JISSec

Journal of Information
System Security

[authors’ draft copy]

This manuscript is the
authors’ original draft of the
following published article:

Meera Sridhar, Mounica
Chirva, Benjamin Ferrell,
Kevin W. Hamlen, and Dhiraj
Karamchandani. Flash in the
Dark: llluminating the
Landscape of ActionScript
Web Security Trends and
Threats. Journal of Information
System Security (JISSec),
13(2):57-98, 2017.

ISSN: 1551-0123

www.jissec.org

This unedited draft is for
educational use only.

FLASH IN THE DARK: ILLUMINATING THE LANDSCAPE OF
ACTIONSCRIPT WEB SECURITY TRENDS AND THREATS

Meera Sridhar', Mounica Chirva', Benjamin Ferrell’, Kevin W. Hamlen?,

and Dhiraj Karamchandani?

'University of North Carolina, Charlotte, USA; The University of Texas,
Dallas, USA

Abstract

As one of the foremost scripting languages of the World Wide Web, Adobe’s Action-
Script Flash platform now powers multimedia features for a significant percentage
of all web sites. However, its popularity and complexity have also made it an at-
tractive vehicle for myriad malware attacks over the past six years. Despite the
perniciousness and severity of these threats, ActionScript has been significantly
less studied in the scholarly security literature than the other major web scripting

language—]JavaScript.

To fill this void and stimulate future research, this paper presents a systematic
study of Flash security threats and trends, including a finer-grained taxonomy of
Flash software vulnerability classes, a detailed investigation of over 700 Common
Vulnerability and Exposure (CVE) articles reported between 2008-2016, and an
examination of the fundamental research challenges that distinguish Flash security
from other web technologies. The results of these analyses provide researchers,
web developers, and security analysts a better sense of this important attack space,
and identify the need for stronger security practices and defenses for protecting

users of these technologies.

Keywords: Workplace Common Vulneragpbilities and Enumeration; Adobe Flash;
ActionScript; Virtual Machine

1 Introduction

Adobe Flash applets (Shockwave Flash programs) provide web developers a powerful
platform for creating rich, dynamic web content, such as web advertisements, online
games, streaming media, and interactive webpage animations. This has resulted in a
soaring popularity of the technology on the web. Recent studies (Adobe Systems
2016b; W3Techs 2016) conclude that Flash is the technology of choice for over three
million developers for creating interactive and animated web environments, and that
it is used by 8.3% of all websites. More than 20,000 apps in mobile app stores such
as Apple App Store and Google Play are created using Flash, and Flash powers 24
of the top 25 Facebook games. In China alone, a revenue of over US$70 million per
month is generated by the top nine Flash-enabled games.

The popularity of Flash combined with the complexity of its features has made it
extremely attractive to attackers. In the first quarter of 2015 alone, 42 new Adobe
Flash vulnerabilities were discovered—an increase of 50% from Q4 of 2014—along
with a 317% increase in the number of new Flash malware samples (over 200K total)
(Cisco 2015; Garnaeva et al. 2015; McAfee Labs 2015; Symantec Corporation 2015).
McAfee Labs concludes that Flash is “a favorite of designers and cybercriminals”
(McAfee Labs 2015), and Kaspersky Lab identifies at least 12 major Adobe Flash
Player vulnerabilities that gained exceptional popularity among cybercriminals in
2015, and are now integrated into many common exploit packs (Garnaeva et al. 2015).
The precipitous increase in vulnerability reports and attacks has been attributed
in part to rapidly escalating Flash presence in mobile devices, increased security
attention through Adobe’s ongoing vulnerability disclosure program and Google
Project Zero (Uhley 2015), and the July 2015 compromise of Hacking Team which
inadvertently disclosed numerous Flash vulnerabilities to the public—including at
least two zero-days (Zetter 2015).

Flash-powered attacks have successfully penetrated some of the most security-
hardened facilities in the world, such as the famous 2011 penetration of RSA (Hyp-
ponen 2011), and the massive Luckycat campaign that targeted a large spectrum of
important U.S. industries, including aerospace, energy, engineering, shipping, and mil-
itary research, as well as top-level international organizations such as Indian military
research institutions, and groups in Japan and Tibet (Trend Micro Forward-Looking
Threat Research Team 2012).

One reason Flash security is so challenging is the feature-filled complexity of the
ActionScript (AS) bytecode language (Adobe Systems 2016a) in which Flash apps are
expressed. Like other ECMAScript languages, AS includes an object model, function
calls, class inheritance, packages, namespaces, and direct access to security-relevant
system resources (Ado 2007). However, unlike JavaScript (JS), AS adds significant
language complexity, including a sophisticated object-oriented gradual typing system

JISSec

Journal of Information
System Security

[authors’ draft copy]

JISSec

Journal of Information
System Security

[authors’ draft copy]

(Siek and Taha 2007), and is disseminated as compiled binary Flash files (. swf files)
that pack images, sounds, text, and bytecode into a webpage-embeddable form,
which is then seamlessly JIT-compiled and/or interpreted by the Adobe Flash Player
browser plug-in when the page is viewed. This transparent purveyance of powerful
binary content from Flash authors, through page publishers, to end-users, educes
many security challenges.

Another source of security challenges relates to the increasing heterogeneity of
web environments, which often mix interoperating Flash and JavaScript code, and
which cohabitate script code from mutually distrusting sources in a shared browser
environment. Such practices often evade defenses that secure only one web scripting
language in isolation without first-class support for cross-language scripting (cf.,
Phung et al. 2015). Additionally, Flash's deployment as a plug-in VM tends to widen
threat windows due to patch lag. Many consumers are apathetic or inattentive in
downloading and installing VM patches, and many companies persist with outdated
VM versions for compatibility reasons (Cisco 2015; Garnaeva et al. 2015; McAfee Labs
2015). Consequently, effective intrusion detection of Flash-based attacks must con-
sider a large array of legacy VM versions and configurations. Some security advisories
have even resorted to recommending an abandonment of Flash altogether (Sophos
2013), but this strategy is antithetical to the revenue models of many businesses.

Despite significant causes for concern, attention given by the scientific research
community has been disproportionately low compared to the gravity of the Flash
security problem. For example, we show that between 2008 and 2016 only 0.95%
of publications in the top six non-cryptography security venues (ranked by Google
Scholar h5-index) concerned Flash, and only one venue (the IEEE Symposium on
Security & Privacy) devoted a large fraction of web security research (30.55%) to
Flash-related threats (see §2.2).

Scattered, ad hoc information about Flash security abounds in the literature, especially
in the form of news stories and “best practices" tips for Flash programmers. A
systematic study of known attacks and attack classes, their potential impact, the
landscape of the attack surface, and known strategies for mitigation, is badly
needed for organizing this scattered information and helping both researchers and
practitioners learn from past mistakes to build stronger defenses for this and future
media-heavy web technologies.

Towards this goal, our primary contributions are three-fold:

¢ We present a detailed taxonomy of Flash software vulnerabilities, and describe
how major classes of attacks are executed. Our categorization provides a
more fine-grained, informative classification specifically tuned to the Flash
vulnerability and attack surface, as compared to more general categorizations

(e.g., the NVD’s CWE classification system (National Institute of Standards and
Technology 2016) for scoring general CVEs (Mitre Corporation 2016)).

o For each category, we highlight AS language and Flash architectural features
that are particularly challenging to defend. We also present a compilation
of pertinent resources, such as academic and news articles, examination
of attack-type variants, high-impact real-world incidents, and representative
CVEs.

* We present the results of a detailed analysis of Flash threats and research
trends using our derived taxonomy. As part of our analysis, we report on all
Flash-relevant CVE articles recorded between 2008-2016, and their classifica-
tion using our taxonomy. We show why existing classification methodologies,
such as the CWE numbering used by NVD, prove inadequate for systematizing
Flash attacks, and highlight why the lack of detail in CVE articles often impedes
meaningful classification.

As security researchers, we faced many challenges in conducting this survey of
the Flash attack space. Flash security knowledge comprises a massive volume of
remarkably disorganized information, including hundreds of research publications and
thousands of (sometimes inaccurate) news articles, scattered information on past
Flash attacks, and dispersed material on various components of the Flash ecosystem,
including the Flash browser plug-in, VM, development and analysis tools, and the AS
language. The difficulty of taming this volume of information was further heightened
by the vast array of differing versions of various Flash software components, such as
the Player and the AS language, each of which exhibits a multitude of unique features
and weaknesses. CVE articles of Flash-relevant attacks tend to be too terse and
coarse-grained to glean useful technical details of an attack for research purposes.
Our analysis therefore provides researchers, web developers, and security analysts
a substantially improved sense of the Flash vulnerability and attack space, in a
consolidated form, crucial for developing better Flash security practices and defenses.
This will fuel security research towards strengthening web security defenses.

The rest of the paper is organized as follows. Section 2 begins with a high-level
summary of Flash security trends uncovered by our analysis of the attack space
and scholarly research publication histories. Sections 3, 4, and 5 expand upon
these observations by presenting a detailed taxonomy of three important Flash
vulnerabilities classes: those arising from (1) web environment heterogeneity, (2)
language semantics and implementation issues, and (3) networking and communications,
respectively. Section 6 discusses recent research on mitigations. Finally, Section 7
summarizes related work and Section 8 concludes.

JISSec

Journal of Information
System Security

[authors’ draft copy]

JISSec

Journal of Information
System Security

[authors’ draft copy]

2 Security Trends Analysis and Overview
2.1 Vulnerability Analysis

To construct the Flash threat taxonomy detailed in §3-5, we researched and studied
all 711 Flash-related CVE articles reported from 2008 to February 2016 (cf., Karam-
chandani 2013). We performed classification in two steps:

1. We first classified CVEs purely by (i) the attack/vulnerability type attribution
given in the CVE description in the Mitre database (Mitre Corporation 2016),
and (i) corresponding CWE identification scores whenever available. However,
these classifications were often too coarse to be useful, due to the sparsity
and generality of the information related by the CVEs.

2. To refine the classifications, we then re-traversed the entire CVE list with an
extra layer of classification based on a broader research of external sources
related to each CVE, including news articles and research papers. This included
manually analyzing (and, when possible, reproducing) sample attack code in
order to resolve ambiguous or conflicting reports. “Unknown” (UNK) classifica-
tions were assigned to CVEs whose descriptions lack the necessary specificity
for a correct classification, and for which no pertinent external sources were
found that clarified the ambiguity.

Figure 1 presents the total number of Flash-relevant CVEs per year. The sharp
increase in CVE disclosures in 2015 is due in part to increased mobile Flash presence,
increased scrutiny (e.g., Adobe’s vulnerability disclosure program through Google
Project Zero), and a data breach by Hacking Team (Uhley 2015; Cisco 2015; Symantec
Corporation 2015; Garnaeva et al. 2015; McAfee Labs 2015).

350 328

300
250
200

150

Number of CVEs

100

50

0

2008 2009 2010 2011 2012 2013 2014 2015 2016
Figure 1: Flash-relevant CVEs from 2008-2016. CVE count for 2016 is

projected from January-February numbers.

—@— CLP
FSO
—e— DGC
—— PAS
—+— PAR
RCG
—e— ASD
—a— TYP
—e— MEM
SOP
RED
—a— DNS
- | —— UKN

[\

o

o
T

100

Number of CVEs

| | |
20082009 2010 2011 2012 2013 2014 2015 2016

Year
Figure 2: Evolution of Flash-relevant CVE disclosures over 2008-2016.

Environment Heterogeneity §3
CLP Cross-language Procedure Calls §3.1
FSO Flash Shared Objects §3.3
DGC Disguised Graphical Content §3.4
PAS Parameter Passing §3.5
Language Implementation §4
PAR Parsing Inconsistencies §4.1
RCG Runtime Code Generation §4.2
ASD Address Space Derandomization §4.3
TYP Type-Tagging §4.4
MEM Memory Errors 8§4.5
Networking & Communications §5
SOP Unique Same-Origin Policy §5.1
RED URL Redirection §5.2
DNS DNS Rebinding §5.3

UKN Unknown -

Table 1: CVE Classification Legend
Figure 2 tracks the evolution of vulnerability types in the years 2008-2016 according

to the taxonomy presented in §3-5. The taxonomy legend is provided in Table 1, with
references to the respective sections that detail each category. Figure 3 visualizes
this data as a bump chart that exhibits the evolving ranks of the vulnerability classes
over time. Memory management errors (e.g., buffer overflow bugs) are consistently
the top category, due in part to the massively diverse collection of binary media and
object formats that Flash software must dynamically accommodate when streaming,
parsing, executing, and rendering Flash apps. Parameter-passing vulnerabilities are
a surprising second-ranked category, and are a direct consequence of increasingly
aggressive web environment heterogeneity. Type confusion vulnerabilities populate
the third rank, and are the fastest escalating vulnerability class we studied. These
arise in part from difficulties involving the complexities of AS’s gradual, polymorphic
type system.

JISSec

Journal of Information
System Security

[authors’ draft copy]

JISSec

Journal of Information
System Security

[authors’ draft copy]

2008 2009 2010 2011 2012 2013 2014 2015 2016

Figure 3: Bump chart illustrating relative rankings of vulnerability classes
over time

0 50 100 150 200
i |
ACM CCS 61 m
] 41 @ Web (non-Flash)
IEEES&P | 25 ol B Flash Offense
1 2
. [Flash Defense
USENIX Security 38 I I
. 13
IEEE TIFS E'
ISOC NDSS 38 I |
: 3
IEEE TDSC Hl
{1
Total 173 | 17 |7]

J 1 1 |
Figure 4: Flash presence in the top six academic, non-cryptography,

computer security publication venues in 2008-2016.

2.2 Scholarly Research Survey

To better understand the scientific community’s responsiveness to Flash security
threats, we surveyed publications in the six highest-impact, security-themed, com-
puter science venues, excluding venues that focus mainly on cryptography. The top
six such venues ranked by Google’s h5 index as of February 2016 are:

1. ACM Symposium on Information, Computer and Communications Security (CCS),
|IEEE Symposium on Security and Privacy (S&P),
USENIX Security Symposium,
IEEE Transactions on Information Forensics and Security (TIFS),

Network and Distributed System Security Symposium (NDSS), and

o U & W N

IEEE Transactions on Dependable and Secure Computing (TDSC).

We examined all publications in these venues between 2008 and February 2016,
manually identifying those papers that are web-related, and conservatively classifying
all works that make more than anecdotal reference to Flash or AS as Flash-targeting.

Figures 4 and 5 illustrate the results. Overall, 7.83% (197/2514) of surveyed publications
are devoted to web security.

Of these, only 12.18% (24/197) investigate Flash (CCS: Acar et al. 2014, Magazinius
et al. 2013, Acar et al. 2013, Heiderich et al. 2011; S&P: Kolbitsch et al. 2012, Nikiforakis
et al. 2013, Wang et al. 2012, Invernizzi and Comparetti 2012, Mayer and Mitchell 2012,
Weinberg et al. 2011, Levchenko et al. 2011, Thomas et al. 2011, Chen et al. 2010, Bau
et al. 2010, Thomas et al. 2015; USENIX: Johns et al. 2013, Huang et al. 2012, Lekies

JISSec

Journal of Information
System Security

[authors’ draft copy]

JISSec

Journal of Information
System Security

[authors’ draft copy]

et al. 2015, Nelms et al. 2015; NDSS: Kranch and Bonneau 2015, Pan et al. 2015, Song
et al. 2015; and TDSC: Phung et al. 2015). Figure 5 visualizes the data as ring-sectioned
pie charts in which each ring has width proportional to the number of publications
contributed by a given venue to each category of research. IEEE S&P has the greatest
percentage, devoting 11/36 = 30% of web security publications to Flash; its ring in is
especially wide in the Flash offense category in Figure 5. The remaining five venues
collectively devoted only 13/161 = 8% of web security publications to Flash. Most
Flash-targeting publications we surveyed were purely offensive in nature, revealing

and analyzing new attacks; only 7/24 = 29% introduce new defensive technologies.

This indicates that in general the scientific community’s attendance to Flash security
issues has been disproportionately small relative to the role of Flash in real-world
cyber attacks. We believe this is due in part to the relative difficulty of apprehending
the Flash ecosystem and threat landscape, given the often scattered and disorganized
nature of the information. Our research therefore purposes to address this obstacle

through a more systematic treatment.

In the following three sections we present the taxonomy of Table 1in detail, highlighting

prominent research challenges, and relating high-profile, in-the-wild exploits that

showcase each category’s importance.

Flash
Offense
(8.6%)

Flash
Web Defense
Security
Research
(8%)

Non-Flash
(87.8%)

Other Security
Research (92%)

Figure 5: Proportion of publications on Flash defense, Flash offense, and

web security research contributed by top scientific venues in 2008-2016.

3 Environment Heterogeneity

Web browser environments are increasingly heterogeneous, mixing interoperating
code from a multitude of different scripting languages and origins in a common
execution environment. This is important for an industry that prioritizes captivating,
dynamically interactive, multimedial user experiences, since different technologies
tend to be best suited to facilitating differing forms of interaction and differing media
formats. For example, click-tracking for web advertisement revenue generation,
interactive control of HTML-embedded Flash movies, movie usage reporting for
analytics and billing purposes, and data transport between Flex charts and HTML
data tables (Lance 2009), all rely on cross-language web communication.

Flash tends to be a focal point for such heterogeneity, since it supports first-
class, dynamic manipulation of many binary web data formats, and is designed
to directly access cross-language APIs, such as the Domain Object Model (DOM).
Suitable protections and secure practices for such programs can be highly unintuitive
because it must span the disparate security models of both languages, and exploits
that span two languages make it difficult for security tools to identify and prevent
them (Cisco 2015). In this section we discuss how such interoperability has led to
security vulnerabilities and exploits.

3.1 Cross-language Procedure Calls

Cisco Security Research reports a significant growth in JS/AS cross-language malware
starting in 2014 (Cisco 2015). This section describes how insecure Flash cross-language
communication practices underly a large class of high-impact web attacks.

From AS2 onward, cross-language communication is achieved in Flash via the
Externallnterface class of the runtime system. That interface’s call(s,...) method
invokes JS function s, and its addCallback(s, f) method makes AS function f callable
from JS under pseudonym s (a fresh JS property name). However, because the com-
putational models of AS and JS differ (AS being a compiled bytecode language, and JS
being a dynamically parsed and interpreted string-centered language), this interface
between AS and JS has a potentially unintuitive and often misunderstood semantics:
Argument s of call is passed as a string to the JS VM and evaluated as JS code at
global scope to obtain a JS function reference. The treatment of s as code and not a
verbatim function name (which many developers erroneously expect) is a root of

many vulnerabilities.

Abuse of the]S function reference argument as code (similar to JS eval()) has
been exploited to corrupt the DOM and develop attack back channels, as demon-
strated by the Browser Exploitation Framework Project (BeEF) (Alcorn 2011). Many
scripts flow unsanitized or insufficiently sanitized, user-controllable string inputs into
Externallnterface arguments, resulting in myriad script injection opportunities for

10

JISSec

Journal of Information
System Security

[authors’ draft copy]

JISSec

Journal of Information
System Security

[authors’ draft copy]

attackers. ExternalInterface communication is thus a primary facilitator of attacks
that use a combination of AS and JS to perform cross-domain code-injection (Howard
2012) (CVE-201-0611), cross-site scripting (XSS), and cross-site request forgery (CSRF)
(Poole 2012).

Flash and JS also have subtly different Same-Origin Policy (SOP) formulations, allowing
cross-language scripts to bypass both (see §5.1). Malicious Flash applets exploit this to
deliver malicious]S code to third-party victim sites, facilitating click forgery, resource
theft, and flooding attacks upon victims (Phung et al. 2015).

Real-world Examples:

SWFUpload XSS Attack: In 2012 and 2013, SWFUpload—a popular upload widget used
on many websites—was found to be vulnerable to XSS due to its failure to sanitize
user input (parameter movieName) that leaks to parameter s of call(), where it
is interpreted as code (Poole 2012). This exposed many sites where the applet is
hosted from the same domain as the embedding page to XSS attacks (CVE-2012-3414,
CVE-2013-2205).

Yahoo! Mail XSS Attack: In June 2013, a Flash XSS vulnerability was discovered in the 10
Utility of the Yahoo! User Interface library (Rad 2013). The utility contained a Flash
applet (io.swf) which used user inputs as parameters in a call () without sanitization,
permitting malicious JS execution. The applet was hosted in the Yahoo! Mail main
domain, creating a significant privacy vulnerability—Yahoo! Mail users could read
other users’ inboxes by submitting cleverly crafted URLs to the applet.

3.2 HTML Interactive Capabilities

AS and HTML can also interoperate directly without JS. Flash interprets a subset of
HTML tags, including anchors (<a>) and images (), via its TextField.htmlText
property, which renders formatted text. Dually, HTML can invoke public and static
AS methods expressed as URLs in HTML text fields. In AS2, this is achieved using
asfunction, which accepts a string identifier for an AS2 function and a string
argument passed as input to the function (Paola 2007). In AS3, this is achieved
through the flash.events.TextEvent class, by listening for click events from HTML,
using the TextEvent.LINK property for transferring information to AS, and adding
an AS event handler.

While these features provide powerful convenience in AS-HTML interactions, they can
also pose security risks. For example, unsanitized user inputs that flow to htmlText
can contain <a> or tags. The HTML tag allows the src attribute to have
a .swf extension, resulting in an XSS attack. Input sanitization defenses that merely
secure JS are here ineffective, since there is no JS involved. In some cases, even JS
plus HTML sanitization does not suffice; for example, by injecting a .swf extension

(which contains no JS- or HTML-escaped characters) onto a JS src attribute, attackers
have contrived to replace otherwise safe JS code with a malicious Flash script (Paola
2007; Fukami 2007).

Moreover, because AS apps frequently communicate with many different domains
(such as the many different principals that cooperatively purvey web ads), such
apps often open cross-domain scripting channels imprudently—for example, by
calling the Flash API's allowDomain() method with a wildcard that permits universal
communication (see §5.2). This escalates AS-HTML attacks by allowing universal
cross-domain scripting of the injected payloads.

Example Attacks:

The anchor tag combined with the asfunction method are commonly abused by
attackers in the following ways:

o direct XSS (e.g.,),
e calling AS (e.g.,),

e calling Shockwave Flash (SWF) public functions (e.g., <a href=‘asfunction:
_root. {victim object, method, and args)’>), or

o calling a native, static, AS API function (e.g., <a href=‘asfunction:System.Sec-
urity.allowDomain,{malicious host)’>).

3.3 Shared Objects

Flash shared objects (a.k.a., “Flash cookies”) are similar to HTTP cookies, and are
used to store persistent, cross-session data (Chatterji 2008). They are delegated by
the SharedObject class and are commonly used to enhance Ul customizability (e.g.,
allowing users to personalize website appearance). Applications may only access
their own (same domain) SharedObject data.

However, unlike traditional HTML cookies, Flash cookies are cross-browser and can
store large amounts of data up to 100 KB in size. These features have made them
attractive vehicles for a number of malicious uses, including phishing, cross-site
Flashing (XSF), XSS, and CSRF. For instance, phishing and CSRF often frequently
abuse shared objects to compute timestamps and maintain persistent attack status-
tracking across sessions and across separate browsers (Ford et al. 2009). Shared
objects can also respawn previously removed HTTP cookies (Acar et al. 2014) and
are a means for fingerprinting (see §6), resulting in privacy violations.

The 2015 Kaspersky Security Report discusses the increase in the usage of Flash
shared objects as a method for concealing exploit packs for attack (Garnaeva et al.
2015; Davydov et al. 2015). For example, the Neutrino Exploit Kit was embedded in

12

JISSec

Journal of Information
System Security

[authors’ draft copy]

JISSec

Journal of Information
System Security

[authors’ draft copy]

Flash pack and attacked roughly 2,000 users every day, sometimes reaching even
5,000 or 6,000 (Davydov et al. 2015).

Real-world Example:

A Double Free Story (Hayak and Davidi 2014): An Adobe Flash Player zero-day (CVE-
2014-0502) facilitated a significant attack that targeted several nonprofits in 2014. The
vulnerability is a double-free triggered by a bug in how shared objects are handled.
During the termination of a Flash Player instance, all shared objects are destroyed,
but not before the object’s data is flushed to disk. If an attacker manages to trigger
the VM's garbage collector during the flush, shared objects become concurrently
double-freed, leading to a remote code execution vulnerability.

3.4 Disguised Graphical Content

One of Flash's most compelling features is its powerful support for web multimedia
content. Flash is widely employed to realize web animations, advertisements, games,
and rich Internet applications. Unfortunately, attackers find these features useful as
well.

Flash has become a compelling platform for maliciously impersonating legitimate
sites, luring users (phishing/pharming), and stealing user clicks (click-jacking). For
example, Flash-based phishing attacks leverage Flash's advanced animation features
to create spoof sites or email messages in which malicious text is rendered purely
graphically (e.g., within a compressed animation) not textually.

Such attacks present significant fundamental research challenges for the defense
community, because they are largely immune to automated anti-phishing technologies
that rely upon textual analysis to identify suspicious phrases and links. Since the
Flash content is not text-based, the typical mining algorithms fail to identify the
scam. As a result, Flash-based features in phishing sites have proven transparent
to many anti-phishing spiders (Nambiar 2009). This highlights the need for new
data-mining algorithms that target these binary fusions of multimedia, text, and
scripting content.

Along with social engineering attacks that clothe malicious sites in attractive graphical
content, certain functions that facilitate the loading of media in Flash applications
are regular targets of abuse:

e Flash APl method MovieClip.loadVariables() reads movie player variables
from an external file. Attack payloads trigger it to maliciously change the
values of variables in the active SWF file.

e loadMovie() and loadMovieNum() load a file into a movie clip and allow switch-
ing between simultaneously displayed SWF files. NetStream.play() plays

13

media from a local disk, a web server, or Flash Media Server. Attackers probe
these for input sanitization lapses to load malicious content.

e Sound.loadSound() loads audio content either statically or as a stream, and
is also frequently susceptible to input sanitization failures.

e FScrollPane.loadScrollContent() displays objects, images, or SWF files
loaded locally or from the Internet. It is another frequent hijacking victim for
loading malicious script content.

These functions are all regularly exploited for XSS or XSF attacks. For example,
loadVariables() can perform XSF by tricking the victim into clicking a specially
crafted link to send the users’ credentials to the attacker. If any of the functions are
combined with an insecure same-domain or cross-domain policy (see §5.1), then all
image, sound, and movie functions become vulnerable to XSF.

3.5 Parameter Passing

One of the most significant classes of Flash attacks are those that pass corrupted
parameters to victim Flash apps from their embedding containers (e.g., the HTML
environment). Since the embedding environment can be untrustworthy (e.g., remote
content sourced from a third-party domain), Flash apps must conservatively treat
such parameters as untrusted. The difficulty of securing them is exacerbated by
the many channels via which parameters can be passed, some of which are obscure
and may be overlooked by app developers. In a Flash parameter injection (FPI) attack,
an adversary abuses one or more of these unsecured channels to take control of
objects within the Flash applet, and possibly hijack the embedding page’s Document
Object Model (DOM) API.

Parameter values exported by embedding containers become global variables inside
the embedded Flash object. Global variables in Flash function similarly to global
variables in other languages, but some of them have unique functionalities and
effects that can be dangerous if set by an untrusted caller. The three main methods
of parameter-passing are:

1. Embedded URI. HTML pages embed Flash objects using the <object> tag, whose
data attribute specifies the Flash object’s URI. This URI may set global variables
within the embedded script. For example,

http://host/myMovie.swf?a=5&b=hello
sets global variables a and b to values 5 and hello, respectively, within the
invoked Flash script.

2. Direct URI reference. URIs passed directly to the browsing agent can also include
parameters. When this method is used, the Flash file is embedded into a fresh
“dummy” HTML page created automatically.

JISSec

Journal of Information
System Security

[authors’ draft copy]

J I S S ec <object type="application/x-shockwave-flash"

data="myMovie.swf"

Journal of Information width="600" height="345 ns

System Securit
B ary <param name=FlashVars value="a=5&b=hello">

[authors’ draft copy] </object>

Figure 6: Setting Flash global variables via HTML object parameters

3. FlashVars parameters. HTML <object> elements may also contain <param>
elements that pass parameters to the embedded object. Figure 6 demonstrates
how to use the FlashVars parameter to set Flash global variables. Such
parameters populate the _root level of the Flash script.

The AS language semantics assign default values to uninitialized variables (e.g., zero
to integers). Many developers dangerously rely on this behavior, forgetting that the
default values of global variables can be effectively determined by untrusted callers
via one of the mechanisms above. Attackers frequently exploit such vulnerabilities to
hijack or abuse Flash scripts (Paola 2007; Chatterji 2008). Common unsafe practices
include:

e The location of a movie is retrieved through an unsafe URL parameter:

http://host/index.cqi?movie=movie.swf?globalVar=...

e Avictim is lured to click on a link with malicious Flash parameters:

http://host/index.cqi?langEnglishj,26globalVar=...

e A global variable is injected by assigning it via the DOM (Paola 2007):

http://host/index.htm#&globalVar=...

Real-world Example:

Gmail Services XSS FPI: Users of Gmail and Google Apps became vulnerable to
full account hijacking in 2010 through a Flash-based XSS vulnerability (Amit 2010).
Internally, Gmail used a Flash applet (uploaderapi2.swf) for file uploads. Two Flash
parameters (apiInit and apild) in the applet flowed to an ExternalInterface call,
where they are interpreted as code.

A proof-of-concept script injection was conducted before Google patched the vulner-
ability; the attacker was able to execute arbitrary JS code in the mail.google.com do-
main by enticing users to click on links that set apiInit=eval and apiID=(malicious script).
The malicious script ran in the context of active Gmail sessions; attackers were able

to fully impersonate their victims and steal information from their accounts.

Alarmingly, this attack is not reliably detectable on the server side. Since Flash is
executed on the client side, the values of apiInit and apiId (the malicious payload)
can be hidden from the server by adding the # symbol before the query part of the
URL:

https://host/uploader-api2.swf#7apilnit=eval&apild-=...

The receiving server then sees a parameter-less request. However, at the client
side, a successful exploitation occurs since the Flash player refers to the whole URL,
including the attack payload, which comes after the # symbol (Paola 2007; Amit
2010).

4 Flash Language Implementation Issues

Flash seamlessly incorporates an impressive array of binary media formats in ag-
gressively compressed forms for effective streaming. It also boasts a sophisticated
hybrid of static and dynamic semantic features—such as gradual typing, runtime
code generation, concurrency, and asynchronous memory management—in order
to deliver highly flexible, interactive user experiences. This combination of fea-
tures educes significant implementation challenges, whose security implications are
surveyed in this section.

4.1 Parsing Inconsistencies

Flash files are delivered using the Shockwave Flash (SWF) file format (Ado 2012), which
packs AS bytecode with vector graphics, text, video, and sound for efficient mobility.
In contrast to most ECMA scripting languages (e.g., JS), SWF files are designed to be
streamed live, so that execution can begin on the client before the file is completely
downloaded or fully parsed. This requires a sophisticated binary parsing engine,
since efficient players must have the capacity to parse, validate, and render scripts
lazily on-demand. In addition, the rich multimedia capabilities of Flash demand that
it support a dizzying array of binary data formats, including virtually every major
video, audio, graphic, and font format, plus binary bytecode scripts. Parsers for all
of these formats are packed into one interpreter for quick streaming without the
overhead of plug-in loading.

Unsurprisingly, this high complexity has given rise to a host of parsing-related
security vulnerabilities. For example, properly validating jump instructions in a lazily
parsed binary format is notoriously tricky. The AS language specification is type-safe,
confining control-flows to well-formed tagged sections and bytecode indexes (Ado
2012); however, during streaming, some jumps may target destinations or content
that has not yet downloaded, and can therefore only be validated once that content
appears. AS parsers have a history of getting this wrong, leading to vulnerabilities

16

JISSec

Journal of Information
System Security

[authors’ draft copy]

JISSec

Journal of Information
System Security

[authors’ draft copy]

that allow malicious scripts to jump to non-code destinations (Ford et al. 2009).

The failure of parsers to match the language’s specification disinforms static malware
detection tools, which typically parse and analyze only the portions of SWF files that
the specification says are executable. Many Flash disassemblers and decompilers,
such as Flasm (Kogan 2007) and Flare (Kogan 2005), therefore miss malware payloads
hidden outside the scriptable portions of the SWF (Ford et al. 2009). Myriad Flash-
based malware abuses this loophole to evade detection.

The high flexibility and open-endedness of the SWF format presents related security
challenges. SWF files are structured as a series of tagged blocks of binary data, to
facilitate streaming. Definition tags encode content, such as images, text, and sounds,
and are stored in a dictionary which control tags reference in their flow of execution.
Flash VMs quietly ignore invalid tag types during parsing, so that specialized, player-
specific blocks can be supplied in a way that is transparent to players that don't
support them. However, this means that many players support an array of obscure,
often undocumented tags, interpreting them in various unexpected ways. Attackers
abuse this to conceal malicious scripts within blocks that are unrecognized by analysis
tools, or that attack only certain player versions to evade simulation-based detection
strategies (Ford et al. 2009).

Real-world Examples:

APT Campaign Against Defense Employees. In March 2012 an advanced persistent
threat campaign was uncovered that exploited a Flash parsing vulnerability (CVE-2012-
0754) to achieve remote code injection on victim machines (Constantin 2012). Targets
were sent emails with an attachment named “Iran’s Oil and Nuclear Situation.doc”,
suggesting that U.S. defense industries were the intended targets. The attachment
consisted of an embedded malicious Flash applet, which downloads and plays a
malformed MP4 media file. An MP4 parsing error in the Flash Player corrupted
memory, leading to arbitrary code execution, which the attack leveraged to execute
a Trojan identified by some antivirus products as “Graftor” or “Yayih.A”. At the time
of exploit, only 16% of antivirus products detected the Trojan.

Proof-of-Concept Parsing Error Exploit. In 2009 the AS2 parser was found to be
vulnerable to an integer overflow bug (CVE-2009-1869) in its treatment of the
intrf_count field, which counts the number of interfaces implemented by a given
AS class. Maliciously crafted SWFs could overflow the count to write arbitrary data
to arbitrary addresses in the process address space. A proof-of-concept heap-spray
attack on Windows XP SP3 with IE7 is available on Google Code (Hay 2009).

TrueType Font Parsing Bug. A similar integer parsing error for TrueType font resources
was discovered in August 2012, which allowed SWFs with maliciously crafted TrueType
fonts to achieve arbitrary remote code execution (Verisign 2012). At the time of

17

discovery, targeted attacks were exploiting the vulnerability in the wild via malicious
Word documents.

Signed vs. Unsigned Integer Parsing. Drive-by-download attacks have exploited a
vulnerability in the DefineSceneAndFrameLabelData tag parsing routine in the Flash
Player (Dowd 2008). The parser erroneously validated an unsigned 32-bit field with
a signed comparison (CVE-2007-0071) (Ford et al. 2009).

4.2 Runtime Code Generation

The binary streaming capabilities of Flash equip authors with runtime code generation
and code obfuscation channels that are significantly more difficult to analyze and
reverse than in most other scripting languages. While this can be attractive for
legitimate intellectual property protection, such as digital rights management, it also
facilitates malware obfuscation.

A prominent example is the Flash API's ByteArray class, which offers scripts dy-
namically expandable storage spaces for raw binary data. Legitimate scripts use
this facility to download and manipulate binary data streams in arbitrary, custom
formats (e.g., encrypted movie streams), and convert them into playable media
on-demand. However, malicious scripts use the same functionality to dynamically
unpack and execute malicious scripts hidden in the binary data (Overveldt et al.
2012). For example, the loadBytes() method allows Flash applets to dynamically
reinterpret any binary resource as a fresh binary SWF file and execute it. This gives
attackers the potential to create a series of nested, encrypted Flash files embedded
in arbitrary data sources. Identifying the embedded exploits by static examination
of the external Flash file is extremely challenging (Ford et al. 2009).

Several other SWF tags and AS classes present similar powerful obfuscation-aiding
mechanisms, including the DoAction and ShowFrame tags in AS2, and the SymbolClass,
DefineBits, and DoABC tags in AS3 (Kovéa 2011a,b). Obfuscation techniques that adopt
any of these features are deviously powerful because they house arbitrary dynamic
code generation capabilities within operations that are widely used for legitimate
purposes. While dynamic code analysis has been applied to heuristically detect some
of these malicious obfuscations (e.g., Jung et al. 2015; Wressnegger et al. 2015), it
cannot reliably detect malware that downloads and launches its malicious content

selectively—a common gambit in malvertising.

ByteArray objects are also an inviting tool for implementing heap spraying attacks
(Overveldt et al. 2012). Here, the malicious script populates a ByteArray with shellcode
containing many entry points (e.g., a long sled of no-operation instructions ending in
a malicious payload). A separate control-flow hijacking vulnerability is then exploited
to redirect control to a random destination address. The destination address is
typically not under the control of the attacker, but with a large enough shellcode

18

JISSec

Journal of Information
System Security

[authors’ draft copy]

JISSec

Journal of Information
System Security

[authors’ draft copy]

having many entry points, the hijack targets it with high probability, enabling the
attack. Cross-language heap sprays (Wolf 2009) implement the spray and the control-
flow hijack in different scripting languages (e.g., AS and JS, respectively), so that
detection tools must identify and piece together both halves of the attack to spot it.

Real-world Example:

Peeling Obfuscation Like An Onion. Numerous Flash malware families use the attacker-
favorite obfuscation technique of wrapping a series of malicious Flash files one into
another. One common approach involves wrapping an obfuscated Flash 8 exploit
(CVE-2007-0071) into multiple layers of a Flash 9 file (Ford et al. 2009).

4.3 Address Space Derandomization

Many Flash players include a Just-In-Time (JIT) compiler that improves performance by
converting AS instruction streams to more efficient, processor-specific native code
during streaming (Ado 2007). Unfortunately, JIT compilers can be abused to execute
JIT-spraying attacks (Seltzer 2010; Blazakis 2010a,b), which defeat code control-flow
protections such as those based on Address Space Layout Randomization (ASLR) and

Data Execution Prevention (DEP).

OS-implemented ASLR protections reduce the reliability of attacker control-flow
hijacks by randomizing the locations of binary code sections in victim processes
each time the process loads. This frustrates attackers’ ability to predict valid code
pointer values, and therefore invalidates many payloads containing such pointers.
Similarly, DEP restricts write- and execute-access to most code and data bytes,
respectively, impeding malicious code-injections.

However, JIT compilers can open loopholes in both defenses by dynamically allocating
writable, executable data sections for JIT-compiled code at discoverable locations.
The Flash player implements many optimizations that unfortunately aid JIT spraying
attacks, including a large GUI library, a JIT 3D shader language, embeddable PDF
support, multiple audio and video embedding and streaming options, and the scripting
VM (Blazakis 2010b). JIT spraying was first introduced using Flash in BlackHat D.C. 2010
(CVE-2010-1297) (Seltzer 2010; Blazakis 2010a,b).

Real-world Examples:

Flash-based JIT Spraying Evolution. Starting from the BlackHat D.C. demo by Blazakis
(Blazakis 2010a), there has been a back-and-forth war between JIT sprayers and
defenders at Adobe (Serna 2013). Adobe has introduced various features in the
Flash compiler to mitigate JIT spray vulnerabilities, including constant folding, and
introduction of NOP-like instructions that break the continuity of shellcode.

An extremely sophisticated example of JIT Spraying (mitigated by Adobe in Flash

19

version 11.8) uses ROP info leak gadgets (Shacham 2007) and heap spraying to
defeat prior Adobe mitigations. The attack exploits a vulnerability in Windows
7/Internet Explorer 9 (CVE-2012-4787). Adobe’s mitigation to this attack implemented
a technique called constant blinding—XORing the value of a user-supplied integer,
used later in an assignment or function argument, with a random cookie generated
at runtime (Serna 2013). Subsequent research has sought to detect Flash-based ROP
attacks at the microarchitectural level (Pfaff et al. 2015).

4.4 Type-Tagging

To combine performance-enhancing static typing with flexibility-enhancing dynamic
typing, AS is gradually typed (Siek and Taha 2007). This allows developers to statically
type some variables, inviting compiler optimization of those operations, while leaving
other variables untyped at the source level for convenience. The latter are type-
checked at runtime—implemented in the AVM2 as atoms and type-tags. Additionally,
native code resulting from the JIT compilation uses native data types; therefore,
when a native method is called, the result is wrapped into a type-tag for use by the
VM (Overveldt et al. 2012).

This type-tag wrapping has led to type confusion vulnerabilities. Our study identifies
type confusion as one of the fastest-evolving threat classes for Flash, due in part
to growing awareness of gradual typing technologies and their security implications
within the black hat communities. In a type confusion attack, the attacker abuses
a vulnerability created by a discrepancy in a datum’s type representation (Dowd
et al. 2009). Type confusion attacks are particularly insidious, since they can bypass
DEP and ASLR without any kind of heap or JIT spraying (Overveldt et al. 2012). This
kind of vulnerability is often found in software components that bind more than one
language (Dowd et al. 2009). For example, in Flash, type confusion vulnerabilities
have appeared in the binding layer between AS and native code.

Improper error-checking by compilers while converting between primitive and user-
defined types can also cause type confusion vulnerabilities (Dowd et al. 2009). For
example, in one attack, the identifier of a class A is changed to the same name as
another class B in the bytecode, resulting in type confusion. This results in calls to
B’s methods actually calling native code implementations of class A. Upon return
from the native code method, the wrapped type-tag of the result depends on the
types defined in B. The mismatch between A’s native code callees yielding B’s
return types creates an exploitable vulnerability usable for various attacks, such
as leaking objects’ memory addresses, reading arbitrary memory addresses, and
hijacking execution (Overveldt et al. 2012).

Real-world Example:

World Uyghur Congress Invitation Attack. In May 2012, attacks in the wild exploited a

20

JISSec

Journal of Information
System Security

[authors’ draft copy]

JISSec

Journal of Information
System Security

[authors’ draft copy]

type confusion vulnerability in several versions of Flash Player to achieve arbitrary
code execution (sinn3r and Vazquez 2012). The vulnerability was exploitable by
supplying a corrupt response to an AS Message Format0O (AMFO) error field. Attack-
ers sent victim members of the World Uyghur Assembly emails with a malicious
attachment entitled “World Uyghur Congress Invitation.doc” (Parkour 2012). Members

of the U.S. defense community were also targeted.

The document contained references to a malicious Flash file on a remote server, as
well as a hidden malicious payload in encrypted form. When downloaded and played
using a local vulnerable Flash Player, the Flash file sprays the heap with shellcode and
triggers the exploit. The shellcode then finds and unpacks the encrypted malicious
payload in the original document, and executes it (Symantec Security Response 2012).
The malware contacted servers hosted in China, Korea, and the U.S. to acquire the

necessary data to complete the exploitation.

4.5 Memory Errors

Almost all large VM implementations are prone to at least some miscellaneous mem-
ory errors (e.g., buffer overflows). However, memory errors have proven particularly
problematic for AS VM implementations. In the time frame of 2008 to July 2014,
JS memory exploits account for only 76 CVEs, while a staggering 219 CVEs pertain
to AS memory exploits (nearly 3 times as many). In one security audit (Naraine
2011), around 400 unique vulnerabilities were discovered and forwarded to Adobe.
The CVEs cited by the resulting patch (APSB11-21) are almost all related to memory
exceptions. Overall, memory exceptions account for roughly 70% of all Adobe Flash
Player CVEs (see §2.1).

As a result, attackers regularly seek out and exploit memory errors in the Flash

Player as an unusually fertile source of high-impact zero-days.

One possible reason for the higher prevalence of Flash memory exploits relative
to JS is the relatively small number of independent Flash VM development teams
relative to JS VM development teams. Many different browser developers inde-
pendently implement widely deployed JS VM products, creating opportunities for
cross-compatibility testing and fuzzing, whereas Flash VM development is dominated
by only one developer (Adobe). Multiple production-scale JS VMs are also open
source, which widens the pool of software engineers performing security audits
relative to closed-source products. Although there are some open-source Flash
Player components available (e.g., the largely abandoned (Paul 2010) Tamarin project),
the majority of Adobe’s Flash Player remains closed-source. Finally, Flash supports
an impressive number of multimedia binary formats not directly supported by S,
increasing the opportunities for implementation error.

21

Real-world Example:

RSA SecurID Breach. One of the most shocking Flash-based phishing attacks in
history was the attack on the website of RSA Security LLC (an American computer
and network security company) in 2011 (Hypponen 2011; Keizer 2011; Mills 2011; Clark
201; Anthony 2011). The attack was allegedly conducted by a nation-state targeting
Lockheed-Martin and Northrop-Grumman to steal military secrets (Hypponen 2011).
These companies were using RSA’s two-factor authentication product, SecurlD, for
network authentication.

In the attack, two phishing emails were sent to four EMC (RSA’s parent company)
employees. The emails carried a malicious Excel spreadsheet attachment with the
subject line “2011 Recruitment plan.xIs”. The attachment used a zero-day exploit
targeting vulnerability in the authplay.d1l component in Flash player (CVE-2011-
0609), creating a backdoor on the victim’s machine. The attackers spoofed the
emails as if they originated from a web master at Beyond.com, a job search and
recruiting site. The email body had a deceptively innocuous simple line: “| forward
this file to you for review. Please open and view it.” The Excel attachment had just
an “X” in its first cell. The attack used the Poison vy Remote Administration Tool
(RAT) (F-Secure 2017) (Trojan backdoor) on the compromised computers, using which
the attackers were able to harvest users’ credentials to access other RSA network
machines, and copy sensitive information and transfer data to their own servers
(Keizer 2011; Mills 2011; Clark 2011; Anthony 201).

It has been speculated that the stolen credentials may have included the unique
numbers for the SecurlD tokens (Mills 2011). This single breach required RSA to
replace the SecurlD tokens of their customers worldwide (Hypponen 2011).

5 Networking and Communications

In contrast to attacks that exploit heterogeneity of the local environment (§3), a
third important collection of attack categories exploit network heterogeneity—the
diverse collection of remote web resources and communication protocols available
to Flash apps. Chief among these are non-uniformities and idiosyncrasies in the
communications security policies enforced by interoperating web principals.

5.1 Non-uniform Same-Origin Policy

Same-Origin Policy (SOP) is a staple of web security enforcement that disallows
most interactions between scripts and resources having different origins (defined
by the protocol, host, and port of the originating server). This affords mutually
distrusting scripts a form of process isolation in the browser. Although many
developers presume that SOP enforcement is uniform across different types of

22

JISSec

Journal of Information
System Security

[authors’ draft copy]

JISSec

Journal of Information
System Security

[authors’ draft copy]

resources, browsers actually enforce SOPs that differ subtly for different resource
types, including slightly different policies for DOM access, XMLHttpRequests, cookie
accesses, Java permissions, JS permissions, and Flash permissions (Zalewski 2011).

Flash's SOP is particularly complex in order to meet the frequent need for Flash
apps to inter-communicate across numerous principals. For example, contextual
advertisements typically need read-access to the embedding page in order to mine
it for keywords, write-access in order to add links, and network access to both
advertiser-owned and advertising network-owned sites (often on separate domains)
in order to report analytics and perform click-tracking. As a result, Flash's SOP has
some elaborate and obscure features that attackers exploit in order to circumvent
SOP restrictions imposed on other resources, such as JS scripts.

For example, unlike JS scripts, AS scripts may voluntarily open cross-domain com-
munication channels by calling the allowDomain() method of the Security Flash
API class with an arbitrary domain name. AS programs may therefore voluntarily
relax the SOP restrictions enforced upon other principals with respect to themselves.
Unfortunately, lax ad developers frequently use this feature imprudently, such as by
supplying a wildcard (“+”) that permits universal access (Elrom 2010). Such misuse is
common, since it is a tempting quick-fix for apps whose legitimate communications
are being blocked by security errors. When such a script becomes embedded
alongside content owned by other principals, its resources can be abused (Jang et al.
2011) or it can become a confused deputy facilitating other attacks, such as CSRF

(Phung et al. 2015).

Since SOP-relaxations of this form are effected by runtime Flash script operations (not
static declarations), it is infeasible to reliably detect insecure scripts statically. Page
publishers and advertising networks that purvey third-party scripts must therefore
place a certain degree of trust in the scripts they purvey—trust that oftentimes
proves undeserved.

A related idiosyncrasy of Flash SOP is its support for cross-domain policies (Zalewski
2011). Remote hosts may voluntarily accept cross-origin communications (waiving SOP
restrictions) by serving a crossdomain.xml policy file. Such policy files can become
very complex, leading to unexpected loopholes that attackers exploit (Kalra 2013).
Since the policy file is separate from the code and only requested and consulted
at runtime as the cross-domain communication is attempted, insecure Flash SOPs
cannot be detected merely by analyzing the code of untrusted scripts. Moreover, an
app deemed secure (and possibly code-signed) may later become insecure when the
cross-domain policy changes independently of the code.

Real-world Example:

Facebook SSO vulnerability. In 2012, researchers performing penetration tests of

23

Single-Sign-On (SSO) web services discovered a vulnerability in Facebook exploitable
by abusing Flash cross-domain SOP (Wang et al. 2012). The analysis showed that in
order to thwart impersonation attacks, Facebook relied upon the browser’s SOP to
prevent secret authentication tokens from flowing from its Flash sign-on widget to
untrusted embedding hosts. By opening a cross-domain communication channel, a
malicious embedding page could steal these tokens and acquire private data about
victim Facebook users.

Client-side Flash Proxies. Cross-domain HTTP communication is prohibited by JS SOP,
but is an oft-requested feature desired by many JS developers.' Developers have
successfully circumvented and defeated JS's security policy by implementing Flash
proxies (Johns and Lekies 2011) consisting of a small AS-JS cross-language script that
tunnels JS communications through Flash. Flash SOP is significantly more permissive
than JS SOP, supporting a crossdomain.xml policy that can open arbitrary cross-
domain channels to accepting hosts. This practice exemplifies how interoperation of
languages with different security policies effectively weakens the security of both to
the intersection of the two permission sets.

5.2 URL Redirection

Flash applications extensively use URL redirection (viz., navigateToURL() in AS3
and getURL() in AS2) and HTTP requests (via URLRequest) to direct user clicks to
advertiser web sites, or to load external resources. Unfortunately URL redirection can
be abused to execute CSRF attacks or obscure links to malicious web pages in a sea of
dynamic redirections. The ubiquity of Flash-implemented redirections for legitimate
advertising purposes makes malicious uses especially difficult to distinguish.

For example, Flash-based URL redirection has been used to facilitate pharming
attacks (Li et al. 2012), which redirect victim users to unintended sites, either by
changing the hosts file on the victim’s computer, or by exploiting a vulnerability in
the DNS server software (Petkov 2008). AS scripts commonly accept URLs obtained
from external sources, such as FlashVars (see §3.5), creating a vulnerability that
attacks can easily manipulate to perform cross-site scripting. Examples include the
ability to make cookie-bearing cross-domain HTTP GET and POST requests via the
browser stack, through the URLRequest API. The cross-domain POST can be used in
place of GET, which can aid CSRF in the theft of large-sized data (Guya 2008).

Real-world Example:

Reconfiguring Home Router. These two methods were used in conjunction to attack

1Cross—Origin Resource Sharing (CORS) (van Kesteren 2014) supports JS cross-domain HTTP using
response headers instead of language-level code origins to authorize communications. However, it is
not fully supported by all browser environments and versions, motivating Flash Proxies as a fallback
workaround.

24

JISSec

Journal of Information
System Security

[authors’ draft copy]

JISSec

Journal of Information
System Security

[authors’ draft copy]

and reconfigure a well-known home router, BT Home Hub, distributed by a leading
British telecommunications company (Petkov 2008). The attack uses these AS
methods to request Universal Plug and Play (UPnP) functionality via the Simple
Object Access Protocol (SOAP) (CVE-2008-1654).

5.3 DNS Rebinding

DNS rebinding attacks circumvent SOP by obfuscating or corrupting domain names in
resource requests, misleading defenses into accepting the request as a same-origin
communication when it is not. Legacy versions of Adobe’s Flash Player (e.g., version 9)
have been discovered to be susceptible to DNS rebinding attacks due to subtleties in
how they parse domain names (Striegel 2007). For example, the domains “evil.com”
and “evil.com.” (notice the latter’s terminating dot) are considered by Flash Player 9
to be the same domain. A SWF file originating from “evil.com” can make a request
to “evil.com.” and hand it off to the browser, which then performs a DNS lookup.
This can cause DNS rebinding to occur. In this way, the attacker is able to bypass
SOP by dynamically switching the target IP address to an attacker-controlled host
name.

Flash's powerful networking capabilities, such as the Socket API class’s facilities for
conducting a full internal network scan, sending email through a corporate SMTP
server, or creating a general purpose VPN bridge through a firewall, can be abused
through DNS rebinding to create potent networking attacks (Jackson et al. 2009).

6 Selected Mitigations

Most scholarly research on Flash security concerns new attacks; few publications
focus on mitigation technologies. Of the 24 top-venue Flash security papers surveyed
in §2.2, we found that 7 propose new mitigations. These defensive contributions are
summarized in this section in relation to the vulnerability taxonomy outlined in §3-5.

Malvertising Paths. A large category of research on malvertising and drive-by
download attacks focuses on the chains of web resources or network paths that
culminate in attacks. The URL Redirection attacks discussed in §5.2 are highlighted
by such approaches.

Three of the seven Flash-defensive papers covered by our survey propose path-
based mitigations. WebWitness (Nelms et al. 2015) significantly reduces drive-by
download attacks by monitoring and data-mining user web page visitation histories
for suspicious chains. Monarch (Thomas et al. 2011) detects potential spam and
phishing scams by monitoring outgoing URL requests and redirections, API calls (e.g.,
pop-up window creations), and a variety of other static and dynamic features. Further
empirical study of these malvertising paths has led to proposals that interventions

25

should target the payment tier of the attack ecosystem, such as through appropriate
public policy action (Levchenko et al. 2011).

DNS Rebinding and Same Origin Policy. Johns et al. (2013) demonstrate that
variants of the DNS rebinding attacks discussed in §5.3 continue to be feasible in
the face of modern defenses, such as DNS pinning. As a more comprehensive
defense, they propose lightweight extensions to SOP that would suffice to detect
and thwart these threats. In order to be effective, such extensions would need to
be uniformly enforced across all web scripting languages—a perennial challenge for
the web development community (see §5.1).

Between Worlds. FlashjaX (Phung et al. 2015) monitors web script cross-language
procedure calls (§3.1) to enforce security policies related to several classes of our
vulnerability taxonomy, including certain parameter passing attacks (§3.5), heap
sprays (84.3), and SOP violations (85.1). To avoid forcing modifications to web browsers
or adoption of new web standards, it takes an in-lined reference monitoring approach,
which modifies and secures untrusted Flash and JavaScript code in-flight before it is
parsed and executed by the browser or VM. However, the policies it can enforce are
limited to those expressible in terms of API call traces.

Clickjacking. InContext (Huang et al. 2012) targets a particularly insidious form of
graphical subterfuge (§3.4) in which malicious Flash apps impersonate or conceal
security settings dialogue boxes and steal user clicks to manipulate them. Flash's
exceptional animation and interactivity features can be abused to create almost
perfect replicas of browser and VM dialog boxes and widgets, making this a particularly
difficult deception for users to discern.

Adobe has attempted to mitigate these attacks by, for example, blocking cross-origin
frames that are not fully visible for web cam control settings, but this defense only
protects the web cam settings dialog box and not other web content. Recent Flash
Players now also impose a delay when Ul changes are made, to give the user time to
comprehend the current environment and possibly spot a deception, but this may
still require exceptional alertness on the part of the user.

InContext therefore implements a more robust solution that computes and compares
separate bitmaps of what the user sees versus the content of security-sensitive

dialog boxes. If the bitmaps do not match, this indicates a possible deception.

This image-comparison approach offers a more general and complete form of
graphical deception detection that may be useful for mitigating other Flash graphical
obfuscation attacks as well.

Fingerprinting. FPDetective (Acar et al. 2013) combats web privacy violations by
crawling web sites and logging activities indicative of fingerprinting—a controversial
method used by many advertisers and page publishers to track and potentially identify

26

JISSec

Journal of Information
System Security

[authors’ draft copy]

JISSec

Journal of Information
System Security

[authors’ draft copy]

remote web users by collecting distinguishing information about their computers
and correlating it with similar information collected by other sites. Flash apps are
particularly attractive vehicles for fingerprinting attacks because they can typically
access a richer set of system-specific data, such as hardware and OS configuration
information, than other web scripting languages.

Fingerprinting falls outside our vulnerability taxonomy because what distinguishes
an attack from legitimate application behavior is the use to which the collected
information is put, rather than the act of collecting it. For example, a Flash app
that consults the graphical capabilities of a client machine in order to select the
best movie format and resolution to stream would not typically be considered
malicious; but an app that collects the same information in order to determine
whether the same machine was recently used to visit sites relating to a particular
medical condition would be considered by many to be a privacy violation. Thus, the
correct classification hinges upon factors beyond the scope of software vulnerability
classification.

7 Related Surveys and Classifications

The most recent Flash security survey paper of similar scope is that by Ford et al.
(2009). Published in 2009, it summarizes attacks and vulnerabilities that predate
our survey, most of which are now obsolete, including early obfuscation techniques,
malvertisements, parsing errors, and decompilation tool issues. The Flash threat
landscape and technology maturity has changed considerably in the past seven
years, motivating our updated survey of the space.

A more recent 2013 work (Baker et al. 2013) analyzed all security threat reports (not
those relating specifically to Flash) as reported by US-CERT, and concluded that
Adobe ranked third (at that time) among the top seven software giants in terms of
vulnerability disclosures, with 14% of CVEs analyzed, mostly relating to Flash.

In their 2012 publication of the FlashDetect malware detection framework (Overveldt
et al. 2012), the authors survey language and architecture features exploited by
contemporary Flash-based malware. These include several topics examined in our
survey, including script obfuscation, heap spraying, and JIT spraying. Like our study,
they conclude that researchers have disproportionately focused on]S security over
Flash security, and that more research in the Flash space is needed to adequately
address modern web security threats.

Adobe supplies a very brief classification of some Flash vulnerabilities on their web
pages (Tenable Network Security 2016; Adobe 2016).

27

8 Conclusion

Adobe’s Flash platform has become a pervasive web technology with a spectrum of
rich features. This flexibility and power, however, leads to a vast range of security
issues. Despite the gravity of the problem, little formal study has been done
on systematizing this large body of knowledge. Scholarly research has focused

disproportionately on other threats, such as those implemented purely in JS.

In order to fill this void and stimulate future research, we presented a systematic
study of Flash security threats and trends, including an in-depth taxonomy of thirteen
major components of Flash that can be exercised as attack vectors, and a detailed
investigation of 711 Common Vulnerability and Exposure (CVE) articles reported
between 2008-2016. The results show that many Flash security threats present
unique fundamental research problems not reflected in other scripting languages,
including design and implementation challenges for gradually typed, object-oriented,
streamed, JIT-compiled programming languages; security policy analysis in the face of
aggressive heterogeneity at both the local and distributed environmental levels; and
better data mining for phishing and scam detection in media-heavy binary formats.
Our systematic organization and detailed summary of these unique challenges, along
with representative, real-world attack examples, aids researchers, web developers,
and security analysts seeking to address this important threat landscape.

Acknowledgments

This research was supported in part by AFOSR award FA9550-14-1-0173; NSF awards
#1054629, #1065216, and #1513704; NSF CRIl award #1566321; ONR award N00014-14-
1-0030; and the Department of Software and Information Systems at UNC Charlotte.
The authors thank Abhinav Mohanty for help with CVE classification. The authors
would also like to thank Matthew Pettersson for his help with data collection and
classification.

References

G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gurses, F. Piessens, and B. Preneel.
FPDetective: Dusting the web for fingerprinters. In Proc. 20th ACM Conf. Computer
and Communications Security (CCS), pages 1129-1140, 2013.

G. Acar, C. Eubank, S. Englehardt, M. Juérez, A. Narayanan, and C. Diaz. The web
never forgets: Persistent tracking mechanisms in the wild. In Proc. 2Ist ACM Conf.
Computer and Communications Security (CCS), pages 674-689, 2014.

Adobe. Adobe security bulletin: Security updates available for Adobe Flash Player.
https://helpx.adobe.com/security/products/flash-player/apsb15-32.html, March 2016.

28

JISSec

Journal of Information
System Security

[authors’ draft copy]

https://helpx.adobe.com/security/products/flash-player/apsb15-32.html

JISSec

Journal of Information
System Security

[authors’ draft copy]

ActionScript Virtual Machine 2 Overview. Adobe Systems, 2007. http://www.adobe.
com/content/dam/Adobe/en/devnet/actionscript/articles/avm2overview.pdf.

SWF File Format Specification, Version 19. Adobe Systems, 2012. http://wwwimages.
adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/swf/pdf/swf-file-
format-spec.pdf.

Adobe Systems. ActionScript technology center. http://www.adobe.com/devnet/
actionscript.html, 2016a.

Adobe Systems. Adobe Flash runtimes statistics. http://www.adobe.com/products/
flashruntimes/statistics.edu.html, 2016b.

W. Alcorn. BeEF: The browser exploitation framework project. http://beefproject.com,
2011.

Y. Amit. Cross-site scripting through Flash in Gmail based services. IBM Application
Security Insider, March 2010. http://blog.watchfire.com/wfblog/2010/03/cross-site-
scripting-through-flash-in-gmail-based-services.html.

S. Anthony. Security firm RSA attacked using Excel-Flash one-two sucker punch.
Huffpost Tech, April 2011. http://downloadsquad.switched.com/2011/04/06/security-
firm-rsa-attacked-using-excel-flash-one-two-sucker-punc.

Y. S. Baker, R. Agrawal, and S. Bhattacharya. Analyzing security threats as reported
by the United States Computer Emergency Readiness Team (US-CERT). In Proc. Tlth
IEEE Intelligence and Security Informatics Conf. (ISl), pages 10-12, 2013.

J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. State of the art: Automated black-box
web application vulnerability testing. In Proc. 31st IEEE Sym. Security & Privacy (S&P),
pages 332-345, 2010.

D. Blazakis. BHDC2010 - JITSpray demo #1. Presented at BlackHat Technical Conf.
USA, July 2010a. http://www.youtube.com/watch?v=HJuBpcij3Ao.

D. Blazakis. Interpreter exploitation. In Proc. 4th USENIX Conf. Offensive Technologies
(WOOT), 2010b.

S. Chatterji. Flash security and advanced CSRF. Presented at the OWASP Delhi
Chapter Meet, 2008.

S. Chen, R. Wang, X. Wang, and K. Zhang. Side-channel leaks in web applications: A
reality today, a challenge tomorrow. In Proc. 3lst IEEE Sym. Security & Privacy (S&P),
pages 191-206, 2010.

Cisco. Cisco annual security report, 2015.

29

http://www.adobe.com/content/dam/Adobe/en/devnet/actionscript/articles/avm2overview.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/actionscript/articles/avm2overview.pdf
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/swf/pdf/swf-file-format-spec.pdf
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/swf/pdf/swf-file-format-spec.pdf
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/swf/pdf/swf-file-format-spec.pdf
http://www.adobe.com/devnet/actionscript.html
http://www.adobe.com/devnet/actionscript.html
http://www.adobe.com/products/flashruntimes/statistics.edu.html
http://www.adobe.com/products/flashruntimes/statistics.edu.html
http://beefproject.com
http://blog.watchfire.com/wfblog/2010/03/cross-site-scripting-through-flash-in-gmail-based-services.html
http://blog.watchfire.com/wfblog/2010/03/cross-site-scripting-through-flash-in-gmail-based-services.html
http://downloadsquad.switched.com/2011/04/06/security-firm-rsa-attacked-using-excel-flash-one-two-sucker-punc
http://downloadsquad.switched.com/2011/04/06/security-firm-rsa-attacked-using-excel-flash-one-two-sucker-punc
http://www.youtube.com/watch?v=HJuBpciJ3Ao

J. Clark. RSA hack targeted Flash vulnerability. ZDNet, April 2011. http://www.zdnet.
com/rsa-hack-targeted-flash-vulnerability-4010022143.

L. Constantin. Iranian nuclear program used as lure in Flash-based targeted attacks.
CS0, March 2012. http://www.csoonline.com/article/701565/iranian-nuclear-program-
used-as-lure-in-flash-based-targeted-attacks.

V. Davydov, A. Ivanov, and D. Vinogradov. How exploit packs are concealed in a Flash
object. SecurelList, April 2015. https://securelist.com/analysis/publications/69727/how-
exploit-packs-are-concealed-in-a-flash-object.

M. Dowd. Application-specific attacks: Leveraging the ActionScript virtual machine.
Technical report, IBM, April 2008. http://www.inf.fu-berlin.de/groups/ag-si/compsec_
assign/Dowd2008.pdf.

M. Dowd, R. Smith, and D. Dewey. Attacking interoperability, 2009. http://www.
hustlelabs.com/stuff/bh2009_dowd_smith_dewey.pdf.

E. Elrom. Top security threats to Flash/Flex applications and how to
avoid them. http://www.slideshare.net/eladnyc/top-security-threats-to-flashflex-
applications-and-how-to-avoid-them-4873308, July 2010.

F-Secure. Backdoor:W32/Poisonlvy. http://www.f-secure.com/v-descs/backdoor_
w32_poisonivy.shtml,F-Secure, 2017.

S. Ford, M. Cova, C. Kruegel, and G. Vigna. Analyzing and detecting malicious Flash
advertisements. In Proc. 25th Annual Computer Security Applications Conf. (ACSAC),
pages 363-372, 2009.

Fukami. Testing and exploiting flash applications. Presented at Chaos Communication
Camp, 2007. http://events.ccc.de/camp/2007/Fahrplan/events/1994.en.html.

M. Garnaeva, J. van der Wiel, D. Makrushin, A. Ivanov, and Y. Namestnikov. Kaspersky
security bulletin 2015: Overall statistics for 2015. Technical report, Kaspersky Labs,
December 2015. https://securelist.com/analysis/kaspersky-security-bulletin/73038/
kaspersky-security-bulletin-2015-overall-statistics- for-2015.

Guya. Encapsulating CSRF attacks inside massively distributed Flash movies - real
world example. http://blog.guya.net/2008/09/14/encapsulating-csrf-attacks-inside-
massively-distributed-flash-movies-real-world-example, September 2008.

R. Hay. Exploitation of CVE-2009-1869. http://roeehay.blogspot.com/2009/08/
exploitation-of-cve-2009-1869.html, August 2009.

B. Hayak and A. Davidi. Deep analysis of CVE-2014-0502 - a double free
story. http://blog.spiderlabs.com/2014/03/deep-analysis- of-cve-2014-0502-a-double-
free-story.html, March 2014.

30

JISSec

Journal of Information
System Security

[authors’ draft copy]

http://www.zdnet.com/rsa-hack-targeted-flash-vulnerability-4010022143
http://www.zdnet.com/rsa-hack-targeted-flash-vulnerability-4010022143
http://www.csoonline.com/article/701565/iranian-nuclear-program-used-as-lure-in-flash-based-targeted-attacks
http://www.csoonline.com/article/701565/iranian-nuclear-program-used-as-lure-in-flash-based-targeted-attacks
https://securelist.com/analysis/publications/69727/how-exploit-packs-are-concealed-in-a-flash-object
https://securelist.com/analysis/publications/69727/how-exploit-packs-are-concealed-in-a-flash-object
http://www.inf.fu-berlin.de/groups/ag-si/compsec_assign/Dowd2008.pdf
http://www.inf.fu-berlin.de/groups/ag-si/compsec_assign/Dowd2008.pdf
http://www.hustlelabs.com/stuff/bh2009_dowd_smith_dewey.pdf
http://www.hustlelabs.com/stuff/bh2009_dowd_smith_dewey.pdf
http://www.slideshare.net/eladnyc/top-security-threats-to-flashflex-applications-and-how-to-avoid-them-4873308
http://www.slideshare.net/eladnyc/top-security-threats-to-flashflex-applications-and-how-to-avoid-them-4873308
http://www.f-secure.com/v-descs/backdoor_w32_poisonivy.shtml, F-Secure
http://www.f-secure.com/v-descs/backdoor_w32_poisonivy.shtml, F-Secure
http://events.ccc.de/camp/2007/Fahrplan/events/1994.en.html
https://securelist.com/analysis/kaspersky-security-bulletin/73038/kaspersky-security-bulletin-2015-overall-statistics-for-2015
https://securelist.com/analysis/kaspersky-security-bulletin/73038/kaspersky-security-bulletin-2015-overall-statistics-for-2015
http://blog.guya.net/2008/09/14/encapsulating-csrf-attacks-inside-massively-distributed-flash-movies-real-world-example
http://blog.guya.net/2008/09/14/encapsulating-csrf-attacks-inside-massively-distributed-flash-movies-real-world-example
http://roeehay.blogspot.com/2009/08/exploitation-of-cve-2009-1869.html
http://roeehay.blogspot.com/2009/08/exploitation-of-cve-2009-1869.html
http://blog.spiderlabs.com/2014/03/deep-analysis-of-cve-2014-0502-a-double-free-story.html
http://blog.spiderlabs.com/2014/03/deep-analysis-of-cve-2014-0502-a-double-free-story.html

JISSec

Journal of Information
System Security

[authors’ draft copy]

M. Heiderich, T. Frosch, M. Jensen, and T. Holz. Crouching tiger - hidden payload:
Security risks of scalable vectors graphics. In Proc. 18th ACM Conf. Computer and
Communications Security (CCS), pages 239-250, 2011.

F. Howard. Exploring the blackhole exploit kit. Technical report, Sophos, March 2012.
http://nakedsecurity.sophos.com/exploring-the-blackhole-exploit-kit.

L.-S. Huang, A. Moshchuk, H. J. Wang, S. Schechter, and C. Jackson. Clickjacking:
Attacks and defenses. In Proc. 2ist USENIX Security Sym., pages 413-428, 2012.

M. Hypponen. How we found the file that was used to hack RSA. http://www.f-
secure.com/weblog/archives/00002226.html, August 2011.

L. Invernizzi and P. M. Comparetti. EvilSeed: A guided approach to finding malicious
web pages. In Proc. 33rd IEEE Sym. Security & Privacy (S&P), pages 428-442, 2012.

C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh. Protecting browsers from DNS
rebinding attacks. ACM Trans. Web (TWEB), 3(1), 2009.

D. Jang, A. Venkataraman, G. M. Sawka, and H. Shacham. Analyzing the cross-domain
policies of Flash applications. In Proc. 5th Work. Web 2.0 Security and Privacy (W25P),
20M.

M. Johns and S. Lekies. Biting the hand that serves you: A closer look at client-side
Flash proxies for cross-domain requests. In Proc. Int. Conf. Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA), pages 85-103, 2011.

M. Johns, S. Lekies, and B. Stock. Eradicating DNS rebinding with the extended
same-origin policy. In Proc. 22nd USENIX Security Sym., pages 621-636, 2013.

W. Jung, S. Kim, and S. Choi. Poster: Deep learning for zero-day Flash malware
detection. In Proc. 36th IEEE Sym. Security & Privacy (S&P), 2015. http://www.ieee-
security.org/TC/SP2015/posters/paper_34.pdf.

G. S. Kalra. Exploiting insecure crossdomain.xml to bypass same origin policy
(ActionScript PoC). http://gursevkalra.blogspot.com/2013/08/bypassing-same-origin-
policy-with-flash.html, August 2013.

D. V. Karamchandani. Surveying the landscape of ActionScript security trends
and threats. Master’s thesis, The University of Texas at Dallas, Richardson, Texas,
December 2013.

G. Keizer. RSA hackers exploited Flash zero-day bug. Computer World, April
201, http://www.computerworld.com/s/article/9215444/RSA_hackers_exploited_
Flash_zero_day bug.

l. Kogan. Flare: ActionScript decompiler. http://www.nowrap.de/flare.html, 2005.

31

http://nakedsecurity.sophos.com/exploring-the-blackhole-exploit-kit
http://www.f-secure.com/weblog/archives/00002226.html
http://www.f-secure.com/weblog/archives/00002226.html
http://www.ieee-security.org/TC/SP2015/posters/paper_34.pdf
http://www.ieee-security.org/TC/SP2015/posters/paper_34.pdf
http://gursevkalra.blogspot.com/2013/08/bypassing-same-origin-policy-with-flash.html
http://gursevkalra.blogspot.com/2013/08/bypassing-same-origin-policy-with-flash.html
http://www.computerworld.com/s/article/9215444/RSA_hackers_exploited_Flash_zero_day_bug
http://www.computerworld.com/s/article/9215444/RSA_hackers_exploited_Flash_zero_day_bug
http://www.nowrap.de/flare.html

l. Kogan. Flasm: Command line assembler/disassembler of ActionScript bytecode.
http://www.nowrap.de/flasm.html, 2007.

C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert. ROZZLE: De-cloaking internet
malware. In Proc. 33rd IEEE Sym. Security & Privacy (S&P), pages 443-457, 2012.

P. Kova. Breaking through Flash obfuscation. Avast! Blog, September 2011a. https:
//blog.avast.com/2011/09/09/breaking-through-flash-obfuscation.

P. Kova. Flash malware that could fit a Twitter message. Avast! Blog, June 2011b.
http://blog.avast.com/2011/06/28/flash- malware- that-could-fit-a-twitter-message.

M. Kranch and). Bonneau. Upgrading HTTPS in mid-air: An empirical study of strict
transport security and key pinning. In Proc. 22nd Annual Network & Distributed System
Security Sym. (NDSS), 2015.

B. Lance. Connecting JavaScript and Flash. Presented at Flash Camp Philadelphia,
November 2009. http://www.slideshare.net/Beautifullnterfaces/connecting-flash-
and-javascript-using-externalinterface-2452543.

S. Lekies, B. Stock, M. Wentzel, and M. Johns. The unexpected dangers of dynamic
JavaScript. In Proc. 24th USENIX Security Sym., pages 723-735, 2015.

K. Levchenko, A. Pitsillidis, N. Chachra, B. Enright, T. Halvorson, C. Kanich, C. Kreibich,
H. Liu, D. McCoy, N. Weaver, V. Paxson, G. M. Voelker, and S. Savage. Click trajectories:
End-to-end analysis of the spam value chain. In Proc. 32nd IEEE Sym. Security &
Privacy (S&P), pages 431-446, 2011.

Z. Li, K. Zhang, Y. Xie, F. Yu, and X. Wang. Knowing your enemy: Understanding
and detecting malicious web advertising. In Proc. 19th ACM Conf. Computer and
Communications Security (CCS), pages 674-686, 2012.

J. Magazinius, B. K. Rios, and A. Sabelfeld. Polyglots: Crossing origins by crossing
formats. In Proc. 20th ACM Conf. Computer and Communications Security (CCS), pages
753-764, 2013.

J. R. Mayer and J. C. Mitchell. Third-party web tracking: Policy and technology. In
Proc. 33rd IEEE Sym. Security & Privacy (S&P), pages 413-427, 2012.

McAfee Labs. McAfee Labs threats report. Technical report, Intel Security, May
2015. http://www.mcafee.com/in/security-awareness/articles/mcafee-labs-threats-
report-may-2015.aspx.

E. Mills. Attack on RSA used zero-day Flash exploit in Excel. CNET, April 2011.
http://news.cnet.com/8301-27080_3-20051071-245.html.

Mitre Corporation. Common vulnerabilities and exposures. http://cve.mitre.org, 2016.

32

JISSec

Journal of Information
System Security

[authors’ draft copy]

http://www.nowrap.de/flasm.html
https://blog.avast.com/2011/09/09/breaking-through-flash-obfuscation
https://blog.avast.com/2011/09/09/breaking-through-flash-obfuscation
http://blog.avast.com/2011/06/28/flash-malware-that-could-fit-a-twitter-message
http://www.slideshare.net/BeautifulInterfaces/connecting-flash-and-javascript-using-externalinterface-2452543
http://www.slideshare.net/BeautifulInterfaces/connecting-flash-and-javascript-using-externalinterface-2452543
http://www.mcafee.com/in/security-awareness/articles/mcafee-labs-threats-report-may-2015.aspx
http://www.mcafee.com/in/security-awareness/articles/mcafee-labs-threats-report-may-2015.aspx
http://news.cnet.com/8301-27080_3-20051071-245.html
http://cve.mitre.org

JISSec

Journal of Information
System Security

[authors’ draft copy]

S. N. Nambiar. Flash phishing. Symantec Security Blog, January 2009. http://www.
symantec.com/connect/blogs/flash-phishing.

R. Naraine. Did Adobe hide 400 vulnerability fixes in latest Flash player patch? ZDNet,
August 2011. http://www.zdnet.com/blog/security/did-adobe-hide-400-vulnerability-
fixes-in-latest-flash-player-patch/9249.

National Institute of Standards and Technology. CWE - common weakness enumera-
tion. http://nvd.nist.gov/cwe.cfm, 2016.

T. Nelms, R. Perdisci, M. Antonakakis, and M. Ahamad. WebWitness: Investigating,
categorizing, and mitigating malware download paths. In Proc. 24th USENIX Security
Sym., pages 1025-1040, 2015.

N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and G. Vigna. Cook-
ieless monster: Exploring the ecosystem of web-based device fingerprinting. In Proc.
34th IEEE Sym. Security & Privacy (S&P), pages 541-555, 2013.

T. V. Overveldt, C. Kruegel, and G. Vigna. FlashDetect: ActionScript 3 malware
detection. In Proc. 15th Int. Sym. Recent Advances in Intrusion Detection (RAID), pages
274-293, 2012.

X. Pan, Y. Cao, and Y. Chen. | do not know what you visited last summer: Protecting
users from third-party web tracking with TrackingFree browser. In Proc. 22nd Annual
Network & Distributed System Security Sym. (NDSS), 2015.

S. D. Paola. Testing Flash applications. Presented at the 6th OWASP AppSec Conf.,
2007.

M. Parkour. CVE-2012-0779 World Uyghur Congress Invitation.doc. Contagio, May
2012. http://contagiodump.blogspot.com.es/2012/05/may-3-cve-2012-0779-world-
uyghur.html.

R. Paul. Mozilla borrows from WebKit to build fast new]S engine. Ars Technica, 2010.

P. D. Petkov. Hacking the interwebs. GnuCitizen, January 2008. http://www.gnucitizen.
org/blog/hacking-the-interwebs.

D. Pfaff, S. Hack, and C. Hammer. Learning how to prevent return-oriented program-
ming efficiently. In Proc. 7th Int. Sym. Engineering Secure Software and Systems (ESSoS),
pages 68-85, 2015.

P. H. Phung, M. Monshizadeh, M. Sridhar, K. W. Hamlen, and V. Venkatakrishnan.
Between worlds: Securing mixed JavaScript/ActionScript multi-party web content.
IEEE Trans. Dependable and Secure Computing (TDSC), 12(4):443-457, 2015.

33

http://www.symantec.com/connect/blogs/flash-phishing
http://www.symantec.com/connect/blogs/flash-phishing
http://www.zdnet.com/blog/security/did-adobe-hide-400-vulnerability-fixes-in-latest-flash-player-patch/9249
http://www.zdnet.com/blog/security/did-adobe-hide-400-vulnerability-fixes-in-latest-flash-player-patch/9249
http://nvd.nist.gov/cwe.cfm
http://contagiodump.blogspot.com.es/2012/05/may-3-cve-2012-0779-world-uyghur.html
http://contagiodump.blogspot.com.es/2012/05/may-3-cve-2012-0779-world-uyghur.html
http://www.gnucitizen.org/blog/hacking-the-interwebs
http://www.gnucitizen.org/blog/hacking-the-interwebs

N. Poole. XSS and CSRF via SWF applets (SWFUpload, Plupload). https://nealpoole.
com/blog/2012/05/xss-and-csrf-via-swf-applets-swfupload-plupload, August 2012.

M. B. Rad. Flash based XSS in Yahoo Mail. http://miladbr.blogspot.com/2013/06/flash-
based-xss-in-yahoo-mail.html, June 2013.

L. Seltzer. New JIT spray penetrates best Windows defenses. PC Magazine, February
2010. http://securitywatch.pcmag.com/apple/284124-new-jit-spray- penetrates-best-
windows-defenses.

F. J. Serna. Flash JIT - spraying info leak gadgets. http://zhodiac.hispahack.com/my-
stuff/security/Flash_Jit_InfoLeak_Gadgets.pdf, July 2013.

H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In Proc. 14th ACM Conf. Computer and Communications
Security (CCS), pages 552-561, 2007.

J. Siek and W. Taha. Gradual typing for objects. In Proc. 2Ist European Conf. Object-
Oriented Programming (ECOOP), pages 2-27, 2007.

sinn3r and J. Vazquez. Adobe Flash player object type confusion. Rapid7, 2012.
http://www.rapid7.com/db/modules/exploit/windows/browser/adobe_flash_rtmp.

C. Song, C. Zhang, T. Wang, W. Lee, and D. Melski. Exploiting and protecting dynamic
code generation. In Proc. 22nd Annual Network & Distributed System Security Sym.
(NDSS), 2015.

Sophos. Security threat report 2013: New platforms and changing threats, 2013.

J. Striegel. DNS rebinding: How an attacker can use your web browser to bypass
a firewall. Make Magazine, August 2007. http://makezine.com/2007/08/01/dns-
rebinding-how-an-attacker.

Symantec Corporation. Internet security threat report (ISTR), volume 20, 2015.

Symantec Security Response. Targeted attacks using confusion (CVE-2012-
0779). http://www.symantec.com/connect/blogs/targeted-attacks-using-confusion-
cve-2012-0779, January 2012.

Tenable Network Security. Adobe Flash Player <= 19.0.0.245 multiple vulnerabili-
ties (APSB15-32). https://www.tenable.com/plugins/index.php?view=single&id=87244,
2016.

K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song. Design and evaluation of a
real-time URL spam filtering service. In Proc. 32nd IEEE Sym. Security & Privacy (S&P),
pages 447-462, 2011.

34

JISSec

Journal of Information
System Security

[authors’ draft copy]

https://nealpoole.com/blog/2012/05/xss-and-csrf-via-swf-applets-swfupload-plupload
https://nealpoole.com/blog/2012/05/xss-and-csrf-via-swf-applets-swfupload-plupload
http://miladbr.blogspot.com/2013/06/flash-based-xss-in-yahoo-mail.html
http://miladbr.blogspot.com/2013/06/flash-based-xss-in-yahoo-mail.html
http://securitywatch.pcmag.com/apple/284124-new-jit-spray-penetrates-best-windows-defenses
http://securitywatch.pcmag.com/apple/284124-new-jit-spray-penetrates-best-windows-defenses
http://zhodiac.hispahack.com/my-stuff/security/Flash_Jit_InfoLeak_Gadgets.pdf
http://zhodiac.hispahack.com/my-stuff/security/Flash_Jit_InfoLeak_Gadgets.pdf
http://www.rapid7.com/db/modules/exploit/windows/browser/adobe_flash_rtmp
http://makezine.com/2007/08/01/dns-rebinding-how-an-attacker
http://makezine.com/2007/08/01/dns-rebinding-how-an-attacker
http://www.symantec.com/connect/blogs/targeted-attacks-using-confusion-cve-2012-0779
http://www.symantec.com/connect/blogs/targeted-attacks-using-confusion-cve-2012-0779
https://www.tenable.com/plugins/index.php?view=single&id=87244

JISSec

Journal of Information
System Security

[authors’ draft copy]

K. Thomas, E. Bursztein, C. Grier, G. Ho, N. Jagpal, A. Kapravelos, D. McCoy, A. Nappa,
V. Paxson, P. Pearce, N. Provos, and M. A. Rajab. Ad injection at scale: Assessing
deceptive advertisement modifications. In Proc. 20th ACM Conf. Computer and
Communications Security (CCS), pages 151-167, 2015.

Trend Micro Forward-Looking Threat Research Team. Luckycat redux: Inside an APT
campaign with multiple targets in India and Japan. Trend Micro Research Paper, March
2012. http://www.trendmicro.com/cloud- content/us/pdfs/security-intelligence/white-
papers/wp_luckycat_redux.pdf.

P. Uhley. Community collaboration enhances Flash. https://blogs.adobe.com/security/
2015/12/community-collaboration-enhances-flash.html, December 2015.

A. van Kesteren. Cross-origin resource sharing. W3C Recommendation, January 2014.
http://www.w3.org/TR/cors.

Verisign. Adobe Flash Player TrueType font parsing integer overflow vulnerabil-
ity. http://www.verisigninc.com/en_US/products-and-services/network-intelligence-
availability/idefense/public-vulnerability-reports/articles/index.xhtml?id=1001, August
2012.

W3Techs. Usage of Flash for websites. http://w3techs.com/technologies/details/cp-
flash/all/all, 2016.

R. Wang, S. Chen, and X. Wang. Signing me onto your accounts through Facebook
and Google: A traffic-guided security study of commercially deployed single-sign-on
web services. In Proc. 33rd IEEE Sym. Security & Privacy (S&P), pages 365-379, 2012.

Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and C. Jackson. | still know what you visited
last summer: Leaking browsing history via user interaction and side channel attacks.
In Proc. 32nd IEEE Sym. Security & Privacy (S&P), pages 147-161, 2011.

J. Wolf. Heap spraying with ActionScript: Why turning off JavaScript won't help this
time. FireEye Malware Intelligence Lab, July 2009. http://blog.fireeye.com/research/
2009/07/actionscript_heap_spray.html.

C. Wressnegger, F. Yamaguchi, D. Arp, and K. Rieck. Analyzing and detecting Flash-
based malware using lightweight multi-path exploration. Technical Report IFI-TB-
2015-05, Institute of Computer Science, University of Géttingen, December 2015.

M. Zalewski. Same-origin policy. In Browser Security Handbook, Part 2. Google, 2011.
https://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy.

K. Zetter. Hacking team shows the world how not to stockpile exploits. Wired, July 2015.
http://www.wired.com/2015/07/hacking-team-shows-world-not-stockpile-exploits.

35

http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp_luckycat_redux.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp_luckycat_redux.pdf
https://blogs.adobe.com/security/2015/12/community-collaboration-enhances-flash.html
https://blogs.adobe.com/security/2015/12/community-collaboration-enhances-flash.html
http://www.w3.org/TR/cors
http://www.verisigninc.com/en_US/products-and-services/network-intelligence-availability/idefense/public-vulnerability-reports/articles/index.xhtml?id=1001
http://www.verisigninc.com/en_US/products-and-services/network-intelligence-availability/idefense/public-vulnerability-reports/articles/index.xhtml?id=1001
http://w3techs.com/technologies/details/cp-flash/all/all
http://w3techs.com/technologies/details/cp-flash/all/all
http://blog.fireeye.com/research/2009/07/actionscript_heap_spray.html
http://blog.fireeye.com/research/2009/07/actionscript_heap_spray.html
https://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy
http://www.wired.com/2015/07/hacking-team-shows-world-not-stockpile-exploits

	Introduction
	Security Trends Analysis and Overview
	Vulnerability Analysis
	Scholarly Research Survey

	Environment Heterogeneity
	Cross-language Procedure Calls
	HTML Interactive Capabilities
	Shared Objects
	Disguised Graphical Content
	Parameter Passing

	Flash Language Implementation Issues
	Parsing Inconsistencies
	Runtime Code Generation
	Address Space Derandomization
	Type-Tagging
	Memory Errors

	Networking and Communications
	Non-uniform Same-Origin Policy
	URL Redirection
	DNS Rebinding

	Selected Mitigations
	Related Surveys and Classifications
	Conclusion

