
SECURITY POLICY ENFORCEMENT BY

AUTOMATED PROGRAM-REWRITING

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Kevin Hamlen

August 2006

© 2006 Kevin Hamlen

ALL RIGHTS RESERVED

SECURITY POLICY ENFORCEMENT BY AUTOMATED

PROGRAM-REWRITING

Kevin Hamlen, Ph.D.

Cornell University 2006

Traditional approaches to protecting computer systems from malicious or other

misbehaved code typically involve (1) monitoring code for unacceptable behavior

as it runs, or (2) detecting potentially misbehaved code and preventing it from

running at all. These approaches are effective when unacceptable behavior can be

detected in time to take remedial action, but in many settings and for many im-

portant security policies this is computationally expensive or provably impossible.

A third approach, termed in this dissertation program-rewriting, involves auto-

matically rewriting code prior to running it in such a way that acceptable behavior

is preserved but unacceptable behavior is not. Rewritten code can be run without

further analysis or monitoring because it is guaranteed to exhibit only acceptable

behavior. Program-rewriting has received recent attention in the literature in the

form of in-lined reference monitors, which implement approach 1 above by in-

lining security checks directly into the code being monitored. Program-rewriting

generalizes in-lined reference monitoring, encompassing many other strategies for

automatically rewriting programs as well.

This dissertation provides a formal characterization of the class of security poli-

cies enforceable by program-rewriting and shows that it is strictly greater than the

classes of policies enforceable by all other known approaches combined. The disser-

tation also presents the design and implementation of a certified program-rewriting

system for the .NET Common Language Infrastructure, showing that program-

rewriters can be developed for real architectures. The extra step of certification

provides a formal proof that the program-rewriter produces code that satisfies

the security policy, resulting in additional guarantees that the implementation is

correct, and higher levels of assurance.

BIOGRAPHICAL SKETCH

Kevin William Hamlen was born on June 2, 1976, in the suburbs of Buffalo, to

parents William and Susan Hamlen. Being faculty members of the nearby state

university, Kevin’s parents raised their son with a love of learning, intellectual

exploration, and academics. When he was seven years old, they purchased the

family’s first computer system—a Commodore™ 64 personal computer. Unexcited

by the video games that came with it, Kevin soon picked up the system user

manual, and it wasn’t long before he was writing his own simple video games

(in 6502 assembly language, because basic was too slow) and giving them to his

friends to play.

Kevin’s interest in computers continued through his junior year of high school,

when he entered and won the 1993 national SuperQuest Supercomputing Compe-

tition and was awarded a summer at the Cornell Theory Center’s supercomputing

cluster to learn about parallel computing and distributed systems. The experience

opened up a new world to the young student in which computers could be a science

rather than merely a hobby, and it inspired him to pursue computer science as a

profession.

In the following year he applied and was admitted to the Computer Science

department of Carnegie Mellon University. During his four years there he drank

in the lectures of many gifted researchers including Herb Simon, Mark Stehlik,

Frank Pfenning, and Peter Lee. Inspired by Peter Lee’s compiler design course,

Kevin completed a senior honor’s thesis with him and with George Necula on

Proof-Carrying Code for x86 Architectures [Ham98], which won the Allen Newell

award for excellence in undergraduate research.

iii

In 1998 Kevin graduated from Carnegie Mellon with a bachelor’s degree in Com-

puter Science and Mathematical Sciences, and matriculated to Cornell University

for his graduate education. There, professors Greg Morrisett and Fred Schneider

introduced him to the emerging field of language-based security, where his long-

standing interests in assembly languages, compilers, and abstract logic found root.

After internships with Microsoft Research in 2001 and 2002, he completed a Mas-

ter’s of Science and Doctor of Philosophy degrees by designing and implementing

an in-lined reference monitoring system for the Microsoft .NET Framework.

In the Fall of 2006, Kevin will continue his academic career by beginning work

as an Assistant Professor for the Computer Science department at the University

of Texas at Dallas.

iv

For my wife, Rebecca,

whose enduring love and support

I will always cherish.

v

ACKNOWLEDGEMENTS

The author is greatly indebted to his major faculty advisors, Greg Morrisett and

Fred B. Schneider, for their many contributions to this dissertation and for their

patient and insightful tutelage in art of paper writing and computer science re-

search. He also wishes to thank his minor advisor, Shimon Edelman, for many

brilliant lectures on Cognition and the Psychological Sciences, which inspired this

author to improve his own lecturing style and seek cross-disciplinary applications

to this and future research.

The author extends his heartfelt thanks to colleague and longtime friend James

Cheney, who endured (and possibly instigated) many late-night ramblings on com-

puter science and mathematics. The presentation of material in this dissertation

was also much improved by the comments of David Walker, Philip Fong, Tomás

Uribe, Úlfar Erlingsson, Matthew Fluet, Yanling Wang, Michael Hicks, and Amal

Ahmed, as well as anonymous referees for TOPLAS and PLAS.

The research in this dissertation was supported in part by AFOSR grants

F49620-00-1-0198 and F49620-03-1-0156; Defense Advanced Research Projects

Agency (DARPA) and Air Force Research Laboratory Air Force Material Com-

mand USAF under agreement number F30602-99-1-0533; National Science Founda-

tion Grants 9703470, 0430161, and CCF-0424422 (TRUST); ONR Grant N00014-

01-1-0968; and a grant from Intel Corporation.

More personally, the author greatly benefited throughout his graduate years

from the warm companionship of his friends in the Graduate Christian Fellowship

at Cornell and the Cornell International Christian Fellowship, including Rachel

Blackwood, Amy Schlueter, Sara Sywulka, Dan Johnson, Kwang Taik Kim, and

Jason Slinker.

vi

Last and most significantly, the author expresses his love and appreciation for

his wife, Rebecca, who tirelessly supported him and encouraged him throughout

the preparation and writing of this dissertation, and for his God, from whom all

wisdom and knowledge flow.

vii

TABLE OF CONTENTS

1 Introduction 1
1.1 Security Policy Enforcement . 1
1.2 Program-rewriting . 5
1.3 Certified Program-rewriting . 8
1.4 Specifying Security Policies . 12
1.5 Structure of the Dissertation . 15

2 Computational Power of Security Enforcement Mechanisms 17
2.1 Overview . 17
2.2 Formal Model of Security Enforcement 19

2.2.1 Programs and Executions 19
2.2.2 Security Policies . 25

2.3 Modeling Various Security Enforcement Mechanisms 27
2.3.1 Static Analysis . 27
2.3.2 Execution Monitoring . 29
2.3.3 Program-rewriting . 35

2.4 Execution Monitors as Program-rewriters 44
2.4.1 EM-enforceable Policies . 44
2.4.2 Benevolent Enforcement of EM-enforceable Policies 49

2.5 Related Work . 55
2.6 Future Work . 59
2.7 Summary . 61

3 Mobile: A Type System for Certified Program-rewriting on .NET 62
3.1 Overview . 62

3.1.1 Certified Program-rewriting 62
3.1.2 Mobile Security Policies . 64
3.1.3 Mobile Type-safety . 66

3.2 Formal Definition of Mobile . 71
3.2.1 The Abstract Machine . 71
3.2.2 Operational Semantics . 77
3.2.3 Type System . 84
3.2.4 History Module Plug-ins . 92

3.3 An Example Mobile Program . 97
3.4 Policy Adherence of Mobile Programs 102
3.5 Related Work . 105
3.6 Conclusions and Future Work . 107

viii

4 Implementation of Mobile 110
4.1 Overview . 110
4.2 Security Policy Specifications . 113
4.3 Type-checking Algorithm . 116

4.3.1 Annotations . 117
4.3.2 Subset Relations . 120

4.4 Program-rewriting Algorithm . 121
4.5 Experimental Results . 125
4.6 Related Work . 128
4.7 Conclusions and Future Work . 130

5 Conclusions 134

A Program Machine Semantics 137

B Proof of Type-soundness for Mobile 142
B.1 Consistency of Statics and Dynamics 142
B.2 Canonical Derivations . 146
B.3 Subject Reduction . 148
B.4 Progress . 160

C Proof of Policy-adherence for Mobile Programs 164

D Proof of Decidability of Subset Relations 167
D.1 History Variables and Intersection 167
D.2 Reduction to Regular Expression Subset 169

Bibliography 179

ix

LIST OF TABLES

4.1 SciMark benchmark runtimes . 127

x

LIST OF FIGURES

1.1 Load paths for static analyses, EM’s, and program-rewriters 4
1.2 Bytecode type-checking . 10
1.3 A Mobile load path . 11

2.1 The relationship of the static to the coRE policies. 34
2.2 Classes of security policies and some policies that lie within them . 54

3.1 The Mobile instruction set . 72
3.2 The Mobile type system . 74
3.3 Mobile subtyping . 75
3.4 The Mobile memory model . 77
3.5 Mobile evaluation contexts . 78
3.6 Small-step operational semantics for Mobile 79
3.7 Typing rules for Mobile . 85
3.8 A DFA for an access protocol policy 94
3.9 Sample Mobile program . 98

4.1 A DFA accepting (e1e
∗
2e3)

∗ . 115
4.2 Mobile annotations . 118
4.3 Implementation of pack and unpack 123
4.4 Event declarations for Pack and Unpack 124

A.1 A PM for incrementing a counter 140

B.1 Consistency of Mobile Statics and Dynamics 143
B.2 Typing derivation for while loops 152

xi

LIST OF SYMBOLS

Γ tape alphabet . 20
ω finite or infinite repetition . 20
E universe of all events . 21
s tape symbol . 23
es event corresponding to reading symbol s 23
e event . 23
M program machine . 23
eM initial event of executions exhibited by M 23
χ execution . 23
eend event corresponding to program termination 23
N set of natural numbers . 24
|χ| length of sequence χ . 24
χ[. . .] subsequence of sequence χ . 24
χM(σ) execution exhibited by M on input σ 24
σ input tape . 24
XM set of executions exhibited by M 24
X−

M set of execution prefixes exhibited by M 24
〈〈·〉〉 mapping from executions to program machines 24
P security policy . 26
P̂ detector . 26
B set of prohibited events . 27
PM set of all Program Machines . 31
ε the empty sequence . 31
≈ program equivalence relation . 35
≈χ execution equivalence relation . 35
R rewriter function . 36
TM set of all Turing Machines . 37
I Mobile term . 72
f object field . 72
v value term . 73
τ Mobile type . 74
C〈`〉 unpacked class . 74
µ untracked type . 74
C〈?〉 packed class . 74
Rep type of a runtime state value . 74
C object class . 74
` object identity variable . 74
H history abstraction expression . 74
θ history variable . 74
Sig method signature . 74
Γ typing context . 74
Ψ history map . 74

xii

Fr local variable frame . 74
� subtyping relation . 75
? spatial conjunction operator . 76
v Mobile value . 77
0 void value . 77
i4 4-bit integer value . 77
rep runtime state value . 77
o heap element . 77
obj heap object . 77
pkg package object . 77
h heap . 77
a method arguments . 77
s stack . 77
ψ small-step store . 77
E evaluation context . 78
 Mobile small-step relation . 78
test history plug-in dynamic test operation 83
hc runtime state value constructor 83
` typing judgment . 84
(linear implication . 84
<: alpha equivalence relation . 91
HC runtime state value type constructor 92
ctx history plug-in context refinement function 92
Q set of Turing Machine States . 137
δ Turing Machine transition relation 137
q Turing Machine state . 137
b tape blank symbol . 137
] disjoint union . 137
→TM Turing Machine small-step relation 138
→PM Program Machine small-step relation 139
d·e execution encoding . 139
b·c execution decoding . 139
∗ finite repetition (Kleene star) . 172
∞ infinite repetition . 173

xiii

Chapter 1

Introduction

1.1 Security Policy Enforcement

Modern software must balance facilitation of desired behavior (features) with pro-

hibition of unacceptable behavior. With the rise of distributed and extensible

systems, meeting this requirement has become more critical than it was in the

past. Extensible systems, such as web browsers which download and run applet

programs, or operating systems which incorporate drivers for new devices, must

ensure that their extensions behave in a manner consistent with the intentions of

the system designer and its users. When unacceptable behavior goes unchecked,

damage can result—not only to the system itself but also to connected systems.

Finding ways to reliably constrain system behavior is therefore important for pro-

tecting today’s highly interconnected computing infrastructures.

The partitioning of possible system behavior into acceptable and unacceptable

behavior constitutes a security policy. Acceptable behaviors are said to satisfy the

security policy; unacceptable behaviors are said to violate the policy. If the notion

of a system’s behavior is broad enough to include not only the current state of the

system but also the history of its past states as well as its potential future states,

security policies include

• access control policies, such as a policy that restricts file access to users with

appropriate credentials,

• availability policies, such as a policy that requires a web server to respond in

a timely manner to each request for a web page, and

1

2

• information flow policies, such as a policy that prohibits user passwords from

being leaked to other users.

Security enforcement mechanisms are employed to prevent unacceptable be-

havior. A security enforcement mechanism is said to (precisely) enforce a security

policy when it permits all behavior that the policy classifies as acceptable and

prevents all behavior that it classifies as unacceptable. A security enforcement

mechanism that conservatively enforces a security policy by preventing both unac-

ceptable behavior and some acceptable behavior can always be viewed as precisely

enforcing a different, more restrictive, security policy. This precise view of enforce-

ment is often more useful than conservative enforcement because identifying the

security policy that a mechanism precisely enforces reveals the set of all security

policies that it conservatively enforces along with a measure of how conservatively

it enforces each of those policies. That is, it reveals both the unacceptable be-

haviors that the mechanism prevents as well as the acceptable behaviors that the

mechanism might also prevent. This is important for identifying and excluding

enforcement mechanisms that are overly-conservative in their enforcement. For

example, an enforcement mechanism that prohibits all system behavior can be said

to conservatively enforce all security policies, but is not terribly useful in practice,

because it permits no desired behavior. To facilitate these kinds of analyses, I will

henceforth reserve the term “enforcement” to refer only to precise enforcement.

Ideally, security enforcement mechanisms should enforce the policy that per-

mits all behavior that is required in order to accomplish what the user and system

administrators desire, and no other behavior. This idealized security policy in-

stantiates the principle of least privilege [SS75], which asserts that every program

should operate using the least set of privileges necessary to accomplish its function.

3

However, enforcing the principle of least privilege is usually not feasible in practice.

For example, an investment program intended to earn its user a profit need only

sell stocks at a gain, but enforcing a policy that admits only this behavior would

require predicting the future of the stock market.

In practice, therefore, enforcement mechanisms must usually enforce some se-

curity policy that approximates the security policy of interest as closely as possible.

This approximation usually involves conservatively prohibiting some behavior that

might be acceptable. Developing enforcement mechanisms that enforce a wider

range of richer and more expressive security policies is therefore advantageous be-

cause it allows the enforcement mechanism to more closely approximate security

policies of interest, and to strike a better balance between prohibition of undesired

behaviors and facilitation of desired behaviors.

Security enforcement mechanisms developed to date can be divided into three

different classes based on their approach to enforcing security policies:

• Static analyses determine a program’s possible behavior prior to its execu-

tion, rejecting some programs whose set of possible behaviors includes unac-

ceptable behavior. For example, the static type-checking performed by the

Java Virtual Machine [LY99, Chapter 4.9.1, Passes 1–3] is a static analysis

that rejects malformed Java bytecode programs.

• Execution Monitors (EM’s) [Sch00] dynamically monitor a program’s be-

havior as it executes, intervening when an imminent policy violation is de-

tected. For example, most operating systems implement access control ma-

trices [Lam71], which guard access to system resources and which might

prevent an illegal access by prematurely halting the offending program.

4

static analysis

untrusted code

?
static analysis

?
execute

yes

-no reject

execution monitoring

untrusted code

?
execute one step

?
event

?
EM

?
intervene

no

6

yes

execute

program-rewriting

untrusted code

?
program-rewriter

?
safe code

?
execute

Figure 1.1: Load paths for static analyses, EM’s, and program-rewriters

• Program-rewriters transform programs (some of which might be policy-vio-

lating) into policy-satisfying programs prior to their execution. For example,

the SASI-Java system [ES00] rewrites Java programs by adding runtime se-

curity checks that halt the program if it would have otherwise violated the

security policy.

Figure 1.1 compares typical load paths on systems that employ static analyses,

EM’s, and program-rewriters to enforce security policies. Observe that while sta-

tic analyses accept or reject untrusted code prior to its execution, EM’s observe

security-relevant events that are exhibited by untrusted code during its execution,

accepting or rejecting the code at runtime based on each such observation. When

EM’s maintain persistent internal state between observations, they can accept or

reject based on the history of events observed to date. In this way, EM’s can

enforce a rich class of history-based security policies.

5

Program-rewriting can potentially combine the power of both static analyses

and EM’s by transforming untrusted code into self-monitoring code that performs

security checks as it executes. They can additionally perform more-sophisticated

transformations that allow the program to avoid potentially dangerous operations

before they arise.

My Thesis. This dissertation champions program-rewriting as a powerful and

effective means of enforcing security policies over untrusted code. It establishes

that program-rewriting is the most powerful method of enforcing security policies

currently known, it demonstrates that program-rewriting frameworks can be effec-

tively implemented for real-world systems, and it presents a design strategy called

certified program-rewriting whereby program-rewriters can be developed with high

assurance that the implementation correctly protects against all policy violations.

1.2 Program-rewriting

A program-rewriter enforces security policies by accepting untrusted code as input

and automatically transforming it into policy-adherent code. In order to satisfy the

definition of policy enforcement, a program-rewriter must satisfy two requirements:

1. A program-rewriter is sound with respect to a security policy if it always

produces code that satisfies the security policy.

2. A program-rewriter is complete with respect to a security policy if it preserves

the behavior of code that already satisfies the security policy.

Program-rewriters that are sound protect against policy violations. Program-

rewriters that are complete are not overly-conservative since that might prohibit

6

desired behavior. That is, a complete program-rewriter should not inhibit or

change the behavior of a program that already complies with the security pol-

icy.

One example of program-rewriting is in-lined reference monitoring. An In-lined

Reference Monitor (IRM) is an EM that has been implemented by injecting the

dynamic security checks performed by the EM into the code being monitored. For

example, consider an EM and an IRM that both enforce a memory safety secu-

rity policy to prohibit programs from performing operations that access memory

locations outside its address space. One example of an EM that enforces this

policy is the memory management hardware of a computer system. Such an EM

enforces this policy by monitoring each memory access and signaling an interrupt

if the accessed location lies outside the bounds of the process’s address space. A

program-rewriter could enforce this policy by inserting bounds checks into un-

trusted code just before every program instruction that accesses memory. The

result would be a IRM that halts itself before any illegal memory access would

have otherwise occurred.

IRM implementations often have several advantages over EM’s. First, security

checks performed by IRM’s can be more efficient than those performed by EM’s

because injecting security checks into the untrusted code itself avoids the overhead

often imposed by context switches between the monitored code and the EM. For

example, an EM implemented in an operating system must context switch from

the user code being monitored to the operating system whenever a security check

is performed. An IRM enforcing the same policy requires no such context switches

since the security checks are performed by instructions within the user code’s

address space.

7

Second, IRM’s can often avoid performing unnecessary security checks because

the program-rewriter can analyze the untrusted code prior to executing it and

avoid inserting unnecessary checks. For example, memory subsystems must usually

check every memory access performed by user code, but IRM’s can avoid checking

at runtime those memory accesses that they can statically prove will always fall

within the bounds of the code’s address space. IRM’s have been developed for

several architectures that enforce memory safety and that use such techniques to

achieve performance gains [WLAG93, Sma97, ABEL05, MM06].

Third, since an IRM’s code lies within the untrusted code’s address space, it

can often take advantage of information not readily available to an EM that exists

separately from the untrusted code. For example, a policy that requires a Java

program to call its own class methods according to a prescribed protocol would be

difficult to enforce by an EM implemented outside the Java program itself, since

internal method calls are not usually observable to external processes.

Program-rewriters are not limited to implementing IRM’s, however. Program-

rewriters transform entire programs prior to executing them, whereas EM’s and

IRM’s typically constrain their attention to individual executions or individual

events in isolation, taking remedial action only if that individual execution or

event constitutes a security policy violation. For example, information flow poli-

cies, such as the policy that requires that values of high-security variables not

correlate with values of low-security variables across different executions of a given

program, is not easily implementable by an EM or IRM that can only track the

history of a program’s current execution to date. A program-rewriter, however,

can consider the set of all possible executions that a program might exhibit, trans-

8

forming untrusted code in sophisticated ways that break correlations between high-

and low-security variables in order to enforce such information-flow policies.

The intuition that program-rewriters can enforce a strictly larger class of poli-

cies than those enforceable by EM’s is proved formally in Chapter 2.

1.3 Certified Program-rewriting

Although program-rewriters are both powerful and efficient, they can be difficult

to implement correctly. A production-level program-rewriter must be able to cor-

rectly analyze and transform a large domain of potentially complex untrusted code,

it must perform these transformations quickly in order to minimize load time over-

head, and it must produce efficient code so that transformed code executes at a

speed that reasonably approximates the original untrusted code.

Program-rewriters that accomplish all these tasks well tend to be large and

sophisticated pieces of software. They can therefore constitute a significant ad-

dition to a system’s trusted computing base. Furthermore, as additional security

policies of interest arise, it is convenient to develop specialized program-rewriters

to enforce them. Thus, the growing pool of program-rewriters tends to enlarge a

system’s trusted computing base over time when every program-rewriter must be

trusted.

Additions to a system’s trusted computing base are tolerable when they come

with formal guarantees of correctness, but program-rewriters developed to date

have mostly lacked such guarantees. To achieve higher levels of assurance in

mission-critical systems, it is desirable to have means of formally verifying the

trusted components of the system to ensure that they satisfy and enforce the se-

curity policies desired by the system’s users and administrators. No such means

9

has been developed for program-rewriting systems thus far (to my knowledge).

It has only recently become possible to produce formal proofs of correctness for

translations performed by realistic compilers [Ler06, BDL06]. Analogous proofs

for realistic program-rewriters might be far off.

Language-based approaches to security [SMH01] have offered a number of pow-

erful strategies for addressing these concerns by leveraging technologies from pro-

gramming languages and compilers to develop robust, high-assurance security en-

forcement mechanisms. One such strategy is the advent of low-level type systems.

Low-level type systems allow code produced by a large piece of software (e.g.,

a compiler) to be formally verified by a smaller piece of software—a type-checker.

This is accomplished by requiring the code-producer to generate code that includes

typing annotations that suffice to prove that the code satisfies various desired

properties. The type-checker verifies that the typing annotations prove that the

code satisfies the property, thereby verifying that the code is safe to execute without

trusting the code-producer, the code that it produced, or the typing annotations.

For example, Java compilers and .NET compilers produce code in a type-safe

bytecode language (Java bytecode [LY99] and Common Intermediate Language

(CIL) [ECM02], respectively). Code that is well-typed according to the language’s

type system is guaranteed to satisfy important invariants like memory safety and

control-flow safety, which dictate that programs must access and transfer control

only to certain suitable memory addresses throughout their executions. Bytecode

verifiers for these languages can then check that the code produced by these com-

pilers is well-typed, thereby proving that the code satisfies these invariants without

trusting the compilers that produced the code. Proof-Carrying Code (PCC) [NL98]

generalizes this approach by expressing the annotations as first-order logical pred-

10

trusted untrusted

source code

?
compiler

?
bytecode�type-checker

?
execute

yes

-no reject

Figure 1.2: Bytecode type-checking

icates and proofs. A verifier for a PCC system checks that the annotations consti-

tute a proof that the code satisfies the desired security policy. Figure 1.2 depicts

the load path on a system that employs a type-safe bytecode language.

Chapter 3 proposes a low-level type system called Mobile which extends the

.NET CIL type system in such a way that a Mobile type-checker can formally ver-

ify that CIL code produced by a program-rewriter satisfies a prescribed security

policy. Such a type-system allows the development of certified program-rewriting

systems—systems in which the program-rewriter itself can remain untrusted be-

cause a (smaller) type-checker can verify that the code produced by the program-

rewriter satisfies the original security policy.

Figure 1.3 summarizes a typical load path on a system that executes code

written in Mobile. Untrusted, managed, CIL code is first automatically rewritten

according to a security policy, yielding an annotated, self-monitoring program

written in Mobile. The rewriting can be performed by either a code producer or

by a client machine receiving the untrusted code. Since the rewriter, and therefore

11

trusted untrusted

unannotated,
managed CIL code

?
-security policy rewriter

??
annotated

Mobile code
�type-checker

?
execute

yes

-no reject

Figure 1.3: A Mobile load path

the self-monitoring program, remains untrusted, the self-monitoring program is

then passed to a trusted type-checker that certifies the code with respect to the

original security policy. Code that satisfies the security policy will be approved by

the type-checker, and it is therefore safe to execute; code that is not well-typed

will be rejected, indicating a failure of the rewriter.

Mobile programs can be implemented as CIL binaries that use CIL custom

attributes to store typing annotations. This means that certified program-rewriting

systems can be developed for .NET architectures without modifying the .NET

virtual machine, compiler, or runtime system. Chapter 4 discusses the development

and implementation of a certified program-rewriting system that uses Mobile to

implement certified IRM’s for the Microsoft .NET Framework.

12

1.4 Specifying Security Policies

Although many real-world systems today have security policies that exist only as

informal, implicit notions in the minds of the system’s administrators, security

policies of interest should be specified explicitly by writing them in a declarative

language whenever the security of the system is important to its users and main-

tainers. Explicit policy specifications permit formal reasoning about the security

policy, which facilitates (i) assessing whether a given security policy is correct in

the sense that it accurately represents the set of behaviors desired by the system’s

users and maintainers, and (ii) determining whether a given system has possible

behaviors that violate the security policy.

In a certified program-rewriting system, explicit policy specifications are addi-

tionally useful in that they permit automatic verification of the soundness of the

program-rewriter. By passing the same policy specification as input to both the

program-rewriter and the type-checker, the type-checker can independently verify

that the program-rewriter has produced code that satisfies the policy.

Writing policy specifications declaratively also achieves a useful separation of

concerns in a certified program-rewriting system. Program-rewriters often have

a wide range of possible ways to enforce any given security policy. For example,

an IRM that detects an imminent policy violation could intervene by (a) halting

the program, (b) skipping the policy-violating operation and continuing execution,

(c) throwing a security exception that could be caught by surrounding code, or

(d) executing some error-handling code provided by the policy writer. A program-

rewriter that produces IRM’s might accept advice from the system administrator

about which of these error-handling methods to implement. Separating such im-

perative advice from the declarative policy specification allows a type-checker to

13

verify that any error-handling implemented by the program-rewriter does not itself

cause a policy violation. Since the policy specification is a trusted component of

the system, this reduces the trusted computing base by excluding any imperative

advice. In this way the (declarative) security policy is distinguished from any

(imperative) advice on how to enforce the security policy.

Security policy specifications in this dissertation will consist of three main com-

ponents: (i) identification of the set of security-relevant entities, (ii) identification

of security-relevant events on those entities, and (iii) declaration of which sequences

of events are permissible and which are not.

Entities The entities in a security policy are the resources to which the policy

restricts access. For example, a policy that restricts access to files might identify file

handles as entities. In an object-oriented setting, entities tend to be objects. For

example, in Mobile, entities are .NET objects as defined by the Common Language

Infrastructure (CLI). Specifying a Mobile security policy requires identifying the

set of security-relevant classes whose object instantiations should be monitored by

the enforcement mechanism.

Events Events define the program operations that constitute access to an en-

tity. For example, a security policy that restricts writing to files would identify as

security-relevant events all the program instructions that cause files to be written.

In object-oriented frameworks where entities are objects, events are often instance

method calls on those objects. A policy written in Mobile could, for example,

restrict File.Write() method calls if objects of class File are security-relevant

entities.

14

Event Sequences Security policies specify the sequences of events that pro-

grams are permitted to exhibit at runtime. For example, a policy that prohibits

access to a particular file would permit all event sequences that do not include an

event that constitutes writing to that file. A resource bound policy might permit

only those event sequences that include n or fewer events that constitute accesses to

the resource, where n is some constant. Sets of permissible event sequences can be

specified using a variety of paradigms including security automata [AS87, Sch00],

regular expressions, or linear temporal logic [Eme90].

In settings where not every entity can be statically named, it is also useful to be

able to specify event sequences that are quantified over sets of entities. For exam-

ple, a policy might require that all opened files must eventually be closed. When

the set of files on the system is unbounded, such a policy can be stated formally

by requiring that, for each entity f of type file, every event eopen(f) (corresponding

to opening the file) that appears in the sequence must be eventually followed by

an event eclose(f) (corresponding to closing the file). Observe that the universal

quantification allows the security policy to refer to all files without providing a

name for each. Object-oriented settings provide a natural method of quantifying

over objects by appealing to the class hierarchy. For example, Mobile policies can

refer to all objects of class File.

Specifying information flow policies requires a fourth component beyond what

is described above. An information flow policy specifies a set of permissible sets

of event sequences rather than identifying individual sequences as acceptable or

unacceptable. For example, a policy that prohibits programs from divulging a

secret might require that the set of event sequences that any given program might

15

exhibit must be a singleton set. If the set of events was defined to be those

operations that are outwardly observable, then this would force any given program

to exhibit consistent observable behavior regardless of the value of the secret.

Although Chapter 2 reasons about such policies at an abstract level, Mobile does

not currently include support for information flow policies. This fourth level in

formal policy specifications is thus omitted from this dissertation.

1.5 Structure of the Dissertation

Chapter 2 presents a formal framework for reasoning about security enforcement

mechanisms and the classes of security policies they can enforce. It exposes flaws

in previous work intended to characterize the class of policies enforceable by EM’s,

resulting in a more precise characterization of the power of EM’s. It uses this

characterization to show that program-rewriters can enforce a class of policies

strictly greater than those enforceable by static analyses and EM’s combined.

Chapter 3 shows how to remove program-rewriters from the trusted computing

base by replacing them with a trusted type-checker. It presents Mobile, a type

system that extends the .NET CIL type system to support certified program-

rewriting. Formal proofs show that well-typed Mobile code is guaranteed to be

policy adherent.

Chapter 4 then describes a prototype implementation of Mobile for the Mi-

crosoft .NET Framework. The implementation includes a program-rewriter that

automatically transforms untrusted CIL code into annotated Mobile code in ac-

cordance with a declarative security policy, along with a type-checker that verifies

that annotated Mobile code is well-typed with respect to a security policy. Prelim-

16

inary tests are presented that indicate that the approach constitutes an effective

and efficient means of enforcing a rich class of history-based security policies.

Chapter 2

Computational Power of Security

Enforcement Mechanisms
The material in this chapter is derived from previously published [HMS06b] joint

work with Greg Morrisett and Fred B. Schneider.

2.1 Overview

Assessing the power of program-rewriting relative to other security enforcement

strategies requires formally characterizing each strategy and identifying the classes

of security policies enforceable by a mechanism that employs each. Such work is

useful because it allows us to assess the power of different mechanisms, choose

mechanisms well suited to particular security needs, identify kinds of attacks that

might still succeed even after a given mechanism has been deployed, and derive

meaningful completeness results for newly developed mechanisms.

Comparing enforcement methods in this way requires an abstract model of se-

curity policies and security policy enforcement that is broad enough to cover all

policies and mechanisms of interest. In this dissertation we adopt the model pro-

posed by Schneider [Sch00] wherein program behavior is regarded as a sequence of

events. This model is sufficiently flexible to capture security policies that concern a

program’s history of operations rather than merely individual program operations.

We further adopt Viswanathan’s view [Vis00] that, in practice, both enforcement

mechanisms and the untrusted code they constrain are subject to computability

constraints.

17

18

Prior work [Sch00, Vis00] has characterized a class EMorig of security policies

meant to capture what could be effectively enforced through execution monitor-

ing. Program-rewriting, however, can be viewed as a generalization of execution

monitoring. No characterization of the class of security policies enforceable by

program-rewriting has been previously developed (to our knowledge). Since numer-

ous systems [DG71, WLAG93, Sma97, ES99, ET99, ES00] use program-rewriting

in ways that go beyond what can be modeled as an EM, a characterization of the

class of policies enforceable by program-rewriters would be useful. In this chapter

we extend the model proposed by [Sch00] to characterize this new class of poli-

cies, the RW-enforceable policies, corresponding to what can be effectively enforced

through program-rewriting.

Execution monitoring can be viewed as an instance of program-rewriting, so one

would expect class EMorig to be a subclass of the RW-enforceable policies. However,

we show that surprisingly this is not the case; there are some policies in EMorig that

are not enforceable by any program-rewriter. Our analysis of these policies shows

that they cannot actually be enforced by an execution monitor either, revealing

that EMorig actually constitutes an upper bound on the class of policies enforceable

by execution monitors instead of an exact bound as was previously thought. We

then show that intersecting EMorig with the RW-enforceable policies yields exactly

those policies that can actually be enforced by an execution monitor, the EM-

enforceable policies.

The chapter proceeds as follows. A formal model of security enforcement is de-

fined in §2.2. Next, in §2.3 that model is used to characterize and relate three meth-

ods of security enforcement: static analysis, execution monitoring, and program-

rewriting. Using the results of these analyses, §2.4 exposes and corrects flaws in

19

prior work that cause EMorig to admit policies not enforceable by any execution

monitor. Related work is discussed in §2.5 and future work is discussed in §2.6.

Finally, §2.7 summarizes the results of the prior sections.

2.2 Formal Model of Security Enforcement

2.2.1 Programs and Executions

An enforcement mechanism prevents unacceptable behavior by untrusted programs.

Fundamental limits on what an enforcement mechanism can prevent arise whenever

that mechanism is built using computational systems no more powerful than the

systems upon which the untrusted programs themselves are based, because the in-

completeness results of Gödel [Göd31] and Turing [Tur36] then imply there will be

questions about untrusted programs unanswerable by the enforcement mechanism.

To expose these unanswerable questions, untrusted programs must be repre-

sented using some model of computation. The Turing Machine (TM) [Tur36] is

an obvious candidate because it is well understood and because a wide range of

security policies can be encoded as properties of Turing Machines [Mar89, HRU76].

Recall, a TM has a finite control comprising a set of states and a transition

relation over those states. A computational step occurs whenever a TM moves

from one finite control state to another (possibly the same) finite control state in

accordance with its transition relation.

However, there are two reasons that the traditional definition of a TM, as a

one-tape finite state machine that accepts or rejects finite-length input strings,

is unsuitable for representing untrusted programs. First, it does not model non-

terminating programs well. Operating systems, which are programs intended to

20

run indefinitely, are not easily characterized in terms of acceptance or rejection of a

finite input. Second, the traditional definition of a TM does not easily distinguish

runtime information that is observable by the outside world (e.g. by an enforcement

mechanism) from runtime information that is not observable because all runtime

information is typically encoded on a single tape. Any realistic model of execution

monitoring must be rich enough to express the monitor’s limited power to access

some but not all information about the untrusted program as it runs.

Therefore, untrusted programs are modeled in this chapter by a multitape

variant of a traditional TM (multitape TM’s being equivalent in computational

power to single-tape TM’s [HU79, p. 161]) that we term a program machine (PM).

PM’s are deterministic TM’s (i.e. TM’s with deterministic transition relations)

that manipulate three infinite-length tapes:

• An input tape, which contains information initially unavailable to the en-

forcement mechanism: user input, non-deterministic choice outcomes, and

any other information that only becomes available to the program as its exe-

cution progresses. Non-determinism in an untrusted program is modeled by

using the input tape contents, even though PM’s are themselves determin-

istic. Input tapes may contain any finite or infinite string over some fixed,

finite alphabet Γ; the set of all (finite-length and infinite-length) input strings

is denoted by Γω.

• A work tape, which is initially blank and can be read or written by the PM

without restriction. It models work space provided to the program at runtime

and is not directly available to the enforcement mechanism.

21

• A write-only trace tape, discussed more thoroughly below, which records

security-relevant behavior by the PM that can be observed by the enforce-

ment mechanism.

Separation of a PM’s runtime information into these three tapes allows us to

provide PM’s infinite-length input strings on their input tapes, and allows the

model to distinguish information that is available to the enforcement mechanism

from information that is not.

As a PM runs, it exhibits a sequence of events observable to the enforcement

mechanism by writing encodings of those events on its trace tape. For example, if

“the PM writing a 1 to its work tape” is an event that the enforcement mechanism

will observe, and the encoding of this event is “0001”, then the string “0001” is

automatically written by the PM to its trace tape whenever that PM writes a 1 to

its work tape.

As the example suggests, we assume a fixed universe of all observable events E

and assume that their encodings do not vary from PM to PM. Assuming a fixed

set E allows our model to distinguish between information observable by the en-

forcement mechanism and information that is not observable. It can be used to

specify that some information might never be available to an enforcement mech-

anism and that other information, like user inputs or non-deterministic choices,

only becomes available to the enforcement mechanism at a particular point during

execution. The result is a model that distinguishes between two different (but

often conflated) reasons among the many reasons why an enforcement mechanism

might fail to enforce a particular security policy:

22

• The enforcement mechanism could fail because it lacks the ability to observe

events critical to the enforcement of the policy. In that case, E is inadequate

to enforce the policy no matter which enforcement mechanism is employed.

• The enforcement mechanism could fail because it lacks sufficient computa-

tional power to prevent a policy violation given the available information. In

this case, where one enforcement mechanism fails, another might succeed.

Although we do not fix a specific set E, we will make several assumptions

about E that allow us to model the predictive power of enforcement mechanisms

of interest in this chapter. In particular, enforcement mechanisms that seek to

prevent security policy violations before they occur must always have some ability

to predict an untrusted program’s behavior finitely far into the future on any given

input. For example, execution monitors must be able to look ahead at least one

computational step on all possible control flow paths to see if a security-relevant

event might next be exhibited. Without this ability, they have no opportunity to

intercept bad events before they occur. This predictive power is, of course, lim-

ited by the information available to the enforcement mechanism. An enforcement

mechanism cannot necessarily determine which (if any) event will be exhibited

next if the untrusted program is about to read input, but we will assume that it

can determine which event would be exhibited next for any given input symbol

the untrusted program might read. This prediction will be repeatable for a finite

number of iterations to predict the outcome of any given finite sequence of inputs

that the untrusted program might encounter. The following assumptions about E

suffice to model this predictive power.

23

• E is a countably infinite set, allowing each event to be unambiguously en-

coded as a finite sequence of symbols on a PM’s trace tape.

• Reading a symbol from the input tape is always an observable event. Thus

for each input symbol s ∈ Γ, there is an event es ∈ E that corresponds to

reading s from the input tape.

• For each PM M , there is an event eM that encodes M , including the finite

control and transition relation of M .1 This corresponds to the assumption

that the enforcement mechanism can access the untrusted program’s text to

make finite predictions about its future behavior. A means for the enforce-

ment mechanism to use event eM to make these predictions will be given

shortly.

A weaker set of assumptions about E that permits enforcement mechanisms ac-

cess to less information, but that still captures the predictive power of interesting

enforcement mechanisms might be possible but is left as future work. Independent

work on this problem [Fon04] is discussed in §2.5.

Following Schneider [Sch00], program executions are modeled as sequences χ

of events from E. Without loss of generality, we assume that complete executions

are always infinite event sequences. (If an untrusted program’s termination is an

observable event, then it can be modeled by a PM that loops, repeatedly exhibiting

a distinguished event eend , instead of terminating. If program termination is not

observable, E can be augmented with an event eskip that indicates that either the

untrusted program has terminated or that no security-relevant event has taken

1This assumption might appear to give an enforcement mechanism arbitrarily
powerful decision-making ability, but we will see in §2.3 that the power is still quite
limited because unrestricted access to the program text is tempered by time limits
on the use of that information.

24

place on a particular computational step.) Many of our analyses will involve both

complete executions and their finite prefixes, and we use χ to refer to both infinite

and finite event sequences unless explicitly stated otherwise. Each finite prefix of

an execution encodes the information available to the enforcement mechanism up

to that point in the execution. Define |·| : Eω → (N ∪ {∞}) such that |χ| is the

length of sequence χ if χ is finite, and |χ| is ∞ if χ is infinite. When i ∈ N and

1 ≤ i ≤ |χ| then let χ[i] denote the ith event of χ, let χ[..i] denote the length-i

prefix of χ, and let χ[i+ 1..] denote the suffix of χ consisting of all but the first i

events.

Executions exhibited by a PM are recorded on the PM’s trace tape. As the

PM runs, a sequence of symbols gets written to the trace tape—one (finite) string

of symbols for each event e ∈ E the PM exhibits. If the PM terminates, then the

encoding of eend or eskip is used to pad the remainder of the (infinite-length) trace

tape. Let χM(σ) denote the execution written to the trace tape when PM M is run

on input tape σ. Let XM denote the set of all possible executions exhibited by a

PM M (viz {χM(σ)|σ ∈ Γω}), and let X−
M denote the set of all non-empty finite

prefixes of XM (viz {χ[..i]|χ ∈ XM , i ≥ 1}).

To provide enforcement mechanisms with the ability to anticipate the possi-

ble exhibition of security-relevant events, we assume that the first event of every

execution exhibited by M is event eM . Thus, we assume that there exists a com-

putable function 〈〈·〉〉 from executions to PM’s such that 〈〈χM(σ)[..i]〉〉 = M for all

i ≥ 1.

Although the existence of a function 〈〈·〉〉 that maps executions to the PM’s that

generated them is a realistic assumption, in so far as enforcement mechanisms

located in the processor or operating system have access to the program, only

25

superficial use has been made of this information in actual execution monitor

implementations to date. For example, reference monitors in kernels typically

do not perform significant analyses of the text of the untrusted programs they

monitor. Instead they use hardware interrupts or other instrumentation techniques

that consider only single program instructions in isolation. Eliminating from our

formal model the assumption that 〈〈·〉〉 exists would require a model in which the

computational details of PM’s are more elaborate, because the model would need

to allow enforcement mechanisms to examine enough of a PM to predict security-

relevant events before they occur but not enough to recover all of the PM’s finite

control. We conjecture that such an elaboration of our model would result in only

trivial changes to the results derived in this chapter, but a proper analysis is left

to future work.

To ensure that a trace tape accurately records an execution, the usual oper-

ational semantics of TM’s, which dictates how the finite control of an arbitrary

machine behaves on an arbitrary input, is augmented with a fixed trace mapping

(M,σ) 7→ χM(σ) such that the trace tape unambiguously records the execution

that results from running an arbitrary PM M on an arbitrary input σ.

Appendix A provides a formal operational semantics for PM’s, an example

event set, and an example trace mapping satisfying the constraints given above.

2.2.2 Security Policies

A security policy defines a binary partition on the set of all (computable) sets of

executions. Each (computable) set of executions corresponds to a PM, so a security

policy divides the set of all PM’s into those that satisfy the policy and those that

26

do not. This definition of security policies is broad enough to express most things

usually considered security policies [Sch00], including

• access control policies, which are defined in terms of a program’s behavior

on an arbitrary individual execution for an arbitrary finite period,

• availability policies, which are defined in terms of a program’s behavior on

an arbitrary individual execution over an infinite period, and

• information flow policies, which are defined in terms of the set of all execu-

tions—and not the individual executions in isolation—that a program could

possibly exhibit.

Given a security policy P , we write P(M) to denote that M satisfies the policy

and ¬P(M) to denote that it does not.

For example, if cells 0 through 511 of the work tape model the boot sector of

a hard disk, and we have defined E such that a PM exhibits event ewrites(i) ∈ E

whenever it writes to cell i of its work tape, then we might be interested in the

security policy Pboot that is satisfied by exactly those PM’s that never write to

any of cells 0 through 511 of the work tape. More formally, Pboot(M) holds if and

only if for all σ ∈ Γω, execution χM(σ) does not contain any of events ewrites(i) for

0 ≤ i < 512.

Security policies are often specified in terms of individual executions they pro-

hibit. Letting P̂ be a predicate over executions, the security policy P induced by

P̂ is defined by:

P(M) =def (∀χ : χ ∈ XM : P̂(χ))

That is, a PM M satisfies a security policy P if and only if all possible executions

of M satisfy predicate P̂ . P̂ is called a detector for P . For example, if we define

27

a detector P̂boot(χ) to hold exactly when χ does not contain any event ewrites(i) for

0 ≤ i < 512, then policy Pboot (above) is the policy induced by detector P̂boot .

The detector P̂boot can be decided2 for a finite execution prefix χ by verifying

that χ does not contain any of a set of prohibited events, namely ewrites(i) for

0 ≤ i < 512. Such detectors are often useful, so for any set of events B ⊆ E to be

prohibited, we define3:

P̂B(χ) =def (∀e : e ∈ χ : e 6∈ B)

The policy PB induced by P̂B is satisfied by exactly those PM’s that never exhibit

an event from B. Policy Pboot can then be expressed as P{ewrites(i)|0≤i<512}.

2.3 Modeling Various Security Enforcement Mechanisms

The framework defined in §2.2 can be used to model many security enforcement

mechanisms, including static analyses (c.f. [LY99, Chapter 4.9.1, Passes 1–3],

[Nac97, MCG99, Mye99]), reference monitors (c.f. [LY99, Chapter 4.9.1, Pass 4],

[Lam71, And72, RC91, KKLS01]), and program-rewriters (c.f. [DG71, WLAG93,

Sma97, ET99, ES00, BLW05, HMS06a]).

2.3.1 Static Analysis

Enforcement mechanisms that accept or reject an untrusted program strictly prior

to running the untrusted program are termed static analyses. Here, the enforce-

ment mechanism must determine whether the untrusted program satisfies the se-

2We say a predicate can be decided or is recursively decidable iff there exists
an algorithm that, for any finite-length element, terminates and returns 1 if the
element satisfies the predicate, and terminates and returns 0 otherwise.

3We write e ∈ χ holds if and only if event e is in execution χ; i.e. e ∈ χ =def

(∃i : 0 ≤ i : e = χ[i]).

28

curity policy within a finite period of time.4 Accepted programs are permitted to

run unhindered; rejected programs are not run at all. Examples of static analyses

include static type-checkers for type-safe languages, like that of the Java Virtual

Machine5 [LY99, Chapter 4.9.1, Passes 1–3] and TAL [MCG99]. JFlow [Mye99]

and others use static analyses to provide guarantees about other security policies

such as information flow. Standard virus scanners [Nac97] also implement static

analyses.

Formally, we deem a security policy to be statically enforceable in our model if

it satisfies the following definition.

Definition 2.1. A security policy P is statically enforceable if there exists a TM

MP that takes an encoding of an arbitrary PM M as input and, if P(M) holds,

then MP(M) accepts in finite time; otherwise MP(M) rejects in finite time.

Thus, by definition, statically enforceable security policies are the recursively de-

cidable properties of TM’s:

Theorem 2.1. The class of statically enforceable security policies is the class of re-

cursively decidable properties of programs (also known as class Π0 of the arithmetic

hierarchy).

Proof. Immediate from Definition 2.1. Recursively decidable properties are, by

definition, those for which there exists a total, computable procedure that decides

them. Machine MP is such a procedure.

4Some enforcement mechanisms involve simulating the untrusted program and
observing its behavior for a finite period. Even though this involves running the
program, we still consider it a static analysis as long as it is guaranteed to terminate
and yield a yes or no result in finite time.

5The JVM also includes runtime type-checking in addition to static type-
checking. The runtime type-checks would not be considered to be static analyses.

29

Class Π0 is well-studied, so there is a theoretical foundation for statically en-

forceable security policies. Statically enforceable policies include: “M terminates

within 100 computational steps,” “M has less than one million states in its finite

control,” and “M writes no output within the first 20 steps of computation.” For

example, since a PM could read at most the first 100 symbols of its input tape

within the first 100 computational steps, and since Γ is finite, the first of the

above policies could be decided in finite time for an arbitrary PM by simulating it

on every length-100 input string for at most 100 computational steps to see if it

terminates. Policies that are not statically enforceable include, “M eventually ter-

minates,” “M writes no output when given σ as input,” and “M never terminates.”

None of these are recursively decidable for arbitrary PM’s.

Static analyses can also prevent PM’s from violating security policies that are

not recursively decidable, but only by enforcing policies that are conservative ap-

proximations of those policies. For example, a static analysis could prevent PM’s

from violating the policy, “M eventually terminates,” by accepting only PM’s that

terminate within 100 computational steps. However, in doing so it would con-

servatively reject some PM’s that satisfy the policy—specifically, those PM’s that

terminate after more then 100 computational steps.

2.3.2 Execution Monitoring

Execution Monitors (EM’s), described in §1.1, include reference monitors [And72,

War79] and other enforcement mechanisms that operate alongside an untrusted

program. An EM intercepts security-relevant events exhibited as the untrusted

program executes, and the EM intervenes upon seeing an event that would lead

to a violation of the policy being enforced. The intervention might involve ter-

30

minating the untrusted program or might involve taking some other corrective

action.6 Examples of EM enforcement mechanisms include access control list and

capability-based implementations of access control matrices [Lam71] as well as

hardware support for memory protection. Runtime linking performed by the Java

Virtual Machine [LY99, Chapter 4.9.1, Pass 4], and runtime type-checking such

as that employed by dynamically typed languages like Scheme [RC91], are other

examples. The MaC system [KKLS01] implements EM’s through a combination

of runtime event-checking and program instrumentation.

Schneider [Sch00] observes that for every EM-enforceable security policy P

there will exist a detector P̂ such that

P(M) ≡ (∀χ : χ ∈ XM : P̂(χ)) (EM1)

P̂(χ) =⇒ (∀i : 1 ≤ i < |χ| : P̂(χ[..i])) (EM2)

¬P̂(χ) =⇒ (∃i : 1 ≤ i : ¬P̂(χ[..i])) (EM3)

That is, detector P̂ induces policy P , and executions satisfy detector P̂ if and only

if all of their prefixes satisfy P̂ . Historically, constraints EM1 – EM3 have been

used to formally characterize the class of safety properties [ADS86]—properties

that stipulate some “bad thing” does not happen during execution [Lam77]. This

previous work also implicitly assumed an additional constraint on detectors, made

explicit by Viswanathan [Vis00]:

P̂(χ) is recursively decidable whenever χ is finite. (EM4)

6Schneider [Sch00] assumes the only intervention action available to an EM
is termination of the untrusted program. Since we are concerned here with a
characterization of what policies an EM can enforce, it becomes sensible to consider
a larger set of interventions.

31

That is, detectors must be computable. We refer to the class of security policies

given by EM1 – EM4 as class EMorig . A security policy P in EMorig can be

enforced by deciding P̂ at each computational step. Specifically, as soon as the

next exhibited event, if permitted, would yield an execution prefix that violates

P̂ , the EM intervenes to prohibit the event.

EM4 is critical for providing a formal definition that agrees with the informal

notion of a safety property [Lam77], because EM4 rules out detectors that are

arbitrarily powerful and thus not available to any real EM implementation. For

example, choose a surjection G : E → PM from events to PM’s7 and define

L =def {e|G(e)(ε) never halts} to be the set of events corresponding to PM’s that

never halt on input ε (the empty sequence). The policy PL that requires a PM to

exhibit only events corresponding to PM’s that eventually halt—a liveness property

that no EM can enforce [Lam77, Sch00]—satisifes EM1 – EM3 but not EM4. No

EM can enforce policy PL because there is no decision procedure that an EM can

use to determine, for an arbitrary event e, whether PM G(e) eventually halts.

In §2.4.1 we show that real EM’s are limited by additional constraints. However,

class EMorig constitutes a useful upper bound on the set of policies enforceable by

execution monitors. Viswanathan [Vis00] shows that EMorig is equivalent to the co-

recursively enumerable (coRE) properties, also known as class Π1 of the arithmetic

hierarchy. A security policy P is coRE when there exists a TM MP that takes an

arbitrary PM M as input and rejects it in finite time if ¬P(M) holds; otherwise

MP(M) loops forever. The equivalence of EMorig to the coRE properties will be

used throughout the remainder of the chapter. Since Viswanathan’s model differs

substantially from ours, we reprove this result for our model.

7Such a mapping exists because set E and the set of all program machines are
both countably infinite.

32

Theorem 2.2. The class given by EM1 – EM4 is the class of co-recursively enu-

merable (coRE) properties of programs (also known as the Π1 class of the arithmetic

hierarchy).

Proof. First we show that every policy satisfying EM1 – EM4 is coRE. Let a policy

P satisfying EM1 – EM4 be given. Security policy P is, by definition, coRE if there

exists a TM MP that takes an arbitrary PM M as input and loops forever if P(M)

holds but otherwise halts in finite time. To prove that P is coRE, we construct

such an MP .

By EM1, P(M) ≡ (∀χ : χ ∈ XM : P̂(χ)) for some P̂ satisfying EM2 – EM4.

EM4 guarantees that a TM can decide P̂(χ) for finite χ. We can therefore construct

MP , as follows: When given M as input, MP begins to iterate through every finite

prefix χ of executions in XM . For each, it decides P̂(χ). If it finds a χ such that

¬P̂(χ) holds, it halts. (This is possible because EM4 guarantees that P̂(χ) is

recursively decidable.) Otherwise it continues iterating indefinitely.

If P(M) holds, then by EM1, there is no χ ∈ XM such that ¬P̂(χ) holds.

Thus, by EM2, there is no i such that ¬P̂(χ[..i]) holds. Therefore MP will loop

forever. But if P(M) does not hold, then by EM1 and EM3 there is some χ and

some i such that ¬P̂(χ[..i]) holds. Therefore MP will eventually terminate. Thus,

MP is a witness to the fact that policy P is coRE.

Second, we show that every coRE security policy satisfies EM1 – EM4. Let

a security policy P that is coRE be given. That is, assume there exists a TM

MP such that if P(M) holds then MP(M) runs forever; otherwise MP(M) halts

in finite time. We wish to show that there exists some P̂ satisfying EM1 – EM4.

Define P̂(χ) to be true iff MP(〈〈χ〉〉) does not halt in |χ| steps or less. If χ is

infinite, then P̂(χ) is true iff MP(〈〈χ〉〉) never halts.

33

P̂ satisfies EM2 because if MP(〈〈χ〉〉) does halt in |χ| steps or less, then it will

also halt in j steps or less whenever j ≥ |χ|. P̂ satisfies EM3 because if MP(〈〈χ〉〉)

ever halts, it will halt after some finite number of steps. P̂ satisfies EM4 because

whenever χ is of finite length, MP(〈〈χ〉〉) can be simulated for |χ| steps in finite

time. Finally, P̂ satisfies EM1 because all and only those PM’s 〈〈χ〉〉 that do not

satisfy P cause MP to halt in time |χ| for some (sufficiently long) χ.

Since the coRE properties are a proper superset of the recursively decidable

properties [Pap95, p. 63], every statically enforceable policy is trivially enforceable

by an EM—the static analysis would be performed by the EM immediately after

the PM exhibits its first event (i.e., immediately after the program is loaded).

Statically enforceable policies are guaranteed to be computable in a finite period

of time, so the EM will always be able to perform this check in finite time and

terminate the untrusted PM if the check fails.

Even though the power of the EM approach is strictly greater than that of the

static approach, this does not mean that the EM approach is to be universally

preferred over the static approach. Depending on the policy to be enforced, either

approach might be preferable to the other for engineering reasons. For example,

static enforcement mechanisms predict policy violations before a program is run

and therefore do not slow the program, whereas EM’s usually slow execution due

to their added runtime checks. Also, an EM might signal security policy violations

arbitrarily late into an execution and only on some executions, whereas a static

analysis reveals prior to execution whether that program could violate the policy.

Thus, recovering from policy violations discovered by an EM can be more diffi-

cult than recovering from those discovered by a static analysis. In particular, an

EM might need to roll back a partially completed computation, whereas a static

34

coRE
(EMorig)

Decidable
(Static)

Figure 2.1: The relationship of the static to the coRE policies.

analysis always discovers the violation before computation begins. Alternatively,

some policies, though enforceable by a static analysis, are simpler to enforce with

an EM, reducing the risk of implementation errors in the enforcement mechanism.

Moreover, the comparison of static enforcement to EM-enforcement given in Theo-

rem 2.2 assumes that both are being given the same information (because in our

model an EM can examine the untrusted program via event eM). If a static analy-

sis is provided one representation of the program (e.g., source code) and an EM is

provided another in which some of the information has been erased (e.g., object

code), then each might well be able to enforce policies that the other cannot.

Theorem 2.2 also suggests that there are policies enforceable by EM’s that are

not statically enforceable, since Π0 ⊂ Π1. Policy Pboot given in §2.2.2 is an example.

More generally, assuring that a PM will never exhibit some prohibited event is

equivalent to solving the Halting Problem, which is known to be undecidable and

therefore is not statically enforceable. EM’s enforce such “undecidable” security

policies by waiting until a prohibited event is about to occur, and then signaling

the violation.

The relationship of the static policies to class EMorig is depicted in Figure 2.1.

35

2.3.3 Program-rewriting

An alternative to static analysis or execution monitoring is program-rewriting. A

program-rewriter modifies, in finite time, untrusted programs prior to their ex-

ecution. Use of program-rewriting for enforcing security policies dates back at

least to 1969 [DG71]. More recently, we find program-rewriting being employed

in software-based fault-isolation (SFI) [WLAG93, Sma97, ABEL05] as a way of

implementing memory-safety policies; in Naccio [ET99], SASI [ES00], and Poly-

mer [BLW05] for enforcing security policies in Java; and in Mobile [HMS06a], pre-

sented in Chapters 3 and 4, for enforcing security policies in the .NET Framework.

Program-rewriters can also be seen as a generalization of execution monitoring,

since they can be used to implement an EM as an In-lined Reference Monitor

(IRM) whereby an EM is embedded into the untrusted program [ES99]. The ap-

proach is appealing, powerful, and quite practical, so understanding what policies

it can enforce is a worthwhile goal.

Implicit in program-rewriting is some notion of program equivalence that con-

strains the program transformations a program-rewriter performs. Executions of

the program that results from program-rewriting must have some correspondence

to executions of the original. We specify this correspondence in terms of an equiv-

alence relation ≈ over PM’s. Since there are many notions of PM-equivalence that

might be suitable, we leave the definition open, defining relation ≈ in terms of an

unspecified equivalence relation ≈χ on executions:

M1 ≈M2 =def

(
∀σ : σ ∈ Γω : χM1(σ) ≈χ χM2(σ)

)
(PGEQ)

Given a PM-equivalence relation, policies enforceable by program-rewriting are

characterized as follows:

36

Definition 2.2. Let a PM-equivalence relation ≈ be given. A policy P is RW≈-

enforceable if there exists a total, computable rewriter function R : PM → PM

such that for all PM’s M ,

P(R(M)) (RW1)

P(M) =⇒M ≈ R(M) (RW2)

Thus, for a security policy P to be considered RW≈-enforceable, there must

exist a way to transform a PM so that the result is guaranteed to satisfy P (RW1)

and if the original PM already satisfied P , then the transformed PM is equivalent

(but not necessarily identical) to the old (RW2). It is important to note that RW1

precludes a program-rewriter from producing as output any PM that does not

satisfy the policy. As we shall see in §2.4, this requirement leads to a subtle but

important distinction between the class of RW≈-enforceable policies and EMorig .

Equivalence relation ≈χ in PM-equivalence is defined independently of any

security policy, but the choice of any particular ≈χ places an implicit constraint

on which detectors can be considered in any of our analyses of policies enforceable

by detectors. In particular, it is sensible to consider only those detectors that are

consistent with relation ≈χ in the following sense:

Definition 2.3. Detector P̂ is consistent with equivalence relation ≈χ if it satisfies

(∀χ1, χ2 : χ1, χ2 ∈ Eω : χ1 ≈χ χ2 =⇒ P̂(χ1) ≡ P̂(χ2))

Detectors consistent with ≈χ never classify one execution as acceptable and

another as unacceptable when the two are equivalent according to ≈χ. Program-

rewriters presume equivalent executions are interchangeable, which obviously isn’t

the case if one execution is acceptable and the other is not. Thus, detectors that

37

are not consistent with ≈χ are not compatible with the model. In an analysis of

any particular enforcement mechanism involving detectors, ≈χ should be defined

in such a way that all detectors supported by the mechanism are consistent with

≈χ, and are therefore covered by the analysis.

The class of RW≈-enforceable policies includes virtually all statically enforceable

policies.8 This is because given a statically enforceable policy P , a rewriter function

exists that can decide P directly—that rewriter function returns unchanged any

PM that satisfies the policy and returns some safe PM (such as a PM that outputs

an error message and terminates) in place of any PM that does not satisfy the

policy. This is shown formally below.

Theorem 2.3. Every satisfiable, statically enforceable policy is RW≈-enforceable.

Proof. Let a policy P be given that is both satisfiable and statically enforceable.

Since P is satisfiable, there exists a program M1 such that P(M1) holds. Define a

total function R : TM → TM by

R(M) =def


M if P(M) holds

M1 if ¬P(M) holds

.

R is total because it assigns a TM to every M , and it is computable because P

is statically enforceable and therefore, by Theorem 2.1, recursively decidable. R

satisfies RW1 because its range is restricted to programs that satisfy P . Finally, R

satisfies RW2 because whenever P(M) holds, R(M) = M . Thus M ≈ R(M) holds

because M ≈ M holds by the reflexivity of equivalence relations. We conclude

that P is RW≈-enforceable.

8The one statically enforceable policy not included is the policy that causes all
PM’s to be rejected, because there would be no PM for R to return.

38

Theorems 2.2 and 2.3 together imply that the intersection of class EMorig with

the RW≈-enforceable policies includes all satisfiable, statically enforceable policies.

The policies in EMorig that are RW≈-enforceable policies also include policies

that are not statically enforceable, but only for certain notions of PM-equivalence.

Program-rewriting is only an interesting method of enforcing security policies when

PM-equivalence is a relation that cannot be decided directly. For example, if PM-

equivalence is defined syntactically (i.e., two PM’s are equivalent if and only if they

are structurally identical) then any modification to the untrusted PM produces an

inequivalent PM, so RW2 cannot hold. The following theorem shows that if PM-

equivalence is a recursively decidable relation, then every RW≈-enforceable policy

that is induced by some detector is statically enforceable. Hence, there is no need

to use program-rewriting if PM-equivalence is so restrictive.

Theorem 2.4. Assume that PM-equivalence relation ≈ is recursively decidable,

and let P̂ be a detector consistent with ≈χ. If the policy P induced by P̂ is RW≈-

enforceable then P is statically enforceable.

Proof. Exhibit a finite procedure for deciding P , thereby establishing that P is

statically enforceable by Theorem 2.1.

GivenM an arbitrary PM, P(M) can be decided as follows. Start by computing

R(M), where R is the program-rewriter given by the RW≈-enforceability of P .

Next, determine if M ≈ R(M) which is possible because ≈ is recursively decidable,

by assumption. If M 6≈ R(M) then RW2 implies that ¬P(M) holds. Otherwise,

if M ≈ R(M) then P(M) holds by the following line of reasoning:

P(R(M)) (RW1)

(∀χ : χ ∈ XR(M) : P̂(χ)) (P̂ induces P) (1)

39

(∀σ : σ ∈ Γω : χM(σ) ≈χ χR(M)(σ)) (because M ≈ R(M))

(∀σ : σ ∈ Γω : P̂(χM(σ)) ≡ P̂(χR(M)(σ))) (consistency) (2)

(∀σ : σ ∈ Γω : P̂(χM(σ))) (by 1 and 2) (3)

P(M) (by 3)

Thus, P(M) has been decided in finite time and we conclude by Theorem 2.1 that

P is statically enforceable.

In real program-rewriting enforcement mechanisms, program equivalence is usu-

ally defined in terms of execution. For instance, two programs are defined to be

behaviorally equivalent if and only if, for every input, both programs produce the

same output; in a Turing Machine framework, two TM’s are defined to be language-

equivalent if and only if they accept the same language. Both notions of equivalence

are known to be Π2-hard, and other such behavioral notions of equivalence tend

to be equally or more difficult. Therefore we assume PM-equivalence is not re-

cursively decidable and not coRE in order for the analysis that follows to have

relevance in real program-rewriting implementations.

If PM-equivalence is not recursively decidable, then there exist policies that are

RW≈-enforceable but not statically enforceable. Pboot of §2.2.2, is an example. A

rewriting function can enforce Pboot by taking a PM M as input and returning a

new PM M ′ that is exactly like M except just before every computational step of

M , M ′ simulates M for one step into the future on every possible input symbol to

see if M will exhibit any prohibited event {ei|0 ≤ i < 512}. If any prohibited event

is exhibited, then M ′ is terminated immediately; otherwise the next computational

step is performed.

40

If PM-equivalence is not coRE, then program-rewriting can be used to enforce

policies that are not coRE, and therefore not enforceable by any EM.

Theorem 2.5. There exist non-coRE PM-equivalence relations ≈ and policies that

are RW≈-enforceable but not coRE.

Proof. Define ≈TM
χ by χ1 ≈TM

χ χ2 ⇐⇒
(
(eend ∈ χ1) ⇔ (eend ∈ χ2)

)
and define ≈TM

according to definition PGEQ. That is, two PM’s M1 and M2 are equivalent iff

they both halt on the same set of input strings. Relation ≈TM defines language-

equivalence for Turing Machines, which is known to be Π2-complete and therefore

not coRE. Define MU to be the universal PM that accepts as input an encoding

of an arbitrary PM M and a string σ, whereupon MU simulates M(σ), halting

if M(σ) halts and looping otherwise. Define policy PU(M) =def (M ≈TM MU).

Observe that policy PU is RW≈TM-enforceable because we can define R(M) =def

MU . Rewriting function R satisfies RW1 because PU(MU) holds, and it satisfies

RW2 because if PU(M) holds then M ≈TM MU by construction. We next prove

that PU is Π2-complete, and therefore not coRE.

A TM with an oracle that computes the ≈TM relation can trivially compute

PU . We now prove the reverse reduction: A TM with an oracle that computes

PU can compute the ≈TM relation. Define OU to be an oracle that, when queried

with M , returns true if PU(M) holds and false otherwise. Define TM MEQ by

MEQ(M1,M2) =def OU(M3) where M3 is defined by

M3(M,σ) =def


M1(σ) if M = M2

M(σ) otherwise

That is, MEQ treats its input tape as an encoding of a pair of PM’s M1 and M2,

and builds a new PM M3 that is exactly like the universal PM MU except that

41

it simulates M1 when it receives M2 as input instead of simulating M2. PM MEQ

then queries oracle OU with M3. Observe that MEQ ≈TM MU iff M1 ≈TM M2.

Thus, MEQ(M1,M2) holds iff M1 ≈TM M2.

The proof of Theorem 2.5 gives a simple but practically uninteresting example

of an RW≈-enforceable policy that is not coRE. Examples of non-coRE, RW≈-

enforceable policies having practical significance do exist. Here is one.

The Secret File Policy: Consider a file system that stores a file whose ex-

istence should be kept secret from untrusted programs. Suppose untrusted

programs have an operation for retrieving a listing of the directory that

contains the secret file. System administrators wish to enforce a policy that

prevents the existence of the secret file from being leaked to untrusted pro-

grams. So, an untrusted PM satisfies the “secret file policy” if and only

if the behavior of the PM is identical to what its behavior would be if the

secret file were not stored in the directory.

The policy in this example is not in coRE because deciding whether an arbitrary

PM has equivalent behavior on two arbitrary inputs is as hard as deciding whether

two arbitrary PM’s are equivalent on all inputs. And recall that PM-equivalence

(≈) is not coRE. Thus an EM cannot enforce this policy.9 However, this policy

can be enforced by program-rewriting, because a rewriting function never needs

to explicitly decide if the policy has been violated in order to enforce the policy.

In particular, a rewriter function can make modifications that do not change the

9 Moreover, an EM cannot enforce this policy by parallel simulation of the
untrusted PM on two different inputs, one that includes the secret file and one
that does not. This is because an EM must detect policy violations in finite
time on each computational step of the untrusted program, but executions can be
equivalent even if they are not equivalent step-for-step. Thus, a parallel simulation
might require the EM to pause for an unlimited length of time on some step.

42

behavior of programs that satisfy the policy, but do make safe those programs that

don’t satisfy the policy. For the example above, program-rewriting could change

the untrusted program so that any attempt to retrieve the contents listing of the

directory containing the secret file yields an abbreviated listing that excludes the

secret file. If the original program would have ignored the existence of the file,

then its behavior is unchanged. But if it would have reacted to the secret file, then

it no longer does.

The power of program-rewriters is not limitless, however; there exist policies

that no program-rewriter can enforce. One example of such a policy is given in

the proof of the following theorem.

Theorem 2.6. There exist non-coRE PM-equivalence relations ≈ and policies that

are not RW≈-enforceable.

Proof. Define policy PNE (M) =def

(
∃σ : σ ∈ Γω : M(σ) halts

)
and define ≈TM

as in the proof of Theorem 2.5 (i.e. ≈TM is defined to be language-equivalence for

TM’s). Observe that policy PNE is RE but not recursively decidable. We show

that if PNE were RW≈TM-enforceable, then it would be recursively decidable—a

contradiction.

Expecting a contradiction, assume that PNE is RW≈TM-enforceable. Then there

exists a rewriting function R satisfying RW1 and RW2. Use R to decide PNE in

the following way: Let an arbitrary PM M be given. To decide if PNE (M) holds,

construct a new PM M ′ that treats its input tape as a positive integer i followed

by a string σ. (For example, if the input alphabet Γ = {0, 1}, then iσ might be

encoded as 1i0σ. Thus, every possible input string represents some valid encoding

of an integer-string pair, and every integer-string pair has some valid encoding.)

Upon receiving iσ as input, PM M ′ simulates M(σ) for i steps and halts if M(σ)

43

halts in that time; otherwise M ′ loops. Next, compute R(M ′). Since R satisfies

RW1, there exists a string on which R(M ′) halts. Simulate R(M ′) on each possible

input string for larger and larger numbers of steps until such a string jσ′ is found.

Next, simulate M(σ′) for j steps. We claim that PNE (M) holds iff M(σ′) halts in

j steps. If M(σ′) halts in j steps, then obviously PNE (M) holds. If M(σ′) does

not halt in j steps, then M ′(jσ′) loops by construction. Since M ′(jσ′) loops but

R(M ′)(jσ′) halts, it follows that R(M ′) 6≈TM M ′. By RW2, PNE (M) therefore does

not hold.

Thus, we have used R to decide PNE for arbitrary M , contradicting the fact

that PNE is not recursively decidable. We conclude that no such R exists, and

therefore PNE is not RW≈TM-enforceable.

The ability to enforce policies without explicitly deciding them makes the RW≈-

enforceable policies extremely interesting. A characterization of this class in terms

of known classes from computational complexity theory would be a useful result,

but might not exist. The following negative result shows that, unlike static en-

forcement and EMorig , no class of the arithmetic hierarchy is equivalent to the class

of RW≈-enforceable policies.

Theorem 2.7. There exist non-coRE PM-equivalence relations ≈ such that the

class of RW≈-enforceable policies is not equivalent to any class of the arithmetic

hierarchy.

Proof. The proof of Theorem 2.5 showed that the Π2-hard policy PU is RW≈TM-en-

forceable. Theorem 2.6 showed that the RE policy PNE is not RW≈TM-enforceable.

Since Π2 is a superclass of RE, there is no class of the arithmetic hierarchy that

includes PU but not PNE . We conclude that the class of RW≈TM-enforceable policies

is not equivalent to any class of the arithmetic hierarchy.

44

2.4 Execution Monitors as Program-rewriters

Since EM’s can be implemented by program-rewriters as in-lined reference mon-

itors [ES00], one might expect EMorig to be a subclass of the RW≈-enforceable

policies. However, in this section we show that there are policies in EMorig that

are not RW≈-enforceable. In section §2.4.1 we identify some of these policies and

argue that they cannot actually be enforced by EM’s either. Thus, EMorig is a

superclass of the class of policies that EM’s can enforce. In §2.4.2 we then show

how the definition of RW≈-enforceable policies presented in §2.3.3 can be leveraged

to obtain a precise characterization of the EM-enforceable policies.

2.4.1 EM-enforceable Policies

When an EM detects an impending policy violation, it must intervene and prevent

that violation. Such an intervention could be modeled as an infinite series of

events that gets appended to a PM’s execution in lieu of whatever suffix the PM

would otherwise have exhibited. Without assuming that any particular set of

interventions are available to an EM, let I be the set of possible interventions.

Then the policy PI , that disallows all those interventions, is not enforceable by

an EM. If an untrusted program attempts to exhibit some event sequence in I, an

EM can only intervene by exhibiting some other event sequence in I, which would

in itself violate policy PI .
10 Nevertheless, PI is a member of EMorig as long as I

satisfies EM1 – EM4.

10 In the extreme case that EM’s are assumed to be arbitrarily powerful in their
interventions, this argument proves only that EM’s cannot enforce the unsatisfiable
policy. (If I = Eω, then PI is the policy that rejects all PM’s.) A failure to enforce
the unsatisfiable policy might be an uninteresting limitation, but even in this
extreme case, EM’s have another significant limitation, to be discussed shortly.

45

For example, [Sch00] presumes that an EM intervenes only by terminating the

PM. Define eend to be an event that corresponds to termination of the PM. The

policy P{eend}, which demands that no PM may terminate, is not enforceable by

such an EM even though it satisfies the definition of EMorig . In addition, more

complex policies involving eend , such as the policy that demands that every PM

must exhibit event e1 before it terminates (i.e. before it exhibits event eend) are

also unenforceable by such an EM, even though they too are members of EMorig .

The power of an EM is thus limited by the set of interventions available to it, in

addition to the limitations described by the definition of EMorig .

The power of an EM is also limited by its ability to intervene at an appropriate

time in response to a policy violation. To illustrate, consider a trusted service that

allocates a resource to untrusted programs. When an untrusted program uses the

resource, it exhibits event euse . Once the service has allocated the resource to an

untrusted program, the service cannot prevent the untrusted program from using

the resource. That is, the service cannot revoke access to the resource or halt the

untrusted program to prevent subsequent usage. However, untrusted programs

can assert that they will no longer use the resource by exhibiting event erel , after

which the service can allocate the resource to another untrusted program.

To avoid two untrusted programs having simultaneous access to the resource,

we wish to enforce the policy that the assertions denoted by erel are always valid.

That is, we wish to require that, whenever an untrusted program exhibits event

erel , no possible extension of that execution will subsequently exhibit euse . This

would, for example, ensure that no untrusted program retains a reference to the

resource that it could use after exhibiting erel . Formally, we define

P̂RU1 (χ) =def

(
erel 6∈ χ ∨ (∀χ′ : χχ′ ∈ X〈〈χ〉〉 : euse 6∈ χ′)

)

46

and we wish to enforce the policy PRU induced by P̂RU1 . Enforcing this policy

would allow the enforcement mechanism to suppress event erel when the untrusted

program might continue to use the resource, and thereby prevent the service from

unsafely allocating the resource to another untrusted program.

One would expect that policy PRU is not EM-enforceable because detector

P̂RU1 is undecidable. Determining, for an arbitrary execution of an arbitrary PM,

whether there exists some extension of that execution for that PM that exhibits

event euse , is equivalent to solving the Halting Problem. However, policy PRU is a

member of EMorig because the definition of EMorig demands only that there exists

a detector satisfying EM1 – EM4 that induces the policy, and there is another

detector that does so:

P̂RU2 (χ) =def

(
∀i : i ≥ 1 : (erel 6∈ χ[..i] ∨ euse 6∈ χ[i+ 1..])

)
Detector P̂RU2 rejects executions that have an euse subsequent to an erel . This

detector induces the same policy PRU because any PM that has an execution that

violates detector P̂RU1 will also have a (possibly different) execution that violates

detector P̂RU2 . Inversely, every PM that has only executions that satisfy P̂RU1 will

also have only executions that satisfy P̂RU2 . Thus P̂RU1 and P̂RU2 cause the same

set of PM’s to be accepted or rejected even though they are violated by different

executions of those PM’s that are rejected.

However, if an EM were to use detector P̂RU2 to enforce policy PRU , it would

not be able to prevent two untrusted programs from simultaneously using the

resource. An EM using detector P̂RU2 would only discover that an execution should

be rejected when the untrusted program attempts to exhibit euse after having

exhibited erel in the past. At that point the service might have already allocated

the resource to another untrusted program and would not be able to revoke the

47

resource from either program. Detector P̂RU2 is therefore violated at a time too

late to permit the enforcement mechanism to guarantee that all executions satisfy

detector P̂RU1 . Violations of P̂RU1 are detected by the EM but cannot be corrected.

In conclusion, an EM can “enforce” policy PRU in a way that honors detector

P̂RU2 , but not in a way that honors detector P̂RU1 . The definition of EMorig is in-

sufficient to distinguish between a policy induced by P̂RU1 and one induced by P̂RU2

because it places no demands upon the set of executions that results from the com-

posite behavior of the EM executing alongside the untrusted program. The result

should be a set of executions that all satisfy the original detector, but EM1 – EM4

can be satisfied even when there is no EM implementation that can accomplish this.

The power of an EM derives from the collection of detectors it offers policy-

writers. A small collection of detectors might be stretched to “enforce” all coRE

policies according to the terms of EMorig , but in doing this, some of those policies

will be “enforced” in ways that permit bad events to occur, which could be unac-

ceptable to those wishing to actually prevent those bad events. Proofs that argue

that some real enforcement mechanism is capable of enforcing all policies in EMorig

are thus misleading. For example, the MaC system was shown to be capable of en-

forcing all coRE policies [Vis00], but policies like PRU cannot be enforced by MaC

in such a way as to signal the violations specified by P̂RU1 before the violation has

already occurred.

In §2.4.2 we show that the intersection of class EMorig with the RW≈-enforceable

policies constitutes a more suitable characterization of the EM-enforceable policies

than class EMorig alone. This is because RW1 and RW2 impose constraints upon

an EM’s ability to intervene. For example, in a setting where EM’s can intervene

by suppressing events that would otherwise be exhibited by an untrusted PM, one

48

might model such interventions by an event esupp(e′) that is exhibited whenever an

EM suppresses event e′. If EM’s cannot suppress euse events, one might wish to

enforce policy P ′
RU defined by

P ′
RU (M) =def PRU (M) ∧

(
∀σ : σ ∈ Γω : (esupp(euse) 6∈ χM(σ))

)
By RW1, policy P ′

RU is only RW≈-enforceable if there exists a rewriting function

that produces PM’s that both satisfy policy PRU and that never suppress any euse

events. Such a constraint on allowable interventions is not expressible using axioms

EM1 – EM4 alone because those axioms do not regard the new set of executions

that results from an EM’s intervention upon an untrusted PM.

Characterizing the EM-enforceable policies as the intersection of class EMorig

with the RW≈-enforceable policies therefore allows us to express policies that regard

the whole system rather than just the part of the system that does not include the

EM. That is, it allows us to reify the EM into the computation and consider policies

that regard this new composite computation rather than just the computation

defined by the untrusted PM’s behavior in isolation. A enforcement mechanism

can only be said to “enforce” a policy if it neither allows any untrusted PM to

violate the policy, nor itself violates the policy in the course of “enforcing” it.

This approach also allows us to confirm the intuition that if a policy is EM-

enforceable, it should also be enforceable by an in-lined reference monitor. That

is, it should be possible to take an EM that enforces the policy and compose it

with an untrusted program in such a way that this rewriting process satisfies RW1

and RW2. Axioms RW1 and RW2 require that the computation exhibited by

the rewritten PM must satisfy the policy. That is, the composite computation

consisting of the original PM’s behavior modified by the EM’s interventions must

satisfy the policy to be enforced.

49

2.4.2 Benevolent Enforcement of EM-enforceable Policies

To account for the additional restrictions upon EM’s described in §2.4.1, it will

be useful to identify those detectors for which there is some means to enforce the

policies they induce without producing executions that violate the detector. We

do so as follows:

Definition 2.4. A detector P̂ is benevolent if there exists a decision procedure

MP̂ for finite executions such that for all PM’s M :

¬
(
∀χ : χ ∈ XM : P̂(χ)

)
=⇒

(
∀χ : χ ∈ X−

M : (¬P̂(χ) ⇒MP̂(χ) rejects)
)

(B1)(
∀χ : χ ∈ XM : P̂(χ)

)
=⇒

(
∀χ : χ ∈ X−

M : (MP̂(χ) accepts)
)

(B2)

A detector that satisfies B1 and B2 can be implemented in such a way that

bad events are detected before they occur. In particular, B1 stipulates that an

EM implementing detector P̂ rejects all unsafe execution prefixes of an unsafe PM

but also permits it to reject unsafe executions early (e.g., if it is able to anticipate

a future violation). B1 even allows the EM to conservatively reject some good

executions, when a PM does not satisfy the policy. But in order to prevent the

EM from being too aggressive in signaling violations, B2 prevents any violation

from being signaled when the policy is satisfied.

Detector P̂RU2 of §2.4.1 is an example of a benevolent detector. The decision

procedure MP̂RU2
(χ) would simply scan χ and would reject iff euse was seen after

erel . However, detector P̂RU1 of §2.4.1 is an example of a detector that is not

benevolent. It is not possible to discover in finite time whether there exists some

extension of execution χ that includes event euse (or, conservatively, whether any

execution of 〈〈χ〉〉 has an euse after an erel). Therefore no suitable decision procedure

MP̂RU1
satisfying B1 and B2 exists.

50

Benevolent detectors can be implemented so as to prevent all policy violations

without hindering policy-satisfying programs. In the next theorem, we prove that

if a policy is both coRE and RW≈-enforceable for some equivalence relation ≈ that

permits the sorts of program transformations that are typically performed by in-

lined reference monitors, then every detector that induces that policy (and that is

also consistent with ≈ and satisfies EM2) is benevolent. That is, no matter which

detector might be desired for enforcing such a policy, there is a way to implement

that detector so that all policy violations are prevented but all executions of policy-

satisfying programs are permitted. Thus, the class of policies that are both coRE

and RW≈-enforceable constitutes a good characterization of the policies that are

actually enforceable by an EM. Such policies can be enforced by an EM that is

implemented as an in-lined reference monitor, whereas other coRE policies cannot

be so implemented (because they are not RW≈-enforceable).

We prove this result by first defining a suitable equivalence relation ≈IRM. We

then prove that any detector that is consistent with ≈IRM
χ , that satisfies EM2, and

that induces a policy that is both RW≈IRM-enforceable and coRE, is benevolent.

Let ≈IRM
χ be an equivalence relation over executions such that

χ1 ≈IRM
χ χ2 is recursively decidable11 whenever χ1 and χ2 are both finite. (EQ1)

χ1 ≈IRM
χ χ2 =⇒ (∀i∃j : χ1[..i] ≈IRM

χ χ2[..j]) (EQ2)

and let ≈IRM be the equivalence relation over programs defined by relation ≈IRM
χ

using formula PGEQ.

11This assumption can be relaxed to say that χ1 ≈IRM
χ χ2 is recursively enu-

merable (RE) without affecting any of our results. However, since assuming a
recursively decidable relation simplifies several of the proofs, and since we cannot
think of a program-equivalence relation of practical interest in which execution-
equivalence would not be recursively decidable, we make the stronger assumption
of decidability for the sake of expository simplicity.

51

EQ1 states that although deciding whether two PM’s are equivalent might be

very difficult in general, an IRM can at least determine whether two individual

finite-length execution prefixes are equivalent. EQ2 states that equivalent execu-

tions have equivalent prefixes where those prefixes might not be equivalent step for

step, reflecting the reality that certain program transformations add computation

steps. For example, an IRM is obtained by inserting checks into an untrusted

program and, therefore, when the augmented program executes a security check,

the behavior of the augmented program momentarily deviates from the original

program’s. However, assuming the check passes, the augmented program will re-

turn to a state that can be considered equivalent to whatever state the original

program would have reached.

Theorem 2.8. Let a detector P̂ satisfying EM2 be given, and assume that P̂

is consistent with ≈IRM
χ . If the policy P induced by P̂ is RW≈IRM-enforceable and

satisfies EM1 – EM4, then P̂ is benevolent.

Proof. Define a decision procedure MP̂ for P̂ and show that it satisfies B1 and B2.

We define MP̂ as follows: When MP̂ receives a finite execution prefix χ as input,

it iterates through each i ≥ 1 and for each i, determines if χ ≈IRM
χ χR(〈〈χ〉〉)(σ)[..i],

where R is the rewriter given by the RW≈IRM-enforceability of P and σ is the

string of input symbols recorded in the trace tape as being read during χ. Both

of these executions are finite, so by EQ1 this can be determined in finite time. If

the two executions are equivalent, then MP̂ halts with acceptance. Otherwise MP̂

simulates MP(〈〈χ〉〉) for i steps, where MP is a TM that halts if and only if its

input represents a PM that violates P . Such a TM is guaranteed to exist because

P satisfies EM1 – EM4 and is therefore coRE by Theorem 2.2. If MP(〈〈χ〉〉) halts

52

in i steps, then MP̂ halts with rejection. Otherwise MP̂ continues with iteration

i+ 1.

First, we prove that MP̂ always halts. Suppose ¬P(〈〈χ〉〉) holds. Then MP

will eventually reach a sufficiently large i that MP(〈〈χ〉〉) will halt, and thus MP̂

will halt. Suppose instead that P(〈〈χ〉〉) holds. Then by RW1, 〈〈χ〉〉 ≈IRM R(〈〈χ〉〉).

Applying the definition of ≈IRM, we see that χ〈〈χ〉〉(σ) ≈IRM
χ χR(〈〈χ〉〉)(σ). Recalling

that χ is a finite prefix of χ〈〈χ〉〉(σ), observe that EQ2 implies that there exists a

(sufficiently large) i such that χ ≈IRM
χ χR(〈〈χ〉〉)(σ)[..i]. Thus MP̂ will halt.

Now observe that the only time MP̂ halts with rejection, ¬P(〈〈χ〉〉) holds. To-

gether with the fact that MP̂ always halts, this establishes that MP̂ satisfies B1.

Finally, we prove that if MP̂ halts with acceptance, then P̂(χ) holds. If MP̂

halts with acceptance, then χ ≈IRM
χ χR(〈〈χ〉〉)(σ)[..i] for some i ≥ 1. By RW1,

P(R(〈〈χ〉〉)) holds. Hence P̂(χR(〈〈χ〉〉)(σ)) holds because P(R(M)) ≡ (∀χ′ : χ′ ∈

XR(〈〈χ〉〉) : P̂(χ′)) by assumption, and therefore P̂(χR(〈〈χ〉〉)(σ)[..i]) holds by EM2.

Since P̂ is consistent with ≈IRM
χ by assumption, we conclude that P̂(χ) holds. This

proves that MP̂ satisfies B2.

The existence of policies in EMorig that are not RW≈-enforceable can now be

shown by demonstrating that there exist coRE policies with detectors that satisfy

EM2 but that are not benevolent. By Theorem 2.8, no such policy can be both

coRE and RW≈IRM-enforceable.

Theorem 2.9. There exist detectors P̂ and equivalence relations ≈IRM
χ such that

P̂ is consistent with ≈IRM
χ , P̂ satisfies EM2 and EM3, the policy P induced by P̂

satisfies EM1 – EM4, and yet P̂ is not benevolent.

53

Proof. Define P{eend} as in §2.4.1 and define P̂NT (χ) =def P{eend}(〈〈χ〉〉). That is,

an execution satisfies P̂NT if and only if it comes from a program that never halts

on any input. Define ≈IRM
χ to be the identity relation over executions, and observe

that P̂NT is consistent with ≈IRM
χ . Detector P̂NT satisfies EM2 because for every

program M , either all prefixes of all of that program’s executions satisfy P̂NT or

none of them do. P̂NT satisfies EM3 because if an execution falsifies P̂NT , then

every finite prefix of that execution falsifies it as well.

Define PNT to be the policy induced by P̂NT . Observe that PNT ≡ P{eend} by

the following line of reasoning:

PNT (M) ≡ (∀χ : χ ∈ XM : P̂NT (χ))

≡ (∀χ : χ ∈ XM : P{eend}(〈〈χ〉〉)) (by def of P̂NT above)

≡ (∀χ : χ ∈ XM : P{eend}(M)) (because χ ∈ XM)

≡ P{eend}(M) (by def of P{eend} in §2.4.1)

By construction, P{eend} satisfies EM1 – EM4; therefore PNT satisfies EM1 – EM4.

However, P̂NT is not benevolent. If it were, then the following would be a finite

procedure for deciding the halting problem: For arbitrary M , decide if M ever

halts on any input by computing MP̂NT
(χM(σ)[..1]), where MP̂NT

is the decision

procedure predicted to exist by the benevolence of P̂NT , and σ is any fixed string.

Since χM(σ)[..1] is finite, MP̂NT
is guaranteed to accept or reject it in finite time. If

M never halts on any input, then by B2, MP̂NT
will accept. Otherwise if M does

halt on some input, then ¬P̂NT (χM(σ)[..1]) holds and therefore by B1, MP̂NT
will

reject.

To summarize, the relationship of the statically enforceable policies, the coRE

policies (class EMorig), and the policies enforceable by program-rewriting (the

54

PNE (§2.3.3)
coRE

(EMorig)

RW-
enforceable

PI (§2.4.1) the secret file
policy (§2.3.3)

Pboot (§2.2.2)
EM-

enforceableM terminates within
100 computational
steps (§2.3.1)

Decidable
(Static)

the unsatisfiable
policy

Figure 2.2: Classes of security policies and some policies that lie within them

RW≈-enforceable policies) is shown in Figure 2.2. The statically enforceable poli-

cies are a subset of the coRE policies and, with the exception of the unsatisfiable

policy, a subset of the RW≈-enforceable policies. The shaded region indicates those

policies that are both coRE and RW≈-enforceable. These are the policies that we

characterize as EM-enforceable. There exist coRE policies outside this intersection,

but all such policies are induced by some non-benevolent detector. Thus, using an

EM to “enforce” any of these policies would result in program behavior that might

continue to exhibit events that the policy was intended to prohibit. There are also

RW≈-enforceable policies outside this intersection. These are policies that cannot

be enforced by an EM but that can be enforced by a program-rewriter that does

not limit its rewriting to producing in-lined reference monitors.

Figure 2.2 also shows where various specific policies given throughout this chap-

ter lie within the taxonomy of policy classes. The policy “M terminates within

100 computational steps” given in §2.3.1 is an example of a policy that can be en-

forced by static analysis, execution monitoring, or program-rewriting. Policy Pboot ,

55

introduced in §2.2.2, is not enforceable by static analysis, but can be enforced by

an EM or by a program-rewriter. The secret file policy described in §2.3.3 is an

example of a policy that cannot be enforced by any EM but that can be enforced

by a program-rewriter. Finally, policy PI is one of the policies given in §2.4.1 that

satisfies the definition of EMorig but that cannot be enforced by any real EM in a

way that prevents bad events from occurring on the system.

2.5 Related Work

Edit Automata In contrast to program-rewriters, edit automata [LBW05a]

modify executions rather than modifying programs. Cast in the framework of

this dissertation, an edit automaton can intervene at each computational step by

inhibiting any event a PM writes to its trace tape and/or writing additional events

to the trace tape.

Like program-rewriters, the behavior of an edit automaton is constrained by an

equivalence relation over executions. If a PM would have exhibited an execution

that satisfied the detector that the edit automaton was to enforce, then any events

suppressed or inserted by the edit automaton must result in a final execution

that is equivalent to the one that the PM would have exhibited without those

suppressions or insertions. But if the PM would have exhibited an execution

that falsified the detector, then the edit automaton must suppress or insert events

to produce an execution that satisfies the detector. Thus, similar to program-

rewriters, edit automata must preserve the semantics of “good” executions whilst

preventing “bad” executions.

Edit automata enforce a class of policies called the infinite renewal policies—

policies for which every infinite policy-satisfying execution has an infinite num-

56

ber of finite, policy-satisfying prefixes [Lig06, p. 34]. Infinite renewal policies

include some policies that are not EM-enforceable, such as some liveness poli-

cies [LBW05b, Lig06]. An edit automaton’s power above an EM stems from its

ability to pause the program being monitored for an infinite length of time, sup-

pressing all remaining events in an infinite sequence unless some “good” event even-

tually occurs. Our model assumes that an EM must accept or reject each event in

finite time, preventing an EM from duplicating this behavior. The infinite renewal

policies are a subset of the RW-enforceable policies because program-rewriters can

enforce any such policy by in-lining an edit automata into untrusted code, similar

to the typical strategy for implementing IRM’s.

Shallow History Automata Fong [Fon04] investigates the power of execution

monitors that are limited by the information that they can recall but that have

no restrictions on their computational power. For example, shallow history au-

tomata can recall the set of events exhibited so far but not the exact order or

number of events exhibited. These and other recall-limited EM’s are modeled as

automata bound by constraints EM1 – EM3 as well as by recollection constraints.

On each computational step they observe any security-relevant event about to be

exhibited and either (i) accept, allowing the event to be exhibited and continu-

ing the execution, or (ii) reject, preventing the event from being exhibited and

terminating execution. As they decide whether to accept or reject, their recollec-

tion constraints render them unable to distinguish between certain finite execution

prefixes previously observed. Thus they are weaker than the security automata

defined in [Sch00], which are constrained only by EM1 – EM3.

57

For each different recollection constraint imposed on one of these automata,

the automaton can enforce a different subclass of the class of policies defined by

EM1 – EM3. The set of all possible such constraints gives rise to a lattice of these

subclasses [Fon04]. At the top of the lattice is the subclass equal to the entire

class of policies given by EM1 – EM3, corresponding to the automaton that can

distinguish between every pair of execution prefixes. At the bottom of the lattice

is the subclass consisting of all policies of the form PB for some set B of events as

defined in §2.2.2—that is, policies that prohibit any of a set of “bad” events from

being exhibited. Enforcing such a policy does not require the automaton to recall

any history of past events that it observed.

The model proposed in [Fon04] is incomparable to that presented in this chap-

ter because it places no computational constraints on enforcement mechanisms

and assumes that all executions are finite. However, if it could be extended to

incorporate computational constraints and infinite executions, then this could be

used to assess the power of execution monitors that have incomplete access to the

event sequences they monitor, such as execution monitors that ignore some of the

text of untrusted programs or that cannot observe all non-deterministic choices

made by untrusted programs.

Proof-Carrying Code and Certifying Compilers As mentioned in §1.3,

Proof-Carrying Code (PCC) [NL96, Nec97] and Certifying Compilers [NL98,

MCG99] are emerging technologies for reducing the trusted computing base needed

to enforce security policies. They make it easier for code consumers to enforce

security policies by requiring code producers to add proof information to the code

that they produce. It is thought easier to write trusted code for verifying proofs

58

than to write trusted code for constructing proofs. PCC is therefore not a single

kind of security enforcement mechanism, but rather a framework for reducing and

perhaps relocating the trusted computing base. The reader may wonder what

policies can be enforced in a PCC framework—that is, the reader may wonder

how these technologies fit into the taxonomy of security policies presented in the

previous sections. The model and analyses presented in this chapter can be used

to explore that question, as we now show.

In a PCC framework, code transmitted to an untrusting code consumer is

paired with a proof that the code satisfies whatever policy is being demanded by

the code consumer. The code consumer checks that the proof is valid, that the

proof concerns the object code, and that the proof establishes the desired policy,

all in finite time. Once the code-proof pair has been checked, the code can safely

be run without restriction by the code consumer.

The class of policies enforceable by PCC depends on what is the domain of all

programs. For the code consumer, the domain of programs is the set of all object

code-proof pairs that it might receive. The set of enforceable security policies over

this domain are those properties of code-proof pairs that can be decided in finite

time. This is the set of recursively decidable (Σ0 = Π0) properties of object code-

proof pairs, or the statically enforceable policies. (Observe that some policies that

are not recursively decidable for code alone are decidable for code-proof pairs. The

proof provides extra information that reduces the computational expense of the

decision procedure.)

Alternatively, a theorem prover in a PCC framework might consider the domain

of programs to be the set of all object programs. The enforceable policies over this

domain are those policies such that for all programs that satisfy the policy, there

59

exists a proof that serves as a witness that the program satisfies the policy. For any

proof logic characterizable by some finite axiomization, this is the set of recursively

enumerable (Σ1) properties of that logic. (If an arbitrary program satisfies the

policy, this can be discovered in finite time by enumerating all proofs to find a

matching one. But if the program doesn’t satisfy the policy, the enumeration

process will continue indefinitely without finding a suitable proof.)

In practice, code-proof pairs are usually generated together by some automated

procedure. For example, certifying compilers [NL98, MCG99] accept a source

program and emit not only object code but also a proof that the object code

satisfies some policy. If an arbitrary source program satisfies the policy to be

enforced, then the certifying compiler must (i) compile it to object code in a way

that faithfully preserves its behavior and (ii) generate a matching proof. If the

source program doesn’t satisfy the policy, then the compiler must either reject

the program (which can be thought of as compiling it to the null program) or

compile it to some program that does satisfy the policy, possibly by inserting

runtime checks that cause the program to change behaviors when some policy

violation would otherwise have occurred. These are precisely conditions RW1 and

RW2 from the definition of the RW -enforceable policies. Thus, if one considers

the domain of programs to be the set of all source code programs received by a

certifying compiler or other automated code-proof pair generator, then the set of

enforceable policies are the RW -enforceable policies.

2.6 Future Work

The practicality of an enforcement mechanism depends on what resources it con-

sumes. This chapter explored the effects of finitely bounding the space and time

60

available to various classes of enforcement mechanisms. However, to be consid-

ered practical, real enforcement mechanisms must operate in polynomial or even

constant space and time. So an obvious extension to the theory presented here

is to investigate (i) the set of policies enforceable by program-rewriting when the

time and space available to the rewriter is polynomial or constant in the size of

the untrusted program and (ii) rewriter functions that produce programs whose

size and running time expands by no more than a polynomial or constant in the

size and running time of the original untrusted program.

The results of this chapter might also be applied to real enforcement mecha-

nisms. SFI [WLAG93], MiSFIT [Sma97], Naccio [ET99], and SASI/PoET [ES99,

ES00] implement program-rewriting but typically assume extremely complex (and

mostly unstated) definitions of program equivalence. These equivalence relations

would have to be carefully formalized in order to characterize precisely the set of

policies that these embodiments of program-rewriting actually enforce. Chapter 4

takes a step in this direction by formally characterizing the class of security policies

enforced by the Mobile system in terms of the machinery developed in this chapter.

Finally, the class of RW-enforceable policies outside of the coRE policies re-

mains largely unexplored. To investigate this additional power, program-rewriting

mechanisms must be developed. These would need to accept policy specifications

that are not limited to the monitoring-style specifications so easily described by a

detector. Consequently, there are interesting questions about how to design a suit-

ably powerful yet usable policy specification language for such a system. For exam-

ple, various meta-level architectures like Aspect Oriented Programming [KLM+97]

have been suggested as general frameworks for enforcing a variety of security poli-

cies [RVJV99], but it is not clear what class of security policies they can enforce.

61

2.7 Summary

Our taxonomy of enforceable security policies is depicted in Figure 2.2. We have

connected this taxonomy to the arithmetic hierarchy of computational complexity

theory by observing that the statically enforceable policies are the recursively de-

cidable properties and that class EMorig is the coRE properties. We also showed

that the RW-enforceable policies are not equivalent to any class of the arithmetic

hierarchy. The shaded region in Figure 2.2 is argued to be a more accurate char-

acterization of the EM-enforceable policies than EMorig .

Execution monitors implemented as in-lined reference monitors can enforce

policies that lie in the intersection of the coRE policies with the RW-enforceable

policies. The policies within this intersection are enforceable benevolently—that

is, “bad” events are blocked before they occur. But coRE policies that lie outside

this intersection might not be benevolently enforceable. In addition, we showed

that program-rewriting is an extremely powerful technique in its own right, which

can be used to enforce policies beyond those enforceable by execution monitors.

Chapter 3

Mobile: A Type System for Certified

Program-rewriting on .NET
The material in this chapter includes previously published [HMS05, HMS06a] joint

work with Greg Morrisett and Fred B. Schneider.

3.1 Overview

3.1.1 Certified Program-rewriting

Language-based approaches to computer security [SMH01] have employed two ma-

jor strategies for enforcing security policies over untrusted code.

• Low-level type systems, such as those used in Java bytecode [LY99], .NET

CIL [ECM02], and TAL for x86 [MCG99], can enforce important program

invariants such as memory safety and control safety, which dictate that pro-

grams must access and transfer control only to certain suitable memory ad-

dresses throughout their executions. Proof-Carrying Code (PCC) [NL98]

generalizes the type-safety approach by providing an explicit proof of safety

in first-order logic.

• Execution Monitoring technologies such as Java and .NET stack inspec-

tion [Gon] [LY99, II.22.11], SASI/PoET [ES99, ES00], Java-MAC [KVK+04],

Java-MOP [CR05], Polymer [BLW05], and Naccio [ET99], use runtime checks

to enforce temporal properties that can depend on the history of the pro-

gram’s execution. For example, SASI Java was used to enforce the policy

62

63

that no program may access the network after it reads from a file [ES00].

For efficiency, execution monitors are often implemented as In-lined Refer-

ence Monitors (IRM’s) [Sch00], wherein the runtime checks are in-lined into

the untrusted program itself to produce self-monitoring code.

Theorems 2.5 and 2.8 showed that the IRM approach—and, more generally,

program-rewriting—is capable of enforcing a large class of powerful security poli-

cies, including ones that cannot be enforced with purely static type-checking. In

addition, IRM’s can enforce a flexible range of policies, often allowing the code

recipient to choose the security policy after the code is received, whereas static

type systems and PCC usually enforce fixed security policies that are encoded into

the type system or proof logic itself, and that therefore cannot be changed without

changing the type system or certifying compiler.

However, §1.3 argued that despite their power and flexibility, the rewriters

that automatically embed IRM’s into untrusted programs are typically trusted

components of the system. Since rewriters tend to be large and complex when

efficient rewriting is required or complex security policies are to be enforced, the

rewriter becomes a significant addition to the system’s trusted computing base.

In this chapter, we present Mobile, an extension to the .NET CIL that makes it

possible to automatically verify IRM’s using a static type-checker. Mobile (MOn-

itorable BIL with Effects) is an extension of BIL (Baby Intermediate Language)

[GS01], a substantial fragment of managed .NET CIL that was used to develop

generics for .NET [KS01]. Mobile programs are CIL programs with additional

typing annotations that track an abstract representation of program execution

history. These typing annotations allow a type-checker to verify statically that the

runtime checks in-lined into the untrusted program suffice to enforce a specified

64

security policy. Once type-checked, the typing annotations can be erased, and the

self-monitoring program can be safely executed as normal CIL code. This verifi-

cation process allows a rewriter to be removed from the trusted computing base

and replaced with a (simpler) type-checker. Even when the rewriter is small and

therefore comparable in size to the type-checker, type-checking constitutes a use-

ful level of redundancy that provides greater assurance than trusting the rewriter

alone. Mobile thus leverages the power of IRM’s while using the type-safety ap-

proach to keep the trusted computing base small.

3.1.2 Mobile Security Policies

A Mobile security policy identifies a set of security-relevant object classes and as-

signs a set of acceptable traces to each such class. A trace is a finite or infinite

sequence of security-relevant events—program operations that take a security-

relevant object as an argument. The formalisms presented in this chapter can

be leveraged to support many possible languages describing traces, such as de-

terministic finite automata, security automata [AS87, Sch00], or LTL expressions

[Eme90]. The implementation of Mobile discussed in Chapter 4 expresses traces

using ω-regular expressions.

A Mobile program satisfies the security policy if for every complete run of the

program, (i) if the run is finite (i.e., the program terminates), the sequence of

security-relevant events performed on every object allocated during that run is a

member of the set of traces that the security policy has assigned to that object’s

class; and (ii) if the run is infinite (i.e., the program does not terminate), at each

step of the run the sequence of security-relevant events performed so far on each

65

security-relevant object is a prefix of a member of the set of traces assigned to that

object’s class.

One example of a security policy of this form is proposed by [DF04a, p. 5], which

prescribes a protocol for proper usage of a WebPageFetcher class. The protocol

requires code to call the class’s Open method to acquire a web page resource, call

the class’s GetPage method to use the resource, and call the class’s Close method

to release the resource. A Mobile policy that requires programs to open web pages

before reading them, allows at most three reads per opened page, and requires

programs to close web pages before the program terminates (but allows them to

remain open on runs that never terminate), might assign (O (G ∪ G2 ∪ G3) C)ω as

the set of acceptable traces for class WebPageFetcher (where O, G, and C denote

Open, GetPage, and Close events, respectively, and ω denotes finite or infinite

repetition).

Although Mobile security policies model events as operations performed on

objects, global events that do not concern any particular object can be encoded as

operations on a global object that is allocated at program start and destroyed at

program termination. Thus, Mobile policies can regard global events, per-object

events, and combinations of the two.

For example, one might modify the example policy above by additionally requir-

ing that at most ten network sends may occur during the lifetime of the program.

In that case, the global object would additionally be identified as a security-relevant

object, a Send method call performed on any System.Net.Sockets.Socket object

would be identified as a security-relevant event for the global object, and the global

object would be assigned the set of traces denoted by ε ∪ S ∪ S2 ∪ · · · ∪ S10 (where

S denotes a Send event).

66

3.1.3 Mobile Type-safety

Policies like the ones described above can only be enforced by a mechanism that

tracks events at a per-object level, because the number of security-relevant objects

(e.g. the number of WebPageFetcher objects) is unbounded and determined at

runtime. To statically track the security-relevant state of dynamically allocated

objects, Mobile employs a flow-sensitive type system based on typestates [DF04b].

Class types of security-relevant objects are parameterized by an abstraction of the

security state of the object at each program point. For example, an object that has

type class WebPageFetcher in the CIL type system might have type class

WebPageFetcher〈opened〉 in Mobile to indicate that the object is in state opened

at a given program point. Security-relevant operations in the code that change the

security state of the object at runtime cause that object’s type to change along

control flows that include that operation.

A type system that tracks per-object security state must also track aliasing

of security-relevant objects in order to prevent policy violations. For example,

consider the following pseudo-code program in which typing inferences are given

in braces.

{x→ WebPageFetcher〈opened〉}

1 x := y

{x→ WebPageFetcher〈opened〉, y → WebPageFetcher〈opened〉}

2 x.Close()

{x→ WebPageFetcher〈closed〉, y → WebPageFetcher〈???〉}

3 y.GetPage()

67

If the type system cannot infer that x and y are aliases for the same security-

relevant object after line 1, then it would incorrectly infer that y is still in the

closed state after line 2 and would permit the policy-violating operation in line 3

that attempts to retrieve a web page from a closed WebPageFetcher object.

To track simple aliasing like that illustrated by the program above, Mobile’s

type system employs an extra level of indirection based on alias types [SWM00]:

{x→ WebPageFetcher〈`〉}{`→ opened}

1 x := y

{x→ WebPageFetcher〈`〉, y → WebPageFetcher〈`〉}{`→ opened}

2 x.Close()

{x→ WebPageFetcher〈`〉, y → WebPageFetcher〈`〉}{`→ closed}

3 y.GetPage()

Type variable ` tracks the security-relevant state of all aliases of x, permitting the

type system to infer that line 3 constitutes a policy violation because y refers to

an object in state `, and ` refers to the closed state.

The above scheme suffices to track aliases when security-relevant objects are

reachable by a bounded graph rooted at the program variables, but it does not

suffice when security-relevant objects might escape to the heap. For example, if

the program maintains a linked list of WebPageFetcher objects, all of which might

be in different security-relevant states, then the type system must have some way

to statically infer the security-relevant state of objects retrieved from that list.

To allow code to let security-relevant objects escape to the heap in such a

way that the type system can correctly infer each object’s security-relevant state,

Mobile supports a pack operation that pairs a security-relevant object with a

68

runtime value (e.g., an integer) representing the object’s current state, and then

encapsulates them into a two-field package object. Packages can be aliased arbi-

trarily, providing well-typed Mobile code a means to safely allow security-relevant

objects to escape to the heap or share security-relevant objects between threads.

For example, the following pseudo-code stores a security-relevant object x into a

linked list by first packing it:

{x→ WebPageFetcher〈`〉}{`→ state32}

1 p := newpackage WebPageFetcher

2 p.Pack(x, 32)

{x→ WebPageFetcher〈`〉, p→ package WebPageFetcher}{`→ revoked}

3 list.item := p

Notice that once packed, object x cannot be accessed again directly because typing

variable ` has been revoked from the typing context. This is to prevent security-

relevant operations on objects that are packed, since such an operation could

change the object’s security-relevant state without changing the runtime state

value stored with it in the package. A package class’s two fields are declared

to be private so that, to access a security-relevant object directly and perform

operations on it, it must first be unpacked.

Mobile’s unpack operation can be used to unpack a package, yielding the

original object that was packed along with the runtime value that represents its

state. To prevent untracked aliases from being introduced to the typing context,

the unpack operation is implemented as a destructive read, preventing the package

from being unpacked twice before it is re-packed. For example, the following code

retrieves a WebPageFetcher object from a list:

69

1 (x, n) := list.item.Unpack()

{x→ WebPageFetcher〈`〉, n→ Rep〈θ〉}{`→ θ}

2 if n = 32 then

{x→ WebPageFetcher〈`〉, n→ 32}{`→ state32}

3 x.GetPage()

Observe that when the package is first unpacked, the type system cannot initially

infer the security-relevant state of object x. All that is statically known is that

n is an integer representation of whatever state x is in. History type variable θ

is introduced to the typing context to denote this unknown state. If integer n is

dynamically tested as in line 2, then the typing context can be refined within the

branches of the conditional. In the case of the program above, the type system can

statically determine that if control reaches line 3 at runtime, then object x must

be in state 32. Security-relevant operations can be placed in the branches of such

conditionals, providing Mobile programs a means to guard potentially dangerous

security-relevant operations with runtime security checks.

To summarize, Mobile allows only limited aliasing of unpacked security-relevant

objects—none of their aliases can escape to the heap. Packages, however, are

permitted to escape to the heap and to undergo unlimited aliasing. The memory

safety and control-flow safety guarantees provided by the CIL type system ensure

that Mobile code obeys a package’s interface. These restrictions allow the type-

checker to statically track histories of unpacked objects and to ensure that packed

objects are always paired with a value that accurately reflects their state. When

an object is packed, it is safe for the type-checker to forget whatever information

might be statically known about the object, keeping the type-checking algorithm

70

tractable and affording the rewriter a dynamic fallback mechanism when static

analysis cannot verify all security-relevant operations.

When pack and unpack are implemented as atomic operations, Mobile can

also enforce security policies in concurrent settings. In such a setting, Mobile’s type

system maintains the invariant that each security-relevant object is either packed

or held by at most one thread. Packed objects are always policy-adherent (or their

finalizers must bring them to a policy-adherent state at program termination; see

§4.1), whereas unpacked objects are tracked by the type system to ensure that

they return to a policy-adherent state before they are relinquished by the thread.

Implementing pack and unpack as atomic swaps is a somewhat blunt ap-

proach, but it is still powerful enough to support useful and effective rewriting

strategies. Using the above operations, a näıve rewriter can implement state-based

histories by simply representing security-relevant objects as packages. Whenever

a security-relevant operation is to be performed, the rewriter would insert code

to first unpack the package and test the object’s runtime state, then perform the

security-relevant operation only if the test succeeds (possibly terminating other-

wise), and finally repackage the object with updated state.

This strategy suffices to implement any state-based history but might result in

inefficient code if security-relevant operations are frequent. Thus, Mobile’s type

system also makes it possible to avoid some of these dynamic operations when

policy-adherence can be proved statically. For example, a more sophisticated

rewriter could in some cases insert code to perform numerous security-relevant

operations consecutively without any dynamic checks. Instead of dynamic checks,

the rewriter could add typing annotations that prove to the type-checker that the

omitted checks are unnecessary for preventing a security violation. Substituting

71

annotations for dynamic checks in this way is often possible in straight-line code

or tight loops that do not leak security-relevant objects to the heap. However,

when objects do escape to the heap, the type system is not sufficiently powerful

to track them and dynamic checks would usually be necessary in order to prove

that a security violation cannot occur. Thus, Mobile’s type system is sufficiently

expressive that rewriters can avoid some but not all dynamic checks.

3.2 Formal Definition of Mobile

3.2.1 The Abstract Machine

Figure 3.1 gives the Mobile instruction set. Like BIL, Mobile’s syntax is written in

postfix notation. Postfix notation is suggestive of the behavior of the .NET virtual

machine, which employs an evaluation stack. For example, the Mobile program

(ldarg 0) (ldc.i4 5) stfld int32 C::f

stores a 5 into the f field of the object given by argument 0. This is because term

(ldarg 0) returns the value of argument 0, term (ldc.i4 5) returns the integer

value 5, and term I0 I1 stfld int32 C::f stores the value returned by term I1 into

field f of the value returned by term I0. A CIL program that performs the same

function would first execute an instruction to load argument 0 onto the evaluation

stack, then execute an instruction that loads the constant 5 onto the evaluation

stack, and finally execute an instruction that pops the top two arguments off the

evaluation stack, storing the second into a named field of the first. Observe that

this procedure is analogous to executing the Mobile program above as straight-line

code. It is hence possible to obtain CIL programs from BIL programs via a series

of trivial syntactic transformations, as shown in [GS01].

72

I ::= ldc.i4 n integer constant

I1 I2 I3 cond conditional

I1 I2 while while-loop

I1; I2 sequence

ldarg n method argument

I starg n store into arg

I1 . . . In newobj C(µ1, . . . , µn) make new obj

I0 I1 . . . In callvirt C::m.Sig method call

I ldfld µ C::f load from field

I1 I2 stfld µ C::f store into field

I evt e exhibit event

newpackage C make new package

I1 I2 I3 pack pack package

I unpack n unpack package

I1 I2 I3 condst C, k test state

I1 . . . In newhist C, k state constructor

v values

I ret method return

Figure 3.1: The Mobile instruction set

73

In addition to BIL instructions,1 Mobile includes

• instruction evt e, which performs security-relevant operation e on an object

(where e is some unique identifier, such as “eopen”, that we associate with

each security-relevant operation),

• instructions newpackage and newhist for creating packages and runtime

state values,

• instructions pack and unpack for packing/unpacking objects and runtime

state values to/from packages,

• instruction condst, which dynamically tests a runtime state value, and

• the pseudo-instructions v and ret, which do not appear in source code but are

introduced in the intermediate stages of the small-step semantics presented

in §3.2.2. (Instruction v is a term that has been reduced to value v, and

instruction ret pops the current stack frame at the end of a method call.)

These abstract instructions model real CIL instructions. For example, if calls

to method m are security-relevant operations, the CIL instruction that invokes m

on object o is modeled by the Mobile instruction sequence

o evt em; o callvirt C::m.Sigm

A description of how our implementation models other CIL instructions is given

in Chapter 4.

Figure 3.2 provides Mobile’s type system. Mobile types consist of void types,

integers, classes, and history abstractions (the types of runtime state values). The

1For simplicity, we omit BIL’s value classes and managed pointers from Mobile,
but otherwise include all BIL types and instructions.

74

Types τ ::= µ | C〈`〉

Untracked types µ ::= void | int32 | C〈?〉 | Rep
C
〈H〉

Class names C

Object identity variables `

History abstractions H ::= ε | e |H1H2 |H1 ∪H2 |Hω |

θ |H1 ∩H2

History abstraction variables θ

Method signatures Sig ::= ∀Γin .((Ψin ,Fr in)(

∃Γout .(Ψout ,Frout , τ))

Typing contexts Γ ::= · | Γ, `:C | Γ, `:C〈?〉 | Γ, θ

Object history maps Ψ ::= 1 |Ψ ? (` 7→ H)

Local variable frames Fr ::= (τ0, . . . , τn)

Figure 3.2: The Mobile type system

75

τ � τ

H ⊆ H ′

Rep
C
〈H〉 � Rep

C
〈H ′〉

τi � τ ′i ∀i ∈ 0..n

(τ0, . . . , τn) � (τ ′0, . . . , τ
′
n)

Dom(Ψ) = Dom(Ψ′) Ψ(`) ⊆ Ψ′(`) ∀` ∈ Dom(Ψ)

Ψ � Ψ′

Figure 3.3: Mobile subtyping

type of each unpacked, security-relevant object C〈`〉 is parameterized by an object

identity variable ` that uniquely identifies the object. All aliases of the object have

types with the same object identity variable, but other unpacked objects of the

same class have types with different object identity variables. The types C〈?〉 of

packed classes and security-irrelevant classes do not include object identity vari-

ables, and their instances are therefore not distinguishable by the type system. We

consider Mobile terms to be equivalent up to alpha conversion of bound variables.

The types Rep
C
〈H〉 of runtime state values are parameterized both by the class

type C of the object to which they refer and by a history abstraction H—an ω-

regular expression (plus variables and intersection) that denotes a set of traces. In

such an expression, ω denotes finite or infinite repetition.

Closed (i.e., variable-less) history abstractions conform to a subset relation; we

write H1 ⊆ H2 if the set of traces denoted by H1 is a subset of the set of traces

denoted by H2. This subset relation induces a natural subtyping relation � given

in Figure 3.3. Observe that the subtyping relation in Figure 3.3 does not recognize

76

class subtyping of security-relevant classes. We leave support for subtyping of

security-relevant classes to future work.

Type variables in Mobile types are bound by typing contexts Γ, which assign

class or package types to object identity variables ` and declare any history ab-

straction variables θ. Object identity variables can additionally appear in object

history maps Ψ, which associate a history abstraction H with each object identity

variable that corresponds to an unpacked, security-relevant object. Note that his-

tory maps do not typically track object traces precisely. Instead, they associate

with each object identity variable a conservative approximation of the set of traces

that might have been exhibited on the object by the time control reaches any given

program point. Additionally, history maps do not typically include a mapping for

every security-relevant object in memory. Rather, they track only those security-

relevant objects that are in scope at a given program point and are not packed.

History maps therefore do not record the exact security state of the entire system,

but they permit local reasoning about the security state. Since object identity

variables uniquely identify each object instance, object history maps can be seen

as a spatial conjunction (?) [ORY01] of assertions about the histories of various

unpacked objects in the heap.

A complete Mobile program consists of:

Class names C

Field types field : (C × f) → µ

Class methods methodbody : (C::m.Sig) → I

Class policies policy : C → H

We also use the notation fields(C) to refer to the number of fields in class C.

Method signatures Sig will be described in §3.2.3.

77

v ::= result

0 void

i4 integer

` heap pointer

rep
C
(H) runtime state value

o ::= heap elements

obj C{fi = vi}
−→e object

pkg(`, rep
C
(H)) filled package

pkg(·) empty package

h ::= `i 7→ oi heap

a ::= (v0, . . . , vn) arguments

s ::= (a0, . . . , an) stack

ψ ::= (h, s) small-step store

Figure 3.4: The Mobile memory model

3.2.2 Operational Semantics

Unlike [GS01], we provide a small-step operational semantics for Mobile rather than

a large-step semantics, so as to apply the policy adherence theorems presented in

§3.4 to programs that do not terminate or that enter a bad state.

In Mobile’s small-step memory model, presented in Figure 3.4, objects consist

not only of an assignment of values to fields but also a trace−→e that records an exact

history of the security-relevant operations performed on the object. Although our

model attaches a history trace to each object, we prove in §3.4 that it is unnecessary

78

E ::= [] | E I2 I3 cond | E; I2 | E starg n |

v1 . . . vm E I1 . . . In newobj C(µ1, . . . , µm+n+1) |

v1 . . . vm E I1 . . . In callvirt C::m.Sig | E ret |

E ldfld µ C::f | E I2 stfld µ C::f | v1 E stfld µ C::f |

E evt e | E I2 I3 pack | v1 E I3 pack | v1 v2 E pack |

E unpack C, k | E I2 I3 condst C, k |

v1 . . . vm E I1 . . . In newhist C, k

Figure 3.5: Mobile evaluation contexts

for the virtual machine to track and store object traces because well-typed Mobile

code never exhibits a trace that violates the security policy.

The small-step operational semantics of Mobile, given in Figures 3.5 and 3.6,

defines how a given store ψ and instruction I steps to a new store ψ′ and instruc-

tion I ′, written ψ, I ψ′, I ′. Rules 3.2 – 3.12 model the behavior of instructions in

BIL and rules 3.13 – 3.18 model the behavior of the new instructions introduced

by Mobile. Rule 3.1 and Figure 3.5 capture the usual semantics of the order of

evaluation of instruction arguments by representing a partially evaluated instruc-

tion as an evaluation context where evaluation resumes at the first unevaluated

argument. The remaining rules then model how evaluation proceeds once an in-

struction’s relevant arguments have been reduced to values. Some intuition behind

each of these rules is provided below.

Rule 3.2 steps an ldc.i4 instruction to an integer constant value. Rule 3.3

evaluates the positive branch of a conditional if the test argument evaluates to

79

Figure 3.6: Small-step operational semantics for Mobile

80

ψ, I ψ′, I ′

ψ,E[I] ψ′, E[I ′]
(3.1)

ψ, ldc.i4 i4 ψ, i4 (3.2)

if i4 =0 then j=3 else j=2

ψ, i4 I2 I3 cond ψ, Ij
(3.3)

ψ, I1 I2 while ψ, I1 (I2; (I1 I2 while)) 0 cond (3.4)

ψ, v; I2 ψ, I2 (3.5)

0 ≤ j ≤ n

(h, s(v0, . . . , vn)), ldarg j (h, s(v0, . . . , vn)), vj

(3.6)

0 ≤ j ≤ n

(h, s(v0, . . . , vn)), v starg j
(h, s(v0, . . . , vj−1, v, vj+1, . . . , vn)), 0

(3.7)

` 6∈ Dom(h) n = fields(C)

(h, s), v1 . . . vn newobj C(µ1, . . . , µn)
(h[` 7→ obj C{fi = vi|i ∈ 1..n}ε], s), `

(3.8)

methodbody(C::m.Sig) = I

(h, s), v0 . . . vn callvirt C::m.Sig (h, s(v0, . . . , vn)), I ret
(3.9)

(h, sa), v ret (h, s), v (3.10)

h(`) = obj C{. . . , f = v, . . .}−→e

(h, s), ` ldfld µ C::f (h, s), v
(3.11)

h(`) = obj C{. . . , f = v, . . .}−→e

(h, s), ` v′ stfld µ C::f (h[` 7→ obj C [f 7→ v′]], s), 0
(3.12)

81

Figure 3.6 (Continued)

h(`) = obj C{. . .}
−→e

(h, s), ` evt e1 (h[` 7→ obj C{. . .}
−→e e1], s), 0

(3.13)

` 6∈ Dom(h)

(h, s),newpackage C (h[` 7→ pkg(·)], s), `
(3.14)

h(`) = pkg(. . .)

(h, s), ` `′ rep
C
(H) pack (h[` 7→ pkg(`′, rep

C
(H))], s), 0

(3.15)

h(`) = pkg(`′, rep
C
(H)) 0 ≤ j ≤ n

(h, s(v0, . . . , vn)), ` unpack j (
h[` 7→ pkg(·)], s(v0, . . . , vj−1, rep

C
(H), vj+1, . . . , vn)

)
, `′

(3.16)

if testC,k(rep
C
(H))=0 then j=3 else j=2

ψ, rep
C
(H) I2 I3 condst C, k ψ, Ij

(3.17)

arity(hcC,k) = n

ψ, v1 . . . vn newhist C, k ψ, hcC,k(v1, . . . , vn)
(3.18)

82

true (non-zero) or evaluates the negative branch, otherwise. Rule 3.4 expands

one iteration of a while loop into a conditional that, if true, executes the loop

body and reiterates, and otherwise yields a void value. Rule 3.5 discards the first

instruction in a sequence once it has been reduced to a value so that evaluation can

continue with the next instruction in the sequence. Rule 3.6 causes the ldarg j

instruction to retrieve the value in slot j of the bottom frame of the stack, and

Rule 3.7 causes the starg j instruction to store a value into slot j of the bottom

frame of the stack.

Rule 3.8 is the first rule to touch the heap. It creates a fresh heap pointer `

and assigns it a fresh object of class C whose fields have all been initialized to

prescribed values. Object ` is both added to the heap and returned as the result.

Rules 3.11 and 3.12 load and store fields of objects by retrieving a given object `

from the heap and either reading the value v of field f or storing a given value v′

into it.

Rules 3.9 and 3.10 model instance method calls and returns. (Static method

calls and returns are omitted for simplicity.) Rule 3.9 calls method m by retrieving

the method body I associated with m and in-lining it into the partially evaluated

term. It adds a new frame (v0, . . . , vn) to the bottom of the stack consisting of the

arguments with which m is called. Method body I is enclosed in a ret instruction

so that when evaluation reduces the method body to a value, Rule 3.10 will pop

the method’s stack frame off the bottom of the stack.

Rule 3.13 models the exhibition of event e1 on object ` by appending event e1 to

the sequence of events in the object trace recorded for `. (Recall that this trace is

not explicitly recorded by an implementation of Mobile. It is represented in these

83

formalisms to permit formal reasoning about the policy adherence of well-typed

Mobile programs.)

Rules 3.14 – 3.16 model packages. Rule 3.14 introduces a new package object

to the heap and assigns it a fresh heap pointer `. Rule 3.15 fills a package ` by

assigning it an object `′ and a runtime state value rep
C
(H). Rule 3.16 unpacks

a package ` by yielding the object `′ and runtime state value rep
C
(H) within it.

Since Mobile’s type system does not include pairs, object `′ is returned as the result

of the instruction and runtime state value rep
C
(H) is returned by assigning it to

slot j of the local argument frame. Unpacking a package empties it; unpacking an

empty package is an error and causes the virtual machine to enter a stuck state.

Rules 3.17 and 3.18 model runtime state values and introduce new notation

that deserves special note. Runtime operations testC,k and hcC,k test runtime state

values and construct new runtime state values, respectively. Rather than fixing

these two operations, we allow Mobile to be extended with unspecified implemen-

tations of them. Different implementations of testC,k and hcC,k can therefore be

used to allow Mobile to support different collections of security policies. In §3.2.4

we show that a Mobile system that implements runtime state values as integers

can instantiate these runtime operations to support security policies expressed as

deterministic finite automata or as resource bounds. A more powerful (but more

computationally expensive) Mobile system might implement runtime state values

as dynamic data structures that record an object’s entire trace and might provide

tests to examine such structures. In this chapter, we assume only that a count-

able collection of state value constructors and tests exists and that this collection

adheres to typing constraints 3.42, 3.43, 3.44, and 3.45 presented in §3.2.4.

84

Rule 3.17 tests runtime state values and differs from Rule 3.3 only in that

runtime operation testC,k is consulted to determine if the test succeeds. Rule 3.18

creates a new runtime history value by invoking history constructor operation

hcC,k.

The operational semantics given in Figure 3.6 are for a single-threaded vir-

tual machine without support for finalizers. To model concurrency, one could

extend our stacks to consist of multiple threads and add a small-step rule that

non-deterministically chooses which thread to execute next. Finalizers could be

modeled by adding another small-step rule that non-deterministically forks a fi-

nalizer thread whenever an object is unreachable. Mobile can be implemented so

as to support concurrency and finalizers as we show in Chapter 4, but to simplify

the presentation, we leave the analysis of these language features to future work.

3.2.3 Type System

Mobile’s type system considers each Mobile term to be a linear operator from a

history map and frame list (describing the initial heap and stack, respectively)

to a new history map and frame list (describing the heap and stack yielded by

the operation) along with a return type. That is, we write Γ ` I : (Ψ;
−→
Fr) (

∃Γ′.(Ψ′;
−→
Fr

′
; τ ′) if term I, when evaluated in typing context Γ, takes history map

Ψ and frame list
−→
Fr (in which any typing variables are bound in context Γ) to

new history map Ψ′ and new frame list
−→
Fr

′
, and yields a result of type τ ′ (if

it terminates). Any new typing variables appearing in
−→
Fr

′
and τ ′ are bound in

context Γ′. A method signature (see Figure 3.2) is the type assigned to the term

comprising its body.

85

Figure 3.7: Typing rules for Mobile

86

Γ ` ldc.i4 n : (Ψ;
−→
Fr)((Ψ;

−→
Fr ; int32)

(3.19)

Γ ` I1 : (Ψ;
−→
Fr)(∃Γ1.(Ψ1;

−→
Fr 1; int32)

Γ,Γ1 ` Ii : (Ψ1;
−→
Fr 1)(∃Γ′.(Ψ′;

−→
Fr

′
; τ) ∀i ∈ {2, 3}

Γ ` I1 I2 I3 cond : (Ψ;
−→
Fr)(∃Γ1,Γ

′.(Ψ′;
−→
Fr

′
; τ)

(3.20)

Γ,Γ′ ` I1 I2 0 cond : (Ψ;
−→
Fr)(∃Γ′.(Ψ;

−→
Fr ;void)

Γ,Γ′ ` I1 I2 while : (Ψ;
−→
Fr)(∃Γ′.(Ψ;

−→
Fr ;void)

(3.21)

Γ ` I1 : (Ψ;
−→
Fr)(∃Γ1.(Ψ1;

−→
Fr 1;void)

Γ,Γ1 ` I2 : (Ψ1;
−→
Fr 1)(∃Γ2.(Ψ

′;
−→
Fr

′
; τ)

Γ ` I1; I2 : (Ψ;
−→
Fr)(∃Γ1,Γ2.(Ψ

′;
−→
Fr

′
; τ)

(3.22)

` ∈ Dom(Ψ′) field(C, f) = µ

Γ ` I : (Ψ;
−→
Fr)(∃Γ′.(Ψ′;

−→
Fr

′
;C〈`〉)

Γ ` I ldfld µ C::f : (Ψ;
−→
Fr)(∃Γ′.(Ψ′;

−→
Fr

′
;µ)

(3.23)

Γ ` I1 : (Ψ;
−→
Fr)(∃Γ1.(Ψ1;

−→
Fr 1;C〈`〉)

Γ,Γ1 ` I2 : (Ψ1;
−→
Fr 1)(∃Γ2.(Ψ

′;
−→
Fr

′
;µ)

` ∈ Dom(Ψ′)
field(C, f) = µ

Γ ` I1 I2 stfld µ C::f : (Ψ;
−→
Fr)(∃Γ1,Γ2.(Ψ

′;
−→
Fr

′
;void)

(3.24)

0 ≤ j ≤ n

Γ ` ldarg j : (Ψ;
−→
Fr (τ0, . . . , τn))((Ψ;

−→
Fr (τ0, . . . , τn); τj)

(3.25)

Γ ` I : (Ψ;
−→
Fr)(∃Γ′.(Ψ′;

−→
Fr

′
(τ0, . . . , τn); τ) 0 ≤ j ≤ n

Γ ` I starg j : (Ψ;
−→
Fr)(

∃Γ′.(Ψ′;
−→
Fr

′
(τ0, . . . , τj−1, τ, τj+1, . . . , τn);void)

(3.26)

Γ,Γ1, . . . ,Γi−1 ` Ii : (Ψi−1;
−→
Fr i−1)(

∃Γi.(Ψi;
−→
Fr i;µi) ∀i ∈ 1..n

n = fields(C) ` 6∈ Dom(Γ,Γ1, . . . ,Γn) ε ∈ pre(policy(C))

Γ ` I1 . . . In newobj C(µ1, . . . , µn) :
(Ψ0;

−→
Fr 0)(∃Γ1, . . . ,Γn, `:C.(Ψn ? (` 7→ ε);

−→
Fr n;C〈`〉)

(3.27)

87

Figure 3.7 (Continued)

Γ0, . . . ,Γj ` Ij : (Ψj,
−→
Fr j)(∃Γj+1.(Ψj+1,

−→
Fr j+1, τj) ∀j ∈ 0..n

τ0 = C〈`〉 ` ∈ Dom(Ψn+1) C::m.Sig ∈ Dom(methodbody)
Γ0, . . . ,Γn ` Sig <: (Ψin , (τ0, . . . , τn))(∃Γout .(Ψout ,Frout , τ)

Ψn+1 = Ψunused ?Ψin

Γ0 ` I0 . . . In callvirt C::m.Sig :
(Ψ0,

−→
Fr 0)(∃Γ1, . . . ,Γn+1,Γout .(Ψunused ?Ψout ,

−→
Fr n+1, τ)

(3.28)

He ⊆ pre(policy(C))

Γ ` I : (Ψ;
−→
Fr)(∃Γ′.(Ψ′ ? (` 7→ H);

−→
Fr

′
;C〈`〉)

Γ ` I evt e : (Ψ;
−→
Fr)(∃Γ′.(Ψ′ ? (` 7→ He);

−→
Fr

′
;void)

(3.29)

` 6∈ Dom(Γ)

Γ ` newpackage C : (Ψ;
−→
Fr)(∃`:C〈?〉.(Ψ;

−→
Fr ;C〈?〉)

(3.30)

H ⊆ H ′ ⊆ policy(C)
Γ ` I1 : (Ψ;

−→
Fr)(∃Γ1.(Ψ1;

−→
Fr 1;C〈?〉)

Γ,Γ1 ` I2 : (Ψ1;
−→
Fr 1)(∃Γ2.(Ψ2;

−→
Fr 2;C〈`〉)

Γ,Γ1,Γ2 ` I3 : (Ψ2;
−→
Fr 2)(∃Γ3.(Ψ

′ ? (` 7→ H);
−→
Fr

′
; Rep

C
〈H ′〉)

Γ ` I1 I2 I3 pack : (Ψ;
−→
Fr)(∃Γ1,Γ2,Γ3.(Ψ

′;
−→
Fr

′
;void)

(3.31)

` 6∈ Dom(Ψ′) θ 6∈ Dom(Γ)

Γ ` I : (Ψ;
−→
Fr)(∃Γ′.(Ψ′;

−→
Fr

′
(τ0, . . . , τn);C〈?〉)

Γ ` I unpack j : (Ψ;
−→
Fr)(∃Γ′, `:C, θ.

(Ψ′, ` 7→ θ;
−→
Fr

′
(τ0, . . . , τj−1,Rep

C
〈θ〉, τj+1, . . . , τn);C〈`〉)

(3.32)

Γ ` I1 : (Ψ;
−→
Fr)(∃Γ1.(Ψ1;

−→
Fr 1; Rep

C
〈H〉)

Γ,Γ1 ` I2 : (ctx+
C,k(H,Ψ1);

−→
Fr 1)(∃Γ′.(Ψ′;

−→
Fr

′
; τ)

Γ,Γ1 ` I3 : (ctx−C,k(H,Ψ1);
−→
Fr 1)(∃Γ′.(Ψ′;

−→
Fr

′
; τ)

Γ ` I1 I2 I3 condst k : (Ψ;
−→
Fr)(∃Γ1,Γ

′.(Ψ′;
−→
Fr

′
; τ)

(3.33)

Γ ` Ii : (Ψi−1;
−→
Fr i−1)(∃Γi.(Ψi;

−→
Fr i; Rep

Ci
〈Hi〉) ∀i ∈ 1..n

Γ ` I1 . . . In newhist C, k : (Ψ0;
−→
Fr 0)(∃Γ1, . . . ,Γn.

(Ψn;
−→
Fr n;HC C,k(Rep

C1
〈H1〉, . . . ,Rep

Cn
〈Hn〉))

(3.34)

88

Figure 3.7 (Continued)

Γ1,Γ
′ ` I : (Ψ1;

−→
Fr 1)(∃Γ2.(Ψ2;

−→
Fr 2; τ)

Ψ′
1 � Ψ1

−→
Fr

′
1 �

−→
Fr 1 Ψ2 � Ψ′

2
−→
Fr 2 �

−→
Fr

′
2 τ � τ ′

Γ1,Γ
′ ` I : (Ψ′

1;
−→
Fr

′
1)(∃Γ2,Γ

′.(Ψ′
2;
−→
Fr

′
2; τ

′)
(3.35)

Γ ` 0 : (Ψ;
−→
Fr)((Ψ;

−→
Fr ;void)

(3.36)

Γ ` i4 : (Ψ;
−→
Fr)((Ψ;

−→
Fr ; int32)

(3.37)

Ψ = Ψ′ ? (` 7→ H)

Γ, `:C ` ` : (Ψ;
−→
Fr)((Ψ;

−→
Fr ;C〈`〉)

(3.38)

Γ, `:C〈?〉 ` ` : (Ψ;
−→
Fr)((Ψ;

−→
Fr ;C〈?〉)

(3.39)

Γ ` rep
C
(H) : (Ψ;

−→
Fr)((Ψ;

−→
Fr ; Rep

C
〈H〉)

(3.40)

Γ ` I : (Ψ;
−→
Fr)(∃Γ′.(Ψ′;

−→
Fr

′
Fr 0; τ)

Γ ` I ret : (Ψ;
−→
Fr)(∃Γ′.(Ψ′;

−→
Fr

′
; τ)

(3.41)

89

Mobile’s typing rules are given in Figure 3.7. We provide some intuition behind

each rule below. This intuition is elucidated in a more practical way in §3.3, which

walks the type-checking algorithm through a sample Mobile program.

Rule 3.19 asserts that the ldc.i4 instruction returns an integer and leaves the

history map Ψ and frame list
−→
Fr unchanged.

Rule 3.20 assigns types to conditional instructions and will be discussed in

depth because it is a good exemplar for understanding how control flow is modeled

by the rest of the typing rules. A conditional’s test expression I1 is required to

return an integer. Evaluating the test expression yields a new history map Ψ1

and frame list
−→
Fr , and this might yield additions Γ1 to the typing context. All

three of these flow into the typing judgments for the positive (I2) and negative (I3)

branches of the conditional.

Terms I2 and term I3 are required to yield identical history maps Ψ′ and frame

lists
−→
Fr

′
, as well as to make the same additions Γ′ to the typing context. However,

because Mobile types are conservative approximations of the security-relevant state

of objects rather than exact representations, the above restriction does not require

that two branches of a conditional exhibit the same sequences of security-relevant

events. We require only that there exists some typing context, history map, and

frame list that conservatively approximates the possible events that might have

been exhibited by both branches. For example, if term I2 assigns sequence e2 to

object ` and term I3 assigns sequence e3 to object `, then one valid history map

Ψ′ for the result of the I1 I2 I3 cond instruction assigns history abstraction e2∪ e3

to `, denoting that either e2 or e3 might have occurred.2

2A formal derivation of this would employ Rule 3.35. See the derivations in
Appendix B for examples.

90

Rule 3.21 asserts that a while loop is well-typed if there exists a typing context,

history map, and frame list that constitute a fixed point for the loop—that is,

unrolling the loop once yields the same context, map, and list. This allows the

type system to conservatively approximate any number of iterations of the loop.

Rule 3.22 causes the typing contexts, history maps, and frame lists yielded by each

term in a sequence to flow into the next term in the sequence. All terms in the

sequence must yield results of type void except the last, whose type is taken as

the type of the entire sequence.

Rules 3.23 and 3.24 assign types to instructions that load and store object fields.

Fields can only be loaded from and stored to unpacked objects C〈`〉, not packages.

Also, unpacked objects cannot be stored directly to an object field since this would

allow them to escape to the heap; they must be packed first. Rules 3.25 and 3.26

assign types to instructions that load and store argument slots in the current stack

frame. Stack frames can store objects of any type, including unpacked objects.

Rule 3.27 assigns types to instructions that create new unpacked objects and

initialize their fields. Each field initializer expression inherits the typing context,

history map, and frame list yielded by the last because the operational semantics

evaluates them in sequence. A new object is initially assigned the empty sequence ε

as its trace. In order that this not constitute a security policy violation, we require

that the empty sequence be a prefix of the policy assigned to that object’s class,

i.e. ε ∈ pre(policy(C)). Observe that this is always true except when policy(C) = ∅.

Rule 3.28 assigns types to method calls. After evaluating all the arguments,

a typing context Γ0, . . . ,Γn, a history map Ψn+1, and a frame list (τ0, . . . , τn)

result. The typing rule requires that the called method’s formal signature Sig

91

must alpha-vary3 (denoted by the <: operator) to some signature of the form

(Ψin , (τ0, . . . , τn)) (∃Γout .(Ψout ,Frout , τ) where Ψin is the part of the caller’s

history mapping Ψn+1 that flows into the callee and remains in-scope within the

method. This alpha-variance corresponds to asserting that there must be a way to

consistently rename callee typing variables to caller typing variables. The history

map that results includes objects that were in-scope in the callee (Ψout) and that

may have been modified, as well as those that remained out-of-scope (Ψunused).

Rule 3.29 assigns types to instructions that exhibit events. The exhibited event

is appended to the history abstraction that approximates the object’s state, and

we require that this new history abstraction is a prefix of the class’s security policy.

Thus, a Mobile program that exhibits a trace that violates the security policy is

not well-typed.

Rules 3.30 and 3.31 assign types to instructions that create and pack packages.

Rule 3.30 introduces a fresh type variable ` to refer to the new package. Rule 3.31

packs an object of type C〈`〉 into a package of type C〈?〉. We require that the

runtime state value Rep
C
〈H ′〉 passed to the pack instruction must be an accurate

approximation of the object’s state H; i.e., H ⊆ H ′. Additionally, the object’s

state must satisfy the policy since packed objects can escape to the heap and

therefore might persist, untracked, until the program’s termination. Observe that

the object identity variable ` for the packed object disappears from the history

map Ψ′ so that any future direct references to the object are not well-typed.

Rule 3.32 unpacks a package, yielding an object of type C〈`〉 and a runtime

state value of type Rep
C
〈θ〉. Since the object’s state is unknown, it is assigned

3Formally, we say that a signature Sig1 alpha-varies to signature Sig2 in context
Γ, written Γ ` Sig1 <: Sig2, if there exists a substitution σ : ` → ` such that
σ(Sig1) = Sig2 and any free variables in Sig2 are drawn from Γ.

92

a fresh history variable θ. The new object history map assigns θ to `. Typing

Rules 3.33 and 3.34 for testing and creating runtime state values are discussed in

§3.2.4.

Rule 3.35 allows weakening of types so that suitable types can be inferred at

code join points. (See the discussion of Rule 3.20 above.) In particular, a term’s

type can be weakened by reducing items to the left of the linear implication (()

and enlarging items to the right of the linear implication, according to subtyping

relation � defined in Figure 3.3.

Rules 3.36 – 3.41 assign values to terms introduced by the small-step operational

semantics. Rules 3.36 – 3.40 assign the obvious types to terms that have been

reduced to values, and Rule 3.41 requires that ret instructions always be performed

in settings where the stack is non-empty.

3.2.4 History Module Plug-ins

Mobile supports many possible schemes for representing histories at runtime and

for testing them, so rather than fixing particular operations for constructing run-

time state values and particular operations for testing them, we instead assume

only that there exists a countable collection of constructors newhist C, k and

conditionals condst C, k for all integers k, that construct runtime state values

and test runtime state values (respectively) for objects of class C. We then ab-

stractly define HC C,k(. . .) to be the type Rep
C
〈H〉 of a history value constructed

using constructor k for security-relevant class C, and we define ctx+
C,k(H,Ψ) and

ctx−C,k(H,Ψ) to be the object history maps that refine Ψ in the positive and nega-

tive branches (respectively) of a conditional that performs test k on a history value

93

of type Rep
C
〈H〉. Mobile supports any such refinement that is sound in the sense

that

testC,k(H) = 0 =⇒ Ψ � ctx−C,k(H,Ψ)(`) (3.42)

and

testC,k(H) 6= 0 =⇒ Ψ � ctx+
C,k(H,Ψ)(`) (3.43)

We further assume that each history type constructor HC C,k(. . .) accurately re-

flects its runtime implementation, in the sense that for all history value types

Rep
C1
〈H1〉, . . . ,Rep

Cn
〈Hn〉 such that n = arity(HC C,k), there exists some H such

that

HC C,k(Rep
C1
〈H1〉, . . . ,Rep

Cn
〈Hn〉) = Rep

C
〈H〉 (3.44)

and

hcC,k(rep
C1

(H1), . . . , rep
Cn

(Hn)) = rep
C
(H) (3.45)

Typing Rules 3.33 and 3.34 of Figure 3.7 make use of the above definitions.

Rule 3.33 refines the history map according to functions ctx+
C,k and ctx−C,k in

branches of a conditional that tests runtime state values. Rule 3.34 assigns the

type defined by function HC C,k to new runtime state values.

A history module plug-in provides definitions of hcC,k, testC,k, HC C,k, ctx+
C,k,

and ctx−C,k that satisfy the above requirements. Such a plug-in can extend Mobile

to support different schemes for representing runtime state and thereby enforce

different security policies. Multiple plug-ins can also be used simultaneously to

enforce different classes of security policies for different security-relevant classes

in a single program. Many different plug-ins are possible, but three particularly

useful ones are described below.

94

"!

"!

R

I

start

acquire

release

Figure 3.8: A DFA for an access protocol policy

Access Protocol Policies Deterministic finite automata (DFA’s) [HU79] model

security policies by accepting those sequences of symbols that correspond to per-

missible event sequences. Such automata can describe security policies that pre-

scribe protocols for accessing system resources. For example, a protocol that re-

quires a certain resource to be acquired before it is released could be modeled by

the two-state DFA depicted in Figure 3.8.

A history module plug-in that supports security policies expressed as DFA’s

could implement runtime state values as integers, and define

hcC,k() =def k

testC,k(rep
C
(θ)) =def


1 if rep

C
(θ) = k

0 otherwise

ctx+
C,k(θ,Ψ) =def Ψ[θ 7→ θ ∩Hk]

ctx−C,k(θ,Ψ) =def Ψ[θ 7→ θ ∩ (∪i6=kHi)]

for each integer k and all classes C, where Hk is a closed history abstraction

statically assigned by the policy-writer to each integer constant k. This scheme

allows a Mobile program to represent object security states at runtime using a

DFA in the following way: The policy-writer first assigns to each state of the

DFA an integer constant k. He next defines each closed history abstraction Hk

95

to be the set of traces that can cause the DFA to arrive in state k. The Mobile

program would then implement tests condst of runtime state values as equality

comparisons between the integer runtime state value to be tested and an integer

constant to determine at runtime if the DFA was in any given state.

The assignments of closed history abstractions Hk to integers k are not trusted,

so such a mapping can be defined by the Mobile program itself (e.g., in settings

where self-monitoring programs are produced by a common rewriter or where sep-

arately produced programs do not exchange objects) or by the policy-writer (in

settings where the mapping must be defined at a system global level for consistency

between programs).

Resource Bound Policies Another class of useful security policies are those

that bound the number of times a resource can be used. When the number of

allowed uses is large, counters are a more efficient model of such policies than

DFA’s. (For example, when the number of allowable uses is 230, a 4-byte integer

counter can model the policy, whereas the smallest suitable DFA has 230 states.)

A history module plug-in that supports resource bound policies could imple-

ment runtime state values as integers, and define

hcC,k() =def k

testC,k(rep
C
(θ)) =def


1 if rep

C
(θ) ≤ k

0 otherwise

ctx+
C,k(θ,Ψ) =def Ψ[θ 7→ θ ∩ (∪i≤ke

i)]

ctx−C,k(θ,Ψ) =def Ψ[θ 7→ θ ∩ eω]

96

for each integer k and all classes C, where e is the event that corresponds to using

the resource.

A runtime state value would therefore constitute an integer upper bound on the

number of times an associated object has been used so far during the program’s

execution. The Mobile program would then implement tests condst of runtime

state values as inequality comparisons between the integer runtime state value to

be tested and an integer constant to determine at runtime if the resource was

potentially near its usage bound.

Exact Traces A history module plug-in can even track every object’s exact trace

at runtime, though this would be computationally expensive in practice. Although

this is impractical in some settings, we show a formalism for doing so below in order

to demonstrate the power of Mobile’s type system.

The set of possible Mobile events is finite because events are program op-

erations, and real computer architectures only have a finite number of possible

instructions. Letting n be the number of possible events and letting e1, . . . , en be

the names of the events, we define4

hcC,0() =def obj null{}

hcC,k(`) =def obj list{evt = k, next = `} ∀k ∈ 1..n

testC,ε(rep
C
(θ)) =def


1 if rep

C
(θ) = obj null{}

0 otherwise

4Here we index history plug-in test functions by finite-length event sequences
instead of by integers for notational simplicity. This is isomorphic to an integer
indexing because the set of finite-length event sequences is countable.

97

testC,−→e ek
(rep

C
(θ)) =def


1 if rep

C
(θ) = obj list{evt = k, next = `}

and testC,−→e (`) = 1

0 otherwise

ctx+
C,−→e (θ,Ψ) =def Ψ[θ 7→ θ ∩ −→e]

ctx−
C,−→e (θ,Ψ) =def Ψ

That is, history constructor hcC,0() returns a runtime representation of the empty

sequence (as an empty linked list), and history constructor hcC,k(`) for k ∈ 1..n

takes an existing sequence representation and appends event ek to it (by prepending

integer k to linked list `). Using these two constructors, a Mobile program can

construct a runtime state value that represents any finite-length event sequence.

The program can use the testC,−→e operation to compare an object’s runtime state

value to any particular event sequence −→e . In this way, a Mobile program could

precisely record and monitor every object’s event trace at runtime.

The above shows that history module plug-ins are an extremely powerful and

versatile way to extend the Mobile type system to support useful classes of security

policies. By keeping the history module plug-in implementation abstract in the

formal treatment in this chapter, we allow Mobile to be specialized to suit various

applications and architectures.

3.3 An Example Mobile Program

To indicate how the operational semantics and typing rules described in the pre-

vious sections play out in practice, we here informally walk the type-checking

algorithm through the sample Mobile program given in Figure 3.9.

98

1 (newobj C()) starg 1;

2 (ldarg 1) evt e1;

3 (ldarg 1) evt e2;

4 (newpackage C) starg 2;

5 (ldarg 2) (ldarg 1) (newhist C, 0) pack;

6 (. . .) (ldarg 2) stfld . . . ;

7 ((ldarg 2) unpack 4) starg 3;

8 (ldarg 3) ((ldarg 4) evt e1) (. . .) condst C, 0

Figure 3.9: Sample Mobile program

Line 1 of the sample program creates a new object of class C and stores it

in local register 1. When a new security-relevant object is created, Mobile’s type

system assigns it a fresh object identity variable `. The return type of the newly

created object is thus C〈`〉 and the new history map yielded by the operation

satisfies Ψ′(`) = ε; that is, new objects are initially assigned the empty trace.

As security-relevant events are performed on the object, the type system tracks

these changes by statically updating its history map to append these new events

to the sequence it recorded in its history map. So for example, after processing

lines 2–3 of the sample program, which perform events e1 and e2 on the object

in local register 1, the type-checker’s new history map would satisfy Ψ′(`) = e1e2.

At each point that a security-relevant event is performed, the type system ensures

that the new trace satisfies a prefix of the security policy. For example, when type-

checking line 3, the type-checker would verify that e1e2 ⊆ pre(policy(C)), where

policy(C) denotes the set of acceptable traces assigned by the security policy to

class C, and pre(policy(C)) denotes the set of prefixes of members of set policy(C).

99

Security-relevant objects of type C〈`〉 are like typical objects except that they

are not permitted to escape to the heap. That is, they cannot be assigned to object

fields. In order to leak a security-relevant object to the heap, a Mobile program

must first store it in a package using a pack instruction. This requires three steps:

(1) A package must be created via a newpackage instruction. (2) A runtime

state value must be created that accurately reflects the state of the object to be

packed. This is accomplished via the newhist instruction, which is described in

more detail below. (3) Finally, the pack operation is used to store the object and

the runtime state value into the package. Lines 4 and 5 of the sample program

illustrate these three steps. Line 4 creates a new package and stores it in local

register 2. Line 5 then fills the package using the object in local register 1 along

with a newly created runtime state value.

In order for Mobile’s type system to accept a pack operation, it must be able

to statically verify that the runtime state value is an accurate abstraction of the

object being packed. That is, if the runtime state value has type Rep
C
〈H〉, then

the type system requires that Ψ(`) ⊆ H where ` is the object identity variable

of the object being packed. Additionally, since packed objects are untracked and

therefore might continue to exist until the program terminates, packed objects

must satisfy the security policy. That is, we require that Ψ(`) ⊆ policy(C).

Packages that contain security-relevant objects can leak to the heap, as illus-

trated by line 6 of the sample program, which stores the package to a field of some

other object. Since only packed objects can leak to the heap, the restriction that

packed objects must be in a policy-adherent state is a potential limitation of the

type system. That is, it might often be desirable to leak an object that is not

yet in a policy-adherent state to the heap, but later retrieve it and restore it to a

100

policy-adherent state before the program terminates. In Chapter 4 we show how

Mobile implementations can use finalizer code to avoid this restriction and leak

objects to the heap even when they are not yet in a policy-adherent state.

After a pack operation, the type system removes object identity variable ` from

the history map. Hence, after line 5 of the sample program, Ψ′(`) is undefined

and the object that was packed becomes inaccessible. If the program were to

subsequently attempt to load from local register 1 (before replacing its contents

with something else), the type-checker would reject the code because that register

now contains a value with an invalid type. Object identity variable ` can therefore

be thought of as a capability that has been revoked from the local scope and given

to the package.

In order to perform more security-relevant events on an object, a Mobile pro-

gram must first reacquire a capability for the object by unpacking the object from

its package via an unpack instruction. Line 7 of the sample program unpacks

the package in local register 2, storing the extracted object in local register 3 and

storing the runtime state value that was packaged with it in local register 4. Since

packages and the objects they contain are not tracked by the type system, the

type system cannot statically determine the history of a freshly unpacked object.

All that is statically known is that the runtime state value that will be yielded

at runtime by the unpack instruction will be an accurate representation of the

unpacked object’s history. To reflect this information statically, the type system

assigns a fresh object identity variable `′ to the unpacked object and a fresh history

variable θ to the unknown history. The unpacked object and runtime state value

then have types C〈`′〉 and Rep
C
〈θ〉, respectively, and the new history map satisfies

101

Ψ′(`′) = θ. The type C〈?〉 of a package can hence be thought of as an existential

type binding type variables `′ and θ.

If the sample program were at this point to perform security-relevant event

e on the newly unpacked object, Mobile’s type system would reject because it

would be unable to statically verify that θe ⊆ policy(C) (since nothing is statically

known about history θ)5. However, a Mobile program can perform additional

evt operations on the object by first dynamically testing the runtime state value

yielded by the unpack operation. If a Mobile program dynamically tests a value of

type Rep
C
〈θ〉, Mobile’s type system can statically infer information about history θ

within the branches of the conditional. For example, if a condst instruction is used

to test a value with type Rep
C
〈θ〉 for equality with a value of type Rep

C
〈e1e2〉, then

in the positive branch of the conditional, the type system can statically infer that

θ = e1e2. If policy(C) = (e1e2)
ω, then a Mobile program could execute I evt e1

within the positive branch of such a conditional (where I is the object that was

unpacked), because e1e2e1 ⊆ pre((e1e2)
ω); but the type-checker would reject a

program that executed I evt e2 in the positive branch, since e1e2e2 6⊆ pre((e1e2)
ω).

Suppose that history value constructor newhist C, 0 takes no arguments and

yields a runtime value that represents history e1e2; and suppose that conditional

test condst C, 0 compares a runtime state value to the value that represents history

e1e2. Formally, suppose that HC C,0() = Rep
C
〈e1e2〉 and ctx+

C,0(θ,Ψ) = Ψ[θ 7→

e1e2]. Thus, in the positive branch of such a test, the type-checker’s object history

map can be refined by substituting e1e2 for any instances of the history variable

5In actuality, one could safely infer that θ ⊆ policy(C) holds because θ came
from a package, and all packed objects satisfy the security policy. It would then
suffice for the type system to verify that policy(C) e ⊆ policy(C) holds. However,
to keep our subset and subtyping relations simple, we have chosen not to reflect
this refinement in the typing rules presented in this chapter.

102

being tested. Then if policy(C) = (e1e2)
ω, a Mobile type-checker would accept

the sample program. In the positive branch of the conditional in line 8, the type-

checker would infer that the object in local register 4 has history e1e2, and therefore

it is safe to perform event e1 on it. However, if policy(C) = e1e2e2, then the type-

checker would reject, because e1e2e1 is not a prefix of e1e2e2.

In the negative branch of this conditional the type-checker can infer that the

object in local register 4 has a history represented by a state value other than

the one that it was tested against. The history map could therefore be refined by

substituting history variable θ with the union of all of the history abstractions as-

sociated with all of the other possible runtime state values defined for that object’s

class.

3.4 Policy Adherence of Mobile Programs

The operational semantics of Mobile presented in §3.2.2 permit untyped Mobile

programs to enter bad terminal states—states in which the Mobile program has

not been reduced to a value but no progress can be made. For example, an un-

typed Mobile program might attempt to load from a non-existent field or attempt

to unpack an empty package (in which case no small-step rule can be applied).

Mobile’s type system presented in §3.2.3 prevents both policy violations and bad

terminal states, except that it does not prevent unpack operations from being

performed on empty packages. This reflects the reality that in practical settings

there will always be bad terminal states that are not statically preventable. We

prove below that Mobile programs well-typed with respect to a security policy will

not violate the security policy when executed even if they enter a bad state.

Formally, we define well-typed by

103

Definition 3.1. A method C::m.Sig with signature Sig = ∀Γin .(Ψin ,Fr in) (

∃Γout .(Ψout ,Frout , τ) is well-typed if and only if there exists a derivation for the

typing judgment Γin ` I : (Ψin ,Fr in) (∃Γout .(Ψout ,Frout , τ) where term I is

defined by I = methodbody(C::m.Sig).

Definition 3.2. A Mobile program is well-typed if and only if (1) for all C::m.Sig ∈

Dom(methodbody), method C::m.Sig is well-typed, and (2) there exists a method

Cmain ::main.Sigmain ∈ Dom(methodbody) having a method signature of the form

Sigmain = ∀Γin .(Ψin , (τ1, . . . , τn))(∃Γout .(Ψout ,Frout , τout) such that for all sub-

stitutions σ : θ → −→e and all object identity variables `:C ∈ (Γin ,Γout), if

Ψout(`) = H then σ(H) ⊆ policy(C).

Part 2 of definition 3.2 captures the requirement that a Mobile program’s entry

method must have a signature that complies with the security policy on exit.

Policy violations are defined differently depending on whether the program

terminates normally. If the program terminates normally, Mobile’s type system

guarantees that the resulting heap will be policy-adherent; whereas if the program

does not terminate or enters a bad state, Mobile guarantees only that the heap at

each evaluation step will be prefix-adherent, where policy- and prefix-adherence

are defined as follows:

Definition 3.3 (Policy Adherent). A heap h is policy-adherent if, for all class

objects obj C{. . .}
−→e ∈ Rng(h), −→e ⊆ policy(C).

Definition 3.4 (Prefix Adherent). A heap h is prefix-adherent if, for all class

objects obj C{. . .}
−→e ∈ Rng(h), −→e ⊆ pre(policy(C)).

To formalize the theorem, we first define a notion of consistency between a static

typing context and a runtime memory state. We say that a memory store ψ respects

104

an object identity context Ψ and a list of frames
−→
Fr , written Γ ` ψ : (Ψ;

−→
Fr) if all

object fields and stack slots in ψ have values of appropriate types, and the heap

in ψ is prefix-adherent. (See Appendix B for a formal definition.) The following

two theorems then establish that well-typed Mobile programs do not violate the

security policy.

Theorem 3.1 (Terminating Policy Adherence). Assume that a Mobile program is

well-typed, and that, as per Definition 3.2, its main method has signature Sigmain =

∀Γin .(Ψin , (τ1, . . . , τn))(∃Γout .(Ψout ,Frout , τout). If Γin ` ψ : (Ψin ;Fr) holds and

if ψ,methodbody(Cmain ::main.Sig) ∗(h′, s′), v holds, then h′ is policy-adherent.

Proof. See Appendix C.

Theorem 3.2 (Non-terminating Prefix Adherence). Assume that a Mobile pro-

gram is well-typed, and assume that Γ ` I : (Ψ;
−→
Fr) (∃Γ′.(Ψ′;

−→
Fr

′
; τ) and

Γ ` (h; s) : (Ψ;
−→
Fr) hold. If h is prefix-adherent and (h, s), I n(h′, s′), I ′ holds,

then h′ is prefix-adherent.

Proof. See Appendix C.

An important consequence of both theorems is that Mobile can be implemented

on existing .NET systems without modifying the memory model to store object

traces at runtime. Since a static type-checker can verify that Mobile code is well-

typed, and since well-typed code never exhibits a trace that violates the security

policy, the runtime system need not store or monitor object traces to prevent

security violations.

105

3.5 Related Work

Type-systems λA [Wal00] and λhist [SS04] enforce history-based security policies

over languages based on the λ-calculus. In both, program histories are tracked

at the type-level using effect types that represent an abstraction of those global

histories that might have been exhibited by the program prior to control reaching

any given program point.

Mobile differs from λA and λhist by tracking history on a per-object basis. That

is, both λA and λhist represent a program’s history as a finite or infinite sequence

of global program events, where the set of all possible global program events is

always finite. Policies that are only expressible using an infinite set of global

program events (e.g., events parameterized by object instances) are therefore not

enforceable by λA or λhist. For example, the policy that every opened file must

be closed by the time the program terminates is not enforceable by either λA or

λhist when the number of file objects that could be allocated during the program’s

execution is unbounded. In object-oriented languages such as the .NET CIL,

policies concerning unbounded collections of objects arise naturally, so it is not

clear how λA or λhist can be extended to such settings. Mobile enforces policies

that are universally quantified over objects of any given class, and therefore allows

objects to be treated as first-class in policy specifications.

PCC has been proposed as a framework for supporting certifying rewriting us-

ing temporal logic [BL02]. The approach is potentially powerful, but does not

presently support languages that include exceptions, concurrency, and other fea-

tures found in real programming languages [Ber04, p. 173]. It is therefore unclear

whether proof size and verification speed would scale well in practical settings.

106

CQual [FTA02] and Vault [DF01] are C-like languages that enforce history-

based properties of objects by employing a flow-sensitive type system based on

alias types [SWM00] and typestates [DF04b]. Security-relevant objects in CQual

or Vault programs have their base types augmented with type qualifiers, which

statically track the security-relevant state of the object. A type-checker then de-

termines if any object might enter a state at runtime that violates the security

policy. Vault’s type system additionally includes variant types that allow a run-

time value to reflect an object’s current state. The Vault type-checker identifies

instructions that test these state values to ensure that those tests will prevent

security violations when the program is executed.

Fugue [DF04a] is a static verifier based on Vault that uses programmer-supplied

specifications to find bugs in .NET source code. It verifies policies that constrain

the use of system resources or that prescribe protocols that constrain the order

in which methods may be called on objects. Fugue supports any source language

that compiles to managed .NET CIL code, but it does not support exceptions,

finalizers, or concurrency. It additionally lacks a formal proof of soundness for its

aliasing analysis and type system.

CQual, Vault, and Fugue assign linear types to security-relevant objects (and,

in the case of Vault, to runtime state values), and use aliasing analyses to track

changes to items with linear types. However, it is not clear how such analyses

can be extended to support concurrency or to support an important technique

commonly used by IRM’s to track object security states, wherein security-relevant

objects are paired with runtime values that record their states, and then such

pairs are permitted to leak to the heap. Existing alias analyses cannot easily track

107

items that are permitted to leak to the heap arbitrarily, or that are shared between

threads.

In this chapter, we have therefore taken the approach of L3 [MAF05], wherein

linearly-typed items are permitted to leak to the heap by packing them into

packages—shared data structures with limited interfaces. As with ownership types

[CNP01, CD02], packing and unpacking operations are implemented as destructive

reads, so that only one thread can perform security-relevant operations on a given

security-relevant object at a time.

3.6 Conclusions and Future Work

Mobile’s type system and the theorems presented in §3.4 show that a common

style of IRM, in which extra state variables and guards that model a security

automaton have been in-lined into the untrusted code, can be independently ver-

ified by a type-checker, eliminating the need to trust the rewriter that produced

the IRM. We verify policies that are universally quantified over unbounded collec-

tions of objects—that is, policies that require each object to exhibit a history of

security-relevant events that conforms to some stated property. The language of

security policies is left abstract and could consist of DFA’s, LTL expressions, or

any computable language of finite and infinite event sequences.

Our work has not addressed issues of object inheritance of security-relevant

classes. Future work should examine how to safely express and implement policies

that require objects related by inheritance to conform to different properties. A

type-checker for such a system would need to identify when a typecast at runtime

could potentially lead to a violation of the policy and provide a means for policy-

adherent programs to perform necessary typecasts.

108

Another open problem is how to support a wider range of IRM implementations.

Mobile supports only a specific (but typical) treatment of runtime state, wherein

each security-relevant object is paired with a dynamic representation of its state

every time it is leaked to the heap. In some settings, it may be desirable to

implement IRM’s that store an object’s dynamic state differently, such as in a

separate array rather than packaged together with the object it models. Type

systems for coordinated data structures [RG05] could potentially be leveraged to

enforce invariants over these decoupled objects and states.

We chose a type system for Mobile that statically tracks control flow in a data-

insensitive manner, with ω-regular expressions denoting sets of event sequences.

This approach is appealing because there is a natural rewriting strategy (outlined

in §3.1.3) whereby well-typed Mobile code can be automatically generated from

untrusted CIL code. A more powerful type system could employ a richer language

like Hoare Logic [Hoa69] to track data-sensitive control flow. This could allow

clever rewriters to eliminate additional runtime checks by statically proving that

they are unnecessary. However, formulating a sound and complete Hoare Logic

for .NET that includes objects and concurrency is challenging; furthermore, the

burden of producing useful proofs in this logic would be pushed to the rewriter. Fu-

ture work should investigate rewriting strategies that could make such an approach

worthwhile.

Finally, not every enforceable security policy can be couched as a computable

property that is universally quantified over object instances. For example, one

potentially useful policy is one that requires that for every file object opened for

writing, there exists an encryptor object to which its output stream has been

linked. Such a policy is not supported by Mobile because it regards both universal

109

and existentially quantified properties that relate multiple object instances. Future

work should consider how to implement IRM’s that enforce such policies, and how

these implementations could be type-checked so as to statically verify that the

IRM satisfies the security policy.

Chapter 4

Implementation of Mobile
This chapter includes previously published [HMS05, HMS06a] joint work with Greg

Morrisett and Fred B. Schneider.

4.1 Overview

In this chapter we describe a prototype implementation of Mobile for the Mi-

crosoft .NET Framework. Our implementation consists of a program-rewriter,

which transforms .NET CIL bytecode programs into Mobile programs according to

a declared security policy, and a type-checker, which verifies that Mobile programs

are well-typed with respect to a security policy. Mobile programs are implemented

as annotated CIL bytecode programs, where the annotations are encoded as CIL

custom attributes and as CIL bytecode instructions. Mobile programs are therefore

legal CIL programs that can be executed without modification by a .NET virtual

machine once they are verified by the type-checker. Annotations can also be au-

tomatically stripped from from Mobile programs after type-checking to produce

smaller binaries.

Security policies identify method calls as security-relevant events. Thus, secu-

rity policies can constrain the usage of resources provided by the CLR by moni-

toring CLR method calls and the objects they return. Our type-checker can, in

principle, regard any CIL instruction as a security-relevant event, but we leave

practical investigation of this feature to future work.

110

111

The implementation expresses security policies as star-free ω-regular expres-

sions1 [Lad77, Tho79] over this language of events, where each such expression is

universally quantified by object class. That is, a security policy specifies a set of

security-relevant classes, and a star-free ω-regular expression for each, defining the

set of permitted method call sequences that may be invoked on any instance of

that class at runtime. Formally, our implementation enforces policies induced by

detectors of the form

P̂(χ) = (∀o : o ∈ C1 : χo ∈ W1) ∧ · · · ∧ (∀o : o ∈ Cn : χo ∈ Wn)

where each C1, . . . , Cn is an object class, each W1, . . . ,Wn is a star-free ω-regular

expression, and the notation χo denotes the subsequence of execution χ consisting

of method calls exhibited on object o.

Our implementation does not support policy specifications in which two or more

of C1, . . . , Cn are related by inheritance. If a security policy declares a given class to

be security-relevant, then it implicitly declares all of that class’s subclasses to also

be security-relevant and restricted to the same set of method call sequences as their

parent class. Policies regard method names rather than the methods themselves, so

that a policy that constrains calls to method C1::m also constrains calls to method

C2::m when class C2 is a subclass of class C1. A facility to specify different event

sequence sets for different security-relevant classes related by inheritance is left to

future work.

The type-checker implementation supports the full managed subset of the .NET

CIL (minus reflection), including exceptions, finalizers, and multithreading. Sup-

port for finalization is particularly useful because it affords Mobile programs a

1Star-free ω-regular expressions are regular expressions except with ω to denote
finite or infinite repetition instead of Kleene star to denote strictly finite repetition.

112

means to overcome the limitation described in §3.3 that required all packed objects

to be in a policy-adherent state. In an implementation that supports finalizers,

packed objects need not be in a policy-adherent state. Instead, they must be in

a state that satisfies their finalizer’s precondition, and the finalizer’s postcondi-

tion must satisfy the security policy. These requirements ensure that a Mobile

program’s finalizer code will bring any packed object into a policy-adherent state

before termination. This allows Mobile programs to enforce security policies lazily

by including clean-up code in finalizers instead of bringing every object into a

policy-adherent state whenever it might escape to the heap.

Runtime state values are implemented as integers. Thus, our newhist opera-

tion is simply an ldc.i4 instruction that loads an integer constant onto the evalua-

tion stack. Policies can statically declare for each integer constant a closed history

abstraction that integer represents when used as a runtime state value. Tests of

runtime state values consist of equality comparisons with integer constants in the

manner described in §3.2.4 for implementing access protocol policies. This imple-

mentation suffices to support IRM’s that model security policies as deterministic,

finite-state security automata.

Packages are implemented as a small trusted class written in managed C#.

Our pack and unpack instructions are calls to methods in that class. A security

policy can identify zero or more package implementations that a rewriter can use

to safely leak security-relevant objects to the heap.

The chapter proceeds as follows. In §4.2 we describe the policy specification

language. Then §4.3 and §4.4 describe the type-checker and rewriter implementa-

tions, respectively. Finally, §4.6 discusses related work and §4.7 proposes future

work.

113

4.2 Security Policy Specifications

Security policy specifications consist of a list of two kinds of declarations: class

declarations and event declarations.

Class declarations Class declarations identify security-relevant classes that the

type system should track, and describe the sequences of events that Mobile pro-

grams may exhibit on each such object. They have the syntax

〈classname〉{〈numevents〉,〈packinvariant〉,〈classpolicy〉,〈runtimestatevalues〉}

where 〈classname〉 is a fully qualified class name identifying a class in the .NET

namespace hierarchy, 〈numevents〉 is an integer denoting the number of different

security-relevant operations for objects of this class, 〈packinvariant〉 is a star-free

ω-regular expression denoting the security state an object must have whenever it is

packed, 〈classpolicy〉 is a star-free ω-regular expression denoting the set of permis-

sible event sequences for objects of this class, and 〈runtimestatevalues〉 specifies

the list of runtime state values (i.e., integers) Mobile programs may use and what

state abstraction each represents.

The 〈runtimestatevalues〉 specification is not trusted but is included in the

policy statement to support separate rewriting of .NET assemblies. That is, if

the same security policy is to be enforced over multiple .NET assemblies, and

the assemblies might share packages, then the assemblies are required to use

the same runtime representations of state abstractions. Policy-writers can omit

the 〈runtimestatevalues〉 field from a policy specification to cause the program-

rewriter to automatically generate one that is suitable for the 〈classpolicy〉. (This

is achieved by converting the 〈classpolicy〉 into a DFA that accepts the set of fi-

nite prefixes of 〈classpolicy〉, and then using the procedure described in §3.2.4 to

114

convert this DFA into a history plug-in.) Thus, when rewriting a set of assemblies

according to the same policy, the first invocation of the rewriter causes a suitable

〈runtimestatevalues〉 specification to be selected and the remaining invocations

reuse the same specification.

The following is an example class declaration:

[mscorlib]System.IO.File{3, , (e1∧e2∗∧e3)∗, []}

This declaration identifies the File class provided by the .NET runtime system

as a security-relevant class with 3 events. Since the class has no finalizer, the

〈packinvariant〉 is omitted, requiring packed instances of this class to satisfy the

〈classpolicy〉. In the 〈classpolicy〉, ∗ represents ω, ∧ represents concatenation, +

represents disjunction, # and 0 represent the empty sequence and the empty set,

and events are numbered e1, e2, etc. The 〈runtimestatevalues〉 spec is omitted,

causing the rewriter to choose a suitable collection of runtime state values. In

this case, the rewriter could choose the 3-state DFA encoded by the following

〈runtimestatevalues〉 specification:

[s0 = (e1∧e2∗∧e3)∗,

s1 = (e1∧e2∗∧e3)∗∧e1,

s2 = (e1∧e2∗∧e3)∗∧e1∧e2∧e2∗]

That is, it could use integer 0 to represent objects in a policy-adherent state, 1

to represent objects that have exhibited event e1, and 2 to represent objects that

have exhibited event e1 followed by one or more of event e2. The DFA that this

specification encodes is shown in Figure 4.1.

115

"!

0 "!

1 "!

2-
e1 -

e2
	

I I

e3

e3

e2

Figure 4.1: A DFA accepting (e1e
∗
2e3)

∗

Event Declarations Event declarations identify method calls as security-rele-

vant events. They have the syntax

〈classname〉.〈methodname〉 〈precondition〉(〈arguments〉)〈postcondition〉

where 〈precondition〉 encodes typing context Γin and history map Ψin defined in

Figure 3.2 (i.e., it binds any type variables appearing in the 〈arguments〉), and

〈postcondition〉 encodes a typing context Γout and history map Ψout for a nor-

mal return from the method and for various exceptions that the method might

throw. The 〈arguments〉 provide the types of the method’s arguments, including

any implicit arguments like the object’s this pointer.

For example, the event declaration

[mscorlib]System.IO.File.Open

[o1 = [mscorlib]System.IO.File : h1]

(C<o1>, ,)

[Ret([o1 = [mscorlib]System.IO.File : h1∧e1]),

Exn([o1 = [mscorlib]System.IO.File : h1])]

identifies the Open method as a security-relevant method call for objects of class

System.IO.File. This method accepts an unpacked, security-relevant class C<o1>

116

as its first argument (along with two other security-irrelevant arguments denoted

by underscores), where o1 is a type variable that refers to an object of type

System.IO.File in some state h1. (h1 is a history variable that is implicitly uni-

versally quantified over the universe of all event sequences.) If the method returns

normally, object o1 will be in state h1∧e1, denoting that security-relevant event

e1 has been appended to its trace. If the method throws an exception, object o1

remains in state h1. The underscore at the end of the Ret(. . .) part of the specifi-

cation denotes the type of the return value, which is in this case security-irrelevant.

The underscore at the end of the Exn(. . .) part refers to the type of the exception

thrown, which is also security-irrelevant.

Aside from untracked objects (denoted by underscores) and unpacked, security-

relevant classes (denoted by C<o1>), event declarations can also refer to runtime

state values (denoted by H<classname : h1>) and managed pointers to any of the

above (denoted by prepending an ampersand to the type).

Event declarations can also be used to identify the method calls that implement

Mobile’s pack and unpack operations. This will be discussed further in §4.4.

4.3 Type-checking Algorithm

The type-checker was written in Ocaml and uses Microsoft’s .NET ILX SDK

[Sym01] to read and manipulate .NET bytecode binaries. We also use Conchon,

Filliâtre, and Signoles’s ocamlgraph library [CFS06] to construct and manipulate

DFA’s. Aside from these libraries and the OCaml runtime libraries, the type-

checker consists of about two thousand lines of Ocaml code. About half of that

code duplicates portions of the .NET bytecode verification algorithm, so we spec-

117

ulate that adding the type-checker to an existing .NET system would contribute

about one thousand lines of code to the trusted computing base.

The type-checker accepts as input a .NET bytecode program and a policy spec-

ification of the form described in §4.2 and returns with success if the annotations

in the bytecode program suffice to prove that the program satisfies the security

policy. Otherwise it signals a rejection by printing an error message. The type-

checking algorithm consists of walking over each instruction in a linear fashion

and applying the Mobile typing rules given in §3.2.3 to decide whether the code

is well-typed with respect to the security policy. In addition to the control flow

constructs modeled by Mobile, the type-checker also tracks control flow in the

presence of exceptions and the various CIL branching instructions.

4.3.1 Annotations

To keep the type-checking algorithm tractable, the type-checker recognizes three

kinds of (untrusted) typing annotations that aid in the type-inference.

• At each join point, the type-checker expects a virtual machine state an-

notation that abstracts the security-relevant state that will exist whenever

execution reaches that program point.

• Each method that accepts or returns unpacked classes must be annotated

with its function signature Sig (see Figure 3.2).

• Each call site involving an unpacked class must be annotated with an instan-

tiation of callee type variable names as caller type variable names.

An example of each kind of annotation is given in Figure 4.2. Virtual machine

state annotations describe the types of values in the current argument frame, local

118

A virtual machine state annotation:

{ args = [C < o1 >, , , H < h1 >],

locs = [, , C < o2 >]

stk = [,&H < o2 >]

ctx = [o1 = [mscorlib]System.IO.File : h1,

o2 = [mscorlib]System.IO.File : h2,

h1 = #,

h2 = e1∧e2]

exnstate = None }

A method annotation:

[o1 = [mscorlib]System.IO.File : h1]

(C<o1>, , , H<[mscorlib]System.IO.File : h1>)

[Ret([o1 = [mscorlib]System.IO.File : h1∧e1])]

A call site annotation:

[h1 = e1∧e2, h2 = h62]

Figure 4.2: Mobile annotations

119

variable frame, and evaluation stack, as well as describing the current typing con-

text and history map. The exnstate field gives the type of the current exception

being thrown2 if the annotation lies within an exception handler, or None other-

wise. Method annotations have the same syntax as described for class declarations

in §4.2 except without the class name and method name. Call site annotations

instantiate each callee history variable either by assigning it a closed history ex-

pression or by renaming it to a caller history variable. (Object type variable

renaming is not included in the annotation because it is inferred automatically by

the type-checker.)

The type-checker verifies the correctness of each annotation. Virtual machine

state annotations are correct if the state inferred by the type-checker along each

control flow path that arrives at the annotated join point is a subset of the state

described by the annotation. Method annotations are correct if the type inferred

for the body of the method is a subset of the type given by the annotation. Finally,

call site annotations must match both the signature of the callee method and the

states inferred for all control flow paths reaching the call site.

Method annotations are implemented by attaching a CIL custom attribute to

each annotated method. The other kinds of annotations refer to code points within

methods, so they cannot be implemented in this way. One way to implement them

would be to attach custom attributes to the methods with a numerical index

identifying which instruction in the method’s body they annotate. However, the

ILX SDK library does not currently expose bytecode indexes, so for the prototype,

we implemented the remaining annotations by adding the two-instruction sequence

2An exact type for exceptions cannot always be determined statically. In those
cases, a supertype such as System.Exception is inferred.

120

ldstr 〈annotation〉

pop

to each annotation point, which loads a string constant onto the evaluation stack

and pops it back off again. These extra instructions won’t affect execution, but can

be automatically stripped from the binary along with method annotations after

type-checking is complete to produce smaller and faster binaries.3

4.3.2 Subset Relations

To correctly apply typing Rule 3.27, 3.29, 3.31, and 3.35 given in Figure 3.7, the

type-checker must verify subset relations over the language of history abstractions

given in Figure 3.2. That is, it must decide subset relations over the language of

star-free ω-regular expressions plus variables and intersection.

Although deciding subset for this language is not tractable in general, the task

is simplified by observing that real Mobile code only introduces history variables at

the beginnings of expressions (e.g., when an unpacked object flows into a method

whose signature assigns a name to the object’s state) and only introduces intersec-

tions that involve a variable and a closed history abstraction (e.g., when a runtime

state value is tested). We show in Appendix D that the resulting sub-language

is decidable. In particular, it can be reduced to the subset problem for regular

expressions.

Our type-checker implementation uses homogeneous non-deterministic autom-

ata (hNFA’s) [Cha01] to model regular expressions. It decides relation L(N1) ⊆

L(N2) (where the notation L(N) denotes the language accepted by hNFA N) by

3In practice we have not observed any experiments in which these annotations
noticeably affected the size or runtime speed of the binary, probably because the
JIT compiler optimizes them away.

121

deciding relation L(N1)∩L(N2) 6= ∅. That is, the second hNFA is complemented,

intersected with the first hNFA, and the final states of the resultant NFA are tested

for reachability. Complementation is achieved by using the ccp algorithm [CCP04]

to determinize the hNFA, and then using the algorithms described in [HU79] for

complementing a DFA and intersecting two automata.

Although this algorithm is exponential in the size of N2 in the worst case,

it is linear in the size of N1. Untrusted code can dictate N1 but not N2 because

because the right-hand sides of the subset relations in the typing rules in Figure 3.7

are determined by the security policy, not the untrusted code. Typing Rule 3.29

allows untrusted code to cause the type-checker to build up an hNFA N1 that

is at most linear in the size of the code. Thus, our implementation of the type-

checking algorithm is quadratic in the size of the code being type-checked, but

exponential in the size of the hNFA that models the security policy. Despite this

exponential complexity, in practice we have found the type-checking algorithm to

exhibit reasonable runtimes (see §4.5).

4.4 Program-rewriting Algorithm

Our rewriter implementation was also written in Ocaml and uses the same run-

time libraries as the type-checker. Discounting these runtime libraries, it consists

of about 3500 lines of Ocaml code. The rewriter accepts as input an arbitrary

managed CIL bytecode program and a policy specification of the form described

in §4.2 and outputs a new CIL bytecode program that has been rewritten and

annotated according to the security policy. The rewriter supports a significant

portion of the managed subset of the .NET CIL (minus reflection), but does not

support code that accesses security-relevant methods through delegates (managed

122

function pointers), does not support policies that declare package classes or their

superclasses to be security-relevant (e.g., the System.Object class may not be

identified as a security-relevant class), and does not support code that throws

security-relevant objects as exceptions. Also, the behavior of some multithreaded

programs is not preserved; this limitation will be discussed in more detail later.

Our rewriter adopts the rewriting strategy outlined in §3.1.3; it changes all

instances of security-relevant classes to packages. Whenever a field is accessed, the

rewriter inserts instructions to first unpack the package, then access the unpacked

class’s field, and finally repack the object. Method calls that are security-relevant

events are redirected to wrapper methods that unpack the package, test its runtime

state value to be sure that the forthcoming event will not constitute a security

policy violation, and then call the unpacked class’s method if not. After the call,

the wrapper method updates the runtime state value and repackages the class. If

the call would have constituted a security policy violation, the object is repacked

and a security exception is thrown. The strategy for testing runtime state values

is the one described in §3.2.4 for testing whether a DFA is in a particular state.

Operations pack and unpack are implemented as method calls to the (very

small) trusted C# library given in Figure 4.3. Observe that C#’s lock construct

is used to make both operations atomic. This implementation suffices to prevent

multithreaded programs from violating the security policy, but it will also cause

some policy-satisfying programs to terminate prematurely. This can happen when

two threads attempt to access the same package simultaneously. One thread will

unpack the package first and the other will throw the EmptyPackage exception and

terminate. To overcome this limitation, an alternative Unpack implementation

could block when it encounters an empty package, waiting for the thread that

123

class Package {

private object obj;

private int state;

public void Pack(object o, int s) {

lock (this) { obj=o; state=s; }

}

public object Unpack(ref int s) {

lock (this) {

object o=obj;

if (o==null) throw new EmptyPackage();

obj=null; s=state;

return o;

}

}

}

Figure 4.3: Implementation of pack and unpack

124

[Package]Package.Pack

[o1 = [mscorlib]System.Object : h1]

(, C<o1>, H<[System]System.Object : h1>)

[Ret([])]

[Package]Package.Unpack

[]

(,&H<[System]System.Object : h1>)

[Ret([o1 = [System]System.Object : h1]C<o1>),

Exn([])]

Figure 4.4: Event declarations for Pack and Unpack

unpacked the package to repack it. We leave such an implementation to future

work.

To permit use of our package implementation, a security policy must declare

trusted signatures for our Pack and Unpack methods. It can do this by including

the two event declarations given in Figure 4.4. The first declares that the Pack

method takes an unpacked, security-relevant object and a runtime state value that

represents its state, and causes the object to disappear from the typing context.

Thus, any future references to it until it is unpacked are invalid and will be rejected

by the type-checker. The second declares that the Unpack method takes a pointer

to a location suitable for storing runtime state values and stores into it a value

representing the state of the unpacked, security-relevant object it returns. If it

125

instead throws an exception, no security-relevant object is introduced to the typing

context.

4.5 Experimental Results

To test the runtime overhead of our implementation, we applied our rewriter and

type-checker to a managed C# port of the SciMark benchmark suite. We wrote

a security policy that identifies as security-relevant events the various interesting

method calls that the benchmark suite makes to the .NET runtime libraries. These

include calls to the Math library, calls to the StringBuilder library, and calls to

the System.IO library. Our security policy rejects programs that attempt more

than n calls to these libraries, where n is a parameter set by the policy-writer.

In order to prevent our policy from actually causing the benchmarks to be halted

prematurely, we set n to −1, causing our rewriter to insert all the security checks

that it would for any other value of n, but with tests that never signal a policy

violation.

Our experiment consisted of three phases. First, we applied our rewriter to

the benchmark suite and measured the runtime of the rewritten binary. Second,

we hand-optimized the rewritten binary and inserted additional hand-written an-

notations to reflect what a better rewriter could achieve while still allowing the

type-checker to certify that the code was policy-adherent. Third, we manually

instrumented the original code with security checks that enforce the same security

policy, but in a way that would not satisfy a Mobile type-checker. This is sugges-

tive of the best runtime that can be achieved if security without certification is

acceptable.

126

All three phases were performed on a 3.1GHz Pentium running version 1.0.3705

of the Microsoft .NET Framework. The unmodified SciMark benchmark suite

consisted of 2000 lines of C# code and compiled to a CIL bytecode binary that

was 32K in size. Applying our rewriter took 0.43 seconds and did not change the

binary’s size. (Padding introduced by the CLI binary format masked the small

overhead introduced by additional instructions and annotations.) Hand-counting

the material inserted by the rewriter revealed 3477 bytes in annotations and 725

bytes in additional instructions. Type-checking the rewritten binary took 0.50

seconds.

The average runtimes of our tests over one hundred trials are given in Table 4.1.

Our rewriter produced runtime overheads of about 6% or less in most cases. In one

case the overhead was almost a factor of 2. We expect that this would be the worst

case for our rewriting strategy since it transforms security-relevant method calls

into two method calls. When we hand-optimized the rewritten code, we were able

to hoist some of the security checks out of the inner loops of the benchmarks, reduc-

ing that overhead to a more reasonable 3%. The uncertified, hand-instrumented

code was slightly faster than what could be achieved with certified code. It yielded

an average overhead of about 1%.

To test our rewriter and type-checker under a more realistic scenario, we next

used our rewriter to enforce a security policy that allows each .NET network socket

object to accept at most n connections during the program’s lifetime (where n is

a parameter specified by the policy-writer). Such a policy might be used, for

example, to force applications to relinquish control of network ports after a certain

amount of activity. We applied this policy to a small multithreaded webserver

written in C# (about 600 lines of code). The original application binary was 20K

127

T
ab

le
4.

1:
S
ci

M
ar

k
b
en

ch
m

ar
k

ru
n
ti

m
es

or
ig

in
al

re
w

ri
tt

en
h
an

d
-o

p
ti

m
iz

ed
u
n
ce

rt
ifi

ed

F
F
T

8.
20

s
8.

61
s

(+
5.

00
%

)
8.

52
s
(+

3.
90

%
)

8.
27

s
(+

0.
85

%
)

L
U

F
ac

to
ri

ze
8.

13
s

15
.8

8s
(+

95
.3

3%
)

8.
38

s
(+

3.
08

%
)

8.
30

s
(+

2.
09

%
)

M
et

h
o
d

C
al

l
17

.6
9s

18
.4

2s
(+

4.
13

%
)

18
.4

0s
(+

4.
01

%
)

18
.0

3s
(+

1.
92

%
)

S
tr

in
gB

u
il
d
er

15
.0

9s
15

.3
4s

(+
1.

66
%

)
15

.2
0s

(+
1.

66
%

)
15

.1
7s

(+
0.

53
%

)

F
il
e

IO
10

.0
2s

10
.6

7s
(+

6.
49

%
)

10
.2

2s
(+

2.
00

%
)

10
.2

0s
(+

1.
80

%
)

T
o
ta

l
59

.1
3s

68
.9

2s
(+

16
.5

6%
)

60
.7

2s
(+

2.
69

%
)

59
.9

7s
(+

1.
42

%
)

128

in size, and once again, rewriting did not alter its size. Hand-counting the material

inserted by the rewriter revealed approximately 83 bytes in additional instructions

and 117 bytes in annotations. Rewriting took 0.12 seconds and type-checking took

0.09 seconds on a 1.8GHz Pentium running version 1.0.3705 of the Microsoft .NET

Framework. We benchmarked both the original and rewritten webservers by using

WebStone to simulate two clients retrieving five webpages ranging in size from 500

bytes to 5 megabytes. WebStone reported that the rewritten webserver exhibited

an average throughput rate that was 99.97% of the original webserver’s.

4.6 Related Work

To our knowledge there has been no previous implementation of a certifying IRM

system or of an IRM system for the .NET CLI; however, a variety of mechanisms

have been developed to implement IRM’s for Java and x86 programs without

certification.

PoET (Policy Enforcement Toolkit) [ES99, Erl04] and SASI (Security Autom-

ata SFI Implementation) [ES00, Erl04] implement IRM’s in Java and x86 programs

from policies expressed as security automata. Security automata for PoET/SASI

are deterministic, finite-state automata with transition relations labeled by predi-

cates involving program operations (Java bytecode or x86 instructions) and their

operands (e.g., method call parameters). In addition to the declarative compo-

nents, security policy specifications also include operational components—policies

can provide trusted code to be in-lined into the untrusted code. PoET and SASI

have been used to enforce high-level policies, like the policy that prohibits Java

programs from accessing the network after accessing the file system, as well as

low-level policies like Java stack-inspection and x86 memory safety.

129

Naccio [ET99] enforces resource bound policies over Java and x86 programs.

Policy enforcement is achieved by injecting code before and after each code point

where a resource is accessed, similar to aspect weaving in an Aspect Oriented

Programming framework [KLM+97]. The injected code is provided as part of the

policy specification, making Naccio policies largely non-declarative. Since resource

policies are usually per-object policies (i.e., they place a constraint on how many

accesses are permitted for each object instance), Naccio includes strong support

for per-object security policies.

Java-MaC (Monitoring and Checking) [KVK+04] is a system for runtime veri-

fication [BG05] that instruments Java programs according to policy specifications

that consist of two components: a low-level component that defines primitive events

and system states, and a high-level component that defines histories over those

events and states. To provide strong formal guarantees, Java-MaC policies are

strictly declarative and focus on warning the user of imminent policy violations

rather than on taking direct corrective action automatically. The system does not

support per-object policies and assumes each monitored object can be assigned a

static name.

Java-MOP [CR03, CDR04, CR05] offers an Aspect-Oriented style framework

for designing, developing, and implementing IRM’s. It consists of a collection of

various engines and plug-ins that can be mixed and matched to generate IRM

code from policies expressed in various logics, and implement them for various

Java architectures. IRM’s generated by the framework are implemented in As-

pectJ [KHH+01].

The Polymer system [BLW05] focuses on enforcing security policies that are

composeable. Policies in Polymer have runtime implementations that can dynam-

130

ically query one another to enforce a composite policy built up from the vari-

ous sub-policy components. Like the implementation of Mobile presented in this

chapter, Polymer regards method calls as security-relevant events and can enforce

per-object security policies.

4.7 Conclusions and Future Work

Our implementation of Mobile for managed Microsoft .NET CIL expresses security

policies as star-free ω-regular expressions. We verify such policies in the presence

of exceptions, concurrency, finalizers, and non-termination, demonstrating that

Mobile can be scaled to real type-safe, low-level languages. Preliminary exper-

imental evidence suggests that this certified program-rewriting strategy can be

used to enforce security policies with reasonable runtime and code bloat overhead,

and yet provides strong guarantees of correctness.

However, much work remains to be done before our implementation can be used

to enforce real security policies in practical settings. Our type-checker supports

only a limited language of security policies by defining events as instance method

calls. Future work should allow security policies to define any CIL instruction

as a security-relevant event, and should support global events (rather than just

per-object events) in the manner described in §3.1.2. This would allow it to type-

check policies that involve combinations of static and instance method calls, or that

constrain the number of instructions that a program can execute on any particular

run.

The type-checker also only supports history module plug-ins that express event

sequences as deterministic, finite-state security automata. Support for the other

history module plug-ins mentioned in §3.2.4 would permit more efficient modeling

131

of resource bound policies and support more powerful security policies that cannot

be modeled by finite-state automata.

The policy specification language used in our implementation has many short-

comings. It provides a compact and highly technical representation of the set of

entities, events, and event sequences that comprise a history-based security policy,

but is therefore very difficult for humans to read or reason about. Since the security

policy specification is trusted, a specification language that is prone to human er-

ror can constitute a significant weakness in a security system. Future work should

consider how to represent policy specifications in a more human-readable form, and

in a way that allows a user interface to assist in policy-writing by checking policy

specifications for obvious errors and inconsistencies. Work in cognitive linguistics

and perceptual symbol systems [Tal83, Lan90, Lan95, Sim95, Bar99] might provide

useful high-level guidance on how to design and evaluate better policy languages

that refer to entities, events, and schemas that encode program behaviors.

Annotations in our implementation sometimes take the form of CIL instruction

sequences in order to avoid a limitation of the ILX SDK libraries. This approach

would not work in a setting where the instructions used to encode annotations

could, themselves, constitute security-relevant events (e.g., if a policy considers all

instructions to be security-relevant events). Future work should address this by

using custom annotations with bytecode indexes to annotate code points, or by

placing annotations in a separate file. Alternatively, support for custom annota-

tions at the bytecode level would be a useful addition to the .NET binary format

that would facilitate this and a great deal of other research.

The rewriter in our implementation takes the näıve approach of wrapping each

security-relevant method call in a new method whose body includes guard in-

132

structions that detect and prevent policy violations. This strategy does not take

advantage of many opportunities that the Mobile type system affords for optimiz-

ing security checks. A better rewriter could in-line the bodies of some of these

wrapper methods to reduce the number of method calls, could hoist some security

checks outside of loops when it is safe to do so, and could avoid some security

checks entirely by observing that some security-relevant events can never consti-

tute a violation of the security policy. Although the .NET JIT compiler already

performs some of these optimizations, it is unlikely to optimize away most pack

and unpack operations because compilers are typically conservative with regard

to aliasing analyses, preserving most heap operations—especially in code that is

synchronized. Development of rewriters that take advantage of the extra opti-

mization opportunities provided by Mobile’s linear type system is important for

demonstrating the power and flexibility of the type system, and for achieving better

runtime overheads.

Our support for concurrency in this implementation has the disadvantage that

although our rewriter is sound in the sense that it produces policy-adherent code,

it is incomplete in that it is unable to successfully preserve the behavior of many

policy-adherent, multithreaded programs. Much of that incompleteness is a re-

sult of our simplistic implementation of packages, which causes an exception to

be thrown whenever an empty package is unpacked. To support far more multi-

threaded programs, an alternative package implementation could block when an

empty package is unpacked, waiting for the thread that unpacked it to repack

it. This would allow multiple threads to simultaneously access the same pack-

age, but in a way that prevents multiple threads from simultaneously exhibiting

security-relevant events on the same object. Future work should investigate rewrit-

133

ing strategies that leverage such a package implementation to correctly rewrite

more multithreaded applications.

Our rewriter and type-checker are stand-alone applications that are executed

from the command line. A real implementation of Mobile must integrate both ap-

plications into the load path of the system so that untrusted code cannot circum-

vent the security enforcement mechanism. Doing this poses significant challenges

and interesting research questions. Production-level .NET architectures usually

load and JIT-compile assemblies in stages rather than all at once. For example,

an assembly’s metadata might be loaded first, and then each method’s body might

be JIT-compiled on its first invocation. Some methods might be recompiled later

to permit the runtime system to optimize based on profiling information collected

after the first compilation. .NET architectures also cache precompiled binaries

so that they can be reused without re-invoking the JIT compiler. Future work

should consider how certifying program-rewriters can be added to these complex

load paths without significantly increasing the average startup time for launching

applications.

Chapter 5

Conclusions
This dissertation provides a three-fold argument for why automated program-

rewriting constitutes a compelling and effective means of enforcing security policies

over untrusted code.

First, Chapter 2 gave a formal definition of program-rewriting, and it formally

characterized the class of security policies enforceable by program-rewriters. We

proved the informal intuition that program-rewriters can implement any policy

enforceable by an execution monitor by implementing the execution monitor as

an in-lined reference monitor. Furthermore, we showed that program-rewriters

can enforce policies that no execution monitor can enforce. These policies can

only be enforced by program-rewriters that perform code transformations beyond

those modeled by in-lined reference monitors. We observed that this space of

additional security policies remains largely unexplored, suggesting the need for

future research.

Second, Chapter 3 presented a design strategy called certified in-lined reference

monitoring, which allows program-rewriters to be developed without significantly

enlarging a system’s trusted computing base. In a certified in-lined reference mon-

itoring system, the program-rewriter itself need not be trusted because it pro-

duces well-typed target code that can be verified by a smaller type-checker that

is trusted. Our type system, called Mobile, supports both global and per-object

security policies, and it can be leveraged to enforce such policies in settings that

include concurrency, exceptions, finalizers, and non-termination. This allows the

development of large and complex program-rewriters that perform aggressive opti-

134

135

mizing and that enforce rich classes of security policies without contributing extra

complexity to the trusted computing base.

Third, Chapter 4 demonstrated that it is feasible to implement certified pro-

gram-rewriters for real architectures. We described a prototype implementation

of Mobile for the Microsoft .NET Framework and used it to enforce security poli-

cies expressed as ω-regular expressions of events, where events are method calls.

We used our implementation to enforce these security policies over applications

written in managed C#. Our preliminary experimental evidence indicates that

the rewriter, the type-checker, and the rewritten code all exhibit reasonable run-

times, and we recorded reasonable size overheads for annotations and code added

to executables during the rewriting process.

This three-fold argument for the program-rewriting approach to security policy

enforcement also identified numerous directions for future research.

Our theoretical work in Chapter 2 revealed that, unlike other known classes of

enforceable security policies, the class of policies enforceable by program-rewriting

does not correspond to any class of the arithmetic hierarchy. This raises interesting

questions about how to relate this class of problems to known classes from complex-

ity theory. Future work should also consider our model under different computabil-

ity constraints, such as constraints that limit security enforcement mechanisms to

smaller (e.g., polynomial) time and space computations.

The type system developed in Chapter 3 takes an effective but somewhat blunt

approach to solving the problems of tracking object security states and tracking

aliases of security-relevant objects. Specifically, we require security-relevant ob-

jects with aliases to be encapsulated at runtime into package objects with limited

interfaces. To reduce the overhead of these additional runtime operations, fu-

136

ture work should investigate how more-powerful type systems, such as those that

analyze dataflow rather than just control flow, might be used to support more

optimization strategies used by in-lined reference monitors.

Finally, the implementation described in Chapter 4 is of a preliminary pro-

totype that leaves much room for future development. The prototype supports

policies that identify method calls as security-relevant events, but future imple-

mentations should support richer languages of events, such as those that identify

any instruction as an event parameterized by the instruction’s arguments. Future

implementations should also take advantage of more opportunities provided by

the Mobile type system for optimizing rewritten code. Such research could pro-

vide additional evidence that program-rewriting systems can be implemented for

real systems in such a way that powerful classes of security policies can be enforced

efficiently.

Appendix A

Program Machine Semantics
There are many equivalent ways to formalize TM’s. We define them as 4-tuples:

M = (Q, δ, q0, b)

• Q is a finite set of states.

• δ is the TM’s transition relation. (Since our TM’s are deterministic, δ is a

total function.) For each state in Q and each symbol that could be read

from the work tape, δ dictates whether the PM halts (H), reads a symbol

from the input tape and continues, or continues without reading a symbol

from the input tape. If the TM continues without reading an input symbol,

then δ specifies the new TM state, the symbol written to the work tape, and

whether the work tape head moves left (−1) or right (1). Otherwise if an

input symbol is read, it specifies all of the above (the new TM state, the

symbol written to the work tape, and whether the work tape header moves

left or right) for each possible input symbol seen. Thus δ has type1

δ : Q× Γ →
(
{H}]

(Q× Γ× {−1, 1})]

(Γ → (Q× Γ× {−1, 1}))
)

• q0 ∈ Q is the initial state of the TM.

• b ∈ Γ is the blank symbol to which all cells of the work tape are initialized.

1Set operator] denotes disjoint union.

137

138

The computation state of a TM is defined as a 5-tuple:

〈q, σ, i, κ, k〉

where q ∈ Q is the current finite control state; σ, κ ∈ Γω are the contents of the

input and work tapes; and i, k ≥ 1 are the positions of the input and work tape

heads. Take TM M to be (Q, δ, q0, b). When M is provided input σ, it begins

in computation state 〈q0, σ, 1, bω, 1〉. The TM computation state then changes

according to the following small-step operational semantics:

〈q, σ, i, κ, k〉 −→TM 〈q, σ, i, κ, k〉

if δ(q, κ[k]) = H.

〈q, σ, i, κ, k〉 −→TM 〈q′, σ, i, κ[..k − 1] s κ[k + 1..], max{1, k + d}〉

if δ(q, κ[k]) = (q′, s, d).

〈q, σ, i, κ, k〉 −→TM 〈q′, σ, i+ 1, κ[..k − 1] s κ[k + 1..], max{1, k + d}〉

if δ(q, κ[k])(σ[i]) = (q′, s, d).

PM’s are defined exactly as TM’s except that they carry additional information

corresponding to the trace tape. The computation state of a PM is defined as a

triple: 〈
〈q, σ, i, κ, k〉, τ, n

〉
where 〈q, σ, i, κ, k〉 is the computation state of a TM, τ ∈ Γ∗ is the contents of the

trace tape up to the trace tape head, and n ≥ 0 is a computational step counter.

Initially, PM M = (Q, δ, q0, b) when provided input σ begins in computation state

〈S, ε, 0〉 where S is the initial computation state of TM M for input σ and ε denotes

the empty sequence. The PM computation state then changes according to the

139

following operational semantics:

〈S, τ, n〉 −→PM 〈S ′, τ T (M,σ, n+ 1), n+ 1〉

where S →TM S ′ and T : TM × Γω × N → Γ∗ is a trace mapping satisfying the

constraints on trace mappings given in §2.2.1. (A concrete example is given below.)

We illustrate by giving a concrete example of a PM. This requires first specifying

a Turing Machine and then giving a suitable trace mapping. Let Γ0 be {0, 1,#}.

Next define event set E0 by

E0 =def {es|s ∈ Γ0}] {eskip , eend}] {eM |M ∈ PM }.

E0 is a countable set, so there exists an unambiguous encoding of events from E0

as finite sequences of symbols from Γ0. Choose such an encoding and let dee denote

the encoding of event e ∈ E0. To avoid ambiguities in representing event sequences,

choose the encoding so that for all e ∈ E0, string dee consists only of symbols in

{0, 1} followed by a #. This ensures that there exists a computable function

b·c : Γω → Eω such that for all i ≥ 0 and for all χ ∈ Ei,
⌊
de0e · · · deie

⌋
= e0 . . . ei.

Finally, for all M ∈ TM , σ ∈ Γω, and n ≥ 0, define trace mapping T0 by

T0(M,σ, 0) =def deMe.

T0((Q, q0, δ, b), σ, n+ 1) =def deσ[i]e if 〈q0, σ, 1, bω, 1〉 −→n
TM 〈q, σ, i, κ, k〉, and

δ(q, κ[k]) ∈
(
Γ → (Q× Γ× {−1, 1})

)
.

T0((Q, q0, δ, b), σ, n+ 1) =def deende if 〈q0, σ, 1, bω, 1〉 −→n
TM 〈q, σ, i, κ, k〉, and

δ(q, κ[k]) = H.

T0(M,σ, n+ 1) =def deskipe otherwise.

So, this trace mapping causes every PM M to write deMe to its trace tape before its

first computational step, write dese whenever it reads symbol s from its input tape,

140

"!

"!

"!

-

@
@@R

�
��	

� I

q0 q1

q2

0 7→ 1, 1

1 7→ 0, 1
0 7→ 0, 1
1 7→ 1, 1

7→ 1, 1 # 7→ #, 1

We write s 7→ s′, d (where s, s′ ∈ Γ and
d ∈ {−1, 1}) by an arrow from state
q ∈ Q to q′ ∈ Q when reading s in state
q causes the PM to write s′ to its work
tape, move the work tape header in di-
rection d (i.e. left (−1) or right (1)), and
transition to state q′.

Minc =def

(
{q0, q1, q2}, δinc, q0,#

)
where for all s ∈ Γ0,

δinc(q0, s) =def

(
0 7→ (q1, 1, 1);

1 7→ (q0, 0, 1);

7→ (q2, 1, 1)
)

δinc(q1, s) =def

(
0 7→ (q1, 0, 1);

1 7→ (q1, 1, 1);

7→ (q2,#, 1)
)

δinc(q2, s) =def H

Figure A.1: A PM for incrementing a counter

write deskipe whenever it does not read an input symbol on a given computational

step, and pad the remainder of the trace tape with deende if it halts.

For all M ∈ PM and σ ∈ Γω, event sequence χM(σ) can be defined as

χM(σ) =def bτc

where τ is the limit as n→∞ of

〈
〈q0, σ, 1, bω, 1〉, ε, 0

〉
−→n

TM

〈
〈q, σ, i, κ, k〉, τ, n

〉
and M = (Q, δ, q0, b). Therefore an enforcement mechanism could determine the

sequence of events exhibited by a PM by observing the PM’s trace tape.

Figure A.1 shows a program to increment binary numbers by 1, formalized as

a PM along the lines we just discussed. The PM shown there treats its input as

a two’s-complement binary number (least-order bit first), and writes that number

incremented by one to its work tape. As the PM executes, it also writes the

sequence of symbols dictated by trace mapping T0 to its trace tape. So if the PM

141

in Figure A.1 were provided string 1101 as input, it would write 0011 to its work

tape and write deMincede1ede1ede0ede1ede#e to its trace tape, followed by deende

repeated through the remainder of the tape. A different PM M0 that never reads

its input would write to its trace tape deM0e, then deskipe for each computational

step it takes, and finally deende repeated through the remainder of the tape.

We have given only one of many equivalent ways to formalize our program

machines. Extra work tapes, multiple tape heads, multidimensional tapes, and

two-way motion of the input tape head all yield computational models of equivalent

power to the one we give. All of these models can simulate the operations found

on typical computer systems, including arithmetic, stack-based control flow, and

stack- and heap-based memory management. PM’s can also simulate other PM’s,

which means they can perform the equivalent of runtime code generation. Program

machines are thus an extremely flexible model of computation that can be used to

simulate real computer architectures.

Appendix B

Proof of Type-soundness for Mobile
We here provide formal proofs of type-soundness and subject reduction for Mobile.

These results are then used in Appendix C to prove the theorems of policy adher-

ence and prefix adherence stated in §3.4.

B.1 Consistency of Statics and Dynamics

To formalize the theorems, we first provide a formal definition of the notion of

consistency between static typing contexts and a runtime memory states described

informally in §3.4. We say that a memory store ψ respects an object identity

context Ψ and a list of frames
−→
Fr , written Γ ` ψ : (Ψ;

−→
Fr) if there exists a derivation

using the inference rules given in Figure B.1. Rules B.2 – B.5 ensure that all values

of object fields have the proper type. Rules B.6 – B.11 ensure that object traces are

policy adherent and are adequately tracked by runtime history values in packages

and by history maps when unpacked. Rules B.12 – B.13 ensure that items in the

call stack are well-typed.

The proofs of Terminating Policy Adherence (Theorem 3.1) and of Non-termi-

nating Prefix Adherence (Theorem 3.2) are arrived at in three steps. First, in §B.3

we prove subject reduction for the type system. That is, we prove that taking a

step according to the operational semantics provided in Figure 3.6 preserves the

type of a Mobile term as defined in Figure 3.7. Second, in §B.4 we prove that well-

typed Mobile terms can take a step as long as they have not been reduced to a value

or have not entered a “bad” state, such as by performing an unpack operation on

142

143

Figure B.1: Consistency of Mobile Statics and Dynamics

144

Γ `heap h : Γ `hist h : (Γ; Ψ) Γ `stack s :
−→
Fr

Γ ` (h, s) : (Ψ;
−→
Fr)

(B.1)

Γ0 `heap h : Γ
Γ0 ` vi : (Ψ;

−→
Fr)((Ψ;

−→
Fr ; field(C, fi)) ∀i ∈ 1..fields(C)

Γ0 `heap h, (` 7→ obj C{fi = vi|i ∈ 1..fields(C)}−→e) : Γ, `:C
(B.2)

Γ0 `heap h : Γ

Γ0 `heap h, (` 7→ pkg(. . .)) : Γ, `:C〈?〉
(B.3)

Γ0 `heap h : Γ

Γ0 `heap h : Γ, θ
(B.4)

Γ0 `heap · : ·
(B.5)

`hist h : (Γ; Ψ) −→e ⊆ H

`hist h, (` 7→ obj C{. . .}
−→e) : (Γ, `:C; Ψ ? (` 7→ H))

(B.6)

`hist h : (Γ; Ψ) −→e ⊆ H ⊆ policy(C)

`hist h, (` 7→ pkg(`′, rep
C
(H))), (`′ 7→ obj C{. . .}

−→e) :
(Γ, `:C〈?〉, `′:C; Ψ)

(B.7)

`hist h : (Γ; Ψ) −→e ⊆ policy(C)

`hist h, (` 7→ obj C{. . .}
−→e) : (Γ, `:C; Ψ)

(B.8)

`hist h : (Γ; Ψ)

`hist h, (` 7→ pkg(·)) : (Γ, `:C〈?〉; Ψ)
(B.9)

`hist h : (Γ; Ψ)

`hist h : (Γ, θ; Ψ)
(B.10)

`hist · : (·; 1)
(B.11)

145

Figure B.1 (Continued)

Γ `stack s :
−→
Fr Γ ` vi : (Ψ;

−→
Fr 0)((Ψ;

−→
Fr 0; τi) ∀i ∈ 0..n

Γ `stack s(v0, . . . , vn) :
−→
Fr (τ0, . . . , τn)

(B.12)

Γ `stack · : ·
(B.13)

146

an empty package. Third, these two results are leveraged in Appendix C to prove

Terminating Policy Adherence and Non-terminating Prefix Adherence theorems.

B.2 Canonical Derivations

In the proofs that follow, it will be useful to appeal to the following “obvious”

facts about the derivation system given in Figure B.1. (Proofs of the facts below

can be obtained by trivial inductions over the derivations of the various relevant

judgments.)

Fact 1. If Γ′ `heap h : Γ holds then the following three statements are equivalent:

(i) Γ = Γ0, `:C

(ii) h = h0, (` 7→ obj C{fi = vi|i ∈ 1..fields(C)}−→e)

(iii) There exists a derivation of Γ `heap h : Γ that ends in

Γ′ `heap h0 : Γ0

Γ′ ` vi : (Ψ;
−→
Fr)((Ψ;

−→
Fr ; field(C, fi)) ∀i ∈ 1..fields(C)

(B.2)
Γ′ `heap h : Γ

and the following three statements are equivalent:

(i) Γ = Γ0, `:C〈?〉

(ii) h = h0, (` 7→ pkg(. . .))

(iii) There exists a derivation of Γ `heap h : Γ that ends in

Γ′ `heap h0 : Γ0 (B.3)
Γ′ `heap h : Γ

Fact 2. If `hist h : (Γ; Ψ) holds then the following three statements are equivalent:

(i) Γ = Γ0, `
′:C

(ii) h = h0, (`
′ 7→ obj C{. . .}

−→e)

147

(iii) There exists a derivation of `hist h : (Γ; Ψ) that ends in one of

`hist h0 : (Γ0; Ψ0)
−→e ⊆ H

(B.6)
`hist h : (Γ; Ψ)

,

`hist h1 : (Γ1; Ψ) −→e ⊆ H ⊆ policy(C)
(B.7)

`hist h : (Γ; Ψ)
, or

`hist h0 : (Γ0; Ψ) −→e ⊆ policy(C)
(B.8)

`hist h : (Γ; Ψ)

where history map Ψ is defined by Ψ = Ψ0 ? (`′ 7→ H), typing context

Γ1 is defined by Γ1 = Γ0, `:C〈?〉, and heap h1 is defined by h1 = h0, (` 7→

pkg(`′, rep
C
(H)));

and the following three statements are equivalent:

(i) Γ = Γ0, `:C〈?〉

(ii) h = h0, (` 7→ pkg(. . .))

(iii) There exists a derivation of `hist h : (Γ; Ψ) that ends in one of

`hist h1 : (Γ1; Ψ) −→e ⊆ H ⊆ policy(C)
(B.7)

`hist h : (Γ; Ψ)

or

`hist h0 : (Γ0; Ψ)
(B.9)

`hist h : (Γ; Ψ)

where Γ1 = Γ0, `:C〈?〉 and h1 = h0, (` 7→ pkg(`′, rep
C
(H))).

Fact 3. The following judgments can be weakened in the following ways:

1. If Γ0 `heap h : Γ holds then Γ0,Γ
′ `heap h : Γ also holds.

2. If Γ0 `stack s :
−→
Fr holds then Γ0,Γ

′ `stack s :
−→
Fr also holds.

3. If Γ0 ` I : (Ψ;
−→
Fr) (∃Γ′′.(Ψ′′;

−→
Fr

′′
; τ) holds then Γ0,Γ

′ ` I : (Ψ;
−→
Fr) (

∃Γ′′.(Ψ′′;
−→
Fr

′′
; τ) also holds.

148

Facts 1 and 2 state that when Γ′ `heap h : Γ holds or `hist h : (Γ; Ψ) holds, then

Γ and h match element for element, and there is a way to reorganize the derivation

of either judgment to bring the rule that refers to any particular element to the

bottom of the derivation tree. That is, the rule applications in either derivation

can be reordered arbitrarily. Fact 3 states that judgment Γ0 `heap h : Γ, judgment

Γ0 `stack s :
−→
Fr , and judgment Γ0 ` I : (Ψ;

−→
Fr)(∃Γ′′.(Ψ′′;

−→
Fr

′′
; τ) can be weakened

by adding more elements to Γ0.

B.3 Subject Reduction

Lemma B.1 (Context Widening). If Γ ` I : (Ψ;Fr)(∃Γ′.(Ψ′;Fr ′; τ) holds and

I contains no ret instructions, then Γ ` I : (Ψextra ? Ψ;
−→
FrFr) (∃Γ′.(Ψextra ?

Ψ′;
−→
FrFr ′; τ) holds.

Proof. Observe that all typing rules except the typing rule for ret (3.41) are pa-

rameterized by an arbitrary frame list prefix that remains unchanged by an ap-

plication of the rule. Since I has no ret instructions, this suffices to prove that

Γ ` I : (Ψ;
−→
FrFr)(∃Γ′.(Ψ′;

−→
FrFr ′; τ) holds.

It remains to show that Ψ ` I : (Ψextra ?Ψ;Fr)(∃Γ′.(Ψextra ?Ψ′;Fr ′; τ) holds.

Let D be the derivation of Γ ` I : (Ψ;Fr)(∃Γ′.(Ψ′;Fr ′; τ). Proof is by induction

on the structure of D.

Case 1: D ends in Rule 3.19, 3.25, 3.30, 3.36, 3.37, 3.38, 3.39, or 3.40. In these

cases, Ψ′ = Ψ. The lemma follows immediately by instantiating Ψ with

Ψextra ?Ψ in each typing rule.

Case 2: D ends in Rule 3.20, 3.21, 3.22, 3.23, 3.24, 3.26, 3.27, 3.29, 3.31, 3.32,

3.33, or 3.34. The lemma follows by inductive hypothesis, by instantiating

149

each antecedent of the form Γ0 ` I0 : (Ψ0;Fr 0) (∃Γ′
0.(Ψ

′
0;Fr ′0; τ0) with

Γ0 ` I0 : (Ψextra ?Ψ0;Fr 0)(∃Γ′
0.(Ψextra ?Ψ′

0;Fr ′0; τ0).

Case 3: D ends in Rule 3.28. In addition to instantiating into each antecedent

as in the previous case, instantiate Ψunused with Ψextra ?Ψunused . The lemma

then holds by inductive hypothesis.

Case 4: D ends in Rule 3.35. Observe from the subtyping rules that if Ψ1 �

Ψ′
1 then Ψextra ? Ψ1 � Ψextra ? Ψ′

1. We can therefore instantiate the rule’s

antecedents as in the previous two cases to prove the lemma by inductive

hypothesis.

Lemma B.2 (Context Subtyping). If `hist h : (Γ; Ψ) and Ψ � Ψ′ hold then `hist

h : (Γ; Ψ′) holds.

Proof. Let D be a derivation of `hist h : (Γ; Ψ). Proof is by induction over the

structure of D.

Base Case: If D ends with Rule B.11, then Ψ = Ψ′ = · and the lemma holds

immediately.

Inductive Case: If D ends in any remaining rule other than Rule B.6, then the

lemma follows immediately from the inductive hypothesis. Assume D ends

in Rule B.6 and therefore has the form

`hist h0 : (Γ0; Ψ0)
−→e ⊆ H

(B.6)
`hist h : (Γ; Ψ)

where Γ = Γ0, `:C, h = h0, (` 7→ obj C{. . .}
−→e), and Ψ = Ψ0 ? (` 7→ H). Since

Ψ � Ψ′, it follows that Ψ′ = Ψ′
0 ? (` 7→ H ′) such that H ⊆ H ′ and Ψ0 � Ψ′

0.

150

Thus, by inductive hypothesis one can derive

`hist h0 : (Γ0; Ψ
′
0)

−→e ⊆ H ′
(B.6)

`hist h : (Γ; Ψ′)

Lemma B.3 (Stepwise Subject Reduction). Assume that

Γ ` ψ : (Ψ;
−→
Fr) (B.14)

Γ ` I : (Ψ;
−→
Fr)(∃Γ′′.(Ψ′′;

−→
Fr

′′
; τ) (B.15)

both hold and assume that all methods in Dom(methodbody), are well-typed. If

ψ, I ψ′, I ′ holds then there exists Γ′, Ψ′,
−→
Fr

′
, and σ : θ → −→e such that Γ′ ` ψ′ :

(Ψ′;
−→
Fr

′
) holds and Γ′ ` I ′ : (Ψ′;

−→
Fr

′
)(∃Γ′′.(σ(Ψ′′);σ(

−→
Fr

′′
);σ(τ)) holds.

Proof. Proof is by induction on the derivation of the judgment ψ, I ψ′, I ′. To

make the proof more tractable, in what follows we make the simplifying assumption

that weakening Rule 3.35 does not appear in the derivation of judgment B.15.

Similar logic to that presented below applies to cases where Rule 3.35 is present.

Case 1: ψ, ldc.i4 i4 ψ, i4. Then Γ′′ = · and (Ψ′′;
−→
Fr

′′
; τ) = (Ψ;

−→
Fr ; int32) by

3.19. To satisfy the lemma, choose Γ′ = Γ, Ψ′ = Ψ,
−→
Fr

′
=
−→
Fr , and σ = · and

apply typing Rule 3.37.

Case 2: ψ,E[I0] ψ′, E[I ′0]. Let D be a derivation of B.15. Observe that for all

possible E[I0], derivationD includes a subderivationD2 of Γ ` I0 : (Ψ;
−→
Fr)(

∃Γ′
2.(Ψ

′
2;
−→
Fr

′
2; τ2). By inductive hypothesis, there exists Γ′, Ψ′,

−→
Fr

′
, and σ such

that Γ′ ` ψ′ : (Ψ′;
−→
Fr

′
) and Γ′ ` I ′0 : (Ψ′;

−→
Fr

′
)(∃Γ′

2.(σ(Ψ′
2);σ(

−→
Fr

′
2);σ(τ2)).

Let D′
2 be a derivation of this latter judgment. Then derivation D can be

modified by replacing subderivation D2 with derivation D′
2 to obtain a deriva-

tion of Γ′ ` E[I ′0] : (Ψ′;
−→
Fr

′
)(∃Γ′′.(σ(Ψ′′);σ(

−→
Fr

′′
);σ(τ)).

151

Case 3: ψ, i4 I2 I3 cond ψ, Ij where j ∈ {2, 3}. Any derivation of B.15 contains

a subderivation of Γ ` Ij : (Ψ;
−→
Fr) (∃Γ′′.(Ψ′′;

−→
Fr

′′
; τ) (by 3.20 and 3.37).

Thus the lemma is satisfied by choosing Γ′ = Γ, Ψ′ = Ψ,
−→
Fr

′
=
−→
Fr , and

σ = ·.

Case 4: ψ, I1 I2 while ψ, I1 (I2; (I1 I2 while)) 0 cond. Any derivation of B.15

must have the form

Γ ` I1 : (Ψ;
−→
Fr)(

∃Γ1.(Ψ1;
−→
Fr 1; int32)

Γ ` I2 : (Ψ1;
−→
Fr 1)(

∃Γ2.(Ψ;
−→
Fr ;void)

Γ ` 0 : (Ψ1;
−→
Fr 1)(

∃Γ2.(Ψ;
−→
Fr ;void)

(3.20)
Γ ` I1 I2 0 cond : (Ψ;

−→
Fr)(∃Γ′′.(Ψ;

−→
Fr ;void)

(3.21)
Γ ` I1 I2 while : (Ψ;

−→
Fr)(∃Γ′′.(Ψ;

−→
Fr ;void)

where Γ = Γ0,Γ
′′ and Γ′′ = Γ1,Γ2. One can therefore derive

Γ0,Γ
′′ ` I1 (I2; (I1 I2 while)) 0 cond : (Ψ;

−→
Fr)(∃Γ′′.(Ψ;

−→
Fr ;void)

using the typing derivation displayed in Figure B.2. The lemma is thus

satisfied by choosing Γ′ = Γ, Ψ′ = Ψ,
−→
Fr

′
=
−→
Fr , and σ = ·.

Case 5: ψ, v; I2 ψ, I2. Any derivation of B.15 contains a subderivation of Γ `

I2 : (Ψ;
−→
Fr) (∃Γ′′.(Ψ′′;

−→
Fr

′′
; τ) (by 3.22 and 3.36). Thus the lemma is

satisfied by choosing Γ′ = Γ, Ψ′ = Ψ,
−→
Fr

′
=
−→
Fr , and σ = ·.

Case 6: ψ, ldarg j ψ, vj where ψ = (h, s(v0, . . . , vn)). From B.15 and 3.25,
−→
Fr

has the form
−→
Fr 0Fr and 0 ≤ j ≤ n. From B.14 and B.12, Fr = (τ0, . . . , τn)

and Γ ` vj : (Ψ;
−→
Fr) ((Ψ;

−→
Fr ; τj) holds. The lemma is therefore satisfied

by choosing Γ′ = Γ, Ψ′ = Ψ,
−→
Fr

′
=
−→
Fr , and σ = ·.

Case 7: (h, s), v starg j (h, s′), 0 where s = s0(v0, . . . , vn) for some stack prefix

s0, and s′ = s0(v0, . . . , vj−1, v, vj+1, . . . , vn). From B.15 and 3.26,
−→
Fr has the

form
−→
Fr 0Fr , and 0 ≤ j ≤ n. From B.14 and B.12, Fr = (τ0, . . . , τn). From

152

Γ
`
I 1

:
(Ψ

;−→ F
r
)
(

∃Γ
1
.

(Ψ
1
;−→ F

r
1
;i

n
t3

2
) (3

.3
5)

Γ
`
I 1

:
(Ψ

;−→ F
r
)
(

∃Γ
′′ .

(Ψ
1
;−→ F

r
1
;i

n
t3

2
)

Γ
`
I 2

:
(Ψ

1
;−→ F

r
1
)
(

∃Γ
2
.(

Ψ
;−→ F

r
;v

o
id

) (3
.3

5)
Γ
`
I 2

:
(Ψ

1
;−→ F

r
1
)
(

∃Γ
′′ .

(Ψ
;−→ F

r
;v

o
id

)

Γ
`
I 1
I 2

w
h
il
e

:
(Ψ

;−→ F
r
)
(

∃Γ
′′ .

(Ψ
;−→ F

r
;v

o
id

) (3
.2

1)
Γ
`
I 2

;(
I 1
I 2

w
h
il
e
)

:
(Ψ

1
;−→ F

r
1
)
(

∃Γ
′′ .

(Ψ
;−→ F

r
;v

o
id

)

Γ
`

0
:

(Ψ
1
;−→ F

r
1
)
(

∃Γ
2
.(

Ψ
;−→ F

r
;v

o
id

) (3
.3

5)
Γ
`

0
:

(Ψ
1
;−→ F

r
1
)
(

∃Γ
′′ .

(Ψ
;−→ F

r
;v

o
id

) (3
.2

0)
Γ

0
,Γ

′′
`
I 1

(I
2
;(
I 1
I 2

w
h
il
e
))

0
co

n
d

:
(Ψ

;−→ F
r
)
(

∃Γ
′′ .

(Ψ
;−→ F

r
;v

o
id

)

F
ig

u
re

B
.2

:
T

y
p
in

g
d
er

iv
at

io
n

fo
r
w
h
i
l
e

lo
op

s

153

B.15 and 3.26, Γ′′ = ·, Ψ′′ = Ψ,
−→
Fr

′′
=
−→
Fr 0(τ0, . . . , τj−1, τ

′, τj+1, . . . , τn),

τ = void, and Γ ` v : (Ψ;
−→
Fr)((Ψ;

−→
Fr ; τ ′) holds. Choose Γ′ = Γ, Ψ′ = Ψ,

−→
Fr

′
=
−→
Fr

′′
, and σ = ·. Since all type judgments for value expressions are

independent of frames, one can derive Γ ` v : (Ψ′;
−→
Fr

′
) ((Ψ′;

−→
Fr

′
; τ ′) to

prove by B.12 that Γ′ ` (h; s′) : (Ψ′;
−→
Fr

′
) holds. Furthermore, Γ′ ` 0 :

(Ψ′;
−→
Fr

′
)((Ψ′′;

−→
Fr

′′
; τ) holds by 3.36, satisfying the lemma.

Case 8: (h, s), v1 . . . vn newobj C(µ1, . . . , µn) (h′, s), ` where h′ = h, (` 7→

obj C{fi = vi|i ∈ 1..n}ε) and n = fields(C). From B.15 and 3.27, Γ′′ = `:C,

Ψ′′ = Ψ ? (` 7→ ε),
−→
Fr

′′
=
−→
Fr , and τ = C〈`〉. Additionally, Γ ` vi : (Ψ;

−→
Fr)(

(Ψ;
−→
Fr ; field(C, fi)) ∀i ∈ 1..n. Choose Γ′ = Γ′′, Ψ′ = Ψ′′,

−→
Fr

′
=
−→
Fr

′′
, and

σ = ·. From B.14 one can derive

Γ′ `heap h : Γ Γ′ ` vi : (Ψ;
−→
Fr)((Ψ;

−→
Fr ; field(C, fi)) ∀i ∈ 1..n

(B.2)
Γ′ `heap h

′ : Γ′

and derive

`hist h : (Γ′; Ψ) ε ⊆ ε
(B.2)

`hist h
′ : (Γ′; Ψ′)

Thus Γ′ ` (h′, s) : (Ψ′,
−→
Fr

′
) holds. Further, observe that Γ′ ` ` : (Ψ′;

−→
Fr

′
)(

∃Γ′′.(Ψ′′;Fr ′′;C〈`〉) holds by 3.38 because Γ′ = Γ, `:C. Thus the lemma is

satisfied.

Case 9: (h, s), v0 . . . vn callvirt C::m.Sig (h, sa), I0 ret where a = (v0, . . . , vn)

and I0 = methodbody(C::m.Sig). From B.15 and 3.28,
−→
Fr

′′
=
−→
Fr , and there

exists (Ψin , (τ0, . . . , τn)), Ψout , Ψunused , and Frout such that Ψ = Ψunused ?Ψin ,

Ψ′′ = Ψunused ?Ψout ,

Γ ` vi : (Ψ;
−→
Fr)((Ψ;

−→
Fr ; τi) ∀i ∈ 0..n (B.16)

154

and

Γ ` Sig <: (Ψin ; (τ0, . . . , τn))(∃Γ′′.(Ψout ;Frout ; τ).

Since C::m.Sig is well-typed, it follows that

Γ ` I0 : (Ψin ; (τ0, . . . , τn))(∃Γ′′.(Ψout ;Frout ; τ).

By context widening (Lemma B.1), this implies that

Γ ` I0 : (Ψunused ?Ψin ;
−→
Fr (τ0, . . . , τn))(

∃Γ′′.(Ψunused ?Ψout ;
−→
FrFrout ; τ)

which collapses to

Γ ` I0 : (Ψ;
−→
Fr (τ0, . . . , τn))(∃Γ′′.(Ψ′′;

−→
FrFrout ; τ).

Choose Γ′ = Γ, Ψ′ = Ψ,
−→
Fr

′
=
−→
Fr (τ0, . . . , τn), and σ = ·. To prove that

Γ′ ` I ′ : (Ψ′;
−→
Fr

′
)(∃Γ′′.(Ψ′′;

−→
Fr

′′
; τ) holds, derive

Γ ` I0 : (Ψ;
−→
Fr (τ0, . . . , τn))(∃Γ′′.(Ψ′′;

−→
FrFrout ; τ)(3.41)

Γ ` I0 ret : (Ψ;
−→
Fr (τ0, . . . , τn))(∃Γ′′.(Ψ′′;

−→
Fr ; τ)

(recalling that
−→
Fr

′′
=
−→
Fr). To prove that Γ′ ` (h; sa) : (Ψ′;

−→
Fr

′
) holds,

observe that Γ `stack s :
−→
Fr holds by B.14, and therefore one can derive

Γ `stack s :
−→
Fr Γ ` vi : (Ψ;

−→
Fr)((Ψ;

−→
Fr ; τi) ∀i ∈ 0..n

(B.12)
Γ′ `stack sa :

−→
Fr

′

by B.16 and B.12.

Case 10: (h, sa), v ret (h, s), v. By B.15 and 3.41, Γ′′ = ·, Ψ = Ψ′′, and
−→
Fr =

−→
Fr

′′
Fr 0 for some Fr 0. Choose Γ′ = Γ, Ψ′ = Ψ′′,

−→
Fr

′
=
−→
Fr

′′
, and σ = ·.

Any derivation of B.15 has a subderivation of Γ ` v : (Ψ;
−→
Fr)((Ψ;

−→
Fr ; τ).

155

Since the typing rules for value expressions are independent of frame, one

can therefore derive Γ ` v : (Ψ′;
−→
Fr

′
) ((Ψ′′;

−→
Fr

′′
; τ). Furthermore, one

derivation of B.14 has a subderivation of

Γ `stack s :
−→
Fr

′′ ...
(B.12)

Γ `stack sa :
−→
Fr

′′
Fr 0

Hence Γ′ `stack s :
−→
Fr

′
holds.

Case 11: (h, s), ` ldfld µ C::f (h, s), v where h(`) = obj C{. . . , f = v, . . .}−→e .

By B.15 and 3.23, Γ′′ = ·, Ψ = Ψ′′, and
−→
Fr =

−→
Fr

′′
. Choose Γ′ = Γ, Ψ′ = Ψ,

−→
Fr

′
=
−→
Fr , and σ = ·. Any derivation of B.15 has a subderivation of Γ `

v : (Ψ;
−→
Fr) ((Ψ;

−→
Fr ; τ). Hence Γ ` v : (Ψ′;

−→
Fr

′
) ((Ψ′′;

−→
Fr

′′
; τ) holds.

Furthermore, Γ′ ` (h; s) : (Ψ′;
−→
Fr

′
) holds by B.14.

Case 12: (h, s), ` v stfld µ C::fj (h′, s), 0 where h′ = h[` 7→ obj C [fj 7→ v]], and

1 ≤ j ≤ fields(C), and h(`) = obj C{fi = vi|i ∈ 1..fields(C)}−→e . By B.15 and

3.24, Γ′′ = ·, Ψ = Ψ′′,
−→
Fr =

−→
Fr

′′
, and τ = void. Choose Γ′ = Γ, Ψ′ = Ψ,

−→
Fr

′
=
−→
Fr , and σ = ·. Observe that Γ′ ` 0 : (Ψ′;

−→
Fr

′
)((Ψ′′;

−→
Fr

′′
; τ) holds by

Rule 3.36. Furthermore, since one derivation of B.14 has a subderivation of

Γ `heap h0 : Γ0

Γ ` vi : (Ψ;
−→
Fr)((Ψ;

−→
Fr ; field(C, fi)) ∀i ∈ 1..fields(C)

(B.2)
Γ `heap h : Γ

where Γ = Γ0, `:C and h = h0, (` 7→ obj C{. . .}
−→e), and since B.15 implies that

all three of Γ ` v : (Ψ;
−→
Fr)((Ψ;

−→
Fr ;µ), field(C, fj) = µ, and ` ∈ Dom(Γ′)

hold, one can derive

Γ `heap h0 : Γ0

Γ ` v : (Ψ;
−→
Fr)((Ψ;

−→
Fr ; field(C, fj))

Γ ` vi : (Ψ;
−→
Fr)((Ψ;

−→
Fr ; field(C, fi)) ∀i ∈ 1..j − 1, j + 1..fields(C)

(B.2)
Γ′ `heap h

′ : Γ′

Hence Γ′ ` (h′; s) : (Ψ′;
−→
Fr

′
) holds.

156

Case 13: (h, s), ` evt e1 (h′, s), 0 where h′ = h[` 7→ obj C{. . .}
−→e e1 and h(`) =

obj C{. . .}
−→e . By B.15 and 3.29, Γ′′ = ·, −→Fr =

−→
Fr

′′
, τ = void, Ψ = Ψ1 ? (` 7→

H) for some Ψ1 and H, and Ψ′′ = Ψ1 ? (` 7→ He1). Choose Γ′ = Γ, Ψ′ = Ψ′′,

−→
Fr

′
=
−→
Fr , and σ = ·. Then Γ′ ` 0 : (Ψ′;

−→
Fr

′
)((Ψ′′;

−→
Fr

′′
; τ) holds by typing

Rule 3.36. Furthermore, since one derivation of B.14 has a subderivation of

`hist h0 : (Γ0; Ψ1)
−→e ⊆ H

(B.6)
`hist h : (Γ; Ψ)

where Γ = Γ0, `:C and h = h0, ` 7→ obj C{. . .}
−→e , one can derive

`hist h0 : (Γ0; Ψ1)
−→e e1 ⊆ He1 (B.6)

`hist h
′ : (Γ; Ψ′′)

Hence Γ′ ` (h′; s) : (Ψ′;
−→
Fr

′
) holds.

Case 14: (h, s),newpackage C (h′, s), ` where h′ = h, ` 7→ pkg(·). By B.15

and 3.30, Γ′′ = `:C〈?〉, Ψ = Ψ′′,
−→
Fr =

−→
Fr

′′
, and τ = C〈?〉. Choose Γ′ = Γ,Γ′′,

Ψ′ = Ψ,
−→
Fr

′
=
−→
Fr , and σ = ·. Observe that Γ′ ` ` : (Ψ′′;

−→
Fr

′′
)((Ψ′′;

−→
Fr

′′
; τ)

by typing Rule 3.39. Hence Γ′ ` ` : (Ψ′;
−→
Fr

′
) (∃Γ′′.(Ψ′′;

−→
Fr

′′
; τ) holds by

Rule 3.35. In addition, any derivation of B.14 includes subderivations of

Γ `heap h : Γ and `hist h : (Γ; Ψ); hence one can derive

Γ′ `heap h : Γ
(B.3)

Γ′ `heap h
′ : Γ′

and
`hist h : (Γ; Ψ)

(B.9)
`hist h

′ : (Γ′; Ψ′)

Thus Γ′ ` (h′; s) : (Ψ′;
−→
Fr

′
) holds, proving the lemma.

Case 15: ` `′ rep
C
(H) pack (h′, s), 0 where h(`) = pkg(. . .) and h′ = h[` 7→

pkg(`′, rep
C
(H))]. By B.15 and 3.31, Γ′′ = ·, −→Fr =

−→
Fr

′′
, τ = void, and

Ψ = Ψ′′ ? (` 7→ H ′) for some H ′. Any derivation of B.15 has subderivations

of Γ ` rep
C
(H) : (Ψ;

−→
Fr) ((Ψ′′;

−→
Fr ; Rep

C
〈H〉) (by Rule 3.40) such that

157

H ′ ⊆ H ⊆ policy(C) (by Rule 3.31), and of

Ψ = Ψ′′ ? (`′ 7→ H ′)
(3.38)

Γ ` `′ : (Ψ;
−→
Fr)((Ψ;

−→
Fr ;C〈`〉)

where Γ = Γ0, `:C〈?〉, `′:C. One derivation of B.14 has a subderivation of

D
`hist h0, (` 7→ pkg(. . .)) : (Γ0, `:C〈?〉; Ψ′′) −→e ⊆ H ′

(B.6)
`hist h : (Γ; Ψ)

where h = h0, (` 7→ pkg(. . .)), (`′ 7→ obj C{. . .}
−→e) (because Rule B.6 is the

only derivation rule that can add `′ 7→ H ′ to Ψ.) Given the definition of h0

above, observe that

h′ = h0, (` 7→ pkg(`′, rep
C
(H))), (`′ 7→ obj C{. . .}

−→e)

and −→e ⊆ H ′ ⊆ H ⊆ policy(C). Choose Γ′ = Γ, Ψ′ = Ψ′′,
−→
Fr

′
=
−→
Fr , and

σ = ·. Observe that Γ′ ` 0 : (Ψ′;
−→
Fr

′
) ((Ψ′′;

−→
Fr

′′
; τ) is derivable using

Rule 3.36.

It remains to be shown that `hist h
′ : (Γ′; Ψ′) holds. To prove this, it suffices

to prove that `hist h0 : (Γ0; Ψ
′′) holds, since if this latter judgment holds, one

can derive

`hist h0 : (Γ0; Ψ
′′) −→e ⊆ H ⊆ policy(C)

(B.7)
`hist h

′ : (Γ; Ψ′′)

Suppose h(`) = pkg(·). Then

D =
`hist h0 : (Γ0; Ψ

′′)
(B.9)

`hist h0, (` 7→ pkg(·)) : (Γ0, `:C〈?〉; Ψ′′)

proving that `hist h0 : (Γ0; Ψ
′′) holds.

Otherwise h(`) = pkg(`′′, rep
C
(H ′′)) for some `′′ and H ′′. In that case,

D =
`hist h1 : (Γ1; Ψ

′′)
−→
e′′ ⊆ H ′′ ⊆ policy(C)

(B.7)
`hist h0, (` 7→ pkg(`′′, rep

C
(H ′′))) : (Γ0, `:C〈?〉; Ψ′′)

158

where Γ0 = Γ1, (`
′′:C) and h0 = h1, (`

′′ 7→ obj C{. . .}
−→
e′′

). One can therefore

derive

`hist h1 : (Γ1; Ψ
′′)

−→
e′′ ⊆ policy(C)

(B.8)
`hist h0 : (Γ0; Ψ

′′)

proving that `hist h0 : (Γ0; Ψ
′′) holds.

Case 16: (h, s(v0, . . . , vn)), ` unpack j (h[` 7→ pkg(·)], sa′), `′ where h(`) =

pkg(`′, rep
C
(H)) and a′ = (v0, . . . , vj−1, rep

C
(H), vj+1, . . . , vn). By B.15 and

3.34, Γ′′ = `:C, θ, Ψ′′ = Ψ ? (` 7→ θ), τ = C〈`〉, and

−→
Fr

′′
=
−→
Fr 0(τ0, . . . , τj−1,Rep

C
〈θ〉, τj+1, . . . , τn)

where
−→
Fr =

−→
Fr 0(τ0, . . . , τn). One derivation of B.14 has a subderivation of

`hist h0 : (Γ0; Ψ) −→e ⊆ H ⊆ policy(C)
(B.7)

`hist h : (Γ; Ψ)

where Γ = Γ0, `:C〈?〉, `′:C and

h = h0, (` 7→ pkg(`′, rep
C
(H))), (`′ 7→ obj C{. . .}

−→e)

Choose Γ′ = Γ, σ = (θ 7→ −→e), Ψ′ = σ(Ψ′′), and
−→
Fr

′
= σ(

−→
Fr

′′
). Since

θ 6∈ Dom(Γ) (by Rule 3.32), it follows that σ(Ψ′′) = Ψ ? (` 7→ −→e). One can

therefore derive

Ψ′ = Ψ ? (` 7→ −→e)
(3.38)

Γ′ ` `′ : (Ψ′;
−→
Fr

′
)((σ(Ψ′′);σ(

−→
Fr

′′
);σ(τ))

and one can derive

`hist h0 : (Γ0; Ψ)
(B.9)

`hist h0, (` 7→ pkg(·)) : (Γ0, `:C〈?〉; Ψ) −→e ⊆ −→e
(B.6)

`hist h
′ : (Γ′; Ψ′)

Finally, since any derivation of B.14 has a subderivation of

Γ `stack s :
−→
Fr 0 Γ ` vi : (Ψ;

−→
Fr)((Ψ;

−→
Fr ; τi) ∀i ∈ 0..n

(B.12)
Γ `stack s(v0, . . . , vn) :

−→
Fr 0(τ0, . . . , τn)

159

and since Γ ` rep
C
(H) : (Ψ′;

−→
Fr

′
) ((Ψ′;

−→
Fr

′
; Rep

C
〈H〉) holds by typing

Rule 3.40, it follows from derivation Rule B.12 that Γ′ `stack sa
′ :
−→
Fr

′
holds.

Case 17: ψ, rep
C
(H) I2 I3 condst C, k ψ, Ij where j ∈ {2, 3}. Choose Γ′ = Γ,

−→
Fr

′
=
−→
Fr ,

Ψ′ =


ctx+

C,k(H,Ψ) if j = 2

ctx−C,k(H,Ψ) if j = 3

and σ = ·. By B.15, 3.34, and 3.40, the typing judgments

Γ ` I2 : (ctx+
C,k;

−→
Fr)(∃Γ′′.(Ψ′′;

−→
Fr

′′
; τ)

and

Γ ` I3 : (ctx−C,k;
−→
Fr)(∃Γ′′.(Ψ′′;

−→
Fr

′′
; τ)

both hold, so Γ ` Ij : (Ψ′;
−→
Fr

′
)(∃Γ′′.(Ψ′′;

−→
Fr

′′
; τ) holds.

Any derivation of B.14 has subderivations of Γ `heap h : Γ and `hist h : (Γ; Ψ).

To prove that Γ′ ` ψ : (Ψ′;
−→
Fr

′
), it suffices to show that `hist h : (Γ; Ψ′). If

j = 2 then testC,k(rep
C
(H)) 6= 0 (by 3.17), and axiom 3.43 therefore implies

that Ψ � ctx+
C,k(H,Ψ). Alternatively, if j = 3 then testC,k(rep

C
(H)) = 0, and

axiom 3.42 therefore implies that Ψ � ctx−C,k(H,Ψ). In either case, Ψ � Ψ′

holds. By context subtyping (Lemma B.2), we conclude that `hist h : (Γ; Ψ′)

also holds.

Case 18: ψ, v1 . . . vn newhist C, k ψ, hcC,k(v1, . . . , vn). By B.15 and 3.34,

Γ′′ = ·, Ψ = Ψ′′,
−→
Fr =

−→
Fr

′′
, and τ = HC C,k(Rep

C1
〈H1〉, . . . ,Rep

Cn
〈Hn〉)

where Γ ` vi : (Ψ;
−→
Fr) ((Ψ;

−→
Fr ; Rep

Ci
〈Hi〉) holds for all i ∈ 1..n. Choose

Γ′ = Γ, Ψ′ = Ψ,
−→
Fr

′
=
−→
Fr , and σ = ·. By axioms 3.44 and 3.45, there

exists H such that τ = Rep
C
〈H〉 and hcC,k(v1, . . . , vn) = rep

C
(H). Thus,

Γ ` rep
C
(H) : (Ψ′;

−→
Fr

′
)((Ψ′′;

−→
Fr

′′
; Rep

C
〈H〉) holds by typing Rule 3.40.

160

Theorem B.1 (Subject Reduction). Assume that Γ ` ψ : (Ψ;
−→
Fr) holds and as-

sume that all methods in Dom(methodbody) are well-typed. If Γ ` I : (Ψ;
−→
Fr) (

∃Γ′′.(Ψ′′;
−→
Fr

′′
; τ) holds and ψ, I n ψ′, I ′ holds then there exist Γ′, Ψ′,

−→
Fr

′
, and

σ : θ → −→e such that Γ′ ` ψ′ : (Ψ′;
−→
Fr

′
) holds and Γ′ ` I ′ : (Ψ′;Fr ′) (

(σ(Ψ′′);σ(Fr ′′);σ(τ)) holds.

Proof. Proof is by induction on n.

Base Case: Assume n = 0. Choose Γ′ = Γ, Ψ′ = Ψ,
−→
Fr

′
=
−→
Fr , and σ = ·. The

theorem is then satisfied by assumption.

Inductive Case: Assume n ≥ 1. Since ψ, I n ψ′, I ′ holds, there exist ψ1 and

I1 such that ψ, I n−1 ψ1, I1 holds and such that ψ1, I1 ψ′, I ′ also holds.

By inductive hypothesis, there exists Γ1, Ψ1,
−→
Fr 1, and σ1 such that Γ1 `

ψ1 : (Ψ1;
−→
Fr 1) and Γ1 ` I1 : (Ψ1;

−→
Fr 1)((σ1(Ψ

′′);σ1(
−→
Fr

′′
);σ1(τ)) hold. The

theorem then follows from stepwise subject reduction (Lemma B.3).

B.4 Progress

Theorem B.2 (Progress). Assume Γ ` I : (Ψ;
−→
Fr)((Ψ′;

−→
Fr

′
; τ) and Γ ` (h; s) :

(Ψ;
−→
Fr) hold. Then one of the following conditions holds:

1. I = v for some value v.

2. There exists a store ψ′ and an instruction I ′ such that (h, s), I ψ′, I ′.

3. I = E
[
` unpack j

]
and h(`) = pkg(·).

161

Proof. If I is a value, then condition 1 of the theorem holds immediately, proving

the theorem. Assume I is not a value. Then I must have one of the following

forms:

Case 1: I = E[ldc.i4 i4]. Condition 2 holds with I ′ = E[i4] and ψ′ = (h, s).

Case 2: I = E[v1; I2]. Condition 2 holds with I ′ = E[I2] and ψ′ = (h, s).

Case 3: I = E[v I2 I3 cond]. By typing Rule 3.20, v = i4 for some integer i4 .

Thus, condition 2 holds with I ′ = E[Ij] and ψ′ = (h, s), where

j =


3 if i4 = 0

2 otherwise

Case 4: I = E[I1 I2 while]. Condition 2 holds with

I ′ = E[I1 (I2; (I1 I2 while)) 0 cond]

and ψ′ = (h, s).

Case 5: I = E[ldarg j]. By typing Rule 3.25,
−→
Fr =

−→
Fr 0(τ0, . . . , τn) and 0 ≤

j ≤ n. Since Γ `stack s :
−→
Fr , it follows from derivation Rule B.12 that

s = s0(v0, . . . , vn). Hence, condition 2 holds with I ′ = E[vj] and ψ′ = (h, s).

Case 6: I = E[v′ starg j]. By typing Rule 3.26,
−→
Fr =

−→
Fr 0(τ0, . . . , τn) and

0 ≤ j ≤ n. Since Γ `stack s :
−→
Fr , it follows from derivation Rule B.12

that s = s0(v0, . . . , vn). Hence, condition 2 holds with I ′ = E[0] and

ψ′ = (h, s0(v0, . . . , vj−1, v
′, vj+1, . . . , vn)).

Case 7: I = E[v1 . . . vn newobj C(µ1, . . . , µn)]. Typing Rule 3.27 implies that

n = fields(C). Condition therefore 2 holds with I ′ = E[`] and ψ′ = (h[` 7→

obj C{fi 7→ vi|i ∈ 1..n}ε], s).

162

Case 8: I = E[v0 . . . vn callvirt C::m.Sig]. By typing Rule 3.28, there exists

I0 such that methodbody(C::m.Sig) = I0. Hence, condition 2 holds with

I ′ = E[I0 ret] and ψ′ = (h, s(v0, . . . , vn)).

Case 9: I = E[v ldfld µ C::f]. By typing Rule 3.23, v = ` such that Γ ` ` :

(Ψ;
−→
Fr) ((Ψ;

−→
Fr ;C〈`〉) holds. Since Γ `heap h : Γ holds, it follows from

derivation Rule B.2 that h(`) = obj C{. . . , f = v, . . .}−→e for some value v.

Hence, condition 2 holds with I = E[v] and ψ′ = (h, s).

Case 10: I = E[v v′ stfld µ C::f]. By typing Rule 3.24, v = ` such that Γ `

` : (Ψ;
−→
Fr) ((Ψ;

−→
Fr ;C〈`〉) holds. Since Γ `heap h : Γ holds, it follows from

derivation Rule B.2 that h(`) = obj C{. . . , f = v, . . .}−→e for some value v.

Hence, condition 2 holds with I = E[0] and ψ′ = (h[` 7→ obj C [f 7→ v′]], s).

Case 11: I = E[v evt e1]. By typing Rule 3.29, v = ` such that Γ ` ` :

(Ψ;
−→
Fr) ((Ψ;

−→
Fr ;C〈`〉) holds. Since Γ `heap h : Γ holds, it follows from

derivation Rule B.2 that h(`) = obj C{. . .}
−→e for some event sequence −→e .

Thus, condition 2 of the theorem holds with I ′ = E[0] and ψ′ = (h[` 7→

obj C{. . .}
−→e e1 , s).

Case 12: I = E[newpackage C]. Choose ` 6∈ Dom(h). Condition 2 holds with

I ′ = E[`] and ψ′ = ((h, (` 7→ pkg(·))), s).

Case 13: I = E[v v′ v′′ pack]. By typing Rule 3.29, v = ` such that Γ `

` : (Ψ;
−→
Fr) ((Ψ;

−→
Fr ;C〈?〉) holds, v′ = `′ for some heap pointer `′, and

v′′ = rep
C
(H) for some history abstraction H. Since Γ `heap h : Γ holds, it

follows from derivation Rule B.3 that h(`) = pkg(. . .). Hence, condition 2 of

the theorem holds with I ′ = E[0] and ψ′ = (h[` 7→ pkg(`′, rep
C
(H))], s).

163

Case 14: I = E[v unpack j]. By typing Rule 3.32, v = ` such that Γ ` ` :

(Ψ;
−→
Fr) ((Ψ;

−→
Fr ;C〈?〉) holds, and

−→
Fr =

−→
Fr 0(τ0, . . . , τn) where 0 ≤ j ≤

n. Since Γ `stack s :
−→
Fr , it follows from derivation Rule B.12 that s =

s0(v0, . . . , vn). Since Γ `heap h : Γ, it follows from derivation Rule B.3 that

h(`) = pkg(. . .). If h(`) = pkg(`′, v), then condition 2 of the theorem holds

with I = E[`′] and ψ′ = (h[` 7→ pkg(·)], s0(v0, . . . , vj−1, v, vj+1, . . . , vn)).

Otherwise h(`) = pkg(·) and therefore condition 3 of the theorem holds.

Case 15: I = E[v I2 I3 condst k]. By typing Rule 3.33, v = rep
C
(H) for some

class C and history abstraction H. Condition 2 therefore holds with

I ′ =


E[I3] if testk(C, rep

C
(H)) = 0

E[I2] otherwise

and ψ′ = (h, s).

Case 16: I = E[v1 . . . vn newhist k]. By typing Rule 3.34, arity(HC k) = n.

By axiom 3.45, it therefore follows that arity(hck) = n. Condition 2 of the

theorem statement therefore holds with I ′ = E[hck(v1, . . . , vn)] and ψ′ =

(h, s).

Appendix C

Proof of Policy-adherence for Mobile

Programs
We here prove the theorems of Terminating Policy Adherence (Theorem 3.1) and

Non-terminating Prefix Adherence (Theorem 3.2) of Mobile programs using the

results from Appendix B. The theorems are restated below for convenience.

Theorem (Terminating Policy Adherence). Assume that a Mobile program is well-

typed, and that, as per Definition 3.2, its main method has signature Sigmain =

∀Γin .(Ψin , (τ1, . . . , τn))(∃Γout .(Ψout ,Frout , τout). If Γin ` ψ : (Ψin ;Fr) holds and

if ψ,methodbody(Cmain ::main.Sig) ∗(h′, s′), v holds, then h′ is policy-adherent.

Proof. By subject reduction (Theorem B.1), there exists Γ′, Ψ′,
−→
Fr

′
, and σ such

that Γ′ ` v : (Ψ′;Fr ′) ((σ(Ψout);σ(Frout);σ(τout)) and Γ′ ` (h′; s′) : (Ψ′;Fr ′)

hold. From the typing rules for value expressions, we know that Ψ′ = σ(Ψout) and

Fr ′ = σ(Frout). Thus

Γ′ ` (h′; s′) : (σ(Ψout);σ(Frout);σ(v)) (C.1)

holds.

Let ` and −→e be given such that h′(`) = obj C{. . .}
−→e . If ` ∈ Dom(Ψout) then

there exists a derivation of C.1 with a subderivation of

... −→e ⊆ σ(Ψout(`))(B.6)
`hist h

′ : (Γ′; Ψ′)

Since σ(Ψout(`)) ⊆ policy(C) by assumption, we conclude that −→e ⊆ policy(C).

If instead ` 6∈ Dom(Ψout), then there exists a derivation of C.1 with either a

164

165

subderivation of
... −→e ⊆ · · · ⊆ policy(C)

(B.7)
`hist h

′ : (Γ′; Ψ′)

or a subderivation of

... −→e ⊆ policy(C)
(B.8)

`hist h
′ : (Γ′; Ψ′)

In either case, we conclude that −→e ⊆ policy(C), satsifying the theorem.

Theorem (Non-terminating Prefix Adherence). Assume that a Mobile program is

well-typed, and assume that Γ ` I : (Ψ;
−→
Fr) (∃Γ′.(Ψ′;

−→
Fr

′
; τ) and Γ ` (h; s) :

(Ψ;
−→
Fr) hold. If h is prefix-adherent and (h, s), I n(h′, s′), I ′ holds, then h′ is

prefix-adherent.

Proof. Proof is by induction on n.

Base Case: If n = 0 then h′ = h and the theorem holds by assumption.

Inductive Case: If n ≥ 1 then there exists h1, s1, and I1 such that small-step

relations (h, s), I n−1(h1, s1), I1 and (h1, s1), I1 (h′, s′), I ′ both hold. By

inductive hypothesis, h1 is prefix-adherent. By subject reduction (Theo-

rem B.1), there also exists Γ1, Ψ1, Fr 1, and σ such that Γ1 ` I1 : (Ψ1;Fr 1)(

(σ(Ψ′);σ(
−→
Fr

′
);σ(τ)) and Γ1 ` (h1; s1) : (Ψ1;

−→
Fr 1) hold.

Suppose I1 = E[v1 . . . vn newobj C(µ1, . . . , µm)]. Then h′ = h, (` 7→

obj C{. . .}ε). Typing Rule 3.27 implies that ε ∈ pre(policy(C)). Since h is

prefix-adherent, we conclude that h′ is also prefix-adherent.

Suppose I1 = E[` evt e1]. Then h and h′ are identical except for the event

history of class object h(`) = obj C{. . .}
−→e . Typing Rule 3.29 implies that

Ψ1(`)e1 ⊆ pre(policy(C)). Since ` ∈ Dom(Ψ1) there exists a derivation of

166

Γ1 ` (h1; s1) : (Ψ1;
−→
Fr 1) that includes a subderivation of

... −→e ⊆ Ψ1(`)(B.6)
`hist (h1; s1) : (Γ1; Ψ1)

Thus, −→e e1 ⊆ pre(policy(C)), and we conclude that h′ is prefix-adherent.

If I1 has any other form, then h and h′ are identical with respect to the event

histories of their class objects. Since h is prefix-adherent by assumption, it

follows that h′ is prefix-adherent.

Appendix D

Proof of Decidability of Subset Relations
The typing rules presented in Figure 3.7 require a type-checker to decide subset

relations over the language of history abstractions given in Figure 3.2. History

abstractions are star-free ω-regular expressions [Lad77, Tho79] with variables and

intersection. In general, deciding subset for such a language is intractable, but not

every history abstraction expression can appear in practice. Our implementation

of Mobile decides subset for a sub-language of the language of history abstractions.

We present this sub-language below, we argue that it captures most of the useful

history abstractions that can appear in practice, and we prove that subset over

this language can be reduced to subset over the language of regular expressions.

D.1 History Variables and Intersection

Intersection is introduced into a history abstraction during type-checking by typing

rule 3.33 (the typing rule for condst). In our implementation, this typing rule

substitutes an expression of the form θ ∩ H for each occurrence of variable θ,

where H is a closed history abstraction. Since intersection is introduced in no

other way, this reduces the language of history abstractions of interest to the

following sub-language of the language given in Figure 3.2:

H ::= ε | e |H1H2 |H1 ∪H2 |Hω | V

V ::= θ | V ∩ C

C ::= ε | e | C1C2 | C1 ∪ C2 | Cω

167

168

Since our history abstractions are intended to model security automata, each

closed history abstraction C introduced by the condst typing rule denotes the

set of traces that can cause the automaton to enter a particular state. Since

the automata are deterministic, for any pair C1, C2 of these abstractions, either

C1 = C2 or C1 ∩ C2 = ∅. Thus, we can conservatively approximate a history

abstraction of the form θ ∩ C1 ∩ C2 with an abstraction of the form θ ∩ C1. The

latter is guaranteed to be a superset of the former, and no IRM that models security

policies using deterministic security automata will be affected by the conservative

approximation.1 This further reduces the language of history abstractions to

H ::= ε | e |H1H2 |H1 ∪H2 |Hω | V

V ::= θ ∩ C

C ::= ε | e | C1C2 | C1 ∪ C2 | Cω

History variables are further constrained in where they can appear. No typing

rule allows an open history abstraction to be appended to a closed history ab-

straction. History variables introduced in conditional branches and in loops are

required to alpha-vary at join points for those conditionals and loops so that there

is only ever one unique history variable per history abstraction. (This ensures that

there are only a finite number of history variables in scope at any given control

flow point.) Our implementation therefore only supports history abstractions of

1IRM’s that do not model security policies using deterministic automata will
be affected in that they will not be able to usefully nest dynamic state tests. That
is, doing a second state test within a conditional branch of another state test will
not cause the type-checker to infer the conjunction of the two tests; rather, the
type-checker will conservatively infer typing refinements from only one of the tests,
ignoring the other.

169

the form

H ::= (θ ∩ C1)C2 | C

C ::= ε | e | C1C2 | C1 ∪ C2 | Cω

D.2 Reduction to Regular Expression Subset

In this section we reduce the subset relation for the above language to subset over

regular expressions.

Subset problems for the above language can appear in one of five possible forms:

1. ∀θ.
(
(θ ∩ C1)C2 ⊆ (θ ∩ C ′

1)C
′
2

)
,

2. ∀θ1, θ2.
(
(θ1 ∩ C1)C2 ⊆ (θ2 ∩ C ′

1)C
′
2

)
where θ1 6= θ2,

3. ∀θ.
(
(θ ∩ C1)C2 ⊆ C

)
,

4. ∀θ.
(
C ⊆ (θ ∩ C1)C2

)
, or

5. C ⊆ C ′.

That is, there is either one history variable on both sides of the subset problem (1),

a different history variable on each side (2), a single history variable on one side but

none on the other (3 and 4), or no history variables at all (5). In Theorems D.1–

D.4, we show that each of the first four forms can be reduced to the fifth form.

Then in Theorem D.5 we reduce the fifth form to the subset problem for regular

expressions.

Lemma D.1. Every closed, non-empty ω-regular expression has a finite-length

member.

170

Proof. Let H be a closed, non-empty ω-regular expression. Proof is by induction

on the structure of expression H. If H has the form ε or e, then the lemma follows

immediately. If H has the form H1H2 or H1∪H2, then the lemma follows from the

inductive hypothesis. If H has the form H∗
1 or Hω

1 , then the lemma holds because

ε ∈ H.

Theorem D.1. The following two statements are equivalent:

(i) ∀θ.
(
(θ ∩ C1)C2 ⊆ (θ ∩ C ′

1)C
′
2

)
(ii) (C1C2 ⊆ ∅) ∨ ((C1 ⊆ C ′

1) ∧ (C2 ⊆ C ′
2))

Proof. We begin by proving that (ii) implies (i). If C1C2 ⊆ ∅, then C1 ⊆ ∅ or

C2 ⊆ ∅ holds. It follows that (θ ∩ C1)C2 = ∅ holds and the theorem is proved.

Assume instead that C1 and C2 are both non-empty, and that C1 ⊆ C ′
1 and C2 ⊆ C ′

2

hold. Then (θ ∩ C1) ⊆ (θ ∩ C ′
1) holds, and hence (θ ∩ C1)C2 ⊆ (θ ∩ C ′

1)C
′
2 holds.

It remains to show that (i) implies (ii). Assume that for all sets θ, (θ∩C1)C2 ⊆

(θ ∩ C ′
1)C

′
2 holds. If C1C2 ⊆ ∅ then C1 ⊆ ∅ or C2 ⊆ ∅, in which case the theorem

follows immediately. Assume instead that C1C2 is non-empty, and hence C1 and C2

are both non-empty. First, we prove that C1 ⊆ C ′
1 holds. Instantiate θ = C1 − C ′

1

(where “−” denotes set difference). Then (C1−C ′
1)C2 ⊆ ∅ holds. Since C2 is non-

empty by assumption, it follows that C1 − C ′
1 = ∅ holds, and therefore C1 ⊆ C ′

1

holds. Second, we prove that C2 ⊆ C ′
2 holds. Since C1 is non-empty, Lemma D.1

guarantees that there exists a finite member s ∈ C1. Instantiate θ = s. Then

sC2 ⊆ (s ∩ C ′
1)C

′
2 holds. Since C2 is non-empty, sC2 is also non-empty, and

therefore (s ∩ C ′
1) and C ′

2 are non-empty. Since (s ∩ C ′
1) is non-empty, it follows

that (s ∩ C ′
1) = s. Therefore sC2 ⊆ sC ′

2 holds, and we conclude that C2 ⊆ C ′
2

holds.

171

Theorem D.2. The following two statements are equivalent:

(i) ∀θ1, θ2.
(
(θ1 ∩ C1)C2 ⊆ (θ2 ∩ C ′

1)C
′
2

)
where θ1 6= θ2

(ii) C1C2 ⊆ ∅

Proof. To prove that (i) implies (ii), assume that for all sets θ1 and θ2, (θ1∩C1)C2 ⊆

(θ2 ∩C ′
1)C

′
2 holds. Instantiate θ1 = C1 and θ2 = ∅. It follows that C1C2 ⊆ ∅ holds.

To prove that (ii) implies (i), assume instead that C1C2 ⊆ ∅ holds, and hence

C1 ⊆ ∅ or C2 ⊆ ∅ hold. Then (θ ∩ C1)C2 = ∅ holds, and the theorem follows

immediately.

Theorem D.3. The following two statements are equivalent:

(i) ∀θ.
(
(θ ∩ C1)C2 ⊆ C

)
(ii) C1C2 ⊆ C

Proof. To prove that (i) implies (ii), assume that for all sets θ, (θ ∩ C1)C2 ⊆ C

holds. Instantiate θ = C1 and it follows that C1C2 ⊆ C holds.

To prove that (ii) implies (i), assume instead that C1C2 ⊆ C holds. Then for

all sets θ, (θ ∩ C1)C2 ⊆ C1C2 ⊆ C holds, proving the theorem.

Theorem D.4. The following two statements are equivalent:

(i) ∀θ.
(
C ⊆ (θ ∩ C1)C2

)
(ii) C ⊆ ∅

Proof. To prove that (i) implies (ii), instantiate θ = ∅ in (i), and (ii) follows

immediately. To prove that (ii) implies (i), observe that C ⊆ ∅ ⊆ (θ ∩ C1)C2 for

any set θ.

172

The above four proofs demonstrate that subset problems involving variables

and intersection can all be reduced to three or fewer instances of subset problems

over closed, star-free ω-regular expressions. We now show that the subset problem

for closed, star-free ω-regular expressions can be reduced to the subset problem for

regular expressions (expressions with Kleene star but not ω).

Lemma D.2. Let C be an ω-regular expression (possibly with Kleene star), and

define R to be the same expression but with all ω’s replaced with Kleene stars. The

set denoted by R is the set of finite-length members of the set denoted by C.

Proof. Proof is by induction on the structure of expression C.

Case 1: C = ∅, C = ε, or C = e. The lemma is immediate because C contains

only finite-length sequences and C = R.

Case 2: C = C1C2 or C = C1 ∪ C2. Hence R = R1R2 or R = R1 ∪ R2, where R1

and R2 are C1 and C2 (respectively) with any ω’s replaced by Kleene stars.

By inductive hypothesis, R1 is the set of finite members of C1 and R2 is the

set of finite members of C2. It follows that R1R2 is the set of finite members

of C1C2 and R1 ∪R2 is the set of finite members of C1 ∪ C2.

Case 3: C = Cω
1 or C = C∗

1 . Hence R = R∗
1 where R1 is C1 with any ω’s replaced

by Kleene stars. The finite members of C are the concatenations of finitely

many finite members of C1. By inductive hypothesis, R1 is the set of finite

members of C1. Thus, R∗
1 is the set of finite-length members of C.

Büchi automata are non-deterministic finite state automata, possibly with ε-

transitions, in which an accepting path is one which visits any final state infinitely

173

often. We define two classes of Büchi automata that are useful for accepting star-

free ω-regular languages:

Definition D.1 (Star-free Büchi automata). A Büchi automaton A is star-free if

every cycle in A contains a final state.

Definition D.2 (∞-free Büchi automata). A Büchi automaton A has a finite

acceptance state q if q is a final state with an ε-transition to itself, and every path

through A that accepts a finite-length sequence leads to q where it loops. A Büchi

automaton A is ∞-free if it has a finite acceptance state q and q is reachable from

every cycle in A.

Lemma D.3. Let C be a star-free ω-regular expression. There exists a star-free,

∞-free Büchi automaton that accepts the language denoted by C.

Proof. We will prove by induction on the structure of C that there exists a star-

free, ∞-free Büchi automaton A that accepts the language C − {ε}. This suffices

to prove the lemma since if ε ∈ C, then A augmented with an ε-transition from

its start state to its finite acceptance state constitutes a star-free, ∞-free Büchi

automaton that accepts C.

Case 1: C = ∅ or C = ε. Define A to be a Büchi automaton with two states: a

non-final start state and a finite acceptance state. Automaton A is star-free

and ∞-free, and since the finite acceptance state is not reachable from the

start state, it accepts no sequences. Thus, A accepts C − {ε}.

Case 2: C = e. Define automaton A as in case 1, but additionally add an edge

labeled with e from the start state to the finite acceptance state. Automaton

A is star-free and ∞-free, and it accepts the language {e}.

174

Case 3: C = C1 ∪ C2. By inductive hypothesis, there exist star-free, ∞-free

Büchi automata A1 and A2 such that A1 accepts language C1 − {ε} and A2

accepts language C2 − {ε}. Define A to be a Büchi automaton that consists

of a start state, a finite acceptance state, and copies of A1 and A2 in which

the ε-self-transitions of their finite acceptance states have been removed. In

addition, augment A with four extra ε-transitions: two from the start state

of A to the start states of the copies of A1 and A2, and two from the finite

acceptance states in the copies A1 and A2 to the finite acceptance state of A.

By construction, A accepts language (C1−{ε})∪(C2−{ε}) = (C1∪C2)−{ε}.

Since A1 and A2 are star-free and ∞-free, it follows that A is star-free and

∞-free.

Case 4: C = C1C2. By inductive hypothesis, there exist star-free, ∞-free Büchi

automata A1 and A2 such that A1 accepts language C1−{ε} and A2 accepts

language C2−{ε}. If C1 or C2 are empty, then C = ∅ and the lemma follows

from case 1. If C1 = ε or C2 = ε then the lemma follows immediately from

the inductive hypothesis. Therefore, assume that C1 − {ε} and C2 − {ε}

are non-empty, and that A1 and A2 therefore accept non-empty languages.

Define A to be a Büchi automaton that consists of a start state, a finite

acceptance state, and copies of A1 and A2 in which the ε-self-transitions of

their finite acceptance states have been removed. In addition, augment A

with three extra ε-transitions: one from the start state of A to the start state

of the copy of A1, one from the finite acceptance state of the copy of A1 to

the start state of the copy of A2, and one from the finite acceptance state

of the copy of A2 to the finite acceptance state of A. Using A, construct

two more automata: Define A′ to be automaton A with an extra ε-transition

175

from its start state to the start state of the copy of A2, and define A′′ to be

automaton A with an extra ε-transition from the start state of the copy of

A2 to the finite acceptance state of A.

If ε 6∈ C1 and ε 6∈ C2 then A is a star-free, ∞-free automaton that accepts

language C − {ε}. If ε ∈ C1 and ε 6∈ C2 then A′ is a star-free, ∞-free

automaton that accepts language C −{ε}. If ε 6∈ C1 and ε ∈ C2 then A′′ is a

star-free, ∞-free automaton that accepts language C−{ε}. Finally, if ε ∈ C1

and ε ∈ C2 then C is the union of the languages accepted by automata A′

and A′′. The lemma therefore follows from case 3.

Case 5: C = Cω
1 . By inductive hypothesis, there exists a star-free, ∞-free Büchi

automaton A1 that accepts language C1 − {ε}. Define automaton A to be

automaton A1 with an ε-transition added from its finite acceptance state to

its start state. Observe that A accepts language C − {ε}. Automaton A

is star-free and ∞-free because A1 is star-free and ∞-free, and any cycles

introduced by the extra ε-transition include the finite acceptance state.

Lemma D.4 (Pumping Lemma for star-free ω-regular expressions). Let C be a

star-free ω-regular expression and let s be an infinite sequence. s ∈ C if and

only if there exists a finite-length sequence t and a partitioning of s into finite-

length sequences s0s1s2 · · · = s such that for all j ≥ 1, sj is non-empty and

s0(s1)
n1 · · · (sj)

nj t ∈ C for all n1, . . . , nj ≥ 0.

Proof. We first prove the forward implication. Assume s ∈ C. By Lemma D.3,

there exists a star-free, ∞-free Büchi automaton A that accepts the language

denoted by C. Thus, A includes an (infinite-length) accepting path p for sequence

176

s. Since s is infinite but A includes only a finite number of states, some state q

appears infinitely often in path p. Without loss of generality, assume that path p

contains no cycles from q to itself that include only ε-transitions. (If p includes any

such cycles, then removing all such cycles from path p yields another infinite-length

path p′ that reads s. Since any infinite-length path through a star-free automaton

is an accepting path, p′ is an accepting path for s, and we choose p to be path p′

instead.) Define s0 to be the sequence read along path p before it first visits state

q. For each j ≥ 1, define sj to be the sequence read along path p between the jth

and j + 1st visits of q. Observe that sj is non-empty because p does not include

any ε-cycles from q to itself. Since state q lies within a cycle and since A is ∞-free,

the finite acceptance state of A is reachable from q. Choose a finite path from q

to the finite acceptance state of A and define t to be the (finite-length) sequence

read along that path. Since for all j ≥ 1, sj is a sequence read along a path in A

from q to itself, it follows that for all n ≥ 0, (sj)
n is also a sequence read along a

path in A from q to itself. Hence, we conclude that A has an accepting path for

s0(s1)
n1 · · · (sj)

nj t for all j ≥ 1 and for all n1, . . . , nj ≥ 0.

We next prove the inverse of the forward implication. Assume s 6∈ C. Let t

be an arbitrary finite sequence and let s0s1s2 · · · = s be an arbitrary partitioning

of s into finite-length sequences, each of which is non-empty save possibly for s0.

We will prove that there exists j ≥ 1 such that s0s1 · · · sjt 6∈ C. By Lemma D.3,

there exists a star-free Büchi automaton A that accepts the language denoted by

C. Since s 6∈ C, automaton A includes no accepting path for sequence s. That

is, either A has one or more non-accepting paths that read s, or A has no paths

at all that read s. The former cannot be the case because any path that reads s

is infinite in length, and every infinite path through a star-free automaton is an

177

accepting path. Since s 6∈ C, there is therefore no path through A that reads s.

Hence, there is some finite prefix of s for which A has no path that reads it. It

follows that there is some j ≥ 1 such that s0s1 · · · sj is not a prefix of any sequence

in C, and thus s0s1 · · · sjt 6∈ C.

Theorem D.5. Let C1 and C2 be closed, star-free, ω-regular expressions, and

define R1 and R2 to be the same expressions but with all ω’s replaced by Kleene

stars. Then C1 ⊆ C2 if and only if R1 ⊆ R2.

Proof. We first prove the forward implication. Assume that C1 ⊆ C2. Thus, the

set of finite-length sequences in C1 is a subset of the set of finite-length sequences

in C2. By Lemma D.2, R1 is the set of finite-length sequences in C1 and R2 is the

set of finite-length sequences in C2, so we conclude that R1 ⊆ R2.

We next prove the inverse implication. Assume R1 ⊆ R2, and let s ∈ C1 be

given. We will prove that s ∈ C2. If s is finite, then Lemma D.2 implies that

s ∈ R1, and since R1 ⊆ R2, it follows that s ∈ R2. Lemma D.2 therefore implies

that s ∈ C2. If s is infinite, Lemma D.4 implies that there exists a finite sequence

t and a partitioning of s into finite sequences s0s1s2 · · · = s with sj non-empty for

all j ≥ 1, such that set S defined by

S =
{
s0(s1)

n1 · · · (sj)
nj t | j ≥ 1, n1, . . . , nj ≥ 0

}
satisfies S ⊆ C1. Since all members of set S are finite, Lemma D.2 proves that

S ⊆ R1. Since R1 ⊆ R2, it follows that S ⊆ R2. Lemma D.2 then implies that

S ⊆ C2. Finally, from Lemma D.4, S ⊆ C2 implies that s ∈ C2.

The theorems presented in this subsection yield a simple algorithm for deciding

subset over the sub-language of history abstractions defined in the previous subsec-

tion. That is, Theorems D.1–D.4 reduce the subset problem for history abstractions

178

with variables and intersection to three or fewer instances of the subset problem for

history abstractions without variables or intersection. Then Theorem D.5 shows

that subset for history abstractions without variables or intersection can be com-

puted by changing all ω’s into Kleene stars and deciding subset for the resulting

regular expressions.

BIBLIOGRAPHY

[ABEL05] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-
flow integrity: Principles, implementations, and applications. In Proceed-
ings of the 12th ACM Conference on Computer and Communications
Security (CSS), pages 340–353, Alexandria, Virginia, November 2005.

[ADS86] Bowen Alpern, Alan J. Demers, and Fred B. Schneider. Safety without
stuttering. Information Processing Letters (IPL), 23(4):177–180, No-
vember 1986.

[And72] James P. Anderson. Computer security technology planning study vols.
I and III. Technical Report ESD-TR-73-51, HQ Electronic Systems Di-
vision: Hanscom AFB, MA, Fort Washington, Pennsylvania, October
1972.

[AS87] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness.
Distributed Computing, 2(3):117–126, 1987.

[Bar99] Lawrence W. Barsalou. Perceptual symbol systems. Behavioral and
Brain Sciences, 22:577–660, 1999.

[BDL06] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal verification
of a C compiler front-end. In Proceedings of the 14th International Sym-
posium on Formal Methods (FM), Hamilton, Ontario, Canada, August
2006.

[Ber04] Andrew Bernard. Engineering Formal Security Policies for Proof-
Carrying Code. PhD thesis, Carnegie Mellon University, Pittsburgh,
Pennsylvania, April 2004.

[BG05] Howard Barringer and Yuri Gurevich, editors. Proceedings of the 5th
Workshop on Runtime Verification, Edinburgh, Scotland, United King-
dom, July 2005.

[BL02] Andrew Bernard and Peter Lee. Temporal logic for Proof-Carrying Code.
In Proceedings of the 18th International Conference on Automated De-
duction, pages 31–46, Copenhagen, Denmark, July 2002.

[BLW05] Lujo Bauer, Jay Ligatti, and David Walker. Composing security policies
with Polymer. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 305–
314, Chicago, Illinois, June 2005.

[CCP04] Jean-Marc Champarnaud, Fabien Coulon, and Thomas Paranthoën.
Compact and fast algorithms for regular expression search. Interna-
tional Journal of Computer Mathematics (IJCM), 81(4):383–401, April
2004.

179

180

[CD02] David G. Clarke and Sophia Drossopoulou. Ownership, encapsulation
and disjointness of type and effect. In Proceedings of the 17th ACM
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 292–310, Seattle, Washington, Novem-
ber 2002.

[CDR04] Feng Chen, Marcelo D’Amorim, and Grigore Roşu. A formal monitoring-
based framework for software development and analysis. In Proceed-
ings of the 6th International Conference on Formal Engineering Methods
(ICFEM), pages 357–373, Seattle, Washington, November 2004.

[CFS06] Sylvain Conchon, Jean-Christophe Filliâtre, and Julien Signoles. Design-
ing a generic graph library using ML functors. Submitted for publication,
May 2006.

[Cha01] Jean-Marc Champarnaud. Subset construction complexity for homo-
geneous automata, position automata and ZPC-structures. Theoretical
Computer Science, 267:17–34, 2001.

[CNP01] David G. Clarke, James Noble, and John M. Potter. Simple owner-
ship types for object containment. In Proceedings of the 15th European
Conference for Object-Oriented Programming (ECOOP), pages 53–76,
Budapest, Hungary, June 2001.

[CR03] Feng Chen and Grigore Roşu. Towards Monitoring-Oriented Program-
ming: A paradigm combining specification and implementation. In Pro-
ceedings of the 3rd Workshop on Runtime Verification, volume 89.2,
pages 108–127, Boulder, Colorado, July 2003.

[CR05] Feng Chen and Grigore Roşu. Java-MOP: A Monitoring Oriented Pro-
gramming environment for Java. In Proceedings of the 11th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), pages 546–550, Edinburgh, Scotland, United King-
dom, April 2005.

[DF01] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols
in low-level software. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages
59–69, Snowbird, Utah, June 2001.

[DF04a] Robert DeLine and Manuel Fähndrich. The Fugue protocol checker: Is
your software baroque? Technical Report MSR-TR-2004-07, Microsoft
Research, Redmond, Washington, January 2004.

[DF04b] Robert DeLine and Manuel Fähndrich. Typestates for objects. In Pro-
ceedings of the 18th European Conference on Object-Oriented Program-
ming (ECOOP), pages 465–490, Oslo, Norway, June 2004.

181

[DG71] P. Deutsch and C. A. Grant. A flexible measurement tool for soft-
ware systems. In Information Processing 71, Proceedings of the IFIP
Congress, volume 1, pages 320–326, Ljubljana, Yugoslavia, August 1971.

[ECM02] ECMA. ECMA-335: Common Language Infrastructure (CLI). ECMA
(European Association for Standardizing Information and Communica-
tion Systems), Geneva, Switzerland, second edition, December 2002.

[Eme90] E. Allen Emerson. Handbook of Theoretical Computer Science, chapter
on Temporal and Modal Logic, pages 995–1072. Elsevier and MIT Press,
1990.

[Erl04] Úlfar Erlingsson. The Inlined Reference Monitor Approach to Security
Policy Enforcement. PhD thesis, Cornell University, Ithaca, New York,
January 2004.

[ES99] Úlfar Erlingsson and Fred B. Schneider. SASI enforcement of security
policies: A retrospective. In Proceedings of the New Security Paradigms
Workshop (NSPW), pages 87–95, Caledon Hills, Ontario, Canada, Sep-
tember 1999.

[ES00] Úlfar Erlingsson and Fred B. Schneider. IRM enforcement of Java stack
inspection. In Proceedings of the 21st IEEE Symposium on Security and
Privacy, pages 246–255, Oakland, California, May 2000.

[ET99] David Evans and Andrew Twynman. Flexible policy-directed code
safety. In Proceedings of the 20th IEEE Symposium on Security and
Privacy, pages 32–45, Oakland, California, May 1999.

[Fon04] Philip W. L. Fong. Access control by tracking shallow execution history.
In Proceedings of the 25th IEEE Symposium on Security and Privacy,
pages 43–55, Berkeley, California, May 2004.

[FTA02] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive type
qualifiers. In Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), pages 1–12,
Berlin, Germany, June 2002.

[Göd31] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathe-
matica und verwandter Systeme, I. Monatshefte für Mathematik und
Physik, 38:173–198, 1931.

[Gon] Li Gong. JavaTM 2 platform security architecture, version 1.2. Whitepa-
per. © 1997–2002 Sun Microsystems, Inc.

[GS01] Andrew D. Gordon and Don Syme. Typing a multi-language interme-
diate code. In Proceedings of the 28th ACM Symposium on Principles

182

of Programming Languages (POPL), pages 248–260, London, England,
United Kingdom, January 2001.

[Ham98] Kevin W. Hamlen. Proof-Carrying Code for x86 architectures. Under-
graduate honor’s thesis, Carnegie Mellon University, Pittsburgh, Penn-
sylvania, 1998.

[HMS05] Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Certified
in-lined reference monitoring on .NET. Technical Report TR-2005-2003,
Cornell University, Ithaca, New York, November 2005.

[HMS06a] Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Certified
in-lined reference monitoring on .NET. In Proceedings of the 1st ACM
SIGPLAN Workshop on Programming Languages and Analysis for Se-
curity (PLAS), volume 1, pages 7–15, Ottawa, Ontario, Canada, June
2006.

[HMS06b] Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Computabil-
ity classes for enforcement mechanisms. ACM Transactions On Program-
ming Languages And Systems (TOPLAS), 28(1):175–205, January 2006.

[Hoa69] Charles A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM (CACM), 12(10):576–580, October 1969.

[HRU76] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection
in operating systems. Communications of the ACM (CACM), 19(8):461–
471, August 1976.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata The-
ory, Languages, and Computation. Addison-Wesley, Reading, Massa-
chusetts, 1979.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of AspectJ. In Proceed-
ings of the 15th European Conference on Object-Oriented Programming
(ECOOP), volume 2072, pages 327–355, Budapest, Hungary, June 2001.

[KKLS01] Moonjoo Kim, Sampath Kannan, Insup Lee, and Oleg Sokolsky. Java-
MaC: a run-time assurance tool for Java programs. In Proceedings of the
1st International Workshop on Runtime Verification (RV), pages 218–
235, Paris, France, July 2001.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Medhdhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented
Programming. In Proceedings of the 11th European Conference on
Object-Oriented Programming (ECOOP), volume 1241, pages 220–242,
Jyväskylä, Finland, June 1997.

183

[KS01] Andrew Kennedy and Don Syme. The design and implementation of
generics for the .NET Common Language Runtime. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 1–12, Snowbird, Utah, June 2001.

[KVK+04] Moonjoo Kim, Mahesh Viswanathan, Sampath Kannan, Insup Lee, and
Oleg V. Sokolsky. Java-MaC: A run-time assurance approach for Java
programs. Formal Methods in System Design, 24(2):129–155, March
2004.

[Lad77] Richard E. Ladner. Application of model theoretic games to descrete
linear orders and finite automata. Information and Control, 33:281–303,
1977.

[Lam71] Butler W. Lampson. Protection. In Proceedings of the 5th Symposium
on Information Sciences and Systems, pages 437–443, Princeton, New
Jersey, March 1971.

[Lam77] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE
Transactions on Software Engineering (TSE), 2:125–143, March 1977.

[Lan90] Ronald W. Langacker. Concept, Image, and Symbol: The Cognitive
Basis of Grammar. Mouton de Gruyter, Berlin, Germany, 1990.

[Lan95] Barbara Landau. Multiple geometric representations of objects in lan-
guages and language learners. In P. Bloom, M. A. Peterson, L. Nadel,
and M. F. Garrett, editors, Language And Space, pages 317–364, Cam-
bridge, Massachusetts, 1995. MIT Press.

[LBW05a] Jarred Ligatti, Lujo Bauer, and David Walker. Edit automata: Enforce-
ment mechanisms for run-time security policies. International Journal
of Information Security, 4(1–2):2–16, February 2005.

[LBW05b] Jay Ligatti, Lujo Bauer, and David Walker. Enforcing non-safety secu-
rity policies with program monitors. In Proceedings of the 10th European
Symposium on Research in Computer Security (ESORICS), pages 355–
373, Milan, Italy, September 2005.

[Ler06] Xavier Leroy. Formal certification of a compiler back-end, or: Program-
ming a compiler with a proof assistant. In Proceedings of the 33rd ACM
Symposium on Principles of Programming Languages (POPL), pages 42–
54, Charleston, South Carolina, January 2006.

[Lig06] Jay Ligatti. Policy Enforcement via Program Monitoring. PhD thesis,
Princeton University, Princeton, New Jersey, June 2006.

[LY99] Tim Lindholm and Frank Yellin. The JavaTM Virtual Machine Specifi-
cation. Addison-Wesley, second edition, 1999.

184

[MAF05] Greg Morrisett, Amal Ahmed, and Matthew Fluet. L3: A linear language
with locations. In Proceedings of the 7th International Conference on
Typed Lambda Calculi and Applications (TLCA), pages 293–307, Nara,
Japan, April 2005.

[Mar89] Leo Marcus. The search for a unifying framework for computer security.
IEEE Cipher — Newsletter of the Technical Committee on Security and
Privacy, pages 55–63, June 1989.

[MCG99] Greg Morrisett, Karl Crary, and Neal Glew. From System F to Typed
Assembly Language. ACM Transactions on Programming Languages and
Systems (TOPLAS), 21(3):527–568, May 1999.

[MM06] Stephen McCamant and Greg Morrisett. Evaluating SFI for a CISC
architecture. In Proceedings of the 15th USENIX Security Symposium,
Vancouver, British Columbia, Canada, August 2006.

[Mye99] Andrew C. Myers. Practical mostly-static information flow control. In
Proceedings of the 26th ACM Symposium on Principles of Programming
Languages (POPL), pages 228–241, San Antonio, Texas, January 1999.

[Nac97] Carey Nachenberg. Computer virus-antivirus coevolution. Communica-
tions of the ACM (CACM), 40(1):46–51, January 1997.

[Nec97] George C. Necula. Proof-Carrying Code. In Proceedings of the 24th
ACM Symposium on Principles of Programming Languages (POPL),
pages 106–119, Paris, France, January 1997.

[NL96] George C. Necula and Peter Lee. Safe kernel extensions without run-time
checking. In Proceedings of the 2nd Symposium on Operating Systems
Design and Implementation (OSDI), pages 229–243, Seattle, Washing-
ton, October 1996.

[NL98] George C. Necula and Peter Lee. The design and implementation of a
certifying compiler. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages
333–344, Montreal, Quebec, Canada, June 1998.

[ORY01] Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning
about programs that alter data structures. In Proceedings of the 15th
Annual Conference of the European Association for Computer Science
Logic (EACSL), pages 1–19, Paris, France, 2001. Springer-Verlag.

[Pap95] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
Reading, Massachusetts, 1995.

[RC91] Jonathan Rees and William Clinger. Revised report on the algorithmic
language Scheme. ACM Lisp Pointers, 4(3):1–55, July 1991.

185

[RG05] Michael F. Ringenburg and Dan Grossman. Types for describing coor-
dinated data structures. In Proceedings of the 2nd ACM International
Workshop on Types in Language Design and Implementation (TLDI),
pages 25–36, Long Beach, California, January 2005.

[RVJV99] Bert Robben, Bart Vanhaute, Wouter Joosen, and Pierre Verbaeten.
Non-functional policies. In Proceedings of the 2nd International Con-
ference on Meta-Level Architectures and Reflection, volume 1616, pages
74–92, Saint-Malo, France, July 1999.

[Sch00] Fred B. Schneider. Enforceable security policies. ACM Transactions on
Information and System Security (TISSEC), 3(1):30–50, February 2000.

[Sim95] Raffaele Simone. Iconic aspects of syntax: A pragmatic approach. In
Raffaele Simone, editor, Iconicity in Language, pages 153–169. John Ben-
jamins, 1995.

[Sma97] Christopher Small. MiSFIT: A tool for constructing safe extensible
C++ systems. In Proceedings of the 3rd USENIX Conference on Object-
Oriented Technologies and Systems (COOTS), pages 175–184, Portland,
Oregon, June 1997.

[SMH01] Fred B. Schneider, Greg Morrisett, and Robert Harper. A language-
based approach to security. Lecture Notes in Computer Science (LNCS),
2000:86–101, 2001.

[SS75] Jerry H. Saltzer and Michael D. Schroeder. The protection of informa-
tion in computer systems. Proceedings of the IEEE, 63(9):1278–1308,
September 1975.

[SS04] Christian Skalka and Scott F. Smith. History effects and verification.
In Proceedings of the 2nd Asian Programming Languages Symposium
(APLAS), pages 107–128, Taipei, Taiwan, November 2004.

[SWM00] Frederick Smith, David Walker, and Greg Morrisett. Alias types. In
Proceedings of the 9th European Symposium on Programming (ESOP),
volume 1782, pages 366–381, Berlin, Germany, March 2000.

[Sym01] Don Syme. ILX: Extending the .NET Common IL for functional lan-
guage interoperability. In Nick Benton and Andrew Kennedy, editors,
Proceedings of the 1st International Workshop on Multi-Language In-
frastructure and Interoperability, volume 59.1, Florence, Italy, September
2001.

[Tal83] Leonard Talmy. How language structures space. In H. L. Pick Jr. and
L. P. Acredolo, editors, Spatial Orientation: Theory, Research, and Ap-
plication, pages 225–282, New York, 1983. Plenum Press.

186

[Tho79] Wolfgang Thomas. Star-free regular sets of ω-sequences. Information
and Control, 42:148–156, 1979.

[Tur36] Allen M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. In Proceedings of the London Mathematical So-
ciety, series 2, volume 42, pages 230–265, 1936.

[Vis00] Mahesh Viswanathan. Foundations for the Run-time Analysis of Soft-
ware Systems. PhD thesis, University of Pennsylvania, December 2000.

[Wal00] David Walker. A type system for expressive security policies. In Proceed-
ings of the 27th ACM Symposium on Principles of Programming Lan-
guages (POPL), pages 254–267, Boston, Massachusetts, January 2000.

[War79] Willis H. Ware. Security controls for computer systems. Technical Report
R-609-1, Rand Corporation, October 1979.

[WLAG93] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L.
Graham. Efficient software-based fault isolation. In Proceedings of the
14th ACM Symposium on Operating Systems Principles (SOSP), pages
203–216, Asheville, North Carolina, December 1993.

	Introduction
	Security Policy Enforcement
	Program-rewriting
	Certified Program-rewriting
	Specifying Security Policies
	Structure of the Dissertation

	Computational Power of Security Enforcement Mechanisms
	Overview
	Formal Model of Security Enforcement
	Programs and Executions
	Security Policies

	Modeling Various Security Enforcement Mechanisms
	Static Analysis
	Execution Monitoring
	Program-rewriting

	Execution Monitors as Program-rewriters
	EM-enforceable Policies
	Benevolent Enforcement of EM-enforceable Policies

	Related Work
	Future Work
	Summary

	Mobile: A Type System for Certified Program-rewriting on .NET
	Overview
	Certified Program-rewriting
	Mobile Security Policies
	Mobile Type-safety

	Formal Definition of Mobile
	The Abstract Machine
	Operational Semantics
	Type System
	History Module Plug-ins

	An Example Mobile Program
	Policy Adherence of Mobile Programs
	Related Work
	Conclusions and Future Work

	Implementation of Mobile
	Overview
	Security Policy Specifications
	Type-checking Algorithm
	Annotations
	Subset Relations

	Program-rewriting Algorithm
	Experimental Results
	Related Work
	Conclusions and Future Work

	Conclusions
	Program Machine Semantics
	Proof of Type-soundness for Mobile
	Consistency of Statics and Dynamics
	Canonical Derivations
	Subject Reduction
	Progress

	Proof of Policy-adherence for Mobile Programs
	Proof of Decidability of Subset Relations
	History Variables and Intersection
	Reduction to Regular Expression Subset

	Bibliography

