements were benign. For example, wine implements complex interactive

menus showcasing wines and ultimately offering navigation to the seller’s site.

All programs are classified into one of four case study classes:

Bounding URL Navigations We enforced a resource bound policy that restricts the

number of times an advertisement may navigate away from the hosting site. This helps to

prevent unwanted chains of pop-up windows. The IRM enforces the policy by counting calls

to the NavigateToURL system API function. When an impending call would exceed the

bound, the call is suppressed at runtime by a conditional branch. To verify transparency of

the resulting IRM, the verifier proves that such branches are only reachable in the event of

a policy violation by the original code.

Bounding Cookie Storage For another resource bounds policy, we limited the number

of cookie creations per advertisement. This was achieved by guarding calls to the SetCookie

API function. Impending violations cause the IRM to prematurely halt the applet.

Preventing Pop-up Expansions Some Flash advertisements expand to fill a large part

of the web page whenever the user clicks or mouses over the advertisement space. This is

frequently abused for click-jacking. Even when advertisement clicks solicit non-malicious

behavior, many web publishers and users regard excessive expansion as a denial-of-service

attack upon the embedding page. There is therefore high demand for a means of disabling

it. Our expansion-disabling policy does so by denying access to the GoToAndPlay system

API function.

Heap Spray Attacks Heap spraying is a technique for planting malicious payloads by

allocating large blocks of memory containing sleds to dangerous code. Cooperating malware

(often written in an alternative, less safe language) can then access the payload to do damage,
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for example by exploiting a buffer overrun to jump to the sled. By separating the payload

injector and exploit code in different applications, the attack becomes harder to detect.

AS has been used as a heap spraying vehicle in several past attacks (FireEye, 2009). The

spray typically allocates a large byte array and inserts the payload into it one byte at a time,

making it more difficult to reliably detect the payload’s signature via purely static inspection

of the AS binary.

To inhibit heap sprays, we enforced a policy that bounds the number of byte-write oper-

ations that an advertisement may perform on any given run. We then implemented a heap

spray (HeapSprAttk) and verified that the IRM successfully prevented the attack. Applying

the policy to all other advertisements in Table 6.1 resulted in no behavioral changes, as

confirmed by the verifier.

6.6 Conclusion

Concerns about program behavior-preservation (transparency) have impeded the practical

adoption of IRM systems for enforcing mobile code security. Code producers and consumers

both desire the powerful and flexible policy-enforcement offered by IRMs, but are unwilling

to accept unintended corruption of non-malicious program behaviors.

To address these concerns, we present the design and implementation of the first au-

tomated transparency-verifier for IRMs, and demonstrated how safety-verifiers based on

model-checking can be extended in a natural way to additionally verify IRM transparency.

To minimize the TCB and keep verification tractable, an untrusted, external invariant-

generator safely leverages rewriter-specific instrumentation information during verification.

Hints from the invariant-generator reduce the state-exploration burden and afford the verifier

greater generality than the more specialized rewriting systems it checks. Prolog unification

and Constraint Logic Programming (CLP) keeps the verifier implementation simple and
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closely tied to the underlying verification algorithm, which is supported by proofs of correct-

ness and abstract interpretation soundness. Practical feasibility is demonstrated through

experiments on a variety of real-world AS bytecode applets.

In future work, we would like to extend our approach to support user-written IRM

implementations (e.g., those implemented in AspectJ Chen and Roşu, 2005) in addition to

IRMs synthesized purely automatically. This requires an IRM development environment

that includes program-proof co-development, such as Coq (INRIA, 2014). Such research

will facilitate easier, more reliable development of customized IRMs with machine-checkable

proofs of soundness and transparency.



CHAPTER 7

FLASH IN THE DARK: STUDYING THE LANDSCAPE OF

ACTIONSCRIPT WEB SECURITY TRENDS AND THREATS1

7.1 Overview

Scattered, ad hoc information about Flash security abounds in the literature, especially

in the form of news stories and “best practices” tips for Flash programmers. A systematic

study of known attacks and attack classes, their potential impact, the landscape of the attack

surface, and known strategies for mitigation, is badly needed for organizing this scattered

information and helping both researchers and practitioners learn from past mistakes to build

stronger defenses for this pervasive web technology.

Towards this goal, this chapter presents two main contributions:

1. We present a detailed taxonomy of fifteen Flash-relevant vulnerabilities and attacks.

Our categorization provides a more fine-grained, informative classification specifically

tuned to the Flash attack surface compared to the cross-section of Mitre’s Common

Weakness Enumeration (CWE) classification system used by the National Vulnerability

Database (NVD) (National Institute of Standards and Technology (NIST), 2013) for

scoring Common Vulnerability and Exposures articles (CVEs) (MITRE Corporation,

2013b).

2. Secondly, for each category, we highlight ActionScript language and Flash architecture

features that make them particularly susceptible to that attack/vulnerability. We also

1This chapter includes joint work (Sridhar et al., 2014) with Dhiraj V. Karamchandani and Kevin
W. Hamlen.
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present a compilation of pertinent resources such as academic and news articles, ex-

amination of attack-type variants, high-impact real world incidents, and representative

CVEs.

As security researchers, we were met with several challenges in conducting this survey

on the Flash attack space. First and foremost was the challenge of sifting through and

classifying a massive volume of completely disorganized information on Flash security such

as thousands of news articles (including new articles that appear daily), numerous research

publications, scattered information on past Flash attacks, and dispersed material on various

components of the Flash ecosystem, including the Flash browser plug-in, VM, development

and analysis tools, and the ActionScript language. The difficulty of taming information

volume was further heightened due to the innumerable versions of various Flash software

components such as the Player and the ActionScript language, each of which exhibits a

multitude of features and weaknesses. CVE articles of Flash-relevant attacks tend to be too

terse and coarse-grained to glean any useful technical details of an attack for educational

purposes. Therefore, with our analysis, we aim to provide researchers, web developers,

and security analysts a substantive sense of the Flash vulnerability and attack space, in a

consolidated form, crucial for developing better Flash security practices and defenses, and we

hope that this attempt will fuel security research towards the betterment of Flash security.

Past and future enforcement mechanisms for these attacks and vulnerabilities are beyond

the scope of this work; however various prior works explore these topics (e.g., Phung et al.,

2013; Li and Wang, 2010; Acker et al., 2012; Overveldt et al., 2012).

The rest of the chapter is organized as follows. Section 7.2 presents our taxonomy of Flash

vulnerabilities and attacks. Section 7.3 discusses the results of our survey of the distribution

of Flash-relevant scientific research. Section 7.4 concludes.
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7.2 A Taxonomy of Vulnerabilities and Attacks

We begin our survey of Flash security with an in-depth taxonomy of prominent Flash-

powered vulnerabilities and attacks. The taxonomy is inspired by our detailed study of

520 Flash-related CVEs and annual threat reports of major security organizations (e.g.,

Symantec, Cisco, Kaspersky) published over the past five years. High-impact, real-world

attacks and the role of platform features unique to Flash in these attacks are highlighted.

7.2.1 Flash-based Phishing

In phishing, an attacker lures an unsuspecting user by masquerading as a trustworthy entity

in order to steal important information such as usernames, passwords and credit card details.

This is typically achieved by using various social engineering techniques to redirect the victim

to a legitimate-appearing malicious site designed by the attacker.

Flash-based phishing often takes advantage of Flash’s advanced animation features to cre-

ate spoof sites capable of evading automated anti-phishing services. Typical automated anti-

phishing services scan webpage text to identify certain suspect phrases (e.g., bank names).

However, if the phishing is Flash-based, these tools are typically unable to detect these

phrases or understand the scam, since they are not text-based. In fact, Flash-based features

in the phishing site are even transparent to much more powerful tools such as spiders (search

engines) (Nambiar, 2009).

Another common Flash-based phishing technique is to use Flash-based web advertise-

ments for phishing; attackers abuse specific ActionScript 2 and ActionScript 3 language

features only available through Flash. These features include Flash Shared Objects, which

allow Flash applets to store client-side information similar to HTTP cookies. Shared Objects

are useful for computing attack timestamps, can store up to 100KB per host domain, are

persistent across sessions, and can work cross-browser (Chatterji, 2008). The features also

include methods MovieClip.getURL() and flash.net.navigateToURL() (to perform actual
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redirects), and LoadVars.load() (to make HTTP requests to the attacker’s web domain, in

order to keep track of the malicious redirects, or to disable any specific redirects if he or she

chooses) (Ford et al., 2009). Malicious advertisements are discussed further in Section 7.2.15.

Real-world Example:

RSA SecurID Breach. One of the most shocking Flash-based phishing attacks in history

was the attack on the website of RSA Security LLC (an American computer and network

security company) in 2011 (Mikko, 2011; Keizer, 2011; Mills, 2011; Clark, 2011; Anthony,

2011). The attack was allegedly conducted by a nation-state, targeting Lockheed-Martin

and Northrop-Grumman to steal military secrets (Mikko, 2011). These companies were

using RSA’s two-factor authentication product, SecurID, for network authentication.

In the attack, two phishing emails were sent to four EMC (RSA’s parent company)

employees. The emails carried a malicious Excel spreadsheet attachment with the subject line

“2011 Recruitment plan.xls”. The attachment used a zero-day exploit targeting vulnerability

in the authplay.dll component in Flash player, creating a backdoor on the victim’s machine

. The attackers spoofed the emails as if they originated from a web master at Beyond.com,

a job search and recruiting site. The email body had a deceptively innocuous simple line:

“I forward this file to you for review. Please open and view it.” The Excel attachment had

just an “X” in its first cell. The attack used the Poison Ivy Remote Administration Tool

(RAT) (F-Secure, 2013) (Trojan backdoor) on the compromised computers, using which the

attackers were able to harvest users’ credentials to access other RSA network machines, and

copy senstive information and transfer data to their own servers (Keizer, 2011; Mills, 2011;

Clark, 2011; Anthony, 2011). The speculation is that one of the credentials stolen was the

unique numbers for the SecurID tokens (Mills, 2011).

The severity of the ramifications is demonstrated by the fact that RSA’s only choice was

to replace their SecurID tokens for their customers worldwide (Mikko, 2011) (CVE-2011-

0609).
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7.2.2 Flash-based Pharming and DNS Rebinding

Flash-Based Pharming

Pharming is a more sophisticated version of phishing in which an attacker redirects an

unsuspecting user to an unintended website, either by changing the hosts file on the victim’s

computer, or by exploiting a vulnerability in the DNS server software.

Several ActionScript 2 and ActionScript 3 methods facilitate pharming, such as: i)

getURL() (AS2) and flash.net.navigateToURL() (AS3), which can not only be used to nav-

igate to a website, but also to directly execute JavaScript; ii) loadMovie() (AS2); and iii)

flash.net.navigateToURL() in conjuction with flash.net.URLRequest objects (AS3) (fukami

and Fuhrmannek, 2008).

DNS Rebinding

DNS rebinding allows an attacker to use a victim’s browser environment (typically JavaScript

or Flash) to connect to internal IP addresses in the victim’s network (Striegel, 2007). This

in turn can be used to leverage the victim machine for stealing information, spamming,

distributed denial-of-service, and other attacks on the victim’s internal network. While the

Same-origin Policy (please see Section 7.2.4) restricts communication between objects from

differing origins, the DNS rebinding attacker is able to bypass this by dynamically switching

the target IP address to a host name that he or she controls (Striegel, 2007).

Real-world Example:

Massive DNS Poisoning Attack in Mexico. One of the first drive-by-pharming attacks in

the wild occurred in Mexico, and exploited a vulnerability in 2wire modems. The attack was

conducted using spam email messages that fooled victims into believing that they received

an electronic postcard from Gusanito.com, a popular e-card website. When the victims

clicked on the link to view the cards, they were directed to a spoofed Gusanito page. This
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spoofed page had a malicious SWF file that modified the 2wire modem localhost table.

Subsequently, the malicious Flash controls involved redirecting users to a fraudulent site

whenever they attempt to access pages related to Banamex.com, a banking site (Oliveria,

2008).

7.2.3 Flash-based Drive-by-Download and Drive-by-Cache

In a Flash-based drive-by-download attack, the attacker compromises a website by injecting a

malicious Flash binary into the site. The Flash binary loads a malicious payload (also called

shellcode) into the address space of the browser. The code is usually a series of commands

that directs the browser process to retrieve malware (usually from a different domain), write

it to disk and subsequently execute it. This attack is extremely dangerous because not only

the usual user warning for download is bypassed, even simply reading a webpage or viewing

a document results in the malware being downloaded quietly in the background (Ducklin,

2013).

Drive-by-cache is a variation of drive-by-download attack, in which the malware is already

present in the browser’s cache directory and is executed, unlike in a drive-by-download attack,

where the malware is downloaded and written to disk. Drive-by-cache makes infection harder

to detect than drive-by-download—in a drive-by-download attack, the malware (which is

often times the downloader) has to pass through the personal firewall and web filter in order

to obtain the malicious payload. This makes the malware susceptible to detection. In drive-

by-cache, the payload is pre-downloaded into the browser cache for easy access (Darryl,

2011a).

Drive-by-download attackers thrive on users visiting the malicious website. A typical

method used is to manipulate search engines to list the site high in rankings to try and

ensure that visitors will visit it (Ministry of Justice, United Kingdom, 2013). Often heap

spraying (see Section 7.2.8) is used in conjunction to inject the shellcode.
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Drive-by-download attacks also exploit other vulnerabilities, such as integer-overflow vul-

nerabilities. For example. several drive-by-download attacks have been conducted exploiting

a vulnerability discovered in the DefineSceneAndFrameLabelData tag parsing routine in the

Flash Player (Dowd, 2008). The vulnerability was caused by the routine reading an unsigned

32-bit integer and subsequently validating it using a signed comparison operator (CVE-2007-

0071) (Ford et al., 2009).

Real-world Examples:

Drive-by-download Attacks on Windows and Apple Users. Drive-by-downloads were con-

ducted on Windows (CVE-2013-0633) and Apple Macintosh (CVE-2013-0634) users, and tar-

geted vulnerabilities through spear phishing email messages (Ducklin, 2013; Romang, 2013).

The victims were from several industries, including aerospace (specifically Boeing) (Romang,

2013).

In the Windows attack, users were lured into opening a Microsoft Word document de-

livered as email attachments that contained malicious Flash files. As reported, one of the

attachments used the 2013 IEEE Aerospace Conference schedule, and another was related

to the US online payroll system company, ADP, to exploit the vulnerability in CVE-2013-

0633 (Romang, 2013). The exploit targeted the ActiveX version of Flash Player on Win-

dows (Ducklin, 2013). One of the malicious payloads (executable) was signed with a fake

certificate from a South Korean company called MGAME. This certificate has been used

several times in the past as part of targeted attacks (Blasco, 2013). In the Mac attack, the

vulnerability in CVE-2013-0634 was exploited by tricking an Apple OS X user to open a

webpage, which contained a malicious Flash file hosted on websites, targeting Flash Player

in Firefox or Safari on the Macintosh platform (Ducklin, 2013; Romang, 2013).

Drive-by-cache attack on the UK Human Rights website. In April 2011, the UK Human

Rights website (Ministry of Justice, United Kingdom, 2013) was hit by a Flash drive-by

cache attack, in which a Flash zero-day vulnerability (CVE-2011-0611) was exploited to
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infect multiple pages of the website, and install a malware which allowed the attackers to

connect back to a malicious IP in Hong Kong. At the time of attack, there was no patch

available for the zero-day vulnerability. The following fact demonstrates the difficulty of

detection of the malicious software—VirusTotal detection was 0 out of 42 for the zero-day

exploit, and 1 out of 42 for the malicious payload (Huang, 2011).

7.2.4 Same-Origin Policy Abuse

Same-origin policy allows major interactions and scripting between pages originating from

the same site (determined using a combination of protocol, host and port number), and

restricts inter-communication between unrelated sites. Many variations of same-origin policy

exist, including ones for DOM access, XMLHttpRequest, cookies, Java, JavaScript, and

Flash (Zalewski, 2011b).

The security context for Flash applets is derived from the their originating URL, and not

from their embedding site. This is achieved by comparing protocol, host name and port of

requestor and requested resource; for a Flash applet from a specific origin, universal access is

granted to local disk contents at that origin. Flash applets can request permission for outside-

domain resources using a crossdomain.xml policy file or the Security.allowDomain() direc-

tive in the flash.system package. For example, consider foo.swf in domain X and bar.swf

in domain Y. In order for bar.swf to access foo.swf, Y must be added to crossdomain.xml

policy file at X or Security.allowDomain("Y") statement must be added in foo.swf. Note

that these methods give all Flash files in domain Y access to foo.swf (Zalewski, 2011b).

Lax development practices and subtle differences in same-origin policies have led to

myriad security problems, discussed below. Despite Flash’s above mentioned methods for

controlling access to exposed functions (viz., flash.system.Security.allowDomain() and

flash.system.Security.allowInsecureDomain()), many ad developers commonly use these

features unwisely, for example by specifying wildcard (“*”) that permits universal access (El-

rom, 2010; Phung et al., 2013). Often, this is the case because it is difficult for developers to
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determine which domains are needed by the library at the time of development. However,

using the wildcard in this manner is highly imprudent because many sites that have a “*”

access policy use cookies for authentication and maintain private information for logged-in

users (Jang et al., 2011).

Malicious Flash applets can exploit subtle differences between Flash and JavaScript same-

origin policy to bypass the Flash same-origin policy and deliver malicious JavaScript code

to a third-party victim site via the flash.external.ExternalInterface class. Subsequently,

attackers can successfully implement two-way communication with the victim third-party

site, becoming fully capable of conducting attacks such as click forgery, resource theft, or

flooding attacks upon victim sites (Phung et al., 2013). Please see Section 7.2.5 for more

details.

More recently, attacks through malvertisements (malicious advertisements) have gained

momentum (see Section 7.2.15 for more details). Most webpages today contain web ads,

an important source of revenue for publishers; many contain ads derived from multiple

ad networks. Malvertisements can place both the publisher and the ad network at risk

by abusing Flash-JavaScript interaction to extend its privileges to DOM objects and call

exposed functions from a more trustworthy ad on the same page (Phung et al., 2013).

In addition to these attack vectors, Flash’s same-origin policy contains various other po-

tentially risky leniencies. Examples include the ability to make cookie-bearing cross-domain

HTTP GET and POST requests via the browser stack, through the URLRequest API; the ability for

embedding webpages to allow various permissions via the <OBJECT> or <EMBED> parameters,

such as: load external files and navigate the current browser window using allowNetworking

attribute; interact with on-page JavaScript context allowScriptAccess attribute; run in

full-screen mode allowFullScreen attribute (Zalewski, 2011b).



172

Case-study: Client-side Flash Proxies

An excellent example of security issues rising from subtle differences in same-origin policy

between Flash and JavaScript is the concept of client-side Flash proxies (Johns and Lekies,

2011). While Flash allows cross-domain HTTP requests through the crossdomain.xml policy

file, cross-domain HTTP requests in JavaScript are achieved via the new Cross-origin Re-

source Sharing (CORS) feature (enable-cors.org, 2013). CORS uses HTTP response headers

to allow or deny requests unlike crossdomain.xml (Johns and Lekies, 2011).

While many newer browsers support CORS (e.g., mobile browsers that do not have plug-

ins or browsers where plug-ins have been disabled due to security reasons), many legacy

browsers do not. Therefore, developers have to create a CORS and a non-CORS version

of cross-domain HTTP requests. Many developers currently use Flash proxies to aid in

this process. Flash proxies are Flash applets that include a small JavaScript library that

interfaces with the JavaScript on the hosting page, handling HTTP requests to cross-domain

targets and responses back to the calling script (Johns and Lekies, 2011).

If the Flash applet provides a public JavaScript interface, scripts running in the con-

text of the embedding page can abuse this interface to perform functions executed under

the cross-domain origin of the Flash applet (possibly higher privileges). Note that, for this

type of abuse, the exported methods for external domains have to be reported using the

allowDomain() directive by the Flash applet. However, as mentioned above, many develop-

ers whitelist all domains using the wildcard mechanism allowDomain("*"), rendering such

attacks feasible (Johns and Lekies, 2011).

Cross-site request forgery, session hijacking, and leakage of sensitive information attacks

can be conducted via an abuse of Flash proxies and gaps in same-origin-policy to obtain

trust through transitivity (Johns and Lekies, 2011). Additionally, Flash proxies and gaps in

same-origin-policy can also be abused to make requests from malicious domain A to B, even

without B providing a crossdomain.xml policy file (Johns and Lekies, 2011).
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7.2.5 Attacks using ExternalInterface, URLRequest, and navigateToURL

ExternalInterface Abuse

Flash, through the ExternalInterface class in ActionScript 2 and ActionScript 3, provides

two methods to interact with external containers, such as JavaScript in the embedding page:

call() and addCallback(). ActionScript method call(s, . . .) invokes JavaScript function

s (which is passed as a string to the JavaScript VM and evaluated as JavaScript code at

global scope to obtain a JavaScript function reference). ActionScript method addCallback(s,

f) makes ActionScript function f callable from JavaScript under pseudonym s (a fresh

JavaScript property name). The ActionScript method can return a value, and JavaScript

receives it immediately as the return value of the call. Hence, the methods call() and

addCallback() allow two-way communication between ActionScript and JavaScript (Phung

et al., 2013).

The cross-language communication is extremely useful for developing rich web appli-

cations. For example, some of the uses include tracking clicks on web advertisements to

gather revenue, interactive communication between the embedding HTML page and the

Flash movie, including HTML buttons to start/stop the movie, random access to different

chapters in the Flash movie, sending usage reporting of user interactions with the movie to

Google Analytics, and data transportation between Flex chart and HTML data table (Lance,

2009).

Security for the ActionScript-JavaScript interface is provided by the allowScriptAccess

property in the <OBJECT> and <EMBED> tags of the HTML page. In particular, The call()

method requires the allowScriptAccess property to be set to one of three options: always

(full access), sameDomain (same origin access), or never (none); same origin access is the

default. For the addCallback() method, the default setting is that the HTML page can

communicate with the ActionScript only if it originates from the same domain. To override

the default, one must use the allowDomain() method in the flash.system.Security class.
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Since ExternalInterface.call behaves very similarly to JavaScript’s eval, it can be

abused to corrupt the DOM and develop attack back channels similar to BeEF (Alcorn,

2011). ExternalInterface.call has also been featured in attacks that use a combination of

ActionScript and JavaScript to perform cross-domain code-injection (Howard, 2012) (CVE-

2011-0611).

Real-world Examples:

Cross-site scritping (XSS) and cross-site request forgery (CSRF) vulnerabilities were

found in two prevalent applications SWFUpload (swfupload, 2013) and Plupload (Moxiecode

Systems AB, 2013). The applications have Flash at their core, and allow developers cus-

tomization of user-interface upload features such as multiple file selection, upload progress,

and client-side file size checking for incorporation into sophisticated web publishing software

such as Wordpress (WordPress.org, 2013).

XSS in SWFUpload. ActionScript code for SWFupload uses callbacks as the first param-

eter to ExternalInterface.call(), which in turn executes JavaScript in the current page.

The value of movieName derived from input by the user and direct loading of the applet by

passing parameters in the URL result in the XSS attack. Sites where the applet is hosted on

the same domain as that of the main website are vulnerable to this kind of attack (Poole,

2012) (CVE-2012-3414,CVE-2013-2205).

CSRF in Plupload. An attacker was able to make a request to the domain where a

Plupload applet was hosted, and was able to read the full response; the applet was embedded

on a page using JavaScript. This was facilitated by Flash’s same-origin policy. As a result,

CSRF tokens and other sensitive information were disclosed on Wordpress installations.

Plupload v1.5.4 was released with the CSRF issue patched—the issue had been a whitelisting

of all domains by default through Security.allowDomain(’*’) (Poole, 2012) (CVE-2012-

3415).
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URLRequest and navigateToURL Abuse

Flash applications extensively use URL redirection (viz. navigateToURL() in the ActionScript

3 runtime and getURL() in ActionScript 2) and HTTP requests (via URLRequest) to direct user

clicks to advertiser web sites, or load external resources. However, these same methods can

be abused to perform highly dangerous attacks (Petkov, 2008). The URLRequest class allows

a Flash applet to create HTTP requests using GET or POST methods; the navigateToURL()

method takes two parameters: a URLRequest object containing all the information needed

to perform the HTTP request, and an optional String that determines which frame in the

current browser to open the new webpage specified in the URLRequest. ActionScript allows

developers to pass URL values navigateToURL() obtained from external sources such as

FlashVars (see Section 7.2.14), creating a vulnerability that attacks can easily manipulate

to perform cross-site scripting (Adobe Systems Inc., 2013a).

Real-world Example:

Reconfiguring Home Router. A proof-of-concept example has been shown describing

how these two methods can be used in conjunction to effortlessly reconfigure a well-known

home router, BT Home Hub, distributed by a leading British telecommunications com-

pany (Petkov, 2008). The attack uses these ActionScript methods to request Universal Plug

and Play (UPnP) functionality via the Simple Object Access Protocol (SOAP) (CVE-2008-

1654).

7.2.6 Flash-based Cross-Site Scripting (XSS)

A Cross-Site Scripting (XSS) attack involves the injection of a malicious, client-side script

into a vulnerable website that can be executed at the privileges of the victim page. When

an unsupecting user visits the victim page, the script can exploit the user’s trust to perform

malicious activity.
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In a classic XSS involving Flash, an attack can be conducted by passing in a malicious

script through global flash variables (see Section 7.2.14) (Chatterji, 2008). In a Cross-Site

Flashing (XSF) attack (MITRE Corporation, 2013a), the attacker-injected malware is a ma-

licious Flash applet. Subsequently, when the applet runs on the client browser’s Flash plug-in,

it compromises the plug-in and allows the attacker to abuse native Flash functionality in the

client browser, creating arbitrary code execution possibilities. Figure 7.2.6 presents a list of

several ActionScript classes, methods and variables that pose severe risks for XSS. It is vital

for developers to conduct adequate validation and sanitization of user input leaking into any

of these methods to defend against XSS and XSF attacks (Rapid7 Inc., 2013; Jagdale, 2009;

The OWASP Foundation, 2013).
ActionScript 2 ActionScript 3

getURL() flash.net.URLLoader.load()
MovieClip.loadVariables() flash.net.URLStream.load()
TextField.htmlText flash.text.htmlText
loadMovie() flash.external.ExternalInterface.call()
loadMovieNum() flash.external.ExternalInterface.addCallback()
LocalConnection.connect() flash.net.LocalConnection
NetStream.play() flash.net.NetStream.play()
SharedObject.getLocal() flash.net.SharedObject.getLocal()
SharedObject.getRemote() flash.net.SharedObject.getRemote()
XML.load()
XML.sendAndLoad()
Sound.loadSound()
LoadVars.sendAndLoad()
FScrollPane.loadScrollContent

Figure 7.1. Potentially dangerous ActionScript classes, methods, and properties

Real-world Example:

Flash-based XSS in Yahoo! Mail. In June 2013, a Flash XSS vulnerability was dis-

covered (Rad, 2013) in the IO Utility of the Yahoo! User Interface library (Yahoo! Inc.,

2013). The utility contained a Flash applet, io.swf which used user inputs as parameters in

an ExternalInterface.call() without validation, rendering malicious JavaScript execution

feasible in the io.swf container. The applet io.swf was hosted in the Yahoo! Mail main do-

main, creating an appalling vulnerability in Yahoo! Mail; users logged into Yahoo! Mail were

able to access the applet at http://us-mg5.mail.yahoo.com/neo/ued/assets/flash/io.swf,
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enabling attacks such as read access to other Yahoo Mail! users’ inbox by sending a cleverly

crafted URL to them (Rad, 2013).

Please see the SWFUpload example (Section 7.2.5) and the Gmail example (Section 7.2.14)

for more examples of Flash-based XSS.

7.2.7 Flash-based Cross-Site Request Forgery (CSRF)

In a Cross-Site Request Forgery (CSRF) attack a malicious website conducts an attack on a

trusted website employing a user’s browser (Zeller and Felten, 2008). While CSRF attacks

are often confused with the more well-known XSS, the two are strategically quite different;

with CSRF, the attack is based on the exploitation of näıve web servers, which accept client

requests without validation. In XSS, the trust of the user is targeted, whereas in CSRF, the

cross-origin trust of the user’s browser is targeted.

Flash-based CSRF attacks take advantage of several clever abuses of the language. For

example, ActionScript can be used to craft spoofed HTTP headers to bypass HTTP referer

header checking, thereby defeating a mechanism used to prevent CSRF attacks (Chatterji,

2008).

Additionally, Flash proves handy for CSRF distribution, because of the following features:

(i) Flash applet’s same-origin policy is determined from the origin of the Flash, not the

embedding page; (ii) malicious CSRF code can be easily obfuscated and placed inside a Flash

applet (see Section 7.2.10); (iii) Flash shared objects (see Section 7.2.1) enable manipulation

of date and time of attack easily, and maintain hack status; and (iv) the facts that stolen

data can be retrieved back to the Flash applet, and cross-domain POST can be used in place

of GET, facilitate theft of large-sized data (guya, 2008).

Real-world Example:

CSRF vulnerability in IBM Tivoli Endpoint Manager Software Usage Analysis (SUA)

application. The application used Flash’s Action Message Format (AMF) (format used to
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send messages between a Flash applet and a remote service) to serialize messages between

web clients and the SUA server. A CSRF attack was feasible by attackers creating malicious

AMF messages and deceiving an authenticated SUA user into visiting an attacker-controlled

website (CVE-2013-0452) (IBM Corporation, 2013).

Another example of CSRF includes the Plupload example (Section 7.2.5).

7.2.8 Flash-based Heap Spraying

In a Heap Spraying attack, the attacker repetitively writes, or sprays, premeditated byte

sequences into a large section of the victim program’s heap. The shellcode is duplicated, and

augmented with long sequences of NOP (No Operation) sleds, to provide an increased jump

target to maximize the probability of success. A second exploit is required to point control

flow to jump to the sprayed code.

Flash-based heap spraying often employs the flash.utils.ByteArray class to conduct

heap spraying attacks. The ByteArray class, originally meant for facilitating developer in-

teraction with binary data, unfortunately facilitates heap spraying as well, due to this very

same characteristic of ease of byte-level access, including byte-level access to chunks of data,

read and write access to arbitrary bytes, and read and write access to binary representa-

tion of integers, floating point numbers, and strings. Additionally, the implementation of

the ByteArray class in the ActionScript 3 VM uses a contiguous block of memory and is

expanded dynamically for storing array contents (Overveldt et al., 2012).

In the attack, two ByteArray instances are used—one for the shellcode, and the other as

the heap spray target. The shellcode-loaded ByteArray is repeatedly copied into the target

ByteArray, thereby spraying the latter with the desired malicious payload (Overveldt et al.,

2012).
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Real-world Examples:

Watering Hole Attack on the Council on Foreign Relations Website. On December 27,

2012, the Council on Foreign Relations (CFR) website (Council on Foreign Relations, 2013)

was compromised, and subsequently was used as a medium to serve malware to its visi-

tors (Kindlund, 2013). The final stages of the exploit used a Flash applet, today.swf to

conduct a heap spray attack against users using Internet Explorer version 8 (CVE-2012-

4792) (Kindlund, 2013, 2012).

Flash Heap Sprays without JavaScript support. While most heap sprays involving Flash

borrow help from JavaScript, several instances of purely Flash-based heap spray attacks

exist. One example involves a Microsoft Office Word document containing an embedded

uncompressed malicious Flash file with heap spraying code. The document was a news

article on iPhone batteries (CVE-2012-1535) (Blasco, 2012).

7.2.9 Flash-based JIT Spraying

Just-In-Time (JIT) spraying attacks abuse JIT compilers to defeat code control-flow pro-

tections, such as those based on Address Space Layout Randomization (ASLR) and Data

Execution Prevention (DEP). ASLR reduces the reliability of attacker payloads by random-

izing the locations of binary code sections in victim processes. This frustrates attackers’

ability to predict valid code pointer values, and therefore invalidates many payloads con-

taining such pointers. DEP restricts write- and execute-access to most code and data bytes,

respectively, impeding malicious code-injections. However, JIT compilers typically open

loopholes in both defenses by dynamically allocating writable, executable data sections for

JIT-compiled code at discoverable locations.

The Adobe Flash player proves a prime target for JIT spraying as the ActionScript 3

Virtual Machine (AVM2) uses JIT-compiler enhancements to speed up execution (Adobe

Systems Inc., 2007). Additionally, the Flash player implements a vast number of features
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that all unfortunately aid in conducting a JIT spray attack, including a large GUI library,

a JIT 3D shader language, embeddable PDF support, multiple audio and video embedding

and streaming options, and of course the scripting VM (Blazakis, 2010b).

JIT spraying was first introduced, using Flash, in BlackHat D.C. 2010 (CVE-2010-

1297) (Seltzer, 2010; Blazakis, 2010a,b).

Real-world Example:

Evolution of Flash-based JIT spraying, and Adobe’s Continuous Reactions. Starting from

the BlackHat D.C. demo by Blazakis, it has been a back-and-forth war between JIT spraying

developers and Adobe (Serna, 2013). Since the first demo, Adobe has introduced various fea-

tures in the Flash compiler to mitigate JIT spray vulnerabilities, including constant folding,

and introduction of NOP-like instructions that break the continuity of shellcode.

An extremely sophisticated example of JIT Spraying (mitigated by Adobe in Flash version

11.8) uses ROP (Shacham, 2007) info leak gadgets and heap spraying to defeat prior Adobe

mitigations (such as the introduction of random NOP-like instructions). The attack exploits

a vulnerability in Windows 7/Internet Explorer 9 (CVE-2012-4787). Adobe’s mitigation to

this attack implemented a technique called constant blinding—XORing the value of a user-

supplied integer, used later in an assignment or function argument, with a random cookie

generated at runtime (Serna, 2013).

7.2.10 Obfuscation

Binary code obfuscation techniques are widely used by legitimate Flash developers to hin-

der reverse-engineering of Flash applets and protect intellectual property. Consequently,

Commercial Off-The-Shelf (COTS) Flash obfuscators, such as SWFEncrypt (Amayeta Cor-

poration, 2013), Kindi secureSWF (Kindi Software, 2013), DoSWF (DoSWF, 2013), and

DCoM SWF Protector (DCOMSOFT, 2013), are found aplenty in the market. Unfortu-
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nately, the same techniques and tools are often exploited by attackers to evade intrusion

detection systems.

Malicious obfuscation techniques include name substitution, improper use of keywords,

removal of debugging- and meta-information, introduction of redundant and cyclic control

flows, and inclusion of unrealizable or illegal code. Well-executed obfuscation makes manual

or COTS tool decompilation extremely challenging; typically, decompilation attempts using

these techiques lead to invalid or unintelligible source code.

Flash-based malicious obfuscation takes advantage of various ActionScript Virtual Ma-

chine features and methods. For example, one obfuscation technique employs a combination

of the Loader.loadBytes() method and the DefineBinaryData SWF tag (Adobe Systems Inc.,

2007). Loader.loadBytes() allows dynamic loading of Flash applets; the DefineBinaryData

tag allows arbitrary binary data to be embedded into the tagged section of a SWF file;

the data becomes available to ActionScript through a ByteArray instance at runtime, which

can be used as input to loadBytes() for evaluating a new Flash file. This gives attackers

the potential to create a series of encrypted malicious Flash files, embedded within one an-

other (Overveldt et al., 2012). Identifying the embedded exploits by a simple examination

of the external Flash file is extremely challenging (Ford et al., 2009).

Several other SWF tags (Adobe Systems Inc., 2007) and ActionScript classes present sim-

ilar powerful obfuscation-aiding mechanisms, including the DoAction, ShowFrame tags (Ac-

tionScript 2), and SymbolClass, DefineBits, DoABC tags (ActionScript 3) (Kovac, 2011a,b).

Obfuscation techniques that adopt any of these features turn out to be deviously powerful

because they house arbitrary dynamic code generation capabilities within operations that

are widely used for legitimate purposes.

Additionally, ActionScript allows string identifiers of built-in ActionScript variables and

methods to be stored in obfuscated form, and de-obfuscated at runtime when needed. Nearly

all Flash instructions represent object member names as string values at the binary level,
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making it acutely difficult to robustly determine which methods are called by even a stan-

dard, non-obfuscated Flash program. The ubiquity of obfuscation only makes this frightful

situation worse.

Real-world Example:

Peeling Obfuscation Like An Onion. Several instances of real-world Flash malware use

the attacker-favorite obfuscation technique of wrapping a series of malicious Flash files one

into another. One such real attack example involves wrapping an obfuscated Flash 8 exploit

(CVE-2007-0071) into multiple layers of a Flash 9 file (Ford et al., 2009).

An Avast! Blog article describes in detail an interesting real-world sample. The malware

uses the DefineBinaryData and SymbolClass tags to load one obfuscated Flash into a byte

array, and subsequently use the latter in a DoABC tagged code section, creating a layered

Flash exploit. The main point of the article was to demonstrate the immense ease by which

Flash files can be obfuscated, making obfuscators increasingly rampant in the Flash malware

world (Kovac, 2011a).

7.2.11 Type Confusion Exploitation

In a type confusion attack, the attacker abuses a vulnerability created by a discrepancy

in data type representation (Dowd et al., 2009). Type confusion attacks are particularly

insidious, since they can bypass DEP and ASLR without any kind of heap or JIT spray-

ing (Overveldt et al., 2012). This kind of vulnerability is often found in software components

that bind more than one language (Dowd et al., 2009). For example, in Flash, type confusion

vulnerabilities have appeared in the binding layer between ActionScript and native code. Im-

proper error-checking by compilers while converting between fundamental and user-defined

types can also cause type confusion vulnerabilities (Dowd et al., 2009).

Both the ActionScript 2 and ActionScript 3 virtual machines have been targeted for

type-confusion vulnerability exploitations. The ActionScript 3 virtual machine uses data
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types known as atoms and type-tags to support runtime type detection when a variable’s

type is not specified at the source level. Additionally, native code resulting from the JIT

compilation uses native data types; therefore, when a native method is called, the result is

wrapped into a type-tag for use by the VM (Overveldt et al., 2012).

This kind of type-tag wrapping has led to type confusion vulnerabilities. For example,

in one attack, the identifier of a class A is changed to the same name as another class

B in the bytecode, resulting in type confusion’. This results in calls to the B’s methods

actually calling native code implementations of class A. Upon return from the native code

method, the wrapped type-tag of the result depends on the types defined in B. The mismatch

between A’s native code methods being called, and B’s return types being used creates an

exploitable vulnerability, which can be used for various attacks such as leaking objects’

memory addresses, reading arbitrary memory addresses, and gaining control of execution

(CVE-2010-3654) (Overveldt et al., 2012).

FlashDetect (Overveldt et al., 2012) presents a very interesting technique for bypassing

DEP in Flash. The technique involves discovering the address of the VirtualProtect function

(used for changing the protection on a region of committed pages in the virtual address space

of a calling process) in the Flash player DLL, through an ActionScript object (Overveldt

et al., 2012).

Real-world Example:

Massive E-mail Attachment Exploits Targeting Type Confusion Vulnerabilities. Attacks

were conducted exploiting type confusion vulnerability in several versions of the Flash Player.

The vulnerability was exploitable upon supplying a corrupt response to ActionScript Mes-

sage Format0 error field, giving attackers the ability to execute arbitrary code with user

privileges (Rapid7 Inc., 2012).

Several attacks were conducted—each consisted of sending victims custom crafted emails

with malicious attachments. The attachments were .doc files that contained references to
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a malicious Flash file on a remote server. The .doc files also contained a hidden malicious

payload in encrypted form. The Flash file, when downloaded and played using a local

vulnerable Flash Player, sprays the heap with shellcode and triggers CVE exploit. When

executed, the shellcode finds the encrypted malicious payload in the original document,

decrypts and executes it (Symantec Corporation, 2012).

The emails were targeted at several members of the U.S. defense industry, and contacted

servers hosted in China, Korea, and the United States to acquire the necessary data to

complete the exploitation (Symantec Corporation, 2012). Most recently, an emailed called

“World Uyghur Congress Invitation.doc” was sent, targeting the World Uyghur Assem-

bly (Parkour, 2012).

7.2.12 Vulnerabilities in Flash Parser and Analysis Tools

Flash application parsers, runtime analysis and decompilation tools have also been targets

of attacks (fukami and Fuhrmannek, 2008).

Several attacks have been conducted due to lack of validation of ActionScript 2 jumps,

thereby allowing code execution to jump to non-code locations in the Flash file. The Ac-

tionScript architecture confines bytecode to specific tagged sections in the binary (.swf) file,

such as in DoAction or DoInitAction tags (Adobe Systems Inc., 2012b). The Flash VM

does not verify that the jump location exists within the original tagged section, malware can

therefore jump outside the section to execute bytecode elsewhere in the file. Many Flash

disassemblers and decompilers such as Flasm (Kogan, 2007) and Flare (Kogan, 2005) only

examine tagged sections designated for bytecode, and therefore typically miss malware that

has jumped outside. In fact, much malware has used the fact that most Flash analysis tools

do not examine tagged sections not designated for bytecode to hide malicious executable

code (Ford et al., 2009).

Ford et al. (Ford et al., 2009) additionally point out how tag validation is a problem

in itself—the Flash VM does not validate data inserted into tags. Furthermore, the Flash



185

VM also quietly ignores invalid tag types; invalid tag types can be created and filled with

ActionScript bytecode, which can be used for attacks such as above (Ford et al., 2009).

Real-world Examples:

Improper Parsing of Various Entities. Flash Player’s sloppy parsing has led to innumer-

able attacks, some examples are highlighted below.

Iranian Oil and Nuclear Situation Used As Bait for Defense Employees. In March 2012,

targets were sent emails with an “Iran’s Oil and Nuclear Situation.doc” attachment. The

attachment consisted of an embedded malicious Flash applet, which when run plays a mal-

formed MP4 file. An MP4 parsing error in the Flash Player (CVE vulnerability CVE-

2012-0754) while parsing caused memory corruption and subsequently the downloading and

installing of a Trojan, identified by many anti-virus products as “Graftor” or “Yayih.A”. The

targets of the attack were suspected to be members of the U.S. defense industry (Constantin,

2012).

Parsing TrueType Font. The Flash Player did not perform necessary validation while

parsing a TrueType font. While parsing, the Flash Player was supposed to calculate the size

of data to be copied based on a specific field; however, due to the lack of proper validation,

an integer overflow vulnerability was created, which exposed the VM to the execution of

arbitrary malicious code (Adobe Systems Inc., 2012a).

Proof-of-Concept Parsing Error Exploit. Improper validation of integer value by the

parser causes vulnerability (CVE-2009-1869) that is exploited by a cleverly executed proof-

of-concept heap-spray attack on Windows XP SP3 with IE7. The source code is available

on Google Code (Hay, 2009).
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7.2.13 JavaScript and HTML Script Injection

Most JavaScript code injection is conducted through the ExternalInterface class that Adobe

provides for ActionScript-JavaScript communication. For more information about JavaScript

code injection, please see Section 7.2.5.

Several security risks are posed by a combination of two ActionScript-HTML interactive

features. The first is the ability of the Flash VM to interpret HTML tags such as the anchor

(<a>,</a>) and image (<img>) tags. The second is the ability of HTML code to invoke

public and static ActionScript methods through a special protocol for URLs in HTML text

fields. In ActionScript 2, this is achieved through the asfunction protocol, which takes two

arguments function and parameter, where function is a string identifier for an ActionScript

2 function, and parameter is the parameter to the former (Paola, 2007). In ActionScript 3,

this is achieved through the flash.events.TextEvent class, by listening for click events from

HTML, using the TextEvent.LINK property for transferring information to ActionScript, and

adding an event handler in ActionScript.

Using these features, HTML code can perform cross-scripting to JavaScript through Ac-

tionScript, call an ActionScript method directly, call a particular SWF file’s public functions,

or call native static ActionScript directives such as flash.system.Security.allowDomain.

While these features provide powerful convenience in ActionScript-HTML interactions, they

obviously pose several security risks. For example, with the Security.allowDomain, it is easy

to allow access to a malicious domain (Paola, 2007).

The HTML image tag allows the src attribute to take files with .jpg and .swf extensions.

This of course presents an easy cross-site scripting vulnerability for Flash Player versions

7 or less, or if the AllowScriptAccess attribute is used imprudently. Additionally, if a

.swf extension is added to a malicious JavaScript code in the src attribute, such as <img

src=’javascript: alert(foo); //.swf’>, the Flash plug-in will go ahead and run the Flash

binary (Paola, 2007; Fukami, 2007).
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Real-world Example:

Cross-Platform Attack Using Malicious JavaScript Injection and Flash. Various fo-

rums such as “windows7forums.com” and “www.macrumors.com” were attacked by a com-

bination of malicious JavaScript and Flash scripts, originating from a malicious website

“www.priceofinsurance.com”. The attack was a cross-platform attack launched from multi-

ple sites, with the JavaScript hosted on a distribution server “www.googlefreehosting.com”.

The JavaScript triggered the Flash file 4.swf, which was used for data collection, and perhaps

for click fraud and privacy violation (Fara, 2013).

7.2.14 Flash Parameter Injection

Users can pass values to a Flash applet from its embedding container (typically an HTML

environment) into global variables inside the applet. In ActionScript 2, global variables are

pre-pended by keywords root, global or level0. In ActionScript 3, these are deprecated,

and replaced by a single global variable root. Arguments to a Flash movie using ActionScript

3 can be passed into the root.loaderInfo.parameter object, which will contain name-value

pairs of the parameters passed in from HTML. In flash parameter injection, an attacker

abuses this facility to take control of other objects within the Flash applet, as well as full

control over the embedding page’s DOM model.

Three popular ways to pass values to Flash applets include:

1. Passing arguments using direct reference. This method references the Flash file directly

and passes the arguments through the URI (this is the same as HTTP parameters using

the GET method). For example, in http://URL/myMovie.swf?a=5&b=hello, the global

variable a receives the value 5 and b receives the value hello. When this method is used

the Flash file is not embedded in the original HTML page, but is instead embedded in

a second “dummy” HTML page that is created automatically.
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2. Embedded URI. This method passes the arguments in the URI of the embedded object

in the original HTML page. For example, consider the HTML code in Figure 2.

1<body>
2 <object>
3 type = ”application/x−shockwave−flash”
4 data= ”myMovie.swf?a=5&b=hello”
5 width = ”600” height=”345”>
6 </object>
7</body>

Figure 7.2. HTML code with injection of Flash parameters using the Embedded URI method

3. Using the FlashVars parameter in <object> and <embed> . Variables passed through

FlashVars will go into the root level of the Flash movie. For example, in the Object

tag, <PARAM NAME=FlashVars value="foo=bar"> will assign bar to foo on the level0

timeline. All variables passed in through FlashVars have to be strings.

An uninitialized global variable usually has whatever value was in its memory location before

it was declared. However, uninitialized global variables are assumed to be FlashVars—

variables that can be declared and passed into the Flash applet for use from the embedding

container such as the embedding HTML webpage, through the <object> and <embed> tags.

Irrespective of ActionScript’s version, FlashVars can be easily abused since there are many

ways to pass them into the Flash applet (Paola, 2007).

Potential unsafe operations include: (1) location of the Flash movie is retrieved through a

URL parameter: http://host/index.cqi?movie=movie.swf?globalVar=e-v-i-l; (2) a victim

is lured into clicking on a potentially malicious link such as http://host/index.cqi?language

English%26globalVar=e-v-i-l, which happens when global flash variables are received from

HTML parameters without sanitization; (3) global variable is injected into the Flash movie

embedded inside the DOM: http://host/index.htm#&globalVar=e-v-i-l (Paola, 2007).
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Real-world Example:

XSS in Gmail Based Services through Flash Parameter Injection. Users of the staple

applications Gmail and Google Apps became vulnerable to full account hijacking through a

Flash-based XSS vulnerability (Amit, 2010b). Internally, Gmail used a Flash applet called

uploaderapi2.swf for file uploads; the applet used two user-inputs, (apiInit and apiId),

as parameters to an ExternalInterface.call(). Proof-of-concept script injection attack

was conducted before Google patched the vulnerability: the attacker was able to execute

arbitrary JavaScript code in the mail.google.com (the Gmail domain) by setting apiInit

to eval and apiId to some desired malicious code, and then enticing a user to click on a

malicious link with these variables set: https://mail.google.com/mail/uploader/uploader-

api2.swf?apiInit=eval&apiId=alert(document.cookie).

The malicious JavaScript ran in the context of active Gmail sessions; attackers were able

to fully impersonate their victims and steal information from their accounts (Amit, 2010b).

An interesting point to note is that this attack can be executed transparently in browsers

such as Firefox and Google Chrome—since Flash is executed on the client side, the values of

apiInit and apiId (the malicious payload) can be hidden from the server by adding the “#”

sign before the query part of the URL: https://mail.google.com/mail/uploader/uploader-

api2.swf#?apiInit=eval&apiId=alert(document.cookie). The receiving server sees a re-

quest without parameters: https://mail.google.com/mail/uploader/uploaderapi2.swf, th-

erefore concluding it to be benign; Gmail loads uploaderapi2.swf without any parameters.

However, at the client side, a successful exploitation occurs since the Flash player refers to

the whole URL, including the attack payload, which comes after the “#” sign (Paola, 2007;

Amit, 2010b).

7.2.15 Flash-based Malvertisements

Web advertisements are an important source of revenue for webpage publishers. However,

recently they are gaining traction as a tenacious vehicle for various malicious activities such as
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stealing personal and banking details, corrupting data and webpages, and spreading viruses

and spyware. According to the Symantec annual Internet Security Threat Report, malicious

advertising, or malvertising may be the primary reason why drive-by-web attacks increased

by one-third from 2011 to 2012 (Symantec Corporation, 2013). According to Cisco’s Annual

Security Report, malvertisements comprise of 16% of total web malware, mainly because

a single online advertisement is typically used to fuel revenue for many webpages (Cisco

Systems, Inc., 2013). According to a 2010 report by the Internet security company Dasient,

there were a staggering 1.3 million malvertisements viewed daily (Danchev, 2010).

The user’s trust is paramount to a malvertisement; therefore, many malvertisers target

popular sites such as The New York Times, the London Stock Exchange pages, and top

social networking sites such as Facebook. Malvertisers also wait until the ad has been

well-circulated before triggering malicious activity, since alarming users at the start of the

malicious campaign would defeat their purpose.

Websites usually contain embedded resource containers for an advertisement, with a

reference to the advertisement, which is typically hosted by a third-party ad network. When

a user visits the site, the webpage loads and communicates with the advertising third-party

network requesting a relevant ad. For a Flash-based ad, after checking that the user’s browser

is Flash-enabled, the network sends relevant code back to the user’s browser that needs to

be inserted for the webpage to display the ad. The code in turn downloads the actual ad

Flash binary file from the ad network (Ford et al., 2009).

Flash provides malvertisers a more sophisticated, powerful, and flexible platform than

JavaScript/HTML for numerous reasons. Firstly, Flash allows the encoding of detailed

ActionScript instructions for expressing the business/domain logic within the ad itself. Sec-

ondly, ActionScript tends to be more difficult to examine than JavaScript, providing attackers

more flexibility in their attack code. ActionScript also allows malvertisements to judge time

and location targets—-for example, they can defer malice until they have been deployed suc-

cessfully on the ad network and target certain geographic areas using the ActionScript Date
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class. Additionally, Flash Shared Objects (see Section 7.2.1) contain a timestamp attribute

that can be used by malvertisements to determine whether the malicious activity has been

performed on a particular machine within a particular time frame, avoiding a redundant at-

tack to evade suspicion. The LoadVars.load() method can be used to send HTTP requests,

and navigation methods such as MovieClip.getUrl() can be used to redirect to particular

new sites. Finally, Flash-based malvertisements have access to a plethora of COTS obfus-

cators such as SWF Encrypt (Amayeta Corporation, 2013) to evade detection and defeat

casual SWF decompiler tools (Ford et al., 2009; Zeltser, 2011a,b).

An interesting point to note here is that Flash-based malvertisements borrow heavily

from several vulnerability and attack types that this paper presents from Section 7.2.1 to Sec-

tion 7.2.14. For example, Flash-based malvertisements often use the obfuscation technique

of layered-embedding of malicious Flash files as discussed in Section 7.2.10, and getUrl()

and navigateToURL() methods for malicious redirection to conduct phishing, pharming and

drive-by-download attacks (Section 7.2.1—Section 7.2.3). Malvertisements also use the Flash

platform for ExternalInterface attacks (Section 7.2.5) and as a vehicle for heap or JIT

spraying (Section 7.2.8, Section 7.2.9).

Real-world Examples:

DDoS Attacks on Stop Malvertising Site. In July 2011, a DDoS attack was conducted on

the Stop Malvertising Site using a series of cleverly crafted mini Flash files. The files came

from three different domains, data-ero-advertising.com, flatfee.ero-advertising.com,

and www.ero-advertising.com. Analysis of several of the malicious Flash advertisements

showed embedded Sprite and MovieClip classes with Flash malware (Kimberly, 2011).

Malvertising Attack on American Idol Website. Another interesting attack was on the

American Idol fan page just prior to the competition finale of 2011. The attack consisted of

an abuse of the ExternalInterface class to perform malicious redirection to the malicious

ad network (Darryl, 2011b).
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7.3 Scientic Research Survey Methodology

To better understand the scientific community’s responsiveness to Flash security threats, we

surveyed publications in the six highest-impact, security-themed, computer science venues,

excluding venues that focus mainly on cryptography. The top six such venues ranked by

Google’s h5 index as of November 2013 are ACM Symposiym on Information, Computer and

Communications Security (CCS), USENIX Security Symposium, IEEE Symposium on Secu-

rity and Privacy (S&P), IEEE Transactions on Dependable and Secure Computing (TDSC),

ACM Transactions on Information and System Security (TISSEC), and European Confer-

ence on Research in Computer Security (ESORICS).

We read the abstracts and introductions of all publications in these venues between 2008–

2012, and all publications in these venues in 2013 published till date, manually identifying

those papers that are web-related, and conservatively classifying all works that make more

than anecdotal reference to Flash or ActionScript as Flash-targeting.

Figure 7.3 illustrates the results. Overall, 9.6% (100/1045) of surveyed publications are

devoted to web security. Of these, only 15/100 = 15% papers target Flash (CCS: Magazinius

et al., 2013; Acar et al., 2013; Heiderich et al., 2011, IEEE: Kolbitsch et al., 2012; Nikiforakis

et al., 2013; Wang et al., 2012; Invernizzi and Comparetti, 2012; Mayer and Mitchell, 2012;

Weinberg et al., 2011; Levchenko et al., 2011; Thomas et al., 2011; Chen et al., 2010; Bau

et al., 2010, and USENIX Johns et al., 2013; Huang et al., 2012). IEEE S&P has the greatest

percentage, devoting 10/24 = 41.7% of web security publications to Flash. The remaining

five venues collectively devoted only 5/76 = 6.6% of web security publications to Flash. This

indicates that in general the scientific community’s attendance to Flash security issues has

been disproportionately small relative to the role of Flash in real-world attacks.
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Figure 7.3. Flash presence in the top six security publication venues in 2008–2013.

7.4 Conclusion

Adobe’s Flash platform has undoubtedly become a pervasive technology with a spectrum of

rich features. The same flexibility and power, however, lead to a vast range of security issues.

Despite the gravity of the problem, little formal study has been done on systematizing this

large body of knowledge. In order to fill this void and stimulate future research, we present

a systematic study of Flash security threats and trends, including an in-depth taxonomy of

fifteen major Flash vulnerability and attack categories, and an examination of what makes

Flash security challenges unique. The results of these analyses provide researchers, web

developers, and security analysts a better sense of this important attack space, and identify

the need for stronger security practices and defenses for protecting users of these technologies.



CHAPTER 8

RELATED WORK

8.1 In-lined Reference Monitoring

IRMs were first formalized in the development of the PoET/PSLang/SASI systems (Erlings-

son and Schneider, 1999; Schneider, 2000), which instrument Java bytecode and Gnu as-

sembly code. Subsequently, numerous IRM frameworks have been developed for Java (Chen

and Roşu, 2005; Ligatti et al., 2005b; Aktug and Naliuka, 2008; Dam et al., 2009; Evans

and Twynman, 1999; Kim et al., 2004; Bauer et al., 2005; Hamlen and Jones, 2008), JS (Yu

et al., 2007; Fredrikson et al., 2012), .NET (Hamlen et al., 2006a), AS (Li and Wang, 2010;

Hamlen and Jones, 2008), Android (Davis et al., 2012), and x86/64 native code (Yee et al.,

2009; Abadi et al., 2009, 2005; Erlingsson et al., 2006) architectures.

Most IRMs today express security policies in an AOP or AOP-like language with point-

cut expressions for identifying security-relevant binary program operations, and guard code

fragments (advice) that specify actions for detecting and prohibiting impending policy vio-

lations.

ConSpec (Aktug and Naliuka, 2008) restricts IRM-injected code to effect-free operations,

which allows a static analysis to verify that a rewritten program does not violate the intended

policy. The Java-MOP system (Chen and Roşu, 2005) allows policy-writers to choose from

a sizable collection of formal policy specification languages, including LTL. Mobile (Hamlen

et al., 2006a) is an In-lined Reference Monitoring system for the Microsoft .NET framework.

It rewrites .NET CLI programs to satisfy a declarative policy specification by transforming

the program into a well-typed Mobile program. Finally, SPoX (Hamlen and Jones, 2008)

rewrites Java VM bytecode programs to satisfy declarative, Aspect-Oriented security policies.

194
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8.2 IRM Soundness Certification

To our knowledge, ConSpec and Mobile are the only IRM systems to yet implement auto-

matic certification. While the security policies described by these systems are declarative

and therefore amenable to a more general verifier, both use a verifier tailored to a specific

rewriting strategy.

8.2.1 Type-based Certification

Machine-certification of IRMs was first proposed as type-checking (Walker, 2000)—an idea

that was later extended and implemented in the Mobile system (Hamlen et al., 2006a).

Mobile transforms Microsoft .NET bytecode binaries into safe binaries with typing annota-

tions in an effect-based type system. The annotations constitute a proof of safety that a

type-checker can separately verify to prove that the transformed code is safe. While type-

checking has the advantage of being light-weight and elegant, it comes at the expense of

limited computational power. For instance, Mobile cannot enforce security policies based on

data-flow; instead, it is limited to control-flow based policies. Therefore, since it does not

currently support dynamic pointcut matching, it has not been applied to AOP-style IRMs

to our knowledge.

8.2.2 Contract-based Certification

ConSpec (Aktug and Naliuka, 2008; Aktug et al., 2008) adopts a security-by-contract ap-

proach to AOP IRM certification. Its certifier performs a static analysis that verifies that

contract-specified guard code appears at each security-relevant code point. While certifica-

tion using contracts facilitates natural expression of policies as AOP programs, it has the

disadvantage of including the potentially complex advice code in the TCB.
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8.2.3 Per-rewriter Certification

An alternative to verifying IRMs is to prove the soundness of each rewriting implementa-

tion once and for all. For example, the Coq proof assistant has been applied to implement

provably sound monitor-generating algorithms for OCaml (Blech et al., 2012). However,

extending this to production-level IRM systems requires proving the correctness of the en-

tire IRM-synthesis tool chain, which can be considerable. For example, Java-MOP, which

includes AspectJ, consists of almost a million lines of Java source code (Chen and Roşu,

2005). Moreover, proofs of rewriter soundness are inapplicable to architectures where code-

recipients must verify IRMs produced by an untrusted third party (Jones and Hamlen, 2011).

For these reasons, automated IRM verification has become the dominant approach.

8.3 IRM Transparency and Program Equivalence

In contrast to IRM soundness certification, transparency has been less studied. IRM trans-

parency is defined in terms of a trace-equivalence relation that demands that the original

and IRM-instrumented code must exhibit equivalent behavior on equal inputs whenever the

original obeys the policy (Hamlen et al., 2006b; Ligatti et al., 2005b). Traces are equivalent

if they are equal after erasure of irrelevant events (e.g., stutter steps). Subsequent work

has proposed that additionally the IRM should preserve violating traces up to the point of

violation (Khoury and Tawbi, 2012).

Chudnov and Naumann provide the first formal IRM transparency proof (Chudnov and

Naumann, 2010). Their IRMs enforce information flow properties, so transparency is there

defined in terms of program input-output pairs. In lieu of machine-certification, a written

proof establishes that all programs yielded by one particular rewriting algorithm are trans-

parent. The proof is therefore specific to one rewriting algorithm and does not necessarily

generalize to other IRM systems or policies.
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Providing a definition of semantic equivalence that is applicable to more complex systems

whose behavior is not precisely characterizable in terms of input-output behavior is difficult.

For example, it is possible to encode unique behaviors as unique types (e.g., Tarditi et al.,

1996), but the resulting equivalence relation is so strict as to preclude most IRM’s that

enforce history-based access-control policies. This highlights the need for an equivalence

relation that successfully distinguishes code-transformations that affect only policy-violating

program behaviors from those that potentially affect even policy-satisfying behaviors. The

former should be accepted by a transparency-certifier, whereas the latter should not.

Jia et al. (Jia et al., 2010) recently introduced a dependently typed language that does not

need decidable type-checking and therefore decidable program equivalence. The language

has a type system that is parametrized by an abstract relation isEq(∆, e, e′) that specifies

program equivalence. The relation holds when e and e′ are semantically equivalent in a

context ∆ of assumptions about the equivalence of terms.

8.3.1 Compiler Verification

Program equivalence-checking has been studied in the context of translation validation, which

verifies behavior-preservation of compiler optimization phases (Pnueli et al., 1998; Necula,

2000; Program-Transformation.Org, 2013; Leroy, 2009). Conceptually, translation validators

explore the cross-product space of an abstract bisimulation of original and rewritten code,

attempting to prove a semantic equivalence property of each abstract state (Zaks and Pnueli,

2008). By changing the property being checked, one can potentially verify software security

properties, such as information flow policies (Barthe et al., 2004).

Our work applies cross-product exploration to the problem of IRM transparency verifica-

tion. However, unlike compiler translations, IRMs are not obligated to satisfy transparency

for policy-violating flows—indeed, they must not. This significantly changes the semantic

equivalence properties that a transparency verifier must check. The new property is an im-

plication with policy-adherence as its antecedent and observable semantic equivalence as its
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consequent. In addition, IRMs introduce non-trivial, permanent memory state changes (e.g.,

reified state variables that track security state, modified arguments that flow to potentially

unsafe operations, etc.) and interprocedural structural changes (e.g., new classes and meth-

ods associated with the monitor) that are atypical of compiler optimizations. These are not

supported by existing translation validators to our knowledge.

8.3.2 Secure Protocol Analysis

Observational equivalence of abstract processes is often formally verified to ensure data

confidentiality of communication protocols (Blanchet et al., 2008; Delaune et al., 2007; Cheval

et al., 2011; Tiu and Dawson, 2010). In this context, observational equivalence implies that

a secret exchanged by the protocol is not divulged to an attacker. This differs from our

work in at least two significant respects: (1) Observational equivalence of IRMs is less strict

because our goal is program feature preservation, not privacy. Thus, some visible behavior

changes (e.g., timing changes) are acceptable as long as they do not impair desired program

functionality. (2) We decide observational equivalence of real binary programs expressed in

a real-world language (ActionScript), rather than abstract process descriptions.

8.3.3 Semantic Equivalence for Revision Tracking

Differential symbolic execution (Person et al., 2008) involves characterizing revision changes

to software systems. Its goal is code documentation and comprehension rather than preclu-

sion of observable behavior differences at the binary level.

8.4 General Model-checking

Related research on general model-checking is vast, but to our knowledge no past work has

applied model-checking to the IRM verification problem. A majority of model-checking re-

search has focused on detecting deadlock and assertion violation properties of source code.
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For example, Java PathFinder (JPF) (Kisser et al., 2003) and Moonwalker (Ruys and de

Brugh, 2007) verify properties of Java and .NET source programs, respectively. Both pro-

vide built-in support for deadlock detection and unhandled exceptions, but not LTL model-

checking.

Other model-checking research (Ramakrishna et al., 1997; Basu and Smolka, 2007) has

targeted abstract languages, such as the π-calculus (Milner, 1999) or Calculus of Commu-

nicating Systems (CCS). While important, these systems do not address certain significant

practical issues, such as state space explosion, that typically arise when model-checking real

software systems.

Model-checking of binary code is useful in situations where the code consumer may not

have access to source code. For example, CodeSurfer/x86 and WPDS++ have been used to

extract and check models for x86 binary programs (Balakrishnan et al., 2005).

8.5 ActionScript Security

The ActionScript VM includes standard object-level encapsulation as well as a sandboxing

model. While useful, these protections are limited to enforcing a restricted class of low-level,

coarse-grained security policies.

8.5.1 Survey Papers on ActionScript Security

Ford et al. (Ford et al., 2009) discuss many interesting attacks and vulnerabilities in the Flash

attack space, such as obfuscation techniques, malvertisements, parser and decompilation tool

issues. However, their survey is about four years ago, in which there have been innumerable

changes to the Flash architecture and ActionScript language (Ford et al., 2009).

A more recent work earlier this year analyzed security threat reports as reported by

the United States Computer Emergency Readiness Team (US-CERT). In their work, they
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analyze the several company-related vulnerabilities and threats, in which Adobe was ranked

third with 14% amongst top seven software giants (Baker et al., 2013).

In FlashDetect (Overveldt et al., 2012), the authors analyze language and architecture

features that aid in Flash-based malware. The paper specifically covers obfuscation, heap

spraying, JIT spraying, and the usage of ActionScript 3 as an exploit facilitator. However,

their study is limited to this scope.

8.6 Securing Mixed Web Content

8.6.1 Behavioral Sandboxing

Our FlashJaX framework adopts a reference monitor approach, which monitors the behavior

of web pages to detect and prevent attacks. There are a number of such methods in the

recent literature (Agten et al., 2012; Cao et al., 2012; Phung and Desmet, 2012; Taly et al.,

2011; Cutsem and Miller, 2010; Heiderich et al., 2011; Meyerovich et al., 2010; Phung et al.,

2009). These works explore many subtle scenarios that arise when considering security

issues in JS. For instance, JSand (Agten et al., 2012) isolates untrusted JS by loading it

into a sandbox environment that can only interact with a virtual DOM. Thus, the policy

definition and enforcement are implemented in a virtual DOM implementation. In contrast,

FlashJaX keeps track of principals for untrusted scripts within a shadow stack in order to

enforce an appropriate policy at runtime. FlashJaX can therefore handle JS script actions

from AS while JSand cannot, since the latter requires full source codes of untrusted scripts.

Virtual Browser (VB) (Cao et al., 2012) mediates third-party JS accesses to the browser via

a virtual browser expressed in JS. The implementation is a variant of a security reference

monitor. Unlike FlashJaX, VB does not support multi-principal or fine-grained policies for

multi-party web applications, and does not support Flash content.

Isolating third-party content into (often invisible) iframes and providing a mechanism for

cross-domain communication is an alternative approach to constraining untrusted scripts.
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Some examples include Adjail (Louw et al., 2010), Webjail (Acker et al., 2011), and Sub-

space (Jackson and Wang, 2007). This technique is unsuitable for Flash content for per-

formance reasons—transporting Flash content through browser-supported communication

channels is prohibitively slow.

Configurable Origin Policy (COP) (Cao et al., 2013) is a recent proposal that allows

web developers to associate web pages with a security principal via a configurable ID in

the browser, so that web applications having a common ID are treated as same-origin even

when hosted from different domains, such as gmail.com vs. docs.google.com. This clean-

slate approach is a promising one in the design space of browser security. In contrast to a

clean-slate approach such as COP, FlashJaX follows a design that is compatible with today’s

browsers and Flash interpreters. In general, since these methods only focus on the JS side,

they cannot prevent attacks exploiting JS-AS interactions.

Similarly, there are several protection methods focusing on privacy and behavioral tar-

geting, for example, Privads (Guha et al., 2009), Adnostic (Toubiana et al., 2010), and

RePriv (Fredrikson and Livshits, 2011), which address user privacy issues from behavioral

targeting. These rely on specialized, in-browser systems that support contextual placement

of ads while preventing behavioral profiling of users. In contrast, our work mainly focuses on

a different, publisher-centric problem of protecting confidentiality and integrity of publisher

and user-owned content. Our work is also aimed at providing compatibility with existing ad

networks and browsers.

8.6.2 Restricting Content Languages

There have been a number of works in the area of JS analysis that restrict content from

untrusted sources to provide security protections (Facebook Developers, 2010; Guarnieri and

Livshits, 2009; Maffeis and Taly, 2009; Maffeis et al., 2009b; Finifter et al., 2010; Politz et al.,

2011). These works focus on limiting the JS language features that untrusted scripts may
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use. Only those language features that are statically deterministic and amenable to analysis

are allowed. Since these methods restrict content at a language level, they do not impose the

runtime penalty of reference monitors. In the cases of FBJS (Facebook Developers, 2010)

and ADsafe (Crockford, 2007), untrusted scripts are confined to an access-controlled DOM

interface, which incurs some overhead but affords additional control.

The disadvantage of a restricted JS subset is that ads authored by many advertisers are

unlikely to conform to this subset, and will therefore require re-development. In contrast,

FlashJaX neither imposes the burden of new languages nor places restrictions on JS language

features used in ad scripts. The only effort required from a publisher that incorporates

FlashJaX is to specify policies that reflect site security practices.

8.6.3 Code Transformation Approaches

Many recent works have transformed untrusted JS code to interpose runtime policy enforce-

ment checks (Reis et al., 2006; Yu et al., 2007; Kikuchi et al., 2008; Google Caja, 2007;

Microsoft Live Labs, 2009; Li et al., 2011). These works cover many diverse attack vectors

by which third-party content may subvert the checks. Since these works are aimed at general

JS security, they do not consider the security of the JS-AS interface and attacks that target

this interface.

8.6.4 Browser-enforced Protection

A modified browser can be instructed to enforce security policies, as illustrated by BEEP (Jim

et al., 2007), CoreScript (Yu et al., 2007), End-to-End Web Application Security (Erlingsson

et al., 2007), Content Security Policies (Stamm et al., 2010), and ConScript (Meyerovich

and Livshits, Meyerovich and Livshits). Other works, such as AdSentry (Dong et al., 2011),

JCShadow (Patil et al., 2011), ESCUDO (Jayaraman et al., 2010), and Tahoma (Cox et al.,
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2006), have taken this approach to prevent attacks by untrusted content. The main ad-

vantage of this approach is that it can enforce fine-grained policies with low overhead.

However, the primary drawback is that today’s browsers do not agree on a standard for

publisher-browser collaboration, leaving a large void in the near-term for protecting users

from malicious third-party content.

8.6.5 Safety of ActionScript content

Jang et al. (Jang et al., 2011) point out the pervasive nature of misconfigured AS content,

particularly with reference to cross-domain policies. Ford et al. (Ford et al., 2009) describe

a malware identification approach for Flash advertisements.

The work that is closest to ours is FIRM (Li and Wang, 2010), which uses an IRM

approach for prevention of Flash-related attacks. FIRM is strictly limited to AS mediation,

whereas FlashJaX tackles a much broader class, that of mixed AS-JS content. As a result,

our monitor is able to address a much broader class of attack vectors that target JavaScript as

well as ActionScript (as discussed in Section 2.2), especially those that exploit the interface

boundary. Since FIRM focuses purely on AS-side monitoring, it adopts a less conservative

threat model that assumes that some parts of the JS namespace can be read-protected

from adversaries. This relaxed model admits a capability-based approach, which FIRM

implements using secret tokens that are maintained by the reference monitor. In contrast,

FlashJaX’s threat model acknowledges that protection of secrets in a JS environment is

hard. There are many different ways through which an attacker can get read access to

the JS namespace (cf., Maffeis et al., 2009a) in order to gain access to secret tokens. We

therefore conservatively assume that adversaries may have the ability to read the complete

JS namespace, and therefore developed a more robust approach whose security is argued in

Section 2.5.



CHAPTER 9

CONCLUSIONS1

Binary instrumentation via IRMs is now well-established as a powerful and versatile tech-

nology, providing a flexible, powerful, yet efficient security enforcement for many platforms.

Independent certification of the instrumented code helps minimize and stabilize the trusted

computing base, combining the power and flexibility of the runtime monitoring with strong

formal guarantees of static analysis.

This dissertation builds several tools and methodologies for providing case-by-case certifi-

cation of instrumented code via model-checking. Certification is achieved for both soundness

and transparency properties, thus establishing both policy-adherence of the instrumented

code, and behavior-preservation over the instrumentation process. The certification task is

simplified by leveraging untrusted information from the rewriting process, rendering case-

by-case certification significantly lighter-weight than certification of arbitrary code.

The dissertation presents the results of developing model-checking IRM frameworks for

several platforms, with several compelling applications to important classes of challenging

contemporary security issues, such as cross-domain web advertisement security. The tech-

nologies presented are backed by rigorous formalisms and proofs. In the following sections,

we discuss in-depth conclusions and future-work pertaining to each major work presented

in the dissertation, and conclude by presenting two interesting future research directions in

IRM certification research.

1This chapter includes previously published (Sridhar and Hamlen, 2011) joint work with Kevin
W. Hamlen.
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9.1 FlashJaX: Securing Mixed JavaScript/ActionScript Multi-party Web Con-

tent

In Chapter 2, we presented FlashJaX, a solution for enforcing security policies on third-party

mixed JS/AS web content using an IRM approach. FlashJaX allows publishers to define

and enforce fine-grained, multi-principal access policies on JS-AS third party content and

runtime-generated code. Moreover, it can be easily deployed in practice without requiring

browser modification. Experiments show that FlashJaX is effective in preventing attacks

related to AS-JS communication, and its lightweight IRM approach exhibits low overhead

for mediations. It is also compatible with advertisements from leading ad networks.

9.2 ActionScript Bytecode Verification Using Co-logic Programming

In Chapter 3, we described preliminary work toward developing a security policy verifier for

Adobe ActionScript bytecode programs. Our verifier consists of an interpreter for Action-

Script bytecode and an LTL model-checker, both written in Prolog extended with tabling

and coinduction. Experiments demonstrated that our prototype can efficiently verify simple

but interesting history-based policies for small ActionScript programs.

Verifiers are typically part of a secure system’s trusted computing base. It is therefore

important that the verifier itself be amenable to formal verification. The declarative nature of

co-LP Prolog yields several significant advantages in this regard. First, our verifier code base

is very concise—the parser is 2 kSLOC while the AVM2 semantics and the model-checker

are each 1 kSLOC. Second, our experiences indicate that it is straightforward to encode

semantic rules, such as those from the AVM2 Specification (Adobe Systems Inc., 2007), as

a relation between program states (see Figure 3.2). Finally, implementing the expansion

rules for LTL in co-LP avoids a great deal of tedious and error-prone implementation work

by relying upon the well-defined termination semantics of tabling and coinduction in Prolog

(see Figure 3.3).
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In future work, we plan to generate explicit policy-adherence proofs. This involves en-

hancing current implementations of coinductive Prolog (Gupta et al., 2007) to support enu-

meration of all coinductive proofs of a goal. After completing these efforts, generating these

proofs should require minimal changes to our system.

There is a large body of existing work on optimizing LTL formulae used in model checking

(e.g., Daniele et al., 1999; Etessami and Holzmann, 2000; Sebastiani and Tonetta, 2003). We

also intend to explore the use of other temporal logics, especially Computation Tree Logic

(CTL) and the µ-calculus (Jr. et al., 1999), for the specification of security policies. The

method mentioned in (Dillon and Ramakrishna, 1996) suggests a means of modularizing the

temporal logic engine out of the model-checker, allowing the same model-checking system

to be used for multiple temporal logics by changing which temporal logic engine is used.

Examining how to use several of these engines at once seems a promising direction for our

tool as well.

9.3 A Prototype Model-Checking IRM System for ActionScript Bytecode

Chapter 4 discussed preliminary work on certifying IRMs through model-checking. Our

technique derives a state abstraction lattice from a security automaton to facilitate precise

abstract interpretation of IRM code. Formal proofs of soundness and convergence guarantee

reliability and tractability of the verification process.

While the section covers proof sketches for the interesting cases of progress and preserva-

tion, and soundness and convergence, we have also recently completed fully machine-verified

proofs for all of the above using the Coq proof assistant (INRIA, 2014).

We demonstrated the feasibility of our technique by enforcing a URL anti-redirection

policy for ActionScript bytecode programs. We also demonstrated the elegance of using

Prolog for implementing a certifying IRM system. Using Prolog resulted in faster devel-

opment and simpler implementation due to code reusability from reversible predicates and
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succinct program specifications from declarative programming. This resulted in a smaller

trusted computing base for the overall system.

While our algorithm successfully verifies an important class of IRM implementations

involving reified security state, it does not support all IRM rewriting strategies. Reified

security state that is per-object (Hamlen et al., 2006a) instead of global, or that is updated

by the IRM before the actual security state changes at runtime rather than after, are two

examples of IRM strategies not supported by our model. Subsequently, Chapter 5 generalized

our approach to cover these cases.

One area of future work remaining is augmenting our system with support for recursion

and mutual recursion, which is currently not handled by our implementation.

9.4 Full-Scale Certification for the SPoX Java IRM System

In Chapter 5, we developed Cheko —the first automated, model-checking-based certifier

for an aspect-oriented, real-world IRM system (Hamlen and Jones, 2008). Cheko uses

a flexible and semantic static code analysis, and supports difficult features such as reified

security state, event detection by pointcut-matching, combinations of untrusted before- and

after-advice, and pointcuts that are not statically decidable. Strong formal guarantees are

provided through proofs of soundness and convergence based on Cousot’s abstract interpreta-

tion framework. Since Cheko performs independent certification of instrumented binaries,

it is flexible enough to accommodate a variety of IRM instrumentation systems, as long as

they provide (untrusted) hints about reified state variables and locations of security-relevant

events. Such hints are easy for typical rewriter implementations to provide, since they typi-

cally correspond to in-lined state variables and guard code, respectively.

Our focus was on presenting main design features of the verification algorithm, and an

extensive practical study using a prototype implementation of the tool. Experiments revealed
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at least one security vulnerability in the SPoX IRM system, indicating that automated

verification is important and necessary for high assurance in these frameworks.

In future work we intend to turn our development toward improving efficiency and mem-

ory management of the tool. Much of the overhead we observed in experiments was traceable

to engineering details, such as expensive context-switches between the separate parser, ab-

stract interpreter, and model-checking modules. These tended to eclipse more interesting

overheads related to the abstract interpretation and model-checking algorithms. We also

intend to examine more powerful rewriter-supplied hints that express richer invariants. Such

advances will provide greater flexibility for alternative IRM implementations of stateful poli-

cies.

Finally, we also plan to complete fully machine-verified proofs for all the proofs in this

chapter using the Coq proof assistant (INRIA, 2014).

9.5 Certifying IRM Transparency Properties

Concerns about program behavior-preservation (transparency) have impeded the practical

adoption of IRM systems for enforcing mobile code security. Code producers and consumers

both desire the powerful and flexible policy-enforcement offered by IRMs, but are unwilling

to accept unintended corruption of non-malicious program behaviors.

To address these concerns, in Chapter 6, we presented the design and implementation

of the first automated transparency-verifier for IRMs, and demonstrated how safety-verifiers

based on model-checking can be extended in a natural way to additionally verify IRM

transparency. To minimize the TCB and keep verification tractable, an untrusted, external

invariant-generator safely leverages rewriter-specific instrumentation information during ver-

ification. Hints from the invariant-generator reduce the state-exploration burden and afford

the verifier greater generality than the more specialized rewriting systems it checks. Pro-

log unification and Constraint Logic Programming (CLP) keeps the verifier implementation
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simple and closely tied to the underlying verification algorithm, which is supported by proofs

of correctness and abstract interpretation soundness. Practical feasibility is demonstrated

through experiments on a variety of real-world AS bytecode applets.

In future work, we would like to extend our approach to support user-written IRM

implementations (e.g., those implemented in AspectJ (Chen and Roşu, 2005)) in addition

to IRMs synthesized purely automatically. This requires an IRM development environment

that includes program-proof co-development, such as Coq (INRIA, 2014). Such research

will facilitate easier, more reliable development of customized IRMs with machine-checkable

proofs of soundness and transparency.

Finally, we also plan to complete fully machine-verified proofs for all the proofs in this

chapter using the Coq proof assistant (INRIA, 2014).

9.6 Flash in the Dark: Studying the Landscape of ActionScript Web Security

Trends and Threats

Adobe’s Flash platform has undoubtedly become a pervasive technology with a spectrum

of rich features. The same flexibility and power, however, lead to a vast range of security

issues. Despite the gravity of the problem, little formal study has been done on systematizing

this large body of knowledge. In order to fill this void and stimulate future research, in

Chapter 7, we presented a systematic study of Flash security threats and trends, including

an in-depth taxonomy of fifteen major Flash vulnerability and attack categories, and an

examination of what makes Flash security challenges unique. The results of these analyses

provide researchers, web developers, and security analysts a better sense of this important

attack space, and identify the need for stronger security practices and defenses for protecting

users of these technologies.
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9.7 Future Directions in IRM Certification

Static certification of IRM systems is an emerging challenge that, if surmounted, offers to

marry the power and flexibility of dynamic policy enforcement with the strong formal guar-

antees of purely static analysis. However, several practical problems are faced by developers

of certifying IRM systems today. We present two of these here.

9.7.1 Runtime Code-Generation

The increasing ubiquity of runtime code generation constitutes one of the most significant

outstanding challenges for effective, real-world IRM certification. A major class of examples

are languages adhering to the ECMA-262 standard (International, 1999) (e.g., JavaScript,

ActionScript, etc.), which supports the built-in function eval. The eval function evaluates

a (possibly dynamically generated) string argument as a program. Simply passing this

runtime-generated code through a second round of rewriting is not feasible for the majority

of IRM frameworks in which the rewriter is unavailable at runtime. For example, web ad

frameworks typically assume that ad publishers or distributors perform the more significant

rewriting task, whereas recipients simply certify.

While runtime code-generation is a consistent security concern in the broader language-

based security literature (Cova et al., 2010; Egele et al., 2009; Richards et al., 2010), the

majority of past IRM work assumes that such operations are sufficiently rare to justify

conservative rejection of runtime-generated code, or sufficiently innocuous as to be safely

ignored. Recent case studies have contradicted these assumptions, showing that non-trivial,

security-relevant use of eval is both widespread and a major source of cross-site scripting

and similar attacks (Richards et al., 2010). We therefore consider rewriting and certification

of eval to be a significant but underdeveloped area of IRM research.

The main challenge from the verification perspective is that the string input to eval is

typically constructed from several components, some of which are typically only available
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at runtime (e.g., user input). Static analysis of string inputs to eval is therefore widely

recognized as challenging. Many static analyses either ignore it (Anderson and Giannini,

2005; Jang and Choe, 2009; Thiemann, 2005b; Anderson and Drossopoulou, 2003), or supply

a relatively inflexible dynamic monitoring mechanism that does not generalize to non-trivial

generation of strings outside of a particular, fixed reference grammar (Guha et al., 2009;

Jensen et al., 2009).

The hybrid static-dynamic monitoring approach of certifying IRMs seems potentially

better suited to addressing this problem than purely static analyses, but the certifier must

be sufficiently powerful to allow effective, flexible, yet provably sound rewriting for these

domains. Several static analyses seem potentially promising in this regard. Christensen et

al. (Christensen et al., 2003) extract context-free grammars from Java programs and use

a natural language processing algorithm to compute regular grammars that generate each

string expression’s language of possible values. Thiemann (Thiemann, 2005a) presents a

type system for analyzing string expressions, where type inferencing infers language inclu-

sion constraints for each string expression. The constraints are then viewed as a context-free

grammar with a nonterminal for each string-valued expression, and solved using algorithms

based on Earley’s parsing algorithm (Earley, 1983). Minamide (Minamide, 2005) presents

an analysis of string expressions based on a prior Java string analyzer (Christensen et al.,

2003), but instead of transforming the extracted grammar into a regular grammar, they use

trancuders to define a context-free grammar. Abstract parsing (Doh et al., 2009) strength-

ens the above by statically computing an abstract parse stack in an LR(k) grammar for

each security-relevant string. The abstract parse stacks retain structural information about

dynamically generated strings that can be checked by a tainting analysis or for inclusion in

a reference grammar to detect attacks.

Recall Definition 1, the definition of P-verifiability, from Chapter 1. Based on Defini-

tion 1, the suitability of each of these approaches as the basis for IRM certification can be

posed as the following research question:
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Question 1. For each static string analysis that decides a property P, is the class of safety

policies P-verifiable? That is, is there a total, computable, transparent rewriter function

R :M→M such that for all safety policies P ′, R(P ′) ⊆ P?

In order for the safety policies to be P-verifiable, at any point where the static decision

algorithm conservatively rejects, there must be a way to transform the code to include a

statically verifiable dynamic check that conditionally preserves or prohibits the unverifiable

behavior. Our intuition is that the existing work does not yet support sufficiently powerful

dynamic checks to achieve this. A common inadequacy is the treatment of all conditional

branching as non-determinism. There is no obvious way for a rewriter to generate meaningful

guard instructions that convince such a certifier that the self-monitoring code is safe, since

the content of the guard code is mostly ignored by the static analysis.

One possible solution is the development of a dependently-typed string analysis that can

incorporate the test criteria of conditional branches into reconstructed types. The dependent

types would expose information about program variables and the guard predicates that

consult them to the string analysis in order to strengthen the resulting inferences. Such

type-checking need not (and indeed cannot) be complete in order to be an effective means

of certifying IRMs. It need only support a sufficiently powerful set of conditional tests that

rewriters have useful options for inserted guards. That is, it need only decide a sufficiently

powerful property P as to make safety properties P-verifiable.

9.7.2 Concurrency

A second major challenge area for certifying IRMs is verifying the enforcement of safety poli-

cies in a multi-threaded environment. Consider the following code fragment that a standard

IRM might use to enforce a resource-bound policy on a security-relevant resource. That is,

a rewriter might enforce the resource-bound policy by replacing use resource() operations

with the fragment below.
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if (count < limit) {

use_resource();

count := count + 1;

}

Here, count is a state variable introduced by the rewriter to track a conservative approxi-

mation of the security-relevant event history.

Clearly the above does not suffice to prevent policy-violations in the presence of concur-

rency. To do so, concurrency-aware IRMs must add some form of synchronization. One näıve

approach is to surround the guard code above with lock-acquire and lock-release primitives

so as to form a critical section. However, when the bounded resource is itself asynchronous

(e.g., an asynchronous I/O operation) then this is unreasonably expensive. This situation is

extremely common, so real-world IRM systems frequently implement a variety of complex,

non-standard synchronization strategies in rewritten code (cf., Bodden and Havelund, 2008).

Building a certifier for such IRM systems is a challenging task, and in this section, we

explore some of the reasons for this challenge. Related work in the area of general verification

of concurrent programs is vast and beyond the scope of this dissertation, but we here focus

on work most directly related to verification of IRM-style, self-monitoring code—e.g., code

that results from aspect-weaving.

There is a large body of related work on AOP dynamic detection of race conditions and

deadlocks (e.g., Havelund, 2000; Artho et al., 2003; Bensalem and Havelund, 2005). There

has also been some work done on dynamic detection of race conditions using aspects (cf., Bod-

den and Havelund, 2008). Here, there is more hope for certifying that the instrumented code

satisfies the security policy since there is a neat separation of concerns. Amongst certifying

IRMs, those that enforce purely non-temporal policies (e.g., McCamant and Morrisett, 2006;

Yee et al., 2009) can safely ignore the concurrency issue because they need not maintain a

history of security-relevant events. ConSpec (Aktug and Naliuka, 2008) leaves concurrency
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to future work, while Mobile (Hamlen et al., 2006a) supports only one form of synchro-

nization implemented as a trusted library. However, to our knowledge there has not been

previous work that certifies general synchronization properties of IRMs without implicitly

trusting the synchronization strategy by baking it into the trusted policy specification.

Building such a certifier would involve answering two major questions. First, is it possible

to design a universal certifier that can machine-check programs instrumented with myriad

different low-level synchronization primitives implemented by IRMs? Stated more formally:

Question 2. When the language of a concurrent program domain M is augmented with a

sufficiently versatile collection of low-level, trusted synchronization primitives, do the safety

policies become P-verifiable for some decidable property P?

The idea of “sufficiently versatile” is difficult to capture formally, but intuitively it en-

compasses at least two requirements: (1) The language must be flexible enough to afford

rewriters a wide range of effective options for implementing certifiable synchronization strate-

gies; these should include options for dynamically detecting and ameliorating concurrency

bugs in a way that the certifier can identify as provably sound. (2) The language must allow

for efficient synchronization of security-relevant events even when the events themselves may

be asynchronous program operations.

The second major question involves specification of security policies. How should we spec-

ify security policies that involve potentially asynchronous, security-relevant events? Consider

a canonical sample IRM policy that enforces data confidentiality by prohibiting all network-

send operations after the program has read from a confidential file (Schneider, 2000). In a

concurrent setting, the temporal notion of “after” is ambiguous and requires a more precise

definition. When network-sends and file-reads are non-atomic, possibly asynchronous op-

erations, the policy must specify which interleavings are permissible. Fine-grained nuances

must be expressible in order to formulate policies in a way that does not impose an undue

performance overhead for self-monitoring code.
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Related work in this area falls into two broad groups. One involves abstract concurrent

policy specification languages such as the Pi-Calculus (Milner, 1999). The other involves

more practical tools such as aspect-oriented temporal assertions (Stolz and Bodden, 2006),

tracematching (Allan et al., 2005), and their applications for race detection (Bodden and

Havelund, 2008). Stolz et al. (Stolz and Bodden, 2006) present a runtime verification frame-

work for Java programs, where properties can be specified in LTL over AspectJ pointcuts.

The work on AspectJ tracematching (Allan et al., 2005) enhanced with Racer (Bodden and

Havelund, 2008) would allow for maintaining history in the presence of concurrent events.

Each group of work may provide important leads in answering Question 2: the abstract

languages may provide a suitable framework for defining more formally the informal notion

of “sufficient versatility”, whereas the practical tools suggest useful concurrent IRM im-

plementation strategies that future work should pair with corresponding static certification

strategies.

Much past work on AOP for concurrent languages is devoted to automatic detection

and avoidance of deadlocks, livelocks, and race conditions (e.g., Bensalem and Havelund,

2005; Havelund, 2000; Artho et al., 2003). While such flaws do not constitute violations of

safety policies, they do constitute possible liveness policy violations. In addition, they break

otherwise policy-adherent program behaviors, and therefore violate rewriter transparency.

Reliable, static detection of such violations is therefore of critical interest to certifiers that

prove transparency.
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11th International Conference on Concurrency Theory (CONCUR), pp. 153–167.

Evans, D. and A. Twynman (1999). Flexible policy-directed code safety. In Proceedings of
the 20th IEEE Symposium on Security & Privacy (S&P), pp. 32–45.

F-Secure (2013). Backdoor:W32/PoisonIvy. http://www.f-secure.com/v-descs/backdoor
w32 poisonivy.shtml.

Facebook Developers (2010). JavaScript SDK. http://developers.facebook.com/docs/
reference/javascript.

Fara, M. (2013). Cross-platform malicious code discovered in “in the wild”. http://forum.
bitdefender.com/lofiversion/index.php/t47561.html.

FileInfo.com (2011). Executable file types. www.fileinfo.com/filetypes/executable.

Finifter, M., J. Weinberger, and A. Barth (2010). Preventing capability leaks in secure
JavaScript subsets. In Proceedings of the 17th Network and Distributed System Security
Symposium (NDSS).

FireEye (2009). Heap spraying with ActionScript. http://blog.fireeye.com/research/2009/
07/actionscript heap spray.html.

Ford, S., M. Cova, C. Kruegel, and G. Vigna (2009). Analyzing and detecting malicious
Flash advertisements. In Proceedings of the 25th Annual Computer Security Applications
Conference (ACSAC), pp. 363–372.

Fredrikson, M., R. Joiner, S. Jha, T. Reps, P. Porras, H. Säıdi, and V. Yegneswaran
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