
Secure Peer-to-peer Networks for
Trusted Collaboration

(Invited Paper)

Kevin W. Hamlen and Bhavani Thuraisingham
Computer Science Department – MS EC31

University of Texas at Dallas
800 W. Campbell Rd.

Richardson, Texas 75080-3021, USA
{hamlen, bhavani.thuraisingham}@utdallas.edu

Abstract—An overview of recent advances in secure peer-
to-peer networking is presented, toward enforcing data in-
tegrity, confidentiality, availability, and access control policies
in these decentralized, distributed systems. These technologies
are combined with reputation-based trust management systems
to enforce integrity-based discretionary access control policies.
Particular attention is devoted to the problem of developing
secure routing protocols that constitute a suitable foundation for
implementing this security system. The research is examined as
a basis for developing a secure data management system for
trusted collaboration applications such as e-commerce, situation
awareness, and intelligence analysis.

I. INTRODUCTION

The advent of popular peer-to-peer (P2P) networks like
Napster [1] and Gnutella [2] has heralded an explosion of
interest in P2P network design both among researchers and
practitioners. P2P networks have increased in popularity partly
because they can be implemented atop a diverse collection of
hardware and software, making them relatively inexpensive to
deploy and maintain. The network infrastructure also tends
to be highly fault-tolerant, and bandwidth and other computa-
tional resources tend to be well balanced across peers, making
the network highly robust.

A robust network design requires that peers in a P2P
network be considered semi-trusted or untrusted, so to ensure
integrity and confidentiality of shared data it is critical that
P2P networks be secure. In recent years there has been a vast
array of research towards enforcing the security guarantees
necessary to achieve system-wide, end-to-end security policies
in P2P networks (c.f., [3], [4]). Recently we have designed the
Penny system [5], which combines several of these advances
to efficiently enforce strong data integrity policies in structured
P2P networks.

This paper describes secure P2P networks and their support
for building trusted applications. We first discuss our approach
to enforcing integrity policies in Penny in Section II. Penny
implements a reputation-based trust management system based
on EigenTrust [6] in the context of a Chord network [7]. One
of the most challenging aspects of developing a secure P2P
network is establishing a secure routing structure over which
messages and data can reliably be exchanged in the presence

of malicious peers. In Section II-C we discuss some of the
issues and open problems in this area.

P2P networks provide the infrastructure to support various
technology applications such as data management, collabora-
tion, and decision-making. These in turn support real-world
applications including e-commerce, situation awareness, and
intelligence analysis. Secure P2P networks can be used as a
foundation for supporting trusted applications. In Section III
we discuss some of our preliminary ideas on hosting a trusted
data manager on the Penny system. In particular, we discuss
the issues involved in decamping data management objects
into multiple Penny objects so that the integrity policies can
be enforced on the Penny objects. Supporting trusted collabo-
ration is briefly discussed in Section IV and we conclude with
a summary in Section V.

II. SECURE PEER-TO-PEER NETWORKS

A. Availability, Integrity and Confidentiality Vulnerabilities

P2P networks have developed as a means of evenly bal-
ancing the computational expense associated with delivering
network services. In contrast to a traditional network, which
divides its constituent hosts into servers and clients, P2P
networks homogeneously treat all hosts as servents, assigning
each both server and client functionality. This allows services
to be delivered from a large number of servents rather than
from a relatively small number of servers. For example,
Napster, Inc. [1] achieved early commercial success using
P2P technology to serve music content to users by storing
most of that content on end-user machines rather than on
centralized servers. This reduced costs, improved reliability,
and greatly expanded the variety of content that they could
offer. Subsequently, P2P has been used for general-purpose
file-sharing in popular implementations such as Gnutella [2],
KaZaA [8], LimeWire [9], and many others.

From a security standpoint, P2P networks ostensibly offer
inherent robustness and availability properties not easy to
achieve in a traditional network design. For example, an
attacker wishing to effect a denial of service in a traditional
network can focus her attack on a relatively small number
of centralized servers, whereas in a P2P network the attacker



must compromise a relatively large number of servents in order
to fully disconnect the network.

However, in practice many P2P networks remain vulnerable
to denial of service attacks because the homogeneity of the
network results in greater interdependence among hosts. For
example, in a Chord network [7], any pair of peers who
wish to communicate must trust the O(log n) other peers
who constitute the initial routing path between them through
the network overlay (where n is the number of peers in the
network). These hosts are chosen deterministically by the
routing protocol, so to disconnect the two hosts it suffices to
compromise any one of these O(log n) peers. In general, this
means that compromising one host in a Chord network pre-
vents numerous hosts from communicating even if it does not
disconnect the entire network. Other protocols like CAN [10],
Pastry [11], and Tapestry [12] have similar vulnerabilities of
varying severity.

Many existing P2P networks also suffer from serious data
integrity vulnerabilities because it is easy for peers in the
network to lie to other peers about the data they serve. Peers
can therefore spread corrupt content and malware merely by
publishing it under a misleading name or with false keywords.
Unsuspecting peers then download and propagate this low-
integrity data to other peers. Such vulnerabilities are a major
issue for real-world P2P implementations today. For example,
two studies published in 2006 detected malware in as much as
68% of all executable content exchanged over KaZaA [13] and
in 15% of all files exchanged over Limewire [14]. Integrity
violations are therefore a significant concern for owners,
administrators, and users of these networks.

Confidentiality is often cited by P2P users as an appealing
advantage of P2P networks, but in reality strong confidentiality
guarantees are deceptively difficult to attain. The confiden-
tiality desired by P2P users typically comes in two forms:
Data confidentiality policies prohibit the leaking of high-
confidentiality, shared objects to low-privileged peers, while
user anonymity policies prohibit the divulging of a user’s
private information. Such private information might include
login credentials, a history of files shared or downloaded, or a
list of the peers with which a user has interacted in the past.

Standard P2P network designs do not directly support either
of these classes of security policies. Data confidentiality is not
supported because shared objects are all public in today’s P2P
networks, and can therefore be downloaded freely by untrusted
peers. User anonymity is not supported because without a cen-
tral authority, login credentials and other private information
must typically be divulged to a variety of other peers during
authentication and while routing object lookup queries and
other private messages through the network overlay.

Thus, although many popular P2P network implementations
seem to offer both availability and confidentiality to users,
enforcing strong availability, integrity, and confidentiality poli-
cies in P2P networks is a challenging domain of active
research. The continuing growth of P2P networking as an ever
more critical part of modern computing infrastructures, along
with its appeal as a practical and cost-effective approach to

load-balancing issues in large networks, argues that P2P secu-
rity should be a high priority for cyber-security researchers.

B. Reputation-based Trust Management

Reputation-based trust management has emerged as an
extremely promising technology for addressing many of these
security vulnerabilities without sacrificing the load-balancing
advantages of decentralization. A trust management system
maintains a global trust label ta for each agent a in the
network. When the system is reputation-based, label ta is an
aggregation of the local opinions of all agents in the network
based on their prior experiences with agent a. To compute
ta, each opinion of agent a is weighted by the reputation
of the opiner, so that agents with good reputations are more
influential than those with poor reputations or no reputation.

A goal of the trust management system is to allow only non-
malicious peers to accrue good reputations with high proba-
bility. This allows non-malicious agents to easily identify ma-
licious agents and potentially censor them from transactions.
For example, a file served from a disreputable peer might be
assigned a low integrity label by the receiving host. Similarly,
the routing protocol might avoid forwarding messages via
disreputable peers. Thus, tracking global reputations allows
each peer to benefit from the experiences of all other peers in
the network.

Although trust labels are global, they can be maintained
in a decentralized setting via replication. For example, in
the EigenTrust system [6] each agent’s global trust label is
tracked by k distinct peers (where k is a constant defined
at network initialization). These k peers are referred to as
the agent’s score-managers. Peers report feedback to all k
of agent a’s score-managers after each transaction with agent
a, thereby updating ta. When agent a participates in many
positive transactions, ta therefore increases.

Label ta can be retrieved by any peer by contacting all k
score-managers and computing the median of their responses.
Thus, subverting an agent’s reputation requires subverting at
least k/2 of the agent’s score-managers, which is difficult
when k is large. Score-managers of agent a are chosen by
applying a secure hash function to agent a’s IP number, so
that agents can choose neither their score-managers nor the
agents for whom they act as score-manager. This prevents a
malicious collective from subverting an agent’s reputation by
becoming score-managers for agent a.

In recent work [5] we showed that reputation-based trust
management can be leveraged to enforce strong data integrity
policies in P2P networks. A Penny network enforces integrity
policies by associating global trust labels with both agents
and shared objects. A trust label to associated with an object
o serves as a global integrity label for the object. The list
of objects returned by a search query submitted to a Penny
network includes each object’s global trust label as well as
the global trust labels of any servents from which the object
can be downloaded. Thus, Penny users can decide whether to
download an object based on its global integrity label, and
they can decide from whom to download the object based



on each peer’s global trust label. After downloading object o
from servent a, the downloading agent can report feedback to
each of object o’s score-managers as well as to servent a’s
score-managers, thereby updating to and ta.

Equipping a P2P network with a trust-management system
greatly increases the preventative power of intrusion detec-
tion systems such as honeypots. Specifically, it permits such
systems to have an immediate and global impact on malware
propagation throughout the network. Since object labels are
global, malware in a P2P network equipped with a trust
management system quickly accrues a poor reputation once a
reputable agent detects it and reports feedback for it. A hon-
eypot that detects and reports malware regularly will accrue
a very high reputation because its numerous opinions will be
independently corroborated by a large and diverse collection of
non-malicious agents. When non-malicious agents outnumber
malicious agents, honeypots become more influential than
malicious collectives even if malicious agents outnumber hon-
eypots. As a result, objects reported as malware by honeypots
incur an immediate and drastic drop in their global reputations,
thereby warning potential downloaders and inhibiting malware
propagation.

C. Secure Routing

Trust management technologies are only an effective means
of enforcing integrity policies when agents can successfully
contact score-managers to retrieve accurate global reputations
for objects and peers. This introduces a problematic circularity:
to route messages securely one must avoid routing them
through low-trust peers, but to identify low-trust peers one
must securely route messages to and from score-managers.

Trust-management systems alone are therefore not enough
to develop a secure P2P network; the trust management system
must be implemented atop a secure routing protocol. Secure
routing in P2P networks remains a difficult problem, but in
this section we describe various promising research directions
as well as important open problems concerning this subject.

Attacks upon the routing structure of a P2P network come
in at least four forms:

• Malicious agents might silently drop messages that they
should forward.

• Malicious agents might misroute messages to delay or
prevent delivery [15].

• A malicious agent might lie about its placement in the
overlay topology, causing the routing tables of other
agents to be corrupted and causing non-malicious agents
to misroute messages to the malicious agent.

• In a Sybil attack [16], a malicious agent masquerades
as many different agents in an effort to control a large
percentage of the identifier space and cast many votes.

In the case of the first form of attack, P2P network protocols
like Chord [7], CAN [10], Pastry [11], and Tapestry [12] all
have built-in fault-tolerance that adapts the routing structure to
agent failures, but they do not protect against agents that mali-
ciously drop messages. For example, Tapestry networks route
messages around failed nodes that do not respond to a periodic

probe message, but they do not detect or circumvent malicious
nodes that respond to probes yet drop other messages.

One approach toward addressing this problem is to add non-
determinism to the routing protocol. In most P2P network
topologies there exist many possible routes from one peer
to another, even though a deterministic routing protocol will
always choose the same one for any given pair of peers.1

Adding non-determinism increases the chances that repeated
attempts to send a message will eventually circumvent ma-
licious nodes and result in successful delivery. In a non-
deterministic protocol the route chosen will not always be the
best route available, so preserving the efficiency of network
operations requires a strategy for probabilistically choosing
amongst the available routes in a way that balances the
expected success rate against the expected delay in delivery.

Malicious peers that misroute messages instead of dropping
them can effect a different form of denial of service—an at-
trition attack [17]. In this attack, the malicious peer misroutes
messages in such a way that other peers waste bandwidth
and other computational resources attempting to deliver the
misrouted message. When the malicious peer can cause a
disproportionally large amount of waste relative to the attacker
cost the attack is more effective than typical network-level
flood attacks.

One promising defense against such attacks involves com-
bining self-certifying identifiers [18], [19] with constrained
routing tables [20]. A peer’s position in a P2P overlay is
determined by a unique identifier assigned to the peer, usually
derived by applying a secure hash function to the peer’s IP
number. Self-certifying identifiers extend these identifiers with
the bits of a public key in an asymmetric key pair. This allows
a peer to prove that it owns a given identifier by signing its
responses with the private key of the pair. Once a peer can
verify the identifiers of peers with whom it communicates, it
can constrain its routing table to reject messages that have been
routed too far off course. The receiving peer only forwards the
message if one of the acceptable routes from the sender to the
destination includes the receiving peer. This limits the degree
to which malicious peers can misroute a message because
routing a message away from the intended target will cause
the message to be rejected and the malicious peer will suffer
a drop in reputation.

Perhaps the most difficult form of attack faced by P2P
networks is the Sybil attack [16]. In this attack, a malicious
agent that controls a large pool of IP addresses joins the P2P
network many times using a different IP address each time.
This allows her to control a large portion of the identifier
space, which can increase her voting power and improve the
odds that she can occupy all routes between a given pair of
endpoints, facilitating denial of service attacks.

The best protection against Sybil attacks currently comes in
the form of cryptographic puzzles (c.f., [21]). In this defense,
newcomers to a P2P network are required to solve a randomly

1Routes can change as peers join and leave the network, but such changes
to the overlay structure are localized so that the probability that they will
affect any given route tends to be small.



generated mathematical puzzle in order to obtain a network
identifier. The puzzle is chosen so that it is tractible for a
typical end-user machine, but solving hundreds or thousands of
instances of the puzzle would be computationally prohibitive.
Attaching a computational cost to obtaining a P2P network
identifier makes it difficult for most attackers to acquire too
many identifiers. Unfortunately it can be difficult to assign a
cost that is prohibitive to attackers with many computational
resources but not prohibitive to loyal nodes that may have
fewer resources.

An intriguing alternative is to track the history of which
peers induct which other peers into the network [22]. A Sybil
attack typically begins with one malicious node convincing a
non-malicious node to induct her into the network. Once the
malicious node has joined, she can induct her other aliases
into the network directly without convincing the non-malicious
node again. These self-inducted collections of malicious nodes
can therefore be detected by looking for large collections of
low-reputation peers all of whom have been inducted into the
network by the same peer. Evicting such collections from the
network would force attackers to resort to distributing their
Sybil attacks over a wider collection of non-malicious peers,
which is both more difficult to accomplish and provides more
opportunities for non-malicious peers to detect and respond to
the attack.

With protection against malicious message-dropping, attri-
tion attacks, identifier forgery, and sybil attacks, P2P networks
can withstand an impressive array of availability attacks. In the
next section we argue that this secure infrastructure can be
leveraged to enforce useful access control policies for secure
data sharing.

D. From Trust Labels to Access Control

We have already argued that with a reputation-based trust
management system implemented atop a secure routing pro-
tocol, one can enforce strong data integrity policies in a
distributed setting. Extending this to enforce access-control
policies is non-trivial. In this section we highlight some of the
subtleties involved.

The reputation-based trust management systems discussed
in Section II-B maintain a global integrity label for each object
in the system. This can easily be extended to a vector of
labels based on different criteria—e.g., integrity labels and
confidentiality labels. Combined with global trust labels for
peers, this permits the enforcement of discretionary access
control policies where peers are subjects. For example, before
servicing a download request, a peer can consult the global
security labels for the requested object and the global trust
label of the requesting peer. If the integrity label of the object
is too low, or the confidentiality label of the requested object
is too high relative to the trust label of the requester, then
the peer refuses the request. This prevents the spread of low-
integrity data and prevents low-trust peers from obtaining
high-confidentiality data.

However, while the above strategy suffices to enforce discre-
tionary read-access policies based on data integrity, it misses

an important subtlety related to enforcing confidentiality poli-
cies. In order for a trust management system to enforce any
security policy, violations of the policy must get reported so
that violator reputations will be downgraded. In this way future
violations are prevented. Although there are many scenarios
wherein integrity violations are reported (e.g., a non-malicious
peer downloads a file and discovers that its content is not what
was requested), it is not clear how confidentiality violations
ever get reported. Confidentiality violations typically involve
one malicious peer divulging confidential data to another
malicious peer, in which case neither peer is likely to report
the violation.

Honeypots can potentially detect confidentiality violations,
but making productive use of this information within the
trust management system can be problematic. For example, a
honeypot might randomly request high-confidentiality objects
from other peers in an effort to detect information leaks. If the
honeypot maintains a poor global reputation, then any peers
that service its requests are guilty of confidentiality violations
and will be reported by the honeypot. Unfortunately, since
the honeypot must maintain a poor reputation in order to test
for confidentiality violations, its reports of violators will carry
little weight in the trust management system.

Confidentiality policy enforcement therefore remains a dif-
ficult open problem in P2P networks. Trusted computing
platforms might be the only solution at present, since they
allow global security policies such as mandatory access control
policies to be enforced remotely [23]. A P2P network based
on trusted computing would verify that each peer is running
trusted hardware and software before admitting it to the
network. Trusted hardware and software would be required to
obey the P2P network protocol and serve data in accordance
with the system-wide access control policy. While this strategy
might become feasible as trusted computing architectures
become more widely available, it remains inappropriate for
P2P settings where users desire greater control over their own
client systems. In what follows we therefore limit our attention
to access control policies based on data integrity rather than
confidentiality.

III. SECURE DATA MANAGEMENT

Secure P2P networks and trust-based reputation systems
provide a means of enforcing important low-level access
control policies such as role-based access control and integrity
policies. Our challenge is to develop trusted applications that
could be hosted atop such an infrastructure. To explain the is-
sues involved we will consider data management applications.

In a data management system, access to the data can be
controlled based on association/context as well as content.
Therefore, the policies are richer than those developed for
networks and operating systems. With respect to integrity and
trust in data management systems, the challenges include:

• To what extent does one trust the data?
• Is the data accurate?
• How can one maintain data provenance so that data

misuse can be detected?



• How can we compute trust values to associations between
data? For example, if the trust value for data object A is
tA and the trust value for object B is tB , then what is
the trust value of the fused data object (A, B)?

In this section we consider some of the challenges that must
be investigated in order to answer these questions.

A data manager essentially manages a collection of database
objects. These objects can be viewed using various data
models including relational models and object models among
others. There has been extensive research in the past on
hosting secure data managers on secure operating systems (c.f.,
[24]). For example, various multilevel secure data management
systems have been designed and developed. These systems
typically enforce the Bell and LaPadula security policy [25]
where database objects are assigned sensitivity levels and the
users are assigned clearance levels. User access to the database
is controlled by the simple property and the star property.

A major challenge in designing such a multilevel data man-
agement system is the granularity of classification. In operating
systems the files are assigned sensitivity levels, but in data
management systems object sensitivity levels might depend
on the content, context, and time. For example, a document
published by the CIA could be highly classified while a
document published by a university could be unclassified.

In addition, some database objects are a fusion of other
objects. For example, consider an English document produced
by authors from multiple countries. The chapters written by
native English speakers might have higher integrity values
than those written by non-English-speaking authors. In this
situation, which integrity value does one assign to the book?
Should it be the lowest integrity value amongst all of the
integrity values of the chapters? Should it be a higher value
that is the average of all the chapter integrity values?

Another important issue regards how to represent these
fused objects at the network level. For example, consider
representing a book in a data management system built atop a
Penny [5] network. Users might want to download individual
book chapters or the book as a whole. Thus, one strategy
would be to represent each chapter as an individual Penny ob-
ject and the entire book as a separate Penny object. However,
this scheme introduces a prohibitively expensive storage cost
in the worst case. That is, we might need a separate Penny
object for each subset of book chapters, causing the storage
costs to rise exponentially with the number of books.

Alternatively, one might represent the book as a Penny
object that consists of a collection of pointers to chapter
objects. The challenge then is to design a method for assigning
and tracking trust levels for these composite objects as the trust
levels of their constituent objects change. Questions also arise
regarding how to interpret feedback reported for one of these
composite objects. If a Penny peer reports an integrity label
for a book object, does that integrity label get applied to all the
chapter objects, or does it indicate the integrity of the pointers
themselves but not the integrity of the objects they point to?

Containment is only one of many relationships that might
exist between objects at the data management layer. For

Trusted Collaboration

Trusted Data Management

Secure P2P Network

e-commerce situation
awareness

intelligence
analysis

Fig. 1. A layered approach to trusted collaboration

example, many modern data management systems are based
on the relational model. These relational database systems are
being used for a variety of applications including e-commerce,
situation awareness, and intelligence analysis. The granularity
of classification for a relation could be at the table level, at the
attribute level, or at the element level. Furthermore, relational
operations such as the join operation results in new relations
with security labels possibly derived from the underlying
relations that were joined.

In the case of confidentiality labels, a challenge would be to
ensure that the higher-classified data cannot be inferred from
lower-classified, joined data. In many cases the joined data
might divulge associations and so might need to be assigned
a higher security label. Such security properties must either
be enforced at the secure P2P network layer or we need
policy extensions so that the applications built atop this layer
enforce the additional policies. Once the security labels of the
elements of the joined relation are determined, then they could
be decomposed into atomic P2P network objects and access
controlled by the secure P2P networking protocol.

IV. TRUSTED COLLABORATION

Secure P2P networks and trusted data management can form
the basis for trusted collaboration at a high level. The idea here
is for different organizations to share data and carry out col-
laboration and decision-making. Figure 1 illustrates a layered
approach to trusted collaboration that utilizes the secure P2P
infrastructure and trusted data management systems described
in the previous sections. The data management and network
layer should provide appropriate services to ensure trusted
collaboration.

The challenges here include the trust that an organization
places on another organization. Note that the 9/11 commission
report states that we need to migrate from a need-to-know
environment to a need-to-share environment. Furthermore, to
fight the global war on terror, we need to work with trusted,
untrusted, and semitrusted partners. Therefore, we need to
answer questions such as:

• Do we share data when requested and then determine the
consequences?

• Do we share only partial data with partners who are not
entirely trustworthy?



• If so, how do we determine the data that needs to be
shared?

• How can data-sharing be supported in both push and pull
models?

• Do we share data based on risk?
• What are the challenges in developing a risk-based trust

model for data sharing?
These are some of the research challenges that need to be
investigated for trust collaboration to be built atop the secure
infrastructure.

V. CONCLUSION

The past five years have seen numerous significant advances
toward enforcing important security policies in P2P networks.
A particularly active and challenging area of research in-
volves developing secure P2P network routing protocols that
enforce availability policies in the presence of malicious peers.
Malicious peers might drop messages, misroute them, or
otherwise disrupt normal traffic in the network by violating the
networking protocol. Many of these attacks can be thwarted
by employing technologies such as self-certifying identifiers,
constrained routing tables, probabilistic routing protocols, and
cryptographic puzzles.

We have shown that these low-level security enforcement
mechanisms can be used as a foundation for enforcing certain
higher-level data security policies. In particular, we show
how to use a reputation-based trust management system to
enforce discretionary access control based on global integrity
labels. Other policies such as confidentiality enforcement and
mandatory access control remain open problems but are a
subject of active research on emerging technologies such as
trusted computing platforms.

These advances seem poised to support next-generation se-
cure applications for trusted collaboration atop P2P networks.
We considered the challenges involved in implementing such
systems, and we highlighted outstanding open problems. These
include issues related to confidentiality policy enforcement and
the need to reflect security policies and security labels at the
data management level down to the level of the P2P network
object infrastructure. Despite the challenges, we argued that
the rapid maturing of P2P security research has brought
solutions to these issues within reach, and we have advanced
strategies for tackling these important problems.

ACKNOWLEDGMENT

The authors would like to thank Nathalie Tsybulnik for
many fruitful discussions about P2P network security and her
helpful critiques of this paper.

REFERENCES

[1] Napster, http://www.napster.com.
[2] Gnutella, http://www.gnutella.com.
[3] D. S. Wallach, “A survey of peer-to-peer security issues,” in Software

Security—Theories and Systems, Mext-NSF-JSPS Int. Symposium, ISSS,
Tokyo, Japan, November 2002, pp. 42–57.

[4] J. Risson and T. Moors, “Survey of research towards robust peer-to-
peer networks: Search methods,” Computer Networks, vol. 50, pp. 3485–
3521, 2006.

[5] N. Tsybulnik, K. W. Hamlen, and B. Thuraisingham, “Centralized
security labels in decentralized P2P networks,” in Proc. Annual Com-
puter Security Applications Conf. (ACSAC’07), Miami Beach, Florida,
December 2007, to appear.

[6] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The EigenTrust
algorithm for reputation management in P2P networks,” in Proc. 12th
Int. World Wide Web Conf. (WWW’03), Budapest, Hungary, May 2003,
pp. 640–651.

[7] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proc. ACM Conf. on Applications, Technologies, Architectures, and
Protocols for Comp. Comm. (SIGCOMM’01), San Diego, California,
August 2001, pp. 149–160.

[8] KaZaA, http://www.kazaa.com.
[9] Limewire, http://www.limewire.com.

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A scal-
able, content-addressable network,” in Proc. ACM Conf. on Applications,
Technologies, Architectures, and Protocols for Comp. Comm. (SIG-
COMM’01), San Diego, California, August 2001, pp. 161–172.

[11] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized ob-
ject location and routing for large-scale peer-to-peer systems,” in
Proc. IFIP/ACM Int. Conf. on Distributed Sys. Platforms (Middleware
’01), Heidelberg, Germany, November 2001, pp. 329–350.

[12] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” IEEE J. on Selected Areas in Comm. (JSAC’04), vol. 22,
no. 1, pp. 41–53, January 2004.

[13] S. Shin, J. Jung, and H. Balakrishnan, “Malware prevalence in the
KaZaA file-sharing network,” in Proc. 6th ACM SIGCOMM Internet
Measurement Conf. (IMC’06), Rio de Janeiro, Brazil, October 2006,
pp. 333–338.

[14] A. Kalafut, A. Acharya, and M. Gupta, “A study of malware in peer-
to-peer networks,” in Proc. 6th ACM SIGCOMM Internet Measurement
Conf. (IMC’06), Rio de Janeiro, Brazil, October 2006, pp. 327–332.

[15] E. Sit and R. Morris, “Security considerations for peer-to-peer
distributed hash tables,” in Proc. 1st Int. Conf. on Peer-to-peer
Sys. (IPTPS’02), Cambridge, Massachusetts, March 2002, pp. 261–269.

[16] J. R. Douceur, “The Sybil attack,” in Proc. 1st Int. Workshop on Peer-
to-peer Sys. (IPTPS’02), Cambridge, MA, March 2002, pp. 251–260.

[17] T. J. Giuli, P. Maniatis, M. Baker, D. S. H. Rosenthal, and M. Rous-
sopoulos, “Attrition defenses for a peer-to-peer digital preservation
system,” in Proc. USENIX Annual Technical Conf., Anaheim, California,
April 2005, pp. 163–178.

[18] J. Hautakorpi and J. Koskela, “Utilizing HIP (host identity proto-
col) for P2PSIP (peer-to-peer session initiation protocol),” Internet-
Draft draft-hautakorpi-p2psip-with-hip-00 P2PSIP WG, July 2007,
(http://tools.ietf.org/wg/hip/draft-hautakorpi-p2psip-with-hip-00.txt).

[19] T. Aura, A. Nagarajan, and A. Gurtov, “Analysis of the HIP base
exchange protocol,” in Proc. 10th Australasian Conf. on Info. Sec. and
Privacy (ACISP’05), Brisbane, Australia, July 2005, pp. 481–493.

[20] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach, “Se-
cure routing for structured peer-to-peer overlay networks,” in Proc. 5th
Symposium on Op. Sys. Design and Implementation (OSDI’02), Boston,
Massachusetts, December 2002.

[21] S. Ryu, K. Butler, P. Traynor, and P. D. McDaniel, “Leveraging identity-
based cryptography for node ID assignment in structured P2P systems,”
in Proc. 21st Int. Conf. on Advanced Information Networking and
Applications (AINA’07), Niagara Falls, Canada, May 2007, pp. 519–
524.

[22] G. Danezis, C. Lesniewski-Laas, M. F. Kaashoek, and R. Anderson,
“Sybil-resistant DHT routing,” in Proc. 10th European Symposium on
Research in Comp. Sec., Milan, Italy, September 2005, pp. 305–318.

[23] S. Balfe, A. D. Lakhani, and K. G. Paterson, “Trusted computing:
Providing security for peer-to-peer networks,” in Proc. 5th Int. Conf. on
Peer-to-peer Computing (P2P’05), Konstanz, Germany, August 2005,
pp. 117–124.

[24] B. Thuraisingham, Database and Applications Security: Integrating
Information Security and Data Management. Boca Raton, Florida:
Auerbach Publications, 2005.

[25] D. E. Bell and L. J. LaPadula, “Secure computer systems: Mathematical
foundations,” The MITRE Corporation, Bedford, Massachusetts, Tech.
Rep. MTR-2547, Vol. I, ESD-TR-73-278-I, March 1973.


