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Abstract—Security concerns surrounding the rise of Big Data
systems have stimulated myriad new Big Data security models
and implementations over the past few years. A significant
disadvantage shared by most of these implementations is that
they customize the underlying system source code to enforce new
policies, making the customizations difficult to maintain as these
layers evolve over time (e.g., over version updates).

This paper demonstrates how a broad class of safety policies,
including fine-grained access control policies at the level of key-
value data pairs rather than files, can be elegantly enforced
on MapReduce clouds with minimal overhead and without any
change to the system or OS implementations. The approach real-
izes policy enforcement as a middleware layer that rewrites the
cloud’s front-end API with reference monitors. After rewriting,
the jobs run on input data authorized by fine-grained access
control policies, allowing them to be safely executed without
additional system-level controls. Detailed empirical studies show
that this more modular approach exhibits just 1% overhead
compared to a less modular implementation that customizes
MapReduce directly to enforce the same policies.

I. INTRODUCTION

The last few years have witnessed a meteoric rise in the
volume of digital data generated and collected worldwide. Many
organizations, ranging from large-scale Internet companies
to government agencies, are interested in storing, processing
and mining this Big Data for competition, productivity, and
consumer surplus. Most traditional data management systems,
including typical relational databases, do not adequately scale
to the higher velocity and greater variety demanded by Big Data.
Academic and industrial researchers have therefore devoted
considerable effort toward more effectively storing, generating,
and processing Big Data. Big Data systems, which boast
highly parallel and distributed data processing atop commodity
hardware, have emerged as a popular choice due to their easy
deployment and attractive business model. Apache Hadoop
project has become one of the most widely used Big Data
systems, due in part to its adoption of Google’s elegant
MapReduce computing model [1].

Unfortunately, despite extensive tool support for Big Data
processing on Hadoop architectures (e.g., Hive, Pig Latin,
Hbase, etc.), security and privacy enforcement has suffered
less development. Most of the tools developed atop Hadoop
lack even simple authentication and access control mechanisms.
This dearth of well-developed security mechanisms in Big Data
systems has emerged as an important hindrance for widespread
adoption, and has prompted some industry experts to ask,

“Does NoSQL Mean No Security?”1. Recent work has sought
to address this need by customizing the implementation of
the cloud, virtual machine (VM), or operating system (OS)
to include extra, system-level access controls. For example,
Apache Accumulo allows multi-level access control at the cell
level in a key-value store.

Yet, none of the aforementioned systems address the fine-
grained access control (FGAC) challenges for all types of
data (viz., structured, unstructured, semi-structured) in the
generic MapReduce model even though each of them addresses
different security/privacy issues. Almost all relational database
management systems support FGAC due to the security and
privacy requirements of the many industries that use them,
ranging from health care to finance. For example, Oracle Virtual
Private Database [2] automatically modifies the submitted SQL
queries to enable FGAC. Industry experts have already observed
that FGAC is a must-have addition to MapReduce systems as
the model becomes more widely adopted [3].

To address this necessity, we developed Vigiles2, a FGAC
enforcement mechanism for MapReduce systems. Vigiles imple-
ments FGAC as a middleware layer that automatically rewrites
the cloud’s front-end API by augmenting them with reference
monitors (RMs).The cloud-resident RMs filter the outputs
of data accesses, preventing unauthorized access to policy-
prohibited key-values at runtime. Policies are expressed as
user-specific, computable predicates over records. For example,
to enforce a policy that prohibits user u from accessing sensitive
data, an administrator can define a predicate pu(d) that grants
access if and only if record d is not sensitive. Vigiles then
enforces pu over all jobs submitted by u, resulting in a
MapReduce environment that self-censors its object accesses
to only those objects consisting of records that satisfy pu. In
general, predicates of this form are known to be capable of
enforcing a large class of important safety policies, including
access control policies [4], [5].

To our knowledge, Vigiles is the first system to provide
FGAC for MapReduce without requiring any modification to
MapReduce system source code. By automatically in-lining the
enforcement programming within key-value access APIs prior
to reaching the cloud kernel or OS layers, the enforcement
implementation remains completely separate, making it much
easier to maintain. To demonstrate the feasibility of the

1http://www.darkreading.com/database/does-nosql-mean-no-security/
232400214

2The Vigiles Urbani were the firefighters and police of Ancient Rome.

http://www.darkreading.com/database/does-nosql-mean-no-security/232400214
http://www.darkreading.com/database/does-nosql-mean-no-security/232400214


proposed approach, we have implemented our system atop
Apache Hadoop without changing any Hadoop source code.
Our contributions can be summarized as follows:
• We show how user-defined FGAC predicates can be

realized as RMs for efficient policy enforcement for wide
range of data models (e.g., structured and unstructured).

• We provide detailed empirical studies indicating that our
solution exhibits just 1% overhead compared to a non-
modular implementation that changes the MapReduce
internals to support FGAC.

• Our solution is extensible to other MapReduce implemen-
tations, and can therefore be seen as a general strategy
for scalably enforcing FGAC on MapReduce.

The remainder of this paper is organized as follows: §II
discusses related studies, §III summarizes background knowl-
edge, and §IV details our assumptions. The FGAC problem
in the context of the MapReduce model is formally defined
in §V. §VI presents the architectural details of Vigiles. Our
empirical results are evaluated in §VII. Finally, §VIII concludes
the paper.

II. RELATED WORK

FGAC in Relational Databases: In 1974, the access control
system INGRES, which modifies the queries by conjugating
safety conditions to the WHERE clauses before being pro-
cessed, was introduced by Stonebraker and Wong [6]. Later
on, Virtual Private Database (VPD) [2] has been included as
a FGAC component in Oracle DBMS since Oracle8i. VPD
allows to specify predicates as strings appended to the WHERE
clause of the queries. In 2004, Rizvi et al. [7] generalized the
query modification approach as Truman model, where each
user’s view of database can be inconsistent with additional
information derived from external sources. They addressed this
issue by rewriting queries using only the authorized views.
Alternatively, LeFevre et al. [8] introduced table semantics
model, where the queries remain the same while the tables are
effectively modified by injecting dynamically created views.
Agrawal et al. [9] proposed to use grant commands of DBMS to
provide cell level access control. In 2007, Chaudhuri et al. [10]
proposed to use predicated grants by considering other features
(e.g., aggregate authorization, user groups, authorization groups,
etc.). Rosenthal and Sciore [11] extended this approach for
management of predicated grants as well. However, these
approaches are not applicable to MapReduce model due to
the lack of structured query languages in MapReduce systems,
where the above approaches leverages the features specific to
relational databases (e.g., grant commands, SQL, etc.).

Security Applications For MapReduce: Apache Accumulo
is a distributed key-value store based on Google’s BigTable [12]
design and built on top of Apache Hadoop. It improves the
BigTable design in the form of cell-based mandatory and
attribute-based access control capabilities and a server-side
programming mechanism that can modify key-value pairs
in the data management process. Similarly, BigSecret [13]
enables secure querying of cell-level encrypted data in HBase.
SecureMR [14] provides a decentralized replication-based

integrity verification scheme for MapReduce job execution.
Airavat [15] employs SElinux to achieve multi-level access
control and guarantees MapReduce computation results to
satisfy differential privacy. However, none of the aforemen-
tioned systems address the FGAC challenges for all types of
data (viz., structured, unstructured, semi-structured data) in the
generic MapReduce model even though each of them addresses
different security/privacy issues. To our knowledge, this is the
first work that provides FGAC capabilities to MapReduce
model without changing the underlying MapReduce system.

III. BACKGROUND

This section provides the background information on MapRe-
duce and aspect-oriented programming (AOP), which are two
core technologies that Vigiles is based on.

A. MapReduce

MapReduce is a programming model and associated im-
plementations for processing and storing large data sets [1].
The model enables large cluster of commodity machines to
be employed in parallel while reducing computation costs.
Simply, the MapReduce model can be expressed in 5-step
parallel computations. (1) Pre-process: The input data is pre-
processed to form a valid format for the subsequent steps.
For example in Hadoop, RecordReader classes read the input
from Hadoop file system (HDFS) and produce key-value pairs.
(2) Map: The input key-value pairs are processed by producing
intermediate key-value pairs. (3) Shuffle: The intermediate pairs
are transfered to the reduce functions by assigning the pairs
having the same key to the same reduce functions. (4) Reduce:
The intermediate pairs are processed by forming smaller set
of pairs. (5) Post-process: The outputs of reduce functions are
combined and written to HDFS.

B. Aspect-Oriented Programming

Aspect-oriented programming (AOP) is a programming
paradigm for addressing cross-cutting concerns—concerns
whose implementations must typically be scattered over many
modules in a traditional programming language. AOP allows
such implementations to be consolidated as aspects, which
consist of (1) pointcuts—expressions that identify join points
(sites throughout the rest of the code) that are relevant to
the cross-cutting concern—and (2) advice consisting of code
that modifies each join point to implement the concern. Prior
work has recognized that such aspects are an elegant means
of expressing RMs [16]–[20]. In such contexts, the pointcuts
identify security-relevant program operations, and the advice
introduces guard code that secures each such operation.

AspectJ is an AOP extension for the Java programming
language. Its pointcut language allows the aspect-writer to
advise any method call, object instantiation, or variable access
in programs to which the aspect is applied. Aspects can observe
the control flow of the program, and can even change it by
modifying the input and return values of methods. The advice
can be injected into Java programs at the source level, or into
raw Java bytecode programs that is separately compiled.



IV. THREAT MODEL

Vigiles treats the submitted MapReduce jobs as untrusted
because a user may have malicious intentions, and may try
to compromise the system by injecting malicious code into
MapReduce jobs. The underlying MapReduce and OS are
trusted with the following setup: Vigiles and the MapReduce
system need to be installed on a hardened OS, where all
communication ports are closed, except the ones used by
Vigiles. This is because if the users directly access the
MapReduce system, they can retrieve the entire data file without
any FGAC restrictions. For example, one can read the files from
HDFS by using command line. In addition, Vigiles requires that
the programming language, in which the MapReduce system
is implemented, provides AOP support within the language or
as an external library, because AOP is employed to enforce
the security policies in Vigiles.

Hadoop system provides only one legitimate method to
access the input data for submitted MapReduce jobs which
is through RecordReader interface. However, the jobs include
arbitrary code and data, where one can easily place a malicious
code to circumvent RecordReader. We have performed two
attacks to show the feasibility of this vulnerability. In the
first attack, we have placed a code inside a MapReduce job
that accesses to raw input data (or any data stored in the
corresponding data node) by means of Java I/O API. In the
second attack, the malicious code opened a socket as a backdoor
to communicate with our malicious server. Both attacks show
that the MapReduce jobs must be confined to prevent these
security breaches and policy violations. There are numerous
studies [21]–[23] in the literature to circumscribe untrusted
codes and programs. These studies can be employed to
immunize Hadoop against such attacks by potentially malicious
MapReduce jobs.

MapReduce systems are generally used to extract useful
information from big datasets. In this model, data providers
upload their datasets into the MapReduce system, and the end-
users run their jobs to extract information. Unlike relational
databases, only read and append data permissions are required
because uploading data requires append permission and running
jobs requires read permission. Vigiles only provides FGAC
for read permission, and do not consider append permission.
One justification is that read access permission is more likely
to be used by the end-users while trying to extract information
from the data. On the other hand, append access permission is
more likely to be used by data providers. FGAC for append
and deletion will be addressed in our future work.

V. PROBLEM DEFINITION

The current access control model of MapReduce systems
are at file-level. However, authorizing the whole files is not
desirable in the MapReduce model because of three main
reasons: (1) The size of files can be very large. (2) The system
can be used by many users having different intentions and
security clearances. (3) The files can contain data from different
domains and sensitivity specifications. To this end, we propose
the fine-grained access control predicates (FCAC predicates).

In this model, each user can access the files after the user
specific predicates are applied to the files. The predicates
independently run the access control filters (ACFs) on the
individual records. ACFs perform an action α ∈{reject, grant,
modify} according to the specified security policy. Reject action
refuses access by returning nothing, grant action accepts access
by returning the original record, and modify action changes the
original record by returning a modified version (cf. Eqn. 1).
Especially the modify action enables the MapReduce model to
work with diverge and sensitive data, since it enables filtering
out unnecessary parts of records and sanitizing sensitive parts.

More formally, let M = (S,O,P) denote FGAC pred-
icate model, where S = {s1, . . . , sk} denote the set of
subjects, O = {o1, . . . , on} denote the set of objects, and
P = {p1, . . . , pl} denote the set of predicates. Moreover, let
F = {f1, . . . , fl} denote the set of ACFs. Without loss of
generality, we assume that each object o = {d1, . . . , dm} is
composed of finite number of atomic data records di ∈ D that
cannot be split into smaller pieces without losing semantics.
Then, the predicates and ACFs can be expressed as follows:

∀d ∈ o, f : D → {∅ ∪ D ∪ {0, 1}∗} (1)

∀o ∈ O p : O → {∅ ∪ D ∪ {0, 1}∗}|o|

p(o) = {f(d) | f(d) 6= ∅ ∧ d ∈ o}

VI. SYSTEM ARCHITECTURE

Vigiles is an application firewall that provides FGAC capa-
bilities to the MapReduce systems. It employs a middleware
architecture that lays between the untrusted end-users and
underlying OS/MapReduce system by authorizing all data
accesses. Fig. 1 shows the overview of the Vigiles system, in
which thick, black-dashed, red-dashed and black arrows indicate
the actions of end-users, admins, Vigiles and MapReduce
system, respectively.

Vigiles authenticates the users by using the same user
IDs and passwords of host OS. In the system, there are
two types of users: the end-users and admins. The end-
users have no responsibilities specific to Vigiles. They write
MapReduce jobs as usual and send it to Vigiles along with
the required parameters, such as input/output names and job
specific variables. Other than the interface provided by Vigiles,
they have no communication with the underlying MapReduce
system nor OS. Their submitted MapReduce jobs have also
limited view of the input data (e.g., authorized view in [7])
because of the FGAC predicates. On the other hand, the admins
are responsible from the input files in HDFS and configuration
of ACFs. They load data into Vigiles system and setup the
configuration of ACFs so as to activate FGAC predicates,
M = (S,O,P). Furthermore, they also load the libraries,
which are used in the ACFs for the first time. Unlike end-users,
they can access and configure the MapReduce system and OS.

Vigiles encapsulates the OS/MapReduce system such that
the users can only communicate with the underlying systems
through Vigiles. It accepts authenticated network communica-
tion from the users. If the communication is established by an
admin, the OS’s terminal is returned as interface. Otherwise,
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Fig. 1. Vigiles System Overview

a special interface is returned, where the end-user can submit
MapReduce jobs and related parameters, such as input/output
paths, variables. Since the current implementation of Vigiles
system uses the Java Security [23] to confine the MapReduce
jobs in a secure environment, Vigiles only accepts managed Java
bytecode programs and conservatively rejects those that contain
native code or that link to type-unsafe libraries. We are planning
to support native libraries in the future by integrating Vigiles
with the Robusta system [22]. When a job is accepted, Vigiles
runs the job on behalf of the user, and by so doing leverage
the current file level access control policy of MapReduce
system. Thus, the outputs of end-users are protected by the
current access control mechanism. Moreover, the ACFs are
generated by means of the given configuration, and injected
into MapReduce system (see §VI-A and §VI-C for details).

Vigiles can use any multi-user MapReduce and OS as
follows: (1) The employed MapReduce system is consolidated
with the FGAC predicates. (2) All outside communications of
the underlying OS are prevented, except the ones initiated by
Vigiles. (3) The MapReduce jobs are confined by a sandbox
technique [21]–[23] so as to prevent unauthorized data accesses.

A. ACF Generation

Suppose that an unstructured text data, containing sensitive
entries, is stored in a MapReduce system, and an ACF is
going to be designed to sanitize the sensitive entries. Since the
data is unstructured, the sensitive entries need to be located for
sanitization. An intuitive approach is first to decompose the text
into words, then find the indexes of sensitive words, and sanitize
them one by one. Inspired by the above example, Vigiles
generates the ACFs by combining following three phases:

1) Decompose: This phase aims to produce a list of small
processable tokens from its input. The input key-value pairs
and the output of other phases (i.e., fetch and action) can be
used as input. It fragments the input into a list of small tokens
by means of a given algorithm and the meta-data of input
if exists, and outputs the produced list. Tokenization of text

data, parsing an HTML code, and decompression of images
are three examples of decompose phase.

2) Fetch: This phase aims to detect the indexes of targeted
tokens. A list of tokens, which is result of a decompose phase
or another fetch phase, can be used as input. It finds the indexes
by employing a search algorithm and the meta-data of input if
exists, and outputs both the list and indexes. Regular expression
based text search and fetching columns on Google’s BigTable
are two examples of fetch phase.

3) Action: This phase aims to apply ACF specific action
to the indexed tokens in a given list. A list of tokens and
indexes are its input. It applies the action to each indexed
token. According to given configuration, it may output the
filtered list to another decompose phase, or merge the list, and
output using one of three options: (1) Nothing, (2) the original
key-value pair, and (3) the modified key-value pair. Sanitization
of sensitive tokens and reduction of a list to indexed tokens
are two examples of action phase.

Vigiles automatically generates the ACFs by means of
given configuration. The admins organize the configuration by
clearly stating each phase. Vigiles provides many fundamental
decomposition, fetching and action algorithms by default, but
new algorithms can also be loaded if necessary. In order to
add new algorithms to any of the aforementioned phases, the
admins need to load the required libraries to the Vigiles system
and set their properties in the configuration. A sample ACF
configuration is provided in §VI-B.

<ACF ID="sanitization">
<decompose ID="tokenize">

<method>text.tokenize</method>
<input>

<source>value</source>
<type>text</type>

</input>
<arg>’|’</arg>

</decompose>
<fetch ID="search">

<method>text.regex_search</method>
<input>

<source>tokenize</source>
<type>text</type>

</input>
<arg>’\\d{3}-\\d{3}-\\d{4}’</arg>

</fetch>
<action ID="replace">

<method>string.replace</method>
<input>

<source>search</source>
<type>text</type>

</input>
<arg>’*’</arg>
<merge>’true’</merge>

</action>
</ACF>

Fig. 2. Sample configuration file

B. Sample ACF Configuration

Fig. 2 shows a sample configuration for an ACF, where
the phone numbers in ’ddd-ddd-dddd’ format are sanitized in
text data. The decompose phase takes value as input, and use
”text.tokenize” function to tokenize the value into words by
using ’|’ as separator. Then, the fetch phase uses the output of
decompose phase as input and searches the words matching
given regular expression by using ”text.regex search” function.
Finally, the action phase uses the output of decompose phase



as input. It sanitizes the indexed words, merges the list and
emits the modified value.

C. ACF Injection

Vigiles depends on our novel ACF injection technique to
enforce the security policies. This technique enables enforcing
the FGAC predicates to the processing key-value pairs in
a complete manner by incurring minimal overhead to the
performance. In this section, we elucidate the details of this
technique. Since the current implementation of Vigiles is based
on Apache Hadoop and AspectJ [24], we will explain the
details of the injection technique through them.
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When a job is submitted to a MapReduce system, its input
data has to be transformed into formatted key-value pairs by
RecordReader classes before passing to the map functions.
We leverage this obligation to enforce our FGAC predicates
to the submitted jobs due to following reasons: (1) Prior to
this transformation, the raw input data is an enigma for the
jobs. (2) This transformation is the only legitimate way to
access data for the MapReduce jobs. Therefore, applying FGAC
predicates during this transformation guarantees that the only
data accessed by jobs is the authorized views [7] created by
FGAC predicates. Fig. 3 shows the overview of ACF injection.
Note that these processes are similar for other MapReduce
systems and AOPs, too.

1: Input : A data split
2: Output: <key,value> pairs for mapper
3: initialize()
4: while nextKeyValue()=true do
5: key ← getCurrentKey()
6: value ← getCurrentValue()
7: sendToMap(key,value)
8: end while

Fig. 4. Input preprocessing in Hadoop
In Hadoop environment whenever a class, whether existing

in the system or created by an end-user, is used for key-value

transformation, it has to implement RecordReader interface
to be accepted by the system. Because, Hadoop system uses
RecordReader’s methods to create key-value pairs to be pro-
cessed by Map functions. The algorithm in Fig. 4 shows how the
RecordReader interface is called by Hadoop. Four methods of
RecordReader are important for our injection technique: initial-
ize(), nextKeyValue() and getCurrentKey()/getCurrentValue().
The initialize() method is called once when a RecordReader
object is initialized. The nextKeyValue() method is called to
read an individual record and create a key-value pair corre-
spondingly. The getCurrentKey()/getCurrentValue() methods
are called to get current key-value pairs.

1: Input : A data split and configuration
2: Output: <key,value> pairs for mapper
3: initialize()
4: filepath ← determineInput()
5: user ← determineUser()
6: ACF ← generateACF(user, filepath, configuration)
7: while nextKeyValue()=true do
8: key ← getCurrentKey()
9: value ← getCurrentValue()

10: if ACFpredicate(key,value)=allow then
11: sendToMap(ACFmodify(key),ACFmodify(value))
12: end if
13: end while

Fig. 5. Input preprocessing after ACF injection in Hadoop

We determined these four methods as our injection points
(i.e., our pointcuts) in Hadoop version 1.1.2. Three types of
aspects are injected into these pointcuts: (1) initialization aspect
is injected to initialize() method; (2) predicate aspect is injected
to nextKeyValue() method; and (3) modification aspects are
injected to getCurrentKey()/getCurrentValue() methods. The
algorithm in Fig. 5 shows how the injected aspects augment the
execution flow of RecordReader methods. The initialization
aspect runs once at the beginning of each MapReduce job
when initialize() is called. Firstly, it determines the input file(s)
and the owner of MapReduce job (o ∈ O and s ∈ S in
the FGAC predicates M = (S,O,P), respectively). Then,
it generates the ACF by using the file(s), user ID and the
given configuration (If any access control model, such as role-
based access control, is employed by Vigiles, it is handled
here as well). The generated ACF is attached to the job to be
employed in the other aspects later. Moreover, the auxiliary
data structures are constructed in the initialization aspect if they
are used by the ACF. For example, a hash map for keyword
whitelisting can be constructed by reading keywords from a file.
The predicate aspect runs whenever nextKeyValue() method
is called. It checks the key and/or value, and either grants
access by returning the original key-value or rejects access
by returning nothing. The modification aspects run whenever
getCurrentKey()/getCurrentValue() are called. They modify the
returned key-value pairs by performing modify action. Since
the predicate aspect always runs before modification aspects,
reject and grant actions are performed before modify action.



Therefore, the admins need to consider it when preparing
ACF configurations. Note that in order to use other version
of Hadoop or another MapReduce system, only these four
pointcuts need to be modified. The other parts of Vigiles,
including ACFs and configurations, can be used without any
modification. This increases the modularity of our system.

Security Discussion: As previously mentioned, Vigiles only
accepts managed Java bytecode based MapReduce jobs. This
restriction enables Vigiles to adopt a secure sandbox technique
(i.e., Java Sandbox [23]) so as to prevent a broad class of
security breaches discussed in §IV. Thus, unorthodox ways
to access data are prevented in Hadoop—a MapReduce job
can only access data in HDFS through RecordReader interface
which is consolidated by FGAC predicates. In other words,
whenever a MapReduce job is accepted and run by Vigiles
system, the given ACFs are enforced on the input data in a
correct and complete manner.

Moreover, Vigiles improves the performance of access
control system by using optimized operations—pushing all
operations to initialization aspect as much as possible. Because,
unlike other operations that are run per record, the initialization
aspect run once for each job.

VII. EVALUATION

We evaluated the efficiency and scalability of Vigiles via a
series of experiments. We first explain the details of experiment
setup, data generation, sample ACFs and the MapReduce jobs.
Then, we present the empirical results.

A. Setup

We conducted our experiments on a cluster containing 14
nodes. Each node consists of a Pentium IV processor with
290GB-320GB disk space and 4GB of main memory. The
cluster is setup using Hadoop 1.1.2 and AspectJ 1.7.3. To
enable AOP in Hadoop, the AspectJ JARs and compiled aspects
are placed into lib folder of each node in the cluster.

B. Data Generation

We have randomly generated five input files, formated as
compressed sequence in HDFS, to use in our experiments.
The files are composed of 10M, 20M, 30M, 40M, and 50M
key-value records where they allocate 48GB, 96GB, 144GB,
192GB, and 240GB space, respectively. The size of each data
record is approximately 11KB, and the records are generated by
using two types of data. The first part is organized as relational
table. A medical dataset is simulated by using the personal
information of patients, such as name, address, age, doctor’s
name, diagnosis, etc. To this end, 1000 different male and
female first and surnames, 32 different treatment groups, and
100 diagnosis types are used by uniform randomly selecting.
The other columns based on numbers (i.e. age, phone and ssn
numbers) are uniformly distributed within their domain ranges.
The second part of the records contains an unstructured text
data that represents the medical history of patients written by
doctors. For this part, we used 10 different real life medical
histories. The key part of each record is also labeled with a

set of security classifications. In addition, HDFS is set to use
replication factor 3 by achieving approximately 60% load rate.

C. ACFs

We have generated five ACFs, two predicate, two modifica-
tion and a combination of the first four, for experiments. The
first one, key ACF, uses the security classification labels in the
key of each pair to filter the unauthorized pairs. The second one,
relational ACF, filters the records based on the doctor name
column. The third one, sanitization ACF detailed in §VI-B,
uses a regular expression to sanitize phone numbers in the
relational part. The fourth one, redaction ACF, reads a set of
medicine names and transforms the medical history of patients
into list of medicines existing in the medical histories. The
fifth ACF is the combination of first four, where the application
order is key, relational, sanitization and redaction ACFs.

The ACFs are first generated by means of given configuration
and called from the aspects injected into Hadoop as a part of
the Vigiles system (namely Vigiles implementation). Then, the
same ACFs are implemented in Hadoop source code (namely
integrated implementation) so as to compare the performance
of these two approaches. To this end, all built-in RecordReader
classes of Hadoop are enhanced with ACFs, where four pointcut
methods of these classes are overridden. Note that the integrated
implementation cannot provide the same security guarantees as
Vigiles implementation does because the MapReduce jobs can
contain a custom RecordReader class, which would bypass the
ACFs in the integrated implementation.

By using AspectJ compiler version 1.7.3, the aspects are com-
piled independently of the Hadoop and jobs source code. Then,
the aspects are weaved into hadoop-core-1.1.2.jar, where the
RecordReader methods are called. While the generated ACFs
are running in the aspects, we observed some performance
issues especially for lazy copies. We believe this is due to
poor optimization of AspectJ compiler as analyzed in [25]. To
address this issue, we optimized the functions used in three
phases of ACFs by preventing unnecessary data copy.

D. Queries

We implemented three MapReduce jobs for our experiments.
The first job is a selection query that selects the records by
patient name. The second job is ranking query that sorts the
records by the ascending ordered list of doctors having the
most patients. The third job is a statistic query that calculates
the average age of patients with heart disease.

E. Results

We firstly ran three MapReduce jobs on each data set
described in §VII-B so as to measure the performance without
ACFs (termed raw performance). Fig. 6(a) shows the perfor-
mance of the queries. The ranking and statistic queries run
faster than the selection query because their mappers emit less
data to reducers. During all experiments, the total running time
of the queries is used as our primary metric. Moreover, in a
typical scenario, the ACFs are expected to reduce the data
amount shown to the MapReduce jobs. To run the MapReduce
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(c) Relational ACF overhead
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(d) Sanitization ACF overhead
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(e) Redaction ACF overhead
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Fig. 6. Comparison of three setup: No ACF, Integrated ACF and Vigiles ACF

jobs on the same amount of data with the raw performance
experiment, we setup the ACFs not to filter out the data while
performing all required operations. For example, the key ACF
checks the security labels but do not reduce the data amount.

The main purpose of experiments is to evaluate the per-
formance of (1) the generated ACFs, and (2) the injection
technique. To this end, we have measured the overhead of ACFs
and injection technique by comparing Vigiles implementation
with raw performance—no safety policy is enforced, and
integrated implementation—safety policies are integrated into
Hadoop. Thus, three queries are run on five datasets when (1)
no ACF is active, (2) the integrated ACFs are active, and (3)
Vigiles ACFs (weaved by AspectJ) are active.

Selection Ranking Statistic
Vigiles Integ. Vigiles Integ. Vigiles Integ.

Key 0.23% -0.15% 1.02% 0.54% 1.29% 0.38%
Rel. 0.63% 0.13% 1.14% 0.97% 1.00% 0.53%
San. 16.68% 7.81% 22.01% 11.27% 21.11% 10.55%
Red. 28.8% 27.61% 64.98% 63.72% 64.00% 62.15%
Com. 29.49% 28.32% 66.25% 64.96% 64.55% 63.98%

TABLE I
THE OVERHEADS OF VIGILES AND INTEGRATED IMPLEMENTATION ACFS

The overhead of ACFs: Fig. 6(b), 6(c), 6(d), 6(e) and
6(f) show the running time of selection query. The overhead
of predicate ACFs, key and relational, is almost negligible

(respectively 0.23% and 0.63% on average). On the other hand,
the modification ACFs, sanitation and reduction, have 16.68%
and 28.8% overheads due to costly functions used in fetch
phases (i.e., regular expression search and whitelisting via a
hashmap). Tab. I shows the overhead of ACFs for each query
type. The overhead difference between different queries is due
to the difference of queries’ running times (see Fig. 6(a)).

Selection Ranking Statistic
Label ACF 0.33% 0.48% 0.90%
Value ACF 0.48% 0.16% 0.49%
Sanitization ACF 7.58% 8.80% 8.71%
View Creation ACF 0.92% 0.78% 1.14%
Combination ACF 0.90% 0.79% 0.7%

TABLE II
THE OVERHEADS OF ASPECTJ INJECTION

The overhead of ACF injection: The overhead of injection
technique is less than 1% in all ACFs expect the sanitization
ACF, where 8.36% overhead is observed on average. We believe
the regular expression based search algorithm underperforms
because of the relatively poor optimization of AspectJ compiler
(see. [25] for the detailed performance analysis of AspectJ).
Tab. II shows the overhead of injection technique for each
query type. Fig. 6(g), Fig. 6(h) and Fig. 6(i) show the running
time of ranking and statistic queries for the key, redaction and
combination ACFs. We observe the similar overheads of ACFs
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Fig. 7. The overhead of injection for multiple users

and injection technique with selection query.
The overhead for multiple users: To compare the perfor-

mance of ACFs and injection technique for multiple MapRe-
duce jobs, we performed another set of experiments. In these
experiments, the selection query is simultaneously run by
multiple users on the dataset containing 10M records when
Vigiles and integrated implementation of ACFs are assigned
to the MapReduce jobs. To run the jobs simultaneously, the
fair scheduler, developed by Zaharia et al. [26], is employed in
Hadoop. The fair scheduler is set to preemptive mode to evenly
assign resources to jobs. We begin with 1 user and exponentially
increase the number of users up to 8. The graphs in Fig. 7
show the performance of two approaches when the selection
query is run. The average performance differences are 0.14%,
0.56%, 0.02% and 0.05% for the key, relational and redaction
ACFs. The performance of integrated implementation is slightly
better than the performance of Vigiles implementation, where
the difference decreases when the number of users increases
due to higher running time of queries. On the other hand, the
performance difference of the sanitization ACF is 7.15%. As
discussed in previous experiments, the sanitization ACF suffers
from the poor compiler optimization of AspectJ.

VIII. CONCLUSION

To our knowledge, Vigiles is the first system that provides
a critical security component for MapReduce, FGAC, without
modifying the source code of MapReduce system. It realizes
a modular policy enforcement by rewriting the front-end
API of MapReduce system with RMs. Our empirical results
indicate Vigiles exhibits just 1% overhead compared to the
implementation that modifies Hadoop’s source code.
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