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Hardening COTS binary software products (e.g., via control-flow integrity (CFI) and/or soft-
ware fault isolation (SFI) defenses) is extremely complex in contexts where the surrounding
software environment includes closed-source, immutable, and possibly obfuscated binary
components, such as system libraries, OS kernels, and virtualization layers. It is demon-
strated that many code hardening algorithms, when applied only to the user-level software
products in such environments, leave open critical vulnerabilities that arise from mismatches
between the application-agnostic security policies enforced by the system modules versus the
application-specific policies enforced at the application layer. Similar challenges also exist

in web environments, which typically involve components of cross-language web scripts.

This dissertation proposes the first Control Flow Integrity system to successfully harden
multiple, large (millions of lines) binary Windows COTS software without sources. It im-
plements a prototype for Microsoft COM (largest production component-based architecture
in the world) with low overhead. Experiences developing and refining this approach for

Microsoft Windows environments are reported and discussed.

To evaluate and compare various CFI/SFI protections, the dissertation also introduces CON-
FIRM, a new evaluation methodology and benchmarking suite aimed at better assessing

compatibility, applicability, and relevance of CFI protections for preserving the intended
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semantics of real-world software while protecting it from abuse via hijacking. Reevaluation
of CFI/SFI solutions using CONFIRM reveals that there remain significant unsolved chal-
lenges in securing many large classes of software products with CFI/SFI, including software
for market-dominant OSes (e.g., Windows) and code employing certain ubiquitous coding

idioms (e.g., event-driven callbacks and delay-loaded components).

In addition, a method of detecting and interrupting unauthorized, browser-based crypto-
mining is proposed, based on semantic signature-matching. The approach addresses a new
wave of cryptojacking attacks, including XSS-assisted, web gadget-exploiting, counterfeit
mining. Evaluation shows that the approach is more robust than current static code analy-
sis defenses, which are susceptible to code obfuscation attacks. An implementation based on
in-lined reference monitoring offers a browser-agnostic deployment strategy that is applicable

to average end-user systems without specialized hardware or operating systems.
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CHAPTER 1

INTRODUCTION

Humans have been embracing the cyber age for decades. Productivity software improves
employees’ efficiency at work. Payment applications facilitate commerce. Entertainment
software dominates people’s free time. Cyber products and services permeate our lives. No
individual is able to completely avoid influence from cyber objects in today’s world.

Meanwhile, cybersecurity breaches increasingly frequent news headlines. A security issue
on Facebook impacts almost 50 million user accounts, potentially affording attackers access
to everything in victims’ accounts. A bug in Apple’s Facetime app can lead to potential
eavesdropping. For example, a Facetime bug discovered in 2019 allowed malicious iPhone
users to overhear merely by calling the victim’s iPhone, even if the victim does not accept the
call (Mayo, |2019). WannaCry ransomware attacks affect more than 200,000 computers across
150 countries (Satran| 2017). It attacks Microsoft Windows operating system machines by
encrypting data and demanding ransom payments via Bitcoin cryptocurrency.

These breaking news stories undoubtedly draw public attention to cybersecurity. Both
academia and industry attach increasing importance to this field. Due to its complexity,
researchers and engineers strive for protection by considering various aspects. Software se-
curity is one of the most significant and challenging categories of defense. Usually developers
take primary responsibility for the safety of their software products. During development,
they enforce security policies by analyzing and modifying application source code to harden
it against attack and avoid vulnerabilities. They also conduct various degrees of security
testing before the release of their products. After release, whenever new vulnerabilities are
discovered, developers release security patches to fix the vulnerabilities.

However, security-sensitive software consumers, such as military agencies, face a tough
challenge when it comes to selecting products. The most up-to-date, feature-filled, and well-

tested software tends to be commercial products whose developers prioritize sales, sometimes



at the expense of security. Security-sensitive consumers therefore thirst for a methodology
to automatically retrofit such commercial, binary software with augmented security dictated
by consumers.

Chapter [2] of this dissertation responds to this need by introducing object flow integrity

(OFI), which extends control-flow integrity (CFI) (Abadi et al.l 2009) and software fault iso-

lation (SFI) (Wahbe et al.| [1993) to a large class of previously unsupported software without

source code. CFI and SFT secure software against control-flow hijacking attacks by confining
its flows to a whitelist of permissible control-flow edges. The approach has proven successful

against some of the most dangerous, cutting-edge attack classes, including return-oriented

programming (ROP) (Roemer et all 2012)) and other code-reuse attacks (CRAs) (Bletsch
et al) [2011). Attacks in these families typically exploit dataflow vulnerabilities (e.g., buffer

overflows) to corrupt code pointers and thereby redirect control to attacker-chosen program
subroutines. By validating each impending control-flow target at runtime before it is reached,
CFI guards can often thwart these hijackings.

CFI and SFT frameworks work by statically instrumenting control-flow transfer instruc-
tions in vulnerable software with extra guard code that validates each computed jump desti-
nation at runtime. The instrumentation can be performed at compile-time (e.g.,
et al., 2008 [Abadi et al, 2009} Bletsch et al., 2011} Niu and Tan|, [2013] [2014blJa; [Tice et al.
2014} [Jang et all, 2014} Mashtizadeh et all 2015 [Niu and Tanl, 2015} [Zhang et al.| 2016}
Bounov et al., 2016} Tang, 2015)) or on sourceless binaries (e.g., (Wartell et al., |2012b; Zhang

let al., 2013} Zhang and Sekar, 2013; |Wang et al., 2015 Zhang et al., 2015} Payer et al., [ 2015];

Mohan et al. 2015; van der Veen et al. 2016])). This facility to harden source-free binary

software is important for securing software in-flight—allowing third parties to secure dynam-
ically procured binary software on-demand in a way that is transparent to code producers
and consumers—and for securing the large quantity of software that is closed-source, or that
incorporates software components (e.g., binary libraries) whose source code is unavailable to

code consumers.



While the past decade has witnessed rapid progress toward more powerful, higher per-
formance, and more flexible CFI enforcement strategies, there still remain large classes of
consumer software to which these technologies are extremely difficult to apply using existing
methods. Such limitations often stem from many source-aware CFI algorithms’ need for full
source code for the entire software ecosystem (e.g., even for the OS kernel, device drivers,
and complete runtime system) in order to properly analyze application control-flows, or the
difficulty of analyzing complex flows common to certain well-entrenched consumer software
paradigms, such as GUl-interactive, event-driven, and component-based software applica-
tions. For example, although CFI has been applied successfully to some large applications,
in our experience no CFI/SFI algorithm published in the literature to date (see Chapter @
successfully preserves and secures the full functionality of Windows Notepad—one of the
most ubiquitous consumer software products available.

The central problem is a lack of first-class support for architectures in which immutable,
trusted software components have huge object-oriented interfaces. Programs like Notepad
interact with users by displaying windows, monitoring mouse events, and sending printer
commands. At the binary level, this is achieved by calling runtime system API methods
that expect binary objects as input. The app-provided binary object contains a virtual
method table (vtable), whose members are subsequently called by the runtime system to
notify the app of window, mouse, and printer events. The call sites that target untrusted
code, and that CFI algorithms must instrument, are therefore not exclusively located within
the untrusted app code—many are within trusted system libraries that cannot be modified
(or sometimes even examined) by the instrumentation process, since they are part of the
protected runtime system.

Most CFI algorithms demand write-access to all system software components that may
contain unguarded, computed jumps—including the OS, all dynamically loaded libraries,

and all future updates to them—in order to ensure safety. In component-driven settings,



where modules are dynamically procured on-demand via a distributed network or cloud, this
is often impractical. Unfortunately, such settings comprise >98% of the world’s software
market [l including many mission-critical infrastructures that incorporate consumer software
components.

One approach for coping with this pervasive problem has been to secure objects passed
to uninstrumented modules at call sites within the instrumented modules, before the trusted
module receives them (e.g., (Tice et al.,[2014))). But this approach fails when trusted modules
retain persistent references to the object, or when their code executes concurrently with
untrusted module code. In these cases, verifying the object at the point of exchange does not
prevent the untrusted module from subsequently modifying the vtable pointer to which the
trusted module’s reference points (e.g., as part of a data corruption attack). We refer to such
attacks as COnfused DEputy-assisted Counterfeit Object-Oriented Programming (CODE-
COOP) attacks, since they turn recipients of counterfeit objects (Schuster et al. |2015) into
confused deputies (Hardy, [1988)) who unwittingly invoke policy-prohibited code on behalf of
callers.

Faced with such difficulties, many CFI systems conservatively resort to disallowing un-
trusted module accesses to trusted, object-oriented APIs to ensure safety. This confines such
approaches to architectures with few trusted object-oriented system APIs (e.g., Linux), ap-
plications that make little or no use of such APIs (e.g., benchmark or command-line utilities),
or platforms where the majority of the OS can be rewritten (e.g., ChromeOS (Tice et al.,
2014)). The majority of present-day software architectures that fall outside these restrictive
parameters have remained unsupported or receive only incomplete CFI security.

To bridge this longstanding gap, we introduce object flow integrity (OFI)—a systematic
methodology for imbuing CFI and SFI systems with first-class support for immutable, trusted

modules with object-oriented APIs. OFI facilitates safe, transparent flow of binary objects

Thttps://www.netmarketshare.com
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across trust boundaries in multi-module processes, without any modification to trusted mod-
ule code. To maintain the deployment flexibility of prior CFI/SFI approaches, OFI assumes
no access to untrusted application or trusted system source code; we assume only that trusted
interfaces are documented (e.g., via public C++ header files or IDL specifications).

Our prototype implementation showcases OFI’s versatility and scalability by targeting
the largest, most widely deployed object-oriented system API on the consumer software
market—Microsoft Component Object Model (COM) (Gray et all 1998). Most Windows
applications rely upon COM to display dialog boxes (e.g., save- and load-file dialogs), create
interactive widgets (e.g., ActiveX controls), or dynamically discover needed system services.
To handle these requests in a generalized, architecture-independent manner, COM imple-
ments an elaborate system of dynamic, shared module loading; distributed, inter-process
communication; and service querying facilities—all fronted by a vast, language-independent,
object-oriented programming interface. Consequently, COM-reliant applications (which con-
stitute a majority of consumer software today) have remained significantly beyond the reach
of CFI/SFI defenses prior to OFL

To keep our scope tractable, this dissertation does not attempt to address all research
challenges faced by the significant body of CFT literature. In particular, we do not explic-
itly address the challenges of optimizing the performance of the underlying CFI enforcement
mechanism, deriving suitable control-flow policies for CFI mechanisms to enforce (cf., (Schus-
ter et al., [2015))), or obtaining accurate native code disassemblies without source code (cf.,
(Wartell et all [2014)). Our goal is to enhance existing CFI/SFI systems with support for
a much larger class of target application programs and architectures without exacerbating
any of these challenges, which are the focuses of related works.

Chapter |3| reports experiences with this new interface-driven approach to securing com-
mercial binary software products with component-driven design, and large, object-oriented

APIs with thousands of vtable and method exchanges between dissimilar modules. The



approach statically synthesizes CFI/SFI-preserving wrapper modules for immutable system
modules from their interfaces. This facilitates a stronger form of SFI/CFI protection for
COTS binary Windows applications than was previously possible without modifying the OS
kernel and system libraries.

Chapter [4 next considers the problem of evaluating CFI solutions. There has been pro-
lific new research on CFI in recent years, mainly aimed at improving performance, enforcing
richer policies, obtaining higher assurance of policy-compliance, and protecting against more
subtle and sophisticated attacks. For example, between 2015-2018 over 25 new CFI algo-
rithms appeared in the top four applied security conferences alone. These new frameworks
are generally evaluated and compared in terms of performance and security. Performance
overhead is commonly evaluated in terms of the CPU benchmark suites (e.g., SPEC), and
security is often assessed using the RIPE test suite (Wilander et al.| [2011) or with manually
crafted proof-of-concept attacks (e.g., COOP (Schuster et al., [2015)). For example, a recent
survey systematically compared various CFI mechanisms against these metrics for precision,
security, and performance (Burow et al., [2017)).

While this attention to performance and security has stimulated rapid gains in the ability
of CFT solutions to efficiently enforce powerful, precise security policies, less attention has
been devoted to systematically examining which general classes of software can receive CFI
protection without suffering compatibility problems. Historically, CFI research has struggled
to bridge the gap between theory and practice (cf., (Zhang et al., 2013])) because code
hardening transformations inevitably run at least some risk of corrupting desired, policy-
permitted program functionalities. For example, introspective programs that read their own
code bytes at runtime (e.g., many VMs, JIT compilers, hot-patchers, and dynamic linkers)
can break after their code bytes have been modified or relocated by CFIL.

Compatibility issues of this sort have dangerous security ramifications if they prevent

protection of software needed in mission-critical contexts, or if the protections must be



weakened in order to achieve compatibility. For example, to avoid incompatibilities related
to C/C++ pointer arithmetic, the three most widely deployed compiler-based CFT solutions
(LLVM-CFT (Tice et al 2014), GCC-VTV (Tice et al., 2014), and Microsoft Visual Studio
MCFG (Tang, 2015)) all presently leave return addresses unprotected, potentially leaving
code vulnerable to ROP attacks—the most prevalent form of code-reuse.

Understanding these compatibility limitations, including their impacts on real-world soft-
ware performance and security, requires a new suite of CFI benchmarks with substantially
different characteristics than benchmarks typically used to assess compiler or hardware per-
formance. In particular, CFI relevance and effectiveness is typically constrained by the
nature and complexity of the target program’s control-flow paths and control data dependen-
cies. Such complexities are not well represented by SPEC benchmarks, which are designed
to exercise CPU computational units using only simple control-flow graphs, or by utility
suites (e.g., Gnu corelibs) that were all written in a fairly homogeneous programming style
for a limited set of compilers, and that use a very limited set of standard libraries chosen for
exceptionally high cross-compatibility.

To better understand the compatibility and applicability limitations of modern CFT so-
lutions on diverse, modern software products, and to identify the coding idioms and features
that constitute the greatest barriers to more widespread CFI adoption, Chapter [] presents
CoNFIRM (CONtrol-Flow Integrity Relevance Metrics), a new suite of CFI benchmarks de-
signed to exhibit code features most relevant to CFI evaluation. Our design of CONFIRM
is based on over 25 years of collective experience building and evaluating CFI systems for a
variety of architectures, including Linux, Windows, Intel x86/x64, and ARM32, in the Soft-
ware Languages Security Lab (SL)? at The University of Texas at Dallas. Each benchmark
is designed to exhibit one or more control-flow features that CFI solutions must guard in
order to enforce integrity, that are found in a large number of commodity software products,

but that pose potential problems for CFI implementations.



We used CONFIRM to reevaluate 9 publicly available CFI implementations published
in the open literature. The results show substantial performance differences and trade-offs
not revealed by prior CPU-based benchmarking. For example, tested CFI implementations
exhibit a median overhead of over 70% to secure returns, in contrast with average overheads
of about 3% reported in the prior literature for CPU benchmarks; and a new cross-thread
stack-smashing attack defeats all tested CFI defenses.

In addition, Chapter |5|introduces a source-free, component-driven software security hard-
ening approach to counter cryptojacking—the unauthorized use of victim computing re-
sources to mine and exfiltrate cryptocurrencies. Cryptojacking has recently emerged as one
of the fastest growing new web cybersecurity threats. Network-based cryptojacking attacks
increased 600% in 2017, with manufacturing and financial services as the top two targeted
industries, according to IBM X-Force (McMillen, 2017)). Adguard reported a 31% surge in
cryptojacking attacks in November 2017 alone (Meshkov, 2017). The Smominru botnet is
estimated to be earning its owners about $8,500 each week via unauthorized Monerd?| mining,
or an estimated $2.8-3.6 million total as of January 2018 (Kafeine, 2018).

The relatively recent escalation of cryptojacking threats can be traced to several con-
verging trends, including the emergence of new mining-facilitating technologies that make
cryptojacking easier to realize, next-generation cryptocurrencies that are easier to mine and
offer greater anonymity to criminals, and the rising value of cryptocurrencies (Lau, 2017).
Among the chiefs of these new technologies is WebAssembly (Wasm)f| a new bytecode lan-
guage for web browsers that affords faster and more efficient computation than previous web
scripting languages, such as JavaScript (JS). By implementing cryptomining algorithms in
Wasm, legitimate miners can make more efficient use of client computing resources to gener-

ate greater revenue, and attackers can covertly establish illicit mining operations on browsers

Zhttps://cointelegraph.com/news/monero
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around the world with only average hardware and computing resources, thereby achieving
the mass deployment scales needed to make cryptojacking profitable. For this reason, a
majority of in-browser coin miners currently use Wasm (Neumann and Toro, 2018]).

Unfortunately, this availability of transparent cryptomining deployment models is blur-
ring distinctions between legitimate, legal cryptomining and illegitimate, illegal cryptojack-
ing. For example, in 2015, New Jersey settled a lengthy lawsuit against cryptomining com-
pany Tidbit, in which they alleged that Tidbit’s browser-based Bitcoin mining software
(which was marketed to websites as a revenue-generation alternative to ads) constituted
“access to computers ... without the computer owners’ knowledge or consent” (OAG, New
Jersey| [2015). The definition and mechanism of such consent has therefore become a cen-
tral issue in protecting users against cryptojacking attacks. For example, numerous top-
visited web sites, including Showtime (Liao, 2017)), YouTube (Goodin, 2018)), and The Pirate
Bay (Hruska, 2017), have come under fire within 2017-2018 for alleged cryptojacking attacks
against their visitors. In each case, cryptocurrency-generation activities deemed consensual
by site owners were not deemed consensual by users.

In order to provide end-users an enhanced capability to detect and consent to (or opt-out
of) browser-based cryptomining activities, Chapter [5| investigates the feasibility of seman-
tic signature-matching for robustly detecting the execution of browser-based cryptomining
scripts implemented in Wasm. We find that top Wasm cryptominers exhibit recognizable
computation signatures that differ substantially from other Wasm scripts, such as games.
To leverage this distinction for consent purposes, we propose and implement SEcure In-lined
Script Monitors for Interrupting Cryptojacks (SEISMIC). SEISMIC automatically modifies
incoming Wasm binary programs so that they self-profile as they execute, detecting the echos
of cryptomining activity. When cryptomining is detected, the instrumented script warns the
user and prompts her to explicitly opt-out or opt-in. Opting out halts the script, whereas

opting in continues the script without further profiling (allowing it to execute henceforth at

full speed).



This semantic signature-matching approach is argued to be more robust than syntactic
signature-matchers, such as n-gram detectors, which merely inspect untrusted scripts syn-
tactically in an effort to identify those that might cryptomine when executed. Semantic
approaches ignore program syntax in favor of monitoring program behavior, thereby evading
many code obfuscation attacks that defeat static binary program analyses.

Instrumenting untrusted web scripts at the Wasm level also has the advantage of of-
fering a browser-agnostic solution that generalizes across different Wasm virtual machine
implementations. SEISMIC can therefore potentially be deployed as an in-browser plug-in,
a proxy service, or a firewall-level script rewriter. Additional experiments on CPU-level in-
struction traces show that semantic signature-matching can also be effective for detection of
non-Wasm cryptomining implementations, but only if suitable low-level instruction tracing
facilities become more widely available on commercial processors.

In summary, the remainder of this dissertation proceeds as follows: Chapter [2| describes
the OFI (Wang et al., 2017)) algorithm, framework, and implementation. A detailed case
study (Xu et al., 2018) of OFT is reported in Chapter . Chapter |4 demonstrates an eval-
uation methodology and benchmarcking suite to measure applicability, compatibility, and
performance characteristics relevant to control-flow security hardening evaluation. Chap-
ter |b| presents a Wasm in-line script monitoring system, SEISMIC (Wang et al.,|2018]), which
instruments Wasm binaries with mining sensors. Finally, Chapter [0] discusses related works

and Chapter [7] summarizes conclusions.
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CHAPTER 2

OBJECT FLOW INTEGRITY(]

2.1 Introduction

Control-flow integrity (CFI) (Abadi et al., 2009) and software fault isolation (SFI) (Wahbe!

1993) secure software against control-flow hijacking attacks by confining its flows to a
whitelist of permissible control-flow edges. The approach has proven successful against some

of the most dangerous, cutting-edge attack classes, including return-oriented programming

(ROP) (Roemer et al., 2012) and other code-reuse attacks (CRAs) (Bletsch et al., [2011)).

Attacks in these families typically exploit dataflow vulnerabilities (e.g., buffer overflows) to
corrupt code pointers and thereby redirect control to attacker-chosen program subroutines.
By validating each impending control-flow target at runtime before it is reached, CFI guards
can often thwart these hijackings.

CFI and SFT frameworks work by statically instrumenting control-flow transfer instruc-
tions in vulnerable software with extra guard code that validates each computed jump des-

tination at runtime. The instrumentation can be performed at compile-time (e.g., |Akritidis

et al.| (2008); [Abadi et al| (2009); Bletsch et al] (2011)); [Niu and Tan| (2013} [2014bla)); Tice]

et al.| (2014)); Jang et al.| (2014)); Mashtizadeh et al. (2015); |[Niu and Tan| (2015); |Zhang et al.|

(2016)); Bounov et al.| (2016); Tang (2015)) or on sourceless binaries (e.g., [Wartell et al.

(2012b)); Zhang et al.| (2013)); Zhang and Sekar| (2013); Wang et al| (2015); Zhang et al.|

(2015)); [Payer et al| (2015)); Mohan et al. (2015); van der Veen et al| (2016))). This facility

to harden source-free binary software is important for securing software in-flight—allowing

third parties to secure dynamically procured binary software on-demand in a way that is

!This chapter contains material previously published as: Wenhao Wang, Xiaoyang Xu, and Kevin W.
Hamlen. “Object Flow Integrity.” In Proceedings of the 19th ACM Conference on Computer and Communi-
cations Security (CCS), pp. 1909-1924, November 2017.
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transparent to code producers and consumers—and for securing the large quantity of soft-
ware that is closed-source, or that incorporates software components (e.g., binary libraries)
whose source code is unavailable to code consumers.

While the past decade has witnessed rapid progress toward more powerful, higher per-
formance, and more flexible CFI enforcement strategies, there still remain large classes of
consumer software to which these technologies are extremely difficult to apply using existing
methods. Such limitations often stem from many source-aware CFI algorithms’ need for full
source code for the entire software ecosystem (e.g., even for the OS kernel, device drivers,
and complete runtime system) in order to properly analyze application control-flows, or the
difficulty of analyzing complex flows common to certain well-entrenched consumer software
paradigms, such as GUl-interactive, event-driven, and component-based software applica-
tions. For example, although CFI has been applied successfully to some large applications,
in our experience no CFI/SFI algorithm published in the literature to date (see §6|) suc-
cessfully preserves and secures the full functionality of Windows Notepad—one of the most
ubiquitous consumer software products available.

The central problem is a lack of first-class support for architectures in which immutable,
trusted software components have huge object-oriented interfaces. Programs like Notepad
interact with users by displaying windows, monitoring mouse events, and sending printer
commands. At the binary level, this is achieved by calling runtime system API methods
that expect binary objects as input. The app-provided binary object contains a virtual
method table (vtable), whose members are subsequently called by the runtime system to
notify the app of window, mouse, and printer events. The call sites that target untrusted
code, and that CFI algorithms must instrument, are therefore not exclusively located within
the untrusted app code—many are within trusted system libraries that cannot be modified
(or sometimes even examined) by the instrumentation process, since they are part of the

protected runtime system.
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Most CFI algorithms demand write-access to all system software components that may
contain unguarded, computed jumps—including the OS, all dynamically loaded libraries,
and all future updates to them—in order to ensure safety. In component-driven settings,
where modules are dynamically procured on-demand via a distributed network or cloud, this
is often impractical. Unfortunately, such settings comprise >98% of the world’s software
marketE] including many mission-critical infrastructures that incorporate consumer software
components.

One approach for coping with this pervasive problem has been to secure objects passed
to uninstrumented modules at call sites within the instrumented modules, before the trusted
module receives them (e.g., Tice et al.| (2014)). But this approach fails when trusted modules
retain persistent references to the object, or when their code executes concurrently with
untrusted module code. In these cases, verifying the object at the point of exchange does not
prevent the untrusted module from subsequently modifying the vtable pointer to which the
trusted module’s reference points (e.g., as part of a data corruption attack). We refer to such
attacks as COnfused DEputy-assisted Counterfeit Object-Oriented Programming (CODE-
COOP) attacks, since they turn recipients of counterfeit objects (Schuster et al., |2015]) into
confused deputies (Hardy, [1988)) who unwittingly invoke policy-prohibited code on behalf of
callers.

Faced with such difficulties, many CFI systems conservatively resort to disallowing un-
trusted module accesses to trusted, object-oriented APIs to ensure safety. This confines such
approaches to architectures with few trusted object-oriented system APIs (e.g., Linux), ap-
plications that make little or no use of such APIs (e.g., benchmark or command-line utilities),
or platforms where the majority of the OS can be rewritten (e.g., ChromeOS (Tice et al.,
2014))). The majority of present-day software architectures that fall outside these restrictive

parameters have remained unsupported or receive only incomplete CFI security.

Zhttps:/ /www.netmarketshare.com
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To bridge this longstanding gap, we introduce object flow integrity (OFI)—a systematic
methodology for imbuing CFI and SFI systems with first-class support for immutable, trusted
modules with object-oriented APIs. OFI facilitates safe, transparent flow of binary objects
across trust boundaries in multi-module processes, without any modification to trusted mod-
ule code. To maintain the deployment flexibility of prior CFI/SFI approaches, OFI assumes
no access to untrusted application or trusted system source code; we assume only that trusted
interfaces are documented (e.g., via public C++ header files or IDL specifications).

Our prototype implementation showcases OFI’s versatility and scalability by targeting
the largest, most widely deployed object-oriented system API on the consumer software
market—Microsoft Component Object Model (COM) (Gray et all 1998). Most Windows
applications rely upon COM to display dialog boxes (e.g., save- and load-file dialogs), create
interactive widgets (e.g., ActiveX controls), or dynamically discover needed system services.
To handle these requests in a generalized, architecture-independent manner, COM imple-
ments an elaborate system of dynamic, shared module loading; distributed, inter-process
communication; and service querying facilities—all fronted by a vast, language-independent,
object-oriented programming interface. Consequently, COM-reliant applications (which con-
stitute a majority of consumer software today) have remained significantly beyond the reach
of CFI/SFI defenses prior to OFL

To keep our scope tractable, this chapter does not attempt to address all research chal-
lenges faced by the significant body of CFTI literature. In particular, we do not explicitly
address the challenges of optimizing the performance of the underlying CFI enforcement
mechanism, deriving suitable control-flow policies for CFI mechanisms to enforce (cf., Schus-
ter et al.| (2015))), or obtaining accurate native code disassemblies without source code (cf.,
Wartell et al|(2014])). Our goal is to enhance existing CFI/SFI systems with support for a
much larger class of target application programs and architectures without exacerbating any

of these challenges, which are the focuses of related works.
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In summary, our contributions are as follows:

o We introduce a general methodology for safely exchanging binary objects across inter-
module trust boundaries in CFI/SFI-protected programs without varying trusted module

code.

o A prototype implementation for Microsoft COM demonstrates that the approach is feasi-

ble for large, complex, object-oriented APIs on the order of tens of thousands of methods.

o A significant portion of the implementation is shown to be synthesizable automatically

through a novel approach to reflective C++ programming.

o Experimental evaluation indicates that OFI imposes negligible performance overhead for

some common-case, real-world applications.

Section begins with an examination of CODE-COOP attacks and how they manage
to evade incomplete CFI protections applied to source-free, component-based software. Sec-
tion presents OFI’s approach to addressing these dangers. Our prototype implementation

and its evaluation is presented in Sections [2.4 and [2.5] respectively. Section [2.6] concludes.

2.2 Background
2.2.1 Inter-module Object Flows

To motivate OFI’s design, Listing presents typical C++ code for creating a standard
file-open dialog box on a COM-based OS, such as Windows. The untrusted application
code first creates a shared object oy (line [I)), where (clsid) and (iid;) are global numeric
identifiers for the system’s FileOpenDialog class and IFileOpenDialog interface of that
class, respectively. Method Show is then invoked to display the dialog (line [2)).

While executing Show, the trusted system module separately manipulates object oy, in-

cluding calling its QueryInterface method to obtain a new interface o, for the object, and
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Untrusted Module
1 CoCreatelnstance({clsid), . .., (iid), &oy);

2 0—Show(...); Trusted Module

3 01— Querylnterface((7ids), &02);
4 0o—GetOptions(. . .);

5 0s—Release();

6 0;—GetResult(&03);
7 03— GetDisplayName(. . .);
8 03— Release();

9 o,—Release();

Listing 2.1. Code that opens a file-save dialog box
invoking its methods (lines . Once the user has finished interacting with the dialog and
it closes, the untrusted module calls 0,’s GetResult method to obtain an IShellItem inter-
face o3 whose GetDisplayName method discloses the user’s file selection (lines [6H7). Finally,
the untrusted module releases the shared objects (lines [8-9).

Safely supporting this interaction is highly problematic for CFI frameworks. All method
calls in Listing target non-exported functions located in trusted system libraries. The
function entry points are only divulged to untrusted modules at runtime within vtables of
shared object data structures produced by trusted modules. By default, most CFI policies
block such control-flows as indistinguishable from control-flow hijacking attacks.

If one whitelists these edges in the control-flow policy graph to permit them, a signifi-
cant new problem emerges: Each method call implicitly passes an object reference (the this
pointer) as its first argument. A compromised, untrusted module can therefore pass a coun-
terfeit object to the trusted callee, thereby deputizing it to commit control-flow violations
when it invokes the object’s counterfeit method pointers.

One apparent solution is to validate these object references on the untrusted applica-

tion side at the time they are passed, but this introduces a TOCTOU vulnerability: Since
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shared COM objects are often dynamically allocated in writable memory, a compromised or
malicious application can potentially modify the object’s vtable pointer or its contents after
passing a reference to it to a trusted module. Trusted modules must therefore re-validate
all code pointers at time-of-use to ensure safety, but this breaks CFI’s deployment model

because it necessitates rewriting all the system libraries.

2.2.2 CODE-COOP Attacks

Listing[2.2) demonstrates the danger with a common Windows COM programming idiom that
is vulnerable to CODE-COQOP attack even with CFI protections enabled for all application-
provided modules. Linesdynamieally load a COM library (e.g., dnscmme.dll) and invoke
its D11GetClassObject function to obtain an object reference ol. Line (13| later obtains a
new interface 02 to the object.

A data corruption vulnerability (e.g., buffer overwrite) in line 10| can potentially allow an
attacker to replace ol’s vtable with a counterfeit one. CFI protections guarantee that line
nevertheless targets a valid QueryInterface implementation, but if the process address
space contains any system COM library that has not undergone CFI instrumentation, the
attacker can redirect line [13| to an unguarded QueryInterface. Since all QueryInterface
implementations internally call other methods on ol (e.g., AddRef), the attacker can corrupt
those to redirect control arbitrarily.

To demonstrate this, we compiled and executed Listing on Windows 10 (Enterprise
1511, build 10586.545) with Microsoft Control Flow Guard (MCFG) (Tang, 2015) enabled,
and nevertheless achieved arbitrary code execution. MCFG is a Visual Studio addition that
compiles CFI guard code into indirect call sites, including line [I3] The guards constrain
the sites to a whitelist of destinations. Most Windows 10 system libraries are compiled
with MCFG enabled so that their call sites are likewise protected, but many are not. We

counted 329 unprotected system libraries on a clean install of Windows 10—many of them
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1 LPCTSTR IpFileName = TEXT("dnscmmc.dIl");

2 HMODULE hModule;

3 IUnknown xo1;

4 HRESULT(WINAPI xIpGCO)(REFCLSID, REFIID, LPVOIDx);

6 hModule = LoadLibrary(IpFileName);
7 (FARPROC&) IpGCO = GetProcAddress(hModule, "DIlGetClassObject");
8 IpGCO((clsid), (iid,), (LPVOID%) &o1l);

10 // ... code containing a data corruption vulnerability ...

12 IUnknown *02;
13 o1—QuerylInterface((7idz), (LPVOID%) &02);

Listing 2.2. CODE-COOP attack vulnerability

in the form of legacy libraries required for backward compatibility. (For example, some have
binary formats that predate COFF, and are therefore incompatible with MCFG.) These
include dnscmme.dll (the DNS Client Management Console), which Listing exploits. If
an attacker can contrive to load any of them (e.g., through dll injection or by corrupting
variable IpFileName in line @, CODE-COOP attacks become threats. Since COM services
obtain libraries dynamically and remotely on-demand, replacement of all 329 of the libraries
we found with CFI-protected versions is not an antidote—universal adoption of MCFG across
all software vendors and all module versions would be required.

Moreover, even universal adoption of MCFG is insufficient because MCFG cannot protect
returns in component-based applications, which are the basis of many code-reuse attacks
(e.g., ROP). Stronger CFI systems that do protect returns must likewise universally modify

all binary components or suffer the same vulnerability. We consider the existence of at least
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some uninstrumented modules to be a practical inevitability in most deployment contexts;
hence, we propose an alternative approach that augments arbitrary existing CFI approaches

to safely tolerate such modules without demanding write-access to system code.

2.3 Design
2.3.1 Object Proxying

OFT solves this problem by ensuring that trusted callee modules (i.e., potential deputies)
never receive writable code pointers from untrusted, CFI-protected callers. Achieving this
without breaking intricate object exchange protocols and without demanding full source code
requires careful design. Our solution centers around the idea of proxy objects. Each time an
object flows across an inter-module trust boundary, OFI delivers a substitute proxy object

to the callee. There are two kinds of proxies in OFI:

e Floor prozy objects |o] are delivered to trusted callees when an untrusted caller attempts
to pass them an object o. (Floor objects are so-named because higher-trust tenants see

them when “looking down” toward low-trust objects).

 Ceiling proxy objects [o] are delivered to untrusted callees when a trusted caller attempts
to pass them an object 0. (Low-trust tenants see them when “looking up” toward high-

trust objects.)

Functions |-| and [-] are inverses, so | [o]|]| = [|o]] = o. Thus, if one tenant passes an object
to another, who then passes it back, the original tenant receives back the original object,
making the proxying transparent to both parties.

At a high level, proxy objects are in-lined reference monitors (IRMs) (Schneider] |2000)
that wrap and mediate access to the methods of the objects they proxy. When called,

their methods must (1) enforce control-flow and dataflow guards that detect and prevent
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impending CFI violations, and (2) seamlessly purvey the same services as the object they
proxy (whenever this does not constitute an integrity violation). In the literature, these
requirements are known as IRM soundness and transparency (Hamlen et al., 2006; Ligatti
et al.,|2009). The soundness property enforced by a proxy object can be formalized as a type-
based contract derivable from the method’s type signature, as detailed in §2.3.2} transparency
is achieved by the proxy’s reversion to the original object’s programming whenever the
contract is satisfied.

When applying OFI to binary code without source code, it is not clear where to inject
guard code that introduces these proxy objects. All of the calls in Listing [2.1] take the form of
computed jump instructions at the binary level, whose destinations cannot generally be stat-
ically predicted. Injecting guard code that accommodates every possible proxy scenario at
every computed jump instruction in the program would introduce unacceptable performance
overhead.

To avoid this, OFI adopts a lazy, recursive approach to object proxying: At object cre-
ation points, OFI substitutes the created objects with proxy objects whose methods are
mediators that enforce CFI guards before falling through to the proxied object’s original
programming. The mediators recursively introduce a new layer of proxying for any po-
tentially insecure objects being passed as arguments. Thus, proxying occurs dynamically,
on-demand, as each method is called by the various principals and with various object ar-
guments. For example, OFI transforms line @ so that [o;]—GetResult points to mediator
method GetResult_vaulter, whose implementation calls o;—GetResult with this pointer
equal to |[o1]] = o;. When control returns to the mediator, it replaces out-argument og
with [o3] and then returns to the untrusted caller. We refer to proxy methods that me-
diate low-to-high calls followed by high-to-low returns as vaulters, and those that mediate
high-to-low calls followed by low-to-high returns as bouncers.

CODE-COOQOP attacks that attempt to deputize object recipients by corrupting proxy

vtables are thwarted by storing proxy objects entirely within read-only memory. This is

20



— ‘
I J T
: direct vaulter(s) I :
5 \ |
Trampoline Pool || l ‘ ‘
call return_trampoline Vau t . .
5 1 call veult dispacch l LA Disnatch indirect vaulter(s)l | .
_O call vault_dispatch : ISpate : : fm
o ! ‘ Mediators ‘ =
= e ] | 2
= V-Trampoline Pool || | V-Vault \ —— 1 =
S g call v-vault_dispatch | > Dispatch virtual vaulter(s) — 3
- call v-vauit_dispatch : L : : 2
L e e down | indirect Bounce Chute Pool °
1) | | 3 call bounce_dispatch 3
= ! up | bouncer(s) [ | | Dispatch : @
-E | return ‘ ‘ call bounce_dispatch E
) 1 Lo . =
[ trampoline [ ! |
[ : down | virtual | | V-Bounce V-Chute Pool
| T . call vfboun.ce_dlspatch <
: up | bouncer(s) Dispatch |_ P
low memory hlgh memory | | . call v-bounce_dispatch
‘- 4000 7PN N “—

Figure 2.1. Cross-module OFI control-flows

possible because proxy objects need no writable data; modern object exchange protocols like
COM and CORBA require object recipients to access any data via accessor methods (e.g.,
to accommodate distributed storage), while the object’s creator may access in-memory data
fields directly. Thus, OFI proxies consist only of a fixed vtable and no data. Moreover, to
avoid overhead associated with dynamically allocating them, our design assigns all proxy
objects the same vtable. This allows the entire proxy object pool to be efficiently imple-
mented as a single, read-only physical page of memory (possibly allocated to multiple virtual
pages) filled with the shared vtable’s address. Each such vtable pointer constitutes a com-
plete proxy object, ready to be used as a fresh proxy during mediation. The vtable methods
all call a central dispatcher method that consults the call stack to determine which proxy
object and virtual method is the desired destination, and invokes the appropriate mediator
implementation.

Figure [2.T]illustrates the resulting control-flows. When an untrusted module attempts to
call a method of a shared object, the code pointer it dereferences points into a v-trampoline
pool consisting of direct call instructions that all target OFI’s v-vault dispatch subroutine.
The dispatcher pops the return address pushed by the v-trampoline pool to determine the

index of the method being called, and consults the stack’s this pointer to determine the
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object. Based on this information, it selects and tail-calls the appropriate virtual vaulter
mediator. The vaulter proxies any in-arguments, calls the trusted module’s implementation
of the method, then proxies any out-arguments, and returns to the caller.

In the reverse direction, trusted modules call into a chute pool that targets OFI’s bounce
dispatch subroutine, which dispatches control to a virtual bouncer. To safely accommodate
the return of the untrusted callee to the trusted caller (which constitutes a control-flow edge
from untrusted code to a non-exported trusted address, which many CFT policies prohibit),
the bouncer replaces the return address with the address of a special return trampoline that
safely returns control to the “up” half of the bouncer implementation.

This approach generalizes to direct untrusted-to-trusted calls and indirect (non-virtual)
untrusted-to-trusted calls, which are both represented atop Figure [2.1. Direct calls are
statically identifiable by (both source-aware and source-free) CFI, and are therefore stati-
cally replaced with a direct call to a corresponding direct vaulter implementation. Indirect,
inter-module calls dereference code pointers returned by the system’s dynamic linking API
(e.g., dlsym() or GetProcAddress() on Posix-based or Windows-based OSes, respectively).
OFT redirects these to trampoline pool entries that dispatch appropriate indirect vaulters.
(Dynamic linking can also return pointers to statically linked functions, in which case the
dispatcher targets a direct vaulter.)

Another benefit of this proxy object representation strategy is its natural accommoda-
tion of subclassing relationships. Callees with formal parameters of type Cy may receive
actual arguments of any subtype C; <: Cy; likewise, callers expecting return values or out-
arguments of type Cy may receive objects of any subtype C; <: Cy. It is therefore essential

that proxy objects obey a corresponding subtyping relation that satisfies
Cy <: Co = (|C1) <: |Col) A ([C1] <: [Col) (2.1)
in order to preserve computations that depend on subtyping.
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Figure 2.2. Proxy object binary representation

At the binary level, object vtables support inheritance as illustrated in Figure
ordering method pointers from most to least abstract class allows code expecting a more
abstract class to transparently access the prefix of the vtable that is shared among all its
subclasses. Instantiating all proxy objects with a shared, fixed vtable therefore allows all
proxy objects to transparently subtype all other proxy objects (since their vtables are identi-
cal). This avoids introducing and consulting potentially complex runtime typing information
for each object, which would lead to additional overhead related to protecting that informa-

tion from malicious tampering.

2.3.2 Type-based Contracts

In order to reliably synthesize and interpose its mediation logic into all trust boundary-
crossing method calls, OFI must base its mediation on a description of each interface that
links the communicating modules. Since interfaces are collections of method type signatures,
OFTI therefore enforces a type-based contract (Findler and Felleisen, 2002) between caller and
callee. That is, each trusted interface method’s type signature encodes a set of contrac-
tual obligations on code pointers that must be enforced by OFI to ensure CFI-compliant
operation. This type-theoretic foundation is essential for scalably automating OFI for large

interfaces.
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T:U =1 (security-irrelevant byte)
| 71 X 7y (structures)
| 7° (arrays)
| 71+ 72 (unions)
| C (shared object classes)
| T —ee T (functions)
| [dir] T (pointers)
| Swiry f (dependent pairs)
| putr |t (recursive datatypes)

s =mn | ZT (zero-terminated) (array sizes)
neN (numeric constants)
f:N—=>U (type dependencies)
dir ::= in | out | inout (argument directions)
cc := callee_pop | caller pop (calling conventions)

Figure 2.3. A type system for expressing CFI obligations as OFI contracts

Figure defines OFI contracts as a core subset of the type system used by major
interface description languages, such as MIDL and CORBA IDL (Exton et al., [1997), for
component communication. Interface methods have types 7 —.. 7/, which denote functions
from an argument list of type 7 to a return value of type 7/. Calling convention annotation
cc is used by OFTI to preserve and secure the call stack during calls. Classes, structures, and
function argument lists are encoded as tuples 71 X 7 X --- X 7,, which denote structures
having n fields of types 7,...,7,, respectively. For convenience, named classes are here
written as named types C' (in lieu of writing out their usually large, recursive type signa-
tures). Static-length arrays and zero-terminated strings have repetition types 7" and 7%,
respectively. Pointer arguments whose referents are provided by callers (resp. callees) have
type [in]7T* (resp. [out]7x). Those with a caller-supplied referent that is replaced by the
callee before returning use bidirectional annotation [inout]. Self- or mutually-referential

types are denoted by ut.7, where 7 is a type that uses type variable ¢ for recursive reference.
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For example, Listing [2.1]s GetResult method has type
GetResult : ([111] CYIFD”< X [out] C&SI"‘) %callee_pop J—4 (22)

where Cipp and Cigr are the types of the IFileDialog and IShellItem interfaces. This
type reveals that a correct vaulter for GetResult must replace the first stack argument (i.e.,
the this pointer) with a floor proxy of type |Cigp]| before invoking the trusted callee, and
then replace the second stack argument with a ceiling proxy of type [Cigr| before returning
to the untrusted caller.

In addition to the usual types found in C, we found that we needed dependent pair types
Y(vir)f in order to express many API method contracts. Values with such types consist of a
field v of some numeric type 7, followed by a second field of type f(v). Function f derives
the type of the second field from value v. For example, the contract of QueryInterface is

expressible as:

QueryInterface : [in] Cpp* X
iy (7id = (iid;) = [out] Cy* (2.3)
| 4id = (iidy) = [out]Co* | +++) —bcartee pop L'

This type indicates that the second stack argument is a 16-byte (128-bit) integer that iden-
tifies the type of the third stack argument. If the former equals (7id;), then the latter has
type [out] %, etc.

There is a fairly natural translation from interface specifications expressed in C/C++
IDLs, such as SAL, to this type system. Products (x), repetition (7%), sums (+), classes
(C), functions (—), pointers (x), and datatype recursion (u) are expressed in C++ datatype
definitions as structures, arrays, unions, shared classes, function pointers/references, and
type self-reference (or mutual self-reference), respectively. SAL annotations additionally

specify argument directions and array bounds dependencies. Special dependencies involving
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Figure 2.4. Mediator enforcement of OFI contracts

class and interface identifiers, such as those in QueryInterface’s contract, can be gleaned

from the system-maintained list of registered classes and interfaces.

OFT contract types are then automatically translated into effective procedures for en-
forcing the contracts they denote (i.e., mediator implementations). Figure details the
translation algorithm in the style of a denotational semanticﬂ where &,[7] dp yields a pro-

cedure for enforcing the contract denoted by type 7 with proxying function z € {|-|,[-]} in

call-direction d € {in, out} on the bytes at address p.

For example, valuation function &|.|[Tcetresu1t](in)(&GetResult) yields the implementa-

tion of GetResult_vaulter, where Tgetpesuit is the type in equation 2.2l The implementation

3Here, notation |7| denotes the size of data having type 7.
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first copies caller stack frame 7 to a secure callee-owned stack (line[l). It then enforces the
in-contract for 7 (line , which replaces the argument of type Cirp with a proxy of type
| Cirp |, before invoking GetResult (line(3). Upon return, the out-contracts for return type 7’
and frame 7 are enforced (lines . In this case, return type 7/ = L* is security-irrelevant,
but the out-contract for 7 demands replacing stack object Cisy with proxy [Cigr]. Finally,
the frame of the participant (wviz., caller or callee) that did not already clean its stack is
popped (line [6), and control returns to the caller (line [7)). (The first and last steps are
required because OFT separates untrusted and trusted stacks for memory safety, temporarily
duplicating the shared frame.)

Each contract enforcement (lines and entails recursively parsing the binary
datatypes of Figure [2.3| and substituting code pointers with pointers to mediators that en-
force the proper contracts. Structure, array, and union contracts are enforced by recursively
enforcing the contracts of their member types. Function pointer contracts are enforced by
lazily replacing them with mediator pointers, shared class contracts are enforced by proxying,
and other pointer contracts are enforced by eagerly dereferencing the pointer and enforcing
the pointee’s contract. Dependent pairs are enforced by resolving the dependency to obtain
the appropriate contract for the next datum. Finally, recursive types are enforced as a loop
that lazily unrolls the type equi-recursively (Crary et al., |1999).

An OFT implementation can enforce the contract implied by a trusted interface by im-
plementing mediator algorithm £.|[7 —. 7'[(in) for each method signature 7 —, 7’ in
the interface. Such mediators are vaulter implementations. Some rules in Figure invert
proxy function z, prompting the enforcement to also implement bouncer mediators of the
form Ep1[7 —¢ 7']. These mediate callbacks, such as those commonly used in event-driven
programming. Bouncers also mediate methods by which trusted modules initiate unsolicited
contact with untrusted modules, such as those that load untrusted libraries and invoke their

initializers.
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2.3.3 Trust Model

OFT’s attacker model assumes that original, untrusted modules may be completely malicious,
containing arbitrary native code, but that they have been transformed by CFI/SFI into code
compliant with the control-flow policy. The transformed code monitors and constrains all
security-relevant API calls and their arguments as long as control-flow stays within the
sandbox (cf., Abadi et al.| (2009); Wartell et al. (2012b))). Malicious apps must therefore first
escape the control-flow sandbox before they can abuse system APIs to do damage. OFT blocks
escape attempts that abuse call sites in immutable modules that depend on objects or code
pointers supplied by instrumented modules. It thereby extends whatever policy is enforced
by the underlying CFI/SFI mechanism to those call sites. In order to defeat CODE-COOP
attacks, the underlying CFI/SFI must therefore enforce a COOP-aware policy (Schuster
et al], [2015)) for OFT to extend (see §6.5).

Control-flow policies consist of a (possibly dynamic) graph of whitelisted control-flow
edges that is consulted and enforced by CFI/SFI guard code before each control-flow transfer
from untrusted modules (but not before those from trusted modules). OFI requires that this
graph omit edges directly from low- to high-trust modules; such edges must be replaced with
edges into OFT’s trampoline pools, to afford OFI complete mediation of such transfers.

A facility for read-only, static data is required for OFI to maintain tamper-proof proxy
objects. This can be achieved by leveraging CFI/SFI to restrict untrusted access to the
system’s virtual memory API—untrusted modules must not be permitted to enable write-
access to OFI-owned data or code pages.

To prevent untrusted modules from directly tampering with trusted modules’ data, some
form of memory isolation is required. SFI achieves this by sandboxing all memory-writes by
untrusted modules (e.g., Wahbe et al.| (1993); McCamant and Morrisett| (2006))). CFI lever-
ages control-flow guards to enforce atomic blocks that guard memory-writes (e.g., Kuznetsov

et al.| (2014); Erlingsson et al.| (2006); Nagarakatte et al. (2010)).
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Data fields of shared objects are conservatively treated as private; non-owners must ac-
cess shared object data via accessor methods. This is standard for interfaces that support
computing contexts where object locations cannot be predicted statically (e.g., in a dis-
tributed computations), including all COM interfaces. This affords the accessor methods
an opportunity to dynamically fetch or synchronize requested data fields when they are not
available locally.

Our design of OFTI is carefully arranged to require almost no persistent, writable data
of its own, eliminating the need to protect such data within address spaces shared by OFI
with malicious modules. In multithreaded processes, OFI therefore conservatively stores its
temporary data in CPU registers or other secured, thread-local storage spaces. There are

three exceptions:

Dynamic CFGs. If the control-flow policy is dynamic (e.g., new edges become whitelisted
during dynamic linking), then OFI requires a safe place to store the evolving policy graph.

This is typically covered by the underlying SFI/CFTI’s self-integrity enforcement mechanisms.

Object Inverses. A small hash table associating objects with their proxies is required, in
order to compute inverses |[-]| and [|-|]. This can be confined to dedicated memory pages,
admitting the use of efficient, OS-level memory protections. For example, on Windows
desktop OSes we allocate a shared memory mapping to which a separate memory-manager
process has write access, but to which the untrusted process has read-only access. OFI
modules residing in untrusted processes can then use lightweight RPC to write to the hash
table. CFI protections prevent untrusted modules from accessing the RPC API to perform

counterfeit writes.

Reference Counts. To prevent double-free attacks, in which an untrusted module im-
properly frees objects held by trusted modules, object proxies maintain reference counts
independent from the objects they proxy. When the proxy is first created, OFI increments

the proxied object’s reference count by one. Thereafter, acquires and releases of the proxy
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Figure 2.5. REINS system architecture

are not reflected to the proxied object; they affect only the proxy object’s reference count.
When the proxy’s reference count reaches zero, it decreases the proxied object’s reference
count by one and frees itself. Proxy object reference counters are stored within the secure

hash table entries (see above) to prevent tampering.

2.4 Implementation
2.4.1 Architecture

Our prototype implementation of OFI extends the REINS system (Wartell et al., 2012b).
We chose REINS because it realizes fully source-free SFI+CFI (including no reliance on
symbol files), and it supports Windows platforms. This affords an aggressive evaluation of
OFT’s design in austere contexts that lack the benefits of source code and that must support
extensive, complex object-oriented APIs, such as COM. Prior to the introduction of OFI
enhancements, REINS could not support COM-dependent features of any target application;
triggering such features induced its CFI protections to prematurely abort the application
with a security violation.

Figure 2.5 depicts the system architecture. Untrusted native code binaries are first disas-

sembled to obtain a conservative control-flow graph (CFG) policy. The policy dictates that
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only the control-flow paths statically uncovered and analyzed by the disassembly process are
permissible. A binary rewriting module then injects guard code at all control-flow transfer
sites to constrain all flows to the CFG.

OFTI is agnostic to the particular guard code used to realize SFI/CFI, so we here assume
merely that the underlying SFI/CFI implementation protects each control-flow transfer in-
struction with arbitrary (sound) code pointer validation or sanitization logic (see §6]). (Reins
employs SFI-style chunking and masking (McCamant and Morrisett], [2006)) for efficient sand-
boxing of intra-module flows, followed by CFl-style whitelisting of inter-module flows. This
could be replaced with more precise but less efficient CFI-only logic without affecting OFI.)
A separate verifier module independently validates control-flow safety of the secured binary
code. This shifts the large, unvalidated rewriting implementation out of the trusted com-
puting base.

Aside from adjusting the control-flow policy to incorporate OFI mediation, OFI exten-
sions inhabit only the policy enforcement library portion of the architecture; no change to the
disassembly, rewriting, verification, or linking stages was required. This indicates that OFI
can be implemented in a modular fashion that does not significantly affect the underlying
SFI/CFTI system’s internals.

The enhancements to the policy enforcement library introduce the inter-module control-

flow paths depicted in Figure 2.1l Their implementations are detailed below.

2.4.2 Dispatcher Implementation
2.4.2.1 Vault Dispatch

OFT’s Vault Dispatch subroutine directs control from a non-virtual trampoline to a corre-
sponding vaulter. Listing sketches its implementation. The index of the calling tram-

poline is first computed from the return address passed by the trampoline to the dispatcher
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1 void VaultDispatch() {

2 ___asm pop eax

3 PROLOGUE // create secure stack frame

4 ___asm mov ret_addr, eax

5 index = (trampoline_pool_base — ret_addr) / TRAMPOLINE_SIZE;
6 vaulter_addr = get_vaulter(index);

7 ___asm mov eax, vaulter_addr

8 EPILOGUE // pop secure stack frame

9 ___asm jmp eax

0

10 }

Listing 2.3. Vault Dispatch implementation (abbreviated)

(lines . Reins allocates exactly one trampoline in the pool for each non-virtual, trusted
callee permitted as a jump destination by the policy. The index therefore unambiguously
determines the correct vaulter for the desired callee (line [6). No CFI guards are needed
here because CFI guard code in-lined into the untrusted call site has already constrained the
flow to a permissible trampoline entry. Finally, the dispatcher tail-calls the selected vaulter
(line [9).

The implementation therefore enforces the control-flow policy in four steps: (1) CFI
guard code at the call site ensures that the call may only target trampolines assigned to
permissible trusted callees. (2) The dispatcher implementation exclusively calls the vaulter
that mediates the CFI-validated callee. (3) The vaulter implementation enforces the callee’s
OFTI contract and exclusively calls the callee it guards. (4) The trusted callee never receives
caller-writable object vtables; it only receives immutable proxy objects whose methods re-
validate call destinations at time-of-callback. This secures the trusted callee against attacks

that try to corrupt or replace the underlying object’s vtable.
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2.4.2.2 V-Vault Dispatch

Dispatching virtual calls is similar but requires more steps. Listing [2.4] sketches its imple-
mentation. In this case the caller-provided this pointer is retrieved along with the trampoline
index (lines [3|and @ Since the destination is a vaulter, valid this pointers are always ceiling
proxy objects. OFI applies the floor mapping (|-|) to recover a reference to the trusted
function it proxies (line . If this fails, a counterfeit object is detected, so OFI aborts with
a security violation (line E[) Otherwise the correct vaulter is computed from the ceiling

proxy and the index (line , the callee’s this pointer is replaced with the proxied object

(lines [11H12), and the vaulter is tail-called (line [15).

2.4.2.3 Bounce Dispatch

Dispatching non-virtual flows from trusted to untrusted modules is analogous to the vault
dispatching procedure (Listing , except that the indexing is into the chute pool rather
than the trampoline pool, and the dispatcher targets bouncers rather than vaulters. The
callee-provided return address is also replaced with the address of OFI’s return trampoline,
so that it can mediate the return.

The bouncer implementation(s) invoked by the dispatcher (see Listing first switch
to a fresh, callee-writable stack (lines , to prevent the untrusted callee from corrupting
trusted caller-owned stack frames before it returns. SFI memory guards prevent the callee
from writing into the protected, caller-owned stack. OFI contracts carry sufficient informa-
tion to implement this stack-switching transparently. For example, the contracts reveal the
size of the topmost (shared) activation frame and the calling convention, allowing that frame
to be temporarily replicated on both stacks.

To facilitate efficient stack-switching, we leverage the Windows Fibers API (Dufty, 2008)).

In the trusted-to-untrusted direction, we first create a child fiber. The fiber’s stack is ar-

33



1 void VVaultDispatch() {
___asm pop ecx
___asm mov eax, [esp+4]|
PROLOGUE // create secure stack frame

asm mov ret_addr, ecx

index = (vtrampoline_pool_base — ret_addr) / TRAMPOLINE_SIZE;

2

3

4

5

6 ___asm mov ceiling_proxy_object, eax

7

8  trusted_object = floor(ceiling_proxy_object);
9

if (!trusted_object) security_violation();

10  v_vaulter = get_v_vaulter(ceiling_proxy_object, index);

11 _asm mov eax, trusted_object

12 __asm mov [ebp+8], eax

13 __asm mov eax, v_vaulter

14 EPILOGUE // pop secure stack frame
15 ___asm jmp eax

16 }

Listing 2.4. Virtual Vault Dispatch implementation (abbreviated)

ranged so that its return address targets the return trampoline, and the “down” part (see
Listing of the bouncer implementation (lines is the child fiber’s start address.
The “down” implementation copies the arguments to the new stack (lines and then
enforces the relevant typing contract on in-arguments (line @ as described in , before
falling through to the untrusted callee (lines 1IHI3). Crucially, the underlying object’s
method pointer is re-validated at time-of-call (line[12)), to thwart CODE-COOP attacks.
On return, the return trampoline switches back to the parent fiber, which invokes the
“up” half of the bouncer (lines . This enforces the typing contracts for return values

and out-arguments (lines [14H15)) as described in §2.3.2 before returning to the trusted caller.
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1 void Bouncer() {

\V]

© 00 N O Ot

11
12
13
14
15

17
18
19
20
21
22
23
24
25 }

PROLOGUE // create untrusted callee stack frame

// switch to new fiber for down part of bouncer
childinfo[0] = &parent_stack;

childinfo[1] = argsize;

childinfo[2] = untrusted_callee_addr;

childfiber = CreateFiber(0, BouncerDown, childinfo);
SwitchToFiber(childfiber);

// up part of the bouncer: return from untrusted callee
DeleteFiber(childfiber);
r = TlsGetValue(tlsindex);

enforce_ret_contract(r); // run &£ [7']out (see Fig.

enforce_out_contract(); // run &£ [T]out (see Fig.

// clean stack and return to trusted caller
___asm mov eax, r

___asm mov ecx, argsize

EPILOGUE // pop secure stack frame
___asm pop edx

___asm add esp, ecx

___asm push edx

asm ret

Listing 2.5. Bouncer implementation (abbreviated)
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1 void BouncerDown() {

// initialize callee stack
—__asm sub esp, childinfo[1]
—_asm mov esi, childinfo[0]
___asm mov edi, esp

___asm rep movs byte ptr [edi], byte ptr [esi]

N O Ot e W N

asm push offset return_trampoline

9  enforce_in_contract(); // run &1[7](in) (see Fig.

11 ___asm mov eax, childinfo[2]
12 CFI_VALIDATE(eax)
13 _asm jmp eax

14}

Listing 2.6. BouncerDown implementation (abbreviated)

2.4.2.4 V-Bounce Dispatch

Dispatching virtual calls from trusted to untrusted modules is analogous to the bouncer
dispatching procedure (Listing , except that the child is passed a vtable index rather
than a callee entry point address. An extra step is therefore required within the “down”
implementation to recover the correct callee method address from the “this” pointer’s vtable
(lines[I2}14). Again, the result is re-validated at time-of-call (line[15) to block CODE-COOP

attacks.
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1 void VBouncerDown() {

// initialize callee stack
—__asm sub esp, childinfo[1]
—_asm mov esi, childinfo[0]
___asm mov edi, esp

___asm rep movs byte ptr [edi], byte ptr [esi]

N O Ot e W N

asm push offset return_trampoline

9  enforce_in_contract(); // run & q[7]in (see Fig.

11 // get virtual function address through "this"" argument

12 __asm mov eax, [esp+4]

13 ___asm mov eax, [eax]

14 ___asm mov eax, [eax+childinfo[2]]
15  CFI_VALIDATE(eax)

16 _asm jmp eax

17 }

Listing 2.7. Virtual Bouncer-down implementation (abbreviated)

2.4.2.5 Return Trampoline

Whenever the trusted caller goes through a bouncer to an untrusted callee, the bouncer
creates a new stack in which the return address targets OFI’s return trampoline. CFI guards
for inter-module return instructions must therefore permit flows to the return trampoline in
place of the validated return address. For example, if the underlying CFI system enforces

return-flows via a shadow stack, it must validate the return address on the shadow stack
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as usual, but then allow returning to the return trampoline instead. The return trampoline
flows to the “up” half of the bouncer mediator, which returns to the CFI-validated return
address stored on the shadow stack. This is the only piece of OFI’s implementation that

requires explicit cooperation from the underlying CFI implementation.

2.4.3 Automated Mediator Synthesis

When trusted interfaces are specified in a machine-readable format, mediator implementa-
tions for them can be automatically synthesized from callee type signatures (see . Such
automation becomes a practical necessity when interfaces comprise thousands of methods or
more.

Unfortunately, the only machine-readable specifications of many real-world APIs are as
C++ header files, which can be quite complex due to the power of C’s preprocessor language,
compiler-specific pragmas, and compiler-predefined macros. For example, the Windows.h
header, which documents the Windows API, defines millions of symbols and macros spanning
hundreds of files, and is not fully interpretable by any tool other than Microsoft Visual C++
in our experience. The best tools for parsing them are the C++ compilers intended to
consume them.

We therefore innovated a strategy of conscripting C++ compilers to interpret interface-
documenting header files for us, using the resulting information to automatically synthesize
mediation library code. Our strategy achieves static reflective programming for C++ without
modifying the compiler, language, or header files. Specifically, our synthesis tool is a C++
program that #includes interface headers, and then reflects over itself to inspect function
prototypes, structures, and their types. To achieve reflection on structures (which is not
supported by C4++17 (Chochlik and Naumann, 2016))) the program reads its own symbol file

in a multi-pass compilation.
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Figure 2.6. Automated mediator synthesis

Figure [2.6 illustrates the synthesis process. The interface header, list of exported func-
tions (dumped from the trusted library’s export table), and synthesizer source code are first
compiled to produce a debug symbol file (e.g., PDB file). Our Reflector tool parses the
symbol file to produce C++ templates that facilitate first-class access to the static types
of all constituent structure and class members. By including the resulting templates into a
second compilation pass, the program reflects upon itself and synthesizes the source code for
appropriate mediation code (wiz., vaulters and bouncers). A third compilation pass applied

to this synthesized mediation code yields the final mediation library.
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1 void TrySubmitThreadpoolCallback_vaulter(char x) {

2 fix_pointer(&x, 8);

3 { _TP_CALLBCK_ENVIRON_V3x* x =

4 «((_TP_CALLBACK_ENVIRON_V3x) (&x -+ 8));
5 if (x) {

6 fix_pointer(&x— CleanupGroupCancelCallback, 8);
7 fix_pointer(&x— FinalizationCallback, 8);

8}

9 }

10 EPILOGUE // pop stack frame

11 ___asm jmp TrySubmitThreadpoolCallback

12 }

Listing 2.8. Synthesized vaulter implementation

As an example, Listing shows an automatically synthesized vaulter implementation
for the TrySubmitThreadpoolCallback Windows API function. In this case, the synthesizer
has discovered that the trusted callee treats the top stack argument as a code pointer to an
untrusted callee expecting 8 bytes of stack arguments (line . In addition, stack offset 8
holds a pointer to a structure which, if non-null (line , contains two more code pointers
to untrusted callees expecting 8 bytes of stack arguments each (lines @—@ Finally, since
no out-arguments or return values need sanitization, the vaulter safely tail-calls the trusted
callee for more efficient dispatch (line [11)).

The typing information necessary to synthesize this implementation is exposed by our
Reflect tool as a template of the form shown in Listing 2.9 The template introduces
Reflect<7>::specialize as a general mechanism for specializing polymorphic template
functions to the particular field types of any desired structure type 7. Specifically, lines

declare a function parameter f whose arguments are specialized to the field types of 7. When
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1 typedef _TP_CALLBACK_ENVIRON_V3 typ1162;

3 template<> struct Reflect<typ1162> {

4 template <typename RetTyp>

5 static inline auto specialize(

6 typ11623 xobj,

7 auto(f)(decltype(typl162::Version)x, ...,

8 decltype(typ1162::CleanupGroupCancelCallback)x,
9 decltype(typ1162::FinalizationCallback)*, ...
10 )—RetTyp
11 )—RetTyp
12 {
13 return f(
14 &(obj—Version), ...,
15 & (obj—CleanupGroupCancelCallback),

16 & (obj—FinalizationCallback), . ..

17 );
18}
19 }

Listing 2.9. Reflective template (abbreviated)

called, Reflect<7>: :specialize(o, f) therefore calls f with a series of pointer arguments
specialized to the types and locations of object o’s fields. (Reference o is used only for pointer

arithmetic, so need not be an actual object instance.)
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1 template <typename... FieldTypes>

\V]

void enforce_contract(FieldTypes...);

W

template <>

ot

void enforce_contract() {}

7 template <typename... FieldTypes>

8 void enforce_contract(FARPROC «field1, FieldTypes... rest) {
9 // Generate C code to enforce FARPROC contract here...
10  enforce_contract(rest);

11}

13 Reflect<typ1162>::specialize<void>((typ1162x)0, enforce_contract);

Listing 2.10. Mediator synthesis via template recursion

The specialized polymorphic function can then iterate over its type parameters using
SFINAE programming idioms (Vandevoorde and Josuttis, [2002). For example, Listing
uses the template to generate OFI mediator code to secure a security-relevant structure
argument to an APT function. Lines[I}H2]first prototype a generic recursive template function
that will recurse over all fields of an arbitrary structure. Lines define the base case of
zero fields. Lines implement the particular case of enforcing the contract for a field of
type FARPROC (i.e., generic function pointer field). (This is just one representative case; the
full implementation has cases for all the types in Figure ) Code in line |§] treats argument
field1l as an index into the object layout where the field resides at runtime on the stack or

heap.
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Line (13| demonstrates specializing the generic template to a particular class type. The
Reflect template in Listing [2.9|is applied to specialize the generic enforce contract tem-
plate. This allows mediation code for tens of thousands of API methods to be automatically
synthesized from just a few hundred lines of hand-written template code, keeping OFI’s

trusted computing base relatively small and manageable.

2.5 Evaluation

Performance evaluation of OFI on CPU benchmarks (e.g., SPEC CPU2006) exhibits no mea-
surable overhead because CPU benchmarks do not typically access object-oriented system
APIs within loops, which is where OFI introduces overhead. To evaluate the effectiveness
of OFI, we therefore tested our prototype with the set of binaries listed in Table 2.1, The
test binaries were chosen to be small and simple enough to be amenable to fully automated
binary reverse engineering and instrumentation (whose efficacy is orthogonal to OFI), yet
reliant upon large, complex system APIs representative of typical consumer software (and
therefore an appropriate test of our approach’s practical feasibility). All experiments de-
tailed below were performed on an Intel Xeon E5645 workstation with 24 GB RAM running
64-bit Windows 7. We have no source code for any of the test binaries.

Column 2 reports a count of the total number of libraries loaded (statically and dy-
namically) by each test program, and column 3 reports a count of all methods exported
by those libraries. On average, each program loads 12 libraries that export about 7,500

trusted methods. Taking these statistics into consideration, although the test binaries are
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small-to-moderate in size, the trusted interfaces that must be supported to accommodate
them are large. In total, we need to mediate the interfaces of 54 trusted system libraries
that collectively expose 18,059 trusted methods, many of which have challenging method
signatures involving code pointers, recursive types, class subtyping, dependent types, and

object (or object-like) data structures.

2.5.1 Transparency

Without OFT extensions, none of the test programs ran correctly after CFI instrumentation.
All COM-dependent operations—including dialog boxes, certain menus, and in some cases
even application start-up—failed with a control-flow violation.

After adding OFI to the instrumentation, we manually tested all program features sys-
tematically. All features we tested exhibited full functionality. While we cannot ensure that
such testing is exhaustive, we consider it similar to the level of quality assurance to which

such applications are typically subjected prior to release.

2.5.2 Performance Overheads

Rewriting Time and Space Overheads. Table reports the percentage increase of
the file size and code segment, as well as the time taken by OFI to rewrite each binary. Our
prototype rewrites about 60KB of code per second on average. A rewritten binary increases
in size by about 41%. Code segment sizes increase by about 59%. The large percentage
increases exhibited by the MCFG__Exploit experiment (209% and 475%, respectively) are
artifacts of the exceptionally small size of that program. (It is the synthetic MCFG exploit

test reported in Section [2.2.2])

Runtime Performance. Figure reports OFI runtime overheads of the programs in

Table[2.1] Since almost all object exchanges occur during application startup and in response
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Figure 2.7. OFI runtime overhead

to user events (e.g., mouse clicks), we created macros that open, manipulate, and close each
test program as rapidly as possible. By running such a simulation in a loop for 1000 iterations,
we obtain an average running time. We measure the runtime overhead imposed by OFT as
the ratio of time spent within the OFI modules to the total runtime.

The median overhead is 0.34%; and no program has overhead larger than 2.00%, except
for MCFG__Exploit—our proof-of-concept CODE-COOP exploit implementation. Its size is
small, and its only runtime operation initializes a COM object, which involves OFI media-
tion, resulting in abnormally high percentage overheads. The remaining tests are common
consumer apps. Of these, the calculator program returns the worst overhead of 1.82%. This
is due to the fact that switching the calculator’s mode between standard, scientific, pro-

grammer, and statistics requires frequent OFI mediation. Each such switch reconstructs the

46



GUI via 3,500 method calls that involve shared code and/or object pointers, and thus OFI
mediation. Nevertheless, we consider the 1.82% overhead to be modest and unnoticeable by
users. All other test programs have runtime overheads below 1%, and the calculator’s <2%
worst-case overhead only occurs on mode changes.

The performance overheads reported in Figure attempt to measure semi-realistic us-
age scenarios for user-interactive applications, which tend to be the ones that use COM the
most. However, to derive a worst-case performance bound for OFI, we also created a set of
micro-benchmarks. Each implements a non-interactive program that creates, manipulates,
and destroys COM objects in a tight loop. Technical details for each benchmark are pro-
vided in Table 2.2l Although not realistic, these tests can measure the extreme worst-case
scenario that a program constantly crosses the trust boundary without performing any other
computation, triggering OFI mediation continuously.

Micro-benchmarking yielded a median overhead of 32.44%, with a maximum of just over
50%. We know of no realistic application that would exhibit these overheads in practice, but
they reveal the overhead of instrumentation relative to the non-instrumented inter-module

control-flow paths.

2.5.3 Security Evaluation

To assess OFT’s response to attacks, we launched synthetic vtable corruption and COOP
attacks against some programs rewritten by our prototype. We simulate COOP attacks by
temporarily modifying the v-vault dispatcher to occasionally choose the wrong vaulter. This
simulates a malicious caller who crafts a counterfeit object whose vtable pointer identifies a
structurally similar (e.g., similarly typed) vtable but not the correct one.

Table [2.3] reports the attack simulation results. Each program in column 1 is exposed

to 5 attacks. In each case, the attack quickly results in a security abort and premature
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Table 2.2. Micro-benchmark overheads

No. Description Interfaces Functions Overhead
#1 (1) creates object, TUnknown ::Release() 50.67%
(2) destroys object
#2 (1) creates object, IUnknown ::AddRef(), Release() 41.30%
(2) raises and lowers ref count,
(3) destroys object
#3 (1) creates open dialog obj, IFileOpenDialog ::QuerylInterface(), 41.69%
(2) adds controls, Release()
(3) destroys object IFileDialogCustomize ::AddPushButton(),
AddMenu(), AddText(),
AddControlltem(),
Release(),
#4 (1) creates open dialog obj, IFileOpenDialog :SetFileName(), 32.22%
(2) binds file to shell object, Show(), GetResult(),
(3) retrieves file path, Release()
(4) destroys all objects IShellltem ::GetDisplayName(),
Release()
#5 (1) creates open dialog obj, IFileOpenDialog ::GetOptions(), 32.44%
(2) binds files to array, SetOptions(),
(3) binds elements to shell SetFileName(), Show(),
objects, GetResults(), Release()
(4) retrieves the file paths, IShellltemArray ::GetCount(),
(5) destroys all objects GetItemAt(), Release()
IShellltem ::GetDisplayName(),
Release()
#6 (1) creates open dialog obj, IFileOpenDialog ::SetFileName(), 31.76%
(2) binds file to shell object, Show(), GetResult(),
(3) creates save dialog object, Release()
(4) sets save-as default, IShellltem ::GetDisplayName(),
(5) binds saved file to new Release()
shell object, IFileSaveDialog ::SetSaveAsltem(),
(6) retrives path of new shell SetFileName(), Show(),
object, GetResult(), Release()
(7) destroys all objects
#7 (1) creates save dialog object, IFileSaveDialog ::SetFileName(), 31. 69%
(2) binds saved file to shell Show(), GetResult(),
object, Release()
(3) retrieves the file path, IShellLink ::SetPath(),
(4) creates shell link object, SetDescription(),
(5) sets path as link target, QuerylInterface(),
(6) saves link in persist Release()
storage, IPersistFile ::Save(), Release()

(7) destroys all objects
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Table 2.3. Attack simulation results

Security Aborts

Binary Within After Within
Program # Attacks Callee Return OFI
calc D 1 4 0
MCFG_ Exploit 1 0 0 1
notepad 5 0 5t 0
powershell 5 1 4 0
WinRAR 5 3 2 0

termination; no control-flow policy violations were observed. Among the 20 attacks, the
callee aborted in 5 cases (column 3), and the caller aborted after return in 15 cases (column 4).

Most of the security aborts take the form of SFI memory access rejections (e.g., when an
untrusted caller attempts to write to an SFI-protected, callee-owned object). This is because
OFI ensures that even if an incorrect vaulter is chosen, control still flows to a vaulter that
enforces the contract demanded by its callee, and therefore the callee does not receive any
policy-violating objects or code pointers. The callee might nevertheless receive incorrect
(but not policy-violating) arguments, such as data pointers into inaccessible memory. In
such cases, the callee safely aborts with a memory access violation. Other times the callee
runs correctly but returns data or code pointers not expected by the caller, whereupon CFI
or SFI protections on the caller side intervene.

The MCFG_Exploit attack (see Section is detected within the OFI vaulter code

when OFI identifies the counterfeit vtable.

2.5.4 Scalability

To exhibit OFI’s scalability, we applied our prototype to Mozilla Firefox (version 48.0.1) for
Windows, which is larger and more complex than our other test applications in Table [2.1]

Like many large software products, Firefox is heavily multi-module—most of its functionali-
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ties are implemented in whole or part within application-level DLLs that ship along with the
main executable. Applying OFI merely to firefox.exe hence does not provide much security.
We therefore treated all modules in Table as untrusted for this experiment. Similar to
Table 2.1], column 2 in Table counts the number of trusted libraries imported by each
module, and column 3 counts the methods exported by each library. The other columns in
Table report file size increase, code segment size increase, and the time that OFI took to
rewrite each module. On average, file sizes increase by about 115%, and code segments by
about 75%.

One problem that we encountered was that Firefox’s Just-In-Time (JIT) JavaScript com-
piler performs runtime code generation, which our Reins prototype does not yet support. (It
conservatively denies execution access to writable memory.) Future work should overcome
this by incorporating a CFI-supporting JIT compiler, such as RockJIT (Niu and Tan, [2014b)).
As a temporary workaround, for this experiment we installed a vectored exception handler
that catches and redirects control-flows to/from runtime-generated code through OFI. This
is potentially unsafe (because the runtime-generated code remains uninstrumented by CFI)
and slow (because exception handling introduces high overhead), but allowed us to test
preservation of Firefox’s functionalities in the presence of OFI. All browser functionalities
we tested exhibited full operation after OFI instrumentation.

To estimate the performance impact of OFI on the application, we conducted the same
evaluation methodology as reported in Section but subtracted out the overhead of
the extra context-switches introduced by the exception handler. This yields an estimated

overhead of about 0.84%.

2.6 Conclusion

OFT is the first work to extend CF1I security protections to the significant realm of mainstream

software in which one or more object-exchanging modules are immune to instrumentation. It
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does so by mediating object exchanges across inter-module trust boundaries with the intro-
duction of tamper-proof proxy objects. The mediation strategy is source-agnostic, making it
applicable to both source-aware and source-free CFI approaches. A type-theoretic basis for
the mediation algorithm allows for automatic synthesis of OFI mediation code from interface
description languages.

A prototype implementation of OFI for Microsoft COM indicates that the approach is
feasible without access to source code, and scales to large interfaces that employ callbacks,
event-driven programming, interface inheritance, datatype recursion, and dependent typing.
Experimental evaluation shows that OFI exhibits low overheads of under 1% for some real-

world consumer software applications.
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CHAPTER 3

TOWARDS INTERFACE-DRIVEN COTS BINARY HARDENING]

3.1 Introduction

Hardening binary software applications against low-level exploits (e.g., control-flow hijacking

and code reuse attacks (Sadeghi et all |2015; Crane et al., [2015])) is widely recognized as an

important step in defending software ecosystems. Software Fault Isolation (SFI) (Wahbe

1993) and Control-Flow Integrity (CFI) (Abadi et al. [2005) are two important exam-

ples of such hardening. Implementation approaches include XFI (Erlingsson et all [2006),

PittSFleld (McCamant and Morrisett, [2006), Reins (Wartell et al., |2012b)), STIR (Wartell

et al [20124), CCFIR (Zhang et all [2013)), bin-CFI (Zhang and Sekar} [2013)), BinCC (Wang
et al], [2015), Lockdown (Payer et all [2015) TypeArmor (van der Veen et all 2016) and

OCFI (Mohan et al., |2015). However, most hardening techniques in the literature assume

that interoperating software components are all hardened in the same way, using the same
code transformation algorithm. For example, XFI's binary transformation entails instru-
menting all reachable control-flow transfer instructions in all modules with guard code that

checks for XFI-added security labels at jump destinations. This uniformity of enforcement

is a prerequisite assumption of XFI’s proof of safety (Abadi et al., 2009).

VTable protections, which include source-aware (Tice, |2012; |Jang et al. 2014; Zhang

let al., 2016} Bounov et al., [2016; [Kuznetsov et al., [2014; (Crane et al 2015, 2013; Haller

et al], [2015) and source-free (Gawlik and Holz, [2014; Zhang et al., 2015} [Prakash et al.

2015|) approaches for preventing or detecting vtable corruption at control-flow operations
involving vtable method pointers, likewise typically require that all call sites where such

pointers might be dereferenced must be uniformly instrumented with common guard code in

IThis chapter contains material previously published as: Xiaoyang Xu, Wenhao Wang, Kevin W. Hamlen,
and Zhigiang Lin. “Towards Interface-Driven COTS Binary Hardening.” In Proceedings of the 3rd Workshop
on Forming an Ecosystem Around Software Transformation (FEAST), pp. 1909-1924, November 2017.
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order to be effective. If some pointers flow to call sites located within other modules compiled
with a different pointer protection mechanism, control-flow security cannot be guaranteed.

Unfortunately, a large number of mission-critical software environments include diverse,
interoperating components that are not all secured in exactly the same way. For example, the
user interfaces of many critical infrastructure applications are implemented atop Microsoft
Windows OSes, which purvey essential services to binary applications via closed-source, bi-
nary system libraries. These libraries are difficult to modify for a variety of reasons: some are
digitally signed, others are aggressively optimized in ways that frustrate accurate disassem-
bly even by the best reverse-engineering tools, and some are loaded dynamically (e.g., from
cloud services) as applications execute and discover they need particular services. Similarly,
many event-driven Linux applications are implemented atop toolkits such as GTK+E|, which
dynamically serve user interface widgets and supporting library code on-demand, and which
therefore may have been separately compiled with a diverse variety of different protection
strategies.

Although recompiling the universe of all software components with some uniform protec-
tion scheme is obviously one option for coping with this problem, doing so is unrealistic for
many operating contexts. This motivates the development of a more modular methodology
for hardening application code that relies on services implemented with diverse protections,
but without the need to modify or even disassemble interoperating binary modules on which
the application relies.

Based on the general binary hardening algorithm presented in Chapter [ this chapter
presents a detailed case study that applies the algorithm to a production-level, event-driven,
Windows COTS application. The remainder of the chapter proceeds as follows: Section [3.2]
demonstrates how applying previously published CFI hardening to application code without

applying the same hardening to interoperating system modules results in exploitable critical

Zhttps://www.gtk.org
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vulnerabilities. Section [3.3|summarizes our interface-driven approach for closing such vulner-
abilities without modifying system modules, followed by a detailed case-study in Section [3.4]
Section [3.5] discusses future work directions, and Section [3.6] concludes.

3.2 Attack Example

CFI and SFI binary hardening algorithms typically work by instrumenting all indirect jump
sites in the software with guard code that blocks jumps to illegal destinations at runtime.
This prevents many forms of control-flow hijacking, including many code-reuse attacks. How-
ever, when the enforcement cannot retrofit all modules, jumps in unmodified modules may
remain unguarded, or guarded by a different and possibly inconsistent safety mechanism.
This becomes problematic when interoperating modules exchange code pointers—a common
practice of object-oriented software that shares objects. In such cases, the disparate guard
code can fail to enforce the protection scheme expected by cross-module callees.

One approach to this problem is to secure the objects passed to uninstrumented modules
at call sites within the instrumented modules (e.g., Tice et al. (2014)). But this approach
fails when trusted modules retain persistent references to the object, or when their code
executes concurrently with untrusted module code. In these cases, verifying the object at
the point of exchange does not prevent the untrusted module from subsequently modifying
the vtable pointer to which the trusted module’s reference points (e.g., as part of a data
corruption attack). These COnfused DEputy-assisted Counterfeit Object-Oriented Program-
ming (CODE-COOP) attacks (Wang et all 2017) deputize the receiving module (Hardy;,
1988) into violating the control-flow policy by passing them counterfeit objects (Schuster
et al., 2015)).
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Untrusted Module
1 CoCreatelnstance({clsid), . .., (iid), &oy);

2 o;—RegisterEventCallbackinterface(. . ., 0o, ...);

Trusted Module
3 0o—AddRef();

Listing 3.1. Code that registers a running application Windows Image Acquisition (WIA)

event notification

Before a detailed walkthrough of a CODE-COOP attack, we first show how objects are
typically exchanged between modules with object-oriented interfaces. Listing provides
a code snippet dissassembled from a Microsoft Paint binary. For this example, we assume
that the Paint application code is untrusted, whereas the system DLLs it loads are trusted.
The application code first creates a shared object o; (line (1)), where (clsid) and (iid;) are
numeric identifiers for the desired system class and its IWiaDevMgr interface, respectively.
Method RegisterEventCallbackInterface is then invoked to register a running application
Windows Image Acquisition (WIA) event notification (line [2)). This method takes argument
02, which is a pointer to the IWiaEventCallback interface that the WIA system uses to send
the While eatitidatigrRegisterEventCallbackInterface, the trusted system module calls
object 09’s Addref method (line [3)), which increments the reference count for the object.
Listing exhibits the code at the assembly level. The object is first moved to register
EAX (line , and its method table is moved to register ECX (line . Then all arguments are
pushed onto the stack (line [d)), including the object (line [f]). In the end, the corresponding

method is called by indexing the method table (line [7]).
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1 MOV EAX, (object)
MOV ECX, DWORD PTR DS:[EAX]

PUSH (arguments)

PUSH EAX
CALL DWORD PTR DS:[ECX + (indez)]

N O Ot e W N

Listing 3.2. Function call in assembly

Our attacker model assumes that untrusted modules might be completely malicious, con-
taining arbitrary native code, but that they have been transformed by a CFI algorithm into
code compliant with the control-flow policy. Unfortunately, the code snippet in Listing
is vulnerable to CODE-COOP attack even with CFI protections enabled for the untrusted
module. Such protections prevent the function call on line [2| from violating the control-flow
policy, but line [3] is not protected in the same way because it resides in an unmodifiable
system library. Argument o, passed into the trusted module can therefore potentially be
corrupted to escape the CFI sandbox.

An object reference oy cannot be simply treated as a function pointer (e.g., for a signature
check) because the reference points to an object containing a vtable pointer, as illustrated
in Figure The vtable stores many method pointers. Some of these methods create and
return more objects containing new vtables and method pointers when called, creating a
complex web of interconnected code pointer exchanges. Since dynamically generated vta-
bles frequently reside in untrusted, writable memory, a data corruption vulnerability (e.g.,
buffer overwrite) can potentially replace the vtable of o, with a counterfeit one. This mali-
cious replacement can happen after the function signature check (e.g., if the application is

multithreaded or the callee retains a persistent reference to the object).

o7



09, object reference
passed by calling
IWiaDevMgr::

RegisterEventCallbacklnterface

o1, object reference
created by calling
CoCreatelnstance

| ISalbeyiily viabls poliss | IWiaEventCallback vtable pointer

Querylnterface
AddRef
Release

Querylnterface
AddRef
Release

EnumDevicelnfo

ImageEventCallback

CreateDevice

SelectDeviceDlg
SelectDeviceDlIgID
GetlmageDlg

RegisterEventCallbackProgram

RegisterEventCallbackInterface
RegisterEventCallbackCLSID
AddDeviceDlg

untrusted ' trusted

Figure 3.1. Object binary representation

Thus, the counterfeit vtable can reroute object 0y’s method Addref call to any location
specified by the attacker (line . The policy mismatch occurs because the destination of
the Addref call is computed from an untrusted code pointer, but the call site is located in a
trusted, unmodifiable system library and cannot be instrumented directly with guard code.

Cross-module control-flow hijacks are recognized as a significant class of code-reuse at-
tacks in practice. For example, they have been leveraged to hijack Chrome from within
Google Native Client by exploiting differences between the CFI policies enforced by different
interoperating browser modules (Obes and Schuh|,|2012). Prior work has advanced compiler-
side solutions that require recompiling all modules to the same protection strategy (Niu and

Tan, 2014a), while OFI (Wang et al., [2017) is currently the only proposed binary solution.
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Our work is the first to admit and harmonize differing protection strategies through
automated binary interface synthesis. The next section proposes a modular, source-free

approach to this that avoids directly modifying any trusted modules.

3.3 Technical Approach

Our proposed solution instruments untrusted application binary code in such a way that
trusted callee modules (i.e., potential victim deputies) never receive writable code point-
ers from untrusted, CFI-protected callers. Placing the entire object in read-only memory
is infeasible because objects typically contain writable data adjacent to the vtable pointer,
which cannot easily be moved without breaking the application. We therefore instead auto-
matically substitute shared objects with read-only proxy objects when they flow across an
inter-module trust boundary. All proxy objects and their vtables inhabit read-only memory
so CODE-COOQP attacks cannot corrupt proxy vtables.

Instrumented modules retain direct references to the original object, allowing them to
write to data fields, but uninstrumented object recipients receive a read-only proxy. This
works because modern binary-level object exchange protocols, such as Component Object
Model (COM), enforce an abstraction layer that requires object recipients to access data
indirectly via accessor methods. (This allows shared objects to be located on remote ma-
chines during RPC.) As illustrated in Figure , our proxy objects’ methods therefore wrap
the methods of the underlying object to enforce control-flow guards that intervene whenever
object recipients attempt to call one of the object’s methods.

For each object-oriented API imported by an untrusted module, we write a wrapper in
which every shared object argument is replaced by a proxy object. Thus, when a trusted
module attempts to call a method of an object, it actually calls a wrapper method of the
proxy object. Control then flows to a dispatch subroutine. The dispatcher pops the return

address to determine the index of the method being called, and consults the stack’s this
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object
reference

vtable pointer

wrapper pointer 1

wrapper pointer 2

wrapper pointer 3

wrapper pointer 4

Figure 3.2. Proxy object binary representation

pointer to identify the object. Based on this information, it selects and tail-calls a mediator
that wraps and secures the original method according to its type signature. If original
method involves object arguments, the mediator replaces them with corresponding proxies.
Finally, the mediator passes the control to the original method.

The wrappers must also sometimes introduce new proxy objects in the reverse direction
(i.e., during trusted-to-untrusted cross-module calls and returns) in order to secure methods
that return new objects or interfaces. For example, if a trusted callee returns an object whose
methods accept objects as arguments, the untrusted caller instead receives a proxy object
whose wrappers substitute objects arguments with proxies before passing control back to the
trusted module.

To assure complete mediation of these interfaces (which are often large and complex),
our approach is conservative: The CFI policy is defined to block all cross-module control-
flow edges except the ones implemented by the mediators. Inadvertent omission of an API
from the mediator library therefore provokes a security abort at runtime. In practice, the
mediator code is synthesized automatically from the interface descriptions (e.g., C header or
IDL files), so that all documented interface members are automatically included.

Our approach defends against the attack shown in Section [3.2] After hardening the code

in Listing [3.1] the shared object o; is replaced by its proxy. Original method Register-
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EventCallbackInterface instead invokes a wrapper method of the proxy object of o;. This
wrapper method reroutes the control to the mediator of RegisterEventCallbackInterface.
The mediator finds that object o, is passed from the untrusted module to the trusted module.
Then the proxy object of object oy is generated and handed to the trusted module. Hardware
write-protections prevent the proxy object’s vtable from being corrupted. Therefore, even
without modifying the trusted module, the AddRef call is guaranteed to target a permitted

destination.

3.4 Case Study

To demonstrate how our approach can harden closed-source, binary software against CODE-
COOP attacks, and to exhibit some of the challenges, we next discuss our experience hard-

ening a simple but representative Windows application: Microsoft Paint.

3.4.1 Object-oriented Design

Paint is a simple desktop application that has been included with all versions of Windows.
Like most commercial software, it does not access system kernel services directly; rather,
its design extends system-provided classes to construct objects that inherit kernel-accessing
functionalities from their base methods. On Windows, such applications typically draw their
base classes from the Microsoft Foundation Class (MFC) Library—a shared C++ library
designed for event-driven software development. A large percentage of all Windows software
is built atop MFC, but this design presents great challenges for traditional CFI because of the
complex object exchanges it engenders at the binary level. Surveys of the prior CFI literature
(cf., Wang et al.| (2017)) exhibit no examples prior to OFI where CFI was successfully
evaluated against an MFC-based product without opening CODE-COOP vulnerabilities.
Since MFC is extremely tightly coupled to the applications with which it links, our

approach treats both Paint and MFC as untrusted, application-level modules and leaves the
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others as trusted. To do so, we applied our automated binary retrofitting (built atop the OFI
framework) to the Paint (mspaint.exe) and MFC (mfc42u.dll) binary libraries, and placed
the retrofitted MFC in the retrofitted Paint application’s load path, thereby overriding the
system-level MFC.

Table reports the percentage increase of the file size and code segments, as well as
the time taken to rewrite each module. After instrumenting, we manually tested all program
features of Paint systematically. All features we tested exhibited full functionality. We
measure the runtime overhead imposed by our approach as the ratio of time spent within

the wrapper modules to the total runtime. Paint has an overhead of 0.38%.

3.4.2 API Surface

Table lists all the system APIs with object arguments that Paint and MFC called during
our experiments. There are 22 APIs from 4 different trusted modules. Column 3 reports the
type of object argument in each API. An OUT-object argument (e.g., in CoCreateInstance)
is usually an interface pointer returned from a trusted module. An IN-object argument (e.g.,
in CoLockObjectExternal) is usually an interface pointer that an untrusted module passes
to a trusted module. More complex APIs can have IN-object and OUT-object arguments
together. For example, API SHCreateShellItem passes an IShellFolder interface pointer
to shell32.dll and receives an address of a pointer to a IShellItem interface after the API

returns.

3.4.3 Object Exchanges

Table [3.3| reports the interfaces mediated by our guard code when running Paint and MFC.
Column 2 reports the number of virtual methods (including inherited methods if any) in
the vtable of each interface, and column 3 reports the trusted module to which the interface

belongs. Overall, we mediate 34 interfaces and 510 methods from 8 trusted modules. Among
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Table 3.2. APIs with object exchanges

API DLL Object Type
CoCreatelnstance ole32 ouT
CoDisconnectObject ole32 IN
CoGetClassObject ole32 ouT
CoLockObjectExternal ole32 IN
CoRegisterMessageFilter ole32 IN & OUT
CreateFileMoniker ole32 ouT
CreateStreamOnHGlobal ole32 ouT
DoDragDrop ole32 IN
GdipLoadlmageFromStream gdiplus IN
GdipSavelmageToStream gdiplus IN
GetRunningObjectTable ole32 ouT
OleCreateLinkFromData ole32 IN & OUT
OleGetClipboard ole32 ouT
OleSetClipboard ole32 IN
OlelsCurrentClipboard ole32 IN
OlelsRunning ole32 IN
OleRun ole32 IN
RegisterDragDrop ole32 IN
SafeArrayPutElement olaeut32 IN
SHBindToParent shell32 ouT
SHCreateShellltem shell32 IN & OUT
SHGetDesktopFolder shell32 ouT

the interfaces and methods in Table [3.3] Table [3.4] reports the methods that have object
arguments. An object argument can also be an OUT-object or an IN-object, similar to the
APIs reported in Table [3.2]

As discussed in Section [3.3] for each API and virtual method, we synthesized a mediator
in which OFI recursively substitutes both types of object arguments with appropriate proxy
objects immediately before the cross-module call and immediately after the cross-module

return.
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Table 3.3. COM interfaces

Interface # Methods DLL
[AccPropServices 12 oleacc
[DataObject 12 ole32
IEnumWIA DEV_ INFO 8 ole32
[MessageFilter 6 ole32

[IMarshal 9 ole32

IMoniker 23 ole32
[0leClientSite 9 ole32
[PropertyStore 8 propsys
[RunningObjectTable 10 ole32
[ShellFolder 13 shell32
[Shellltem 8 shell32
[Shellltem?2 21 shell32
[Stream 14 ole32
IUIApplication 6 uiribbon
IUICollection 10 uiribbon
[UICommandHandler 5) uiribbon
[UIFramework 12 uiribbon
[UITImage 4 uiribbon
[UIImageFromBitmap 4 uiribbon
IUIRibbon 6 uiribbon
[UISimplePropertySet 4 uiribbon
IUnknown 3 uiribbon
IWiaDevMgr 12 wiaservce
IWiaEventCallback 4 ole32
IWICBitmapDecoder 14 windowscodecs
IWICBitmapEncoder 13 windowscodecs
IWICBitmapFrameDecode 11 windowscodecs
IWICBitmapFrameEncode 14 windowscodecs
IWICImagingFactory 28 windowscodecs
IWICMetadataBlockReader 7 windowscodecs
IWICMetadataBlockWriter 12 windowscodecs
IWICStream 18 windowscodecs
IXMLDOMDocument 82 msxml6
IXMLDOMDocument2 88 msxml6
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Table 3.4. Methods with object exchanges

Interface Method(s) Object Type
IRunningObjectTable IRunningObjectTable::Register IN
IRunningObjectTable::GetObject IN & OUT
IShellFolder IShellFolder::EnumObjects ouT
IShellltem?2 IShellltem?2::QueryInterface ouT
IShellltem2::GetPropertyStore ouT
IStream IStream::QueryInterface ouT
TUTApplication TUTApplication::OnViewChanged IN
IUTApplication::OnCreateUICommand ouT
TUIApplication::OnDestroyUICommand IN
TUICollection IUICollection::Add IN
IUICollection::GetItem ouT
IUICollection::Insert IN
IUICollection::Replace IN
TUICommandHandler TUICommandHandler::Execute IN
TUICommandHandler::UpdateProperty IN
IUIFramework IUIFramework::QueryInterface ouT
IUIFramework::Initialize IN
IUIImageFromBitmap IUIImageFromBitmap::QueryInterface ouT
IUIlmageFromBitmap::Createlmage ouT
IUIRibbon IUIRibbon::LoadSettingsFromStream IN
IUIRibbon::SaveSettingsToStream IN
IUISimplePropertySet IUISimplePropertySet::QueryInterface ouT
IUnknown IUnknown::QueryInterface ouT
IWiaDevMgr IWiaDevMgr::RegisterEventCallbackInterface IN & OUT
IWiaEventCallback IWiaEventCallback::QueryInterface ouT
IWICBitmapDecoder IWICBitmapDecoder::QueryInterface ouT
IWICBitmapDecoder::GetFrame ouT
IWICBitmapEncoder IWICBitmapEncoder::Initialize IN
IWICBitmapEncoder::CreateNewFrame IN & OUT
IWICBitmapFrameEncode IWICBitmapFrameEncode::QueryInterface ouT
IWICBitmapFrameEncode::Initialize IN
IWICBitmapFrameEncode:: WriteSource IN
IWICImagingFactory IWICImagingFactory::CreateDecoderFromFilename ouT
IWICImagingFactory::CreateEncoder ouT
IWICImagingFactory::CreateStream ouT
IWICMetadataBlockReader IWICMetadataBlockReader::GetReaderByIndex ouT
IWICMetadataBlockWriter IWICMetadataBlockWriter::InitializeFromBlockReader IN
IWICStream IWICStream::InitializeFromIStream IN
IWICStream::InitializeFromIStreamRegion ouT
IXMLDOMDocument IXMLDOMDocument::QueryInterface ouT
IXMLDOMDocument::save IN
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3.4.4 Callbacks

Table reports the APIs that have code pointers (callbacks) as arguments. Such an
argument can be a direct code pointer (e.g., in CallWindowProc), a pointer to an array
of callbacks (e.g., in initterm), or a pointer to a structure that has a callback in one or
more of its fields (e.g., in RegisterClass). Paint and MFC import 14 such APIs from 5
trusted modules. We implemented a mediator for each of these APIs in which code pointer

validation or sanitization secures the code pointer exchange against hijacking attacks.

3.5 Future work

Although our approach successfully secures inter-module object exchanges in the presence
of unmodifiable (e.g., system) modules, unmodified modules can still potentially contain
other security weaknesses that might leave retrofitted applications vulnerable to attack. For
example, if a trusted module retains a persistent reference to an object, but stores that
reference in an unsafe location (e.g., memory that the retrofitting mechanism considers
untrusted and application-writable), then a malicious module could replace the reference
with a counterfeit object to implement a CODE-COOP attack despite our defense.

Our current prototype mitigates such vulnerabilities by leveraging software fault isolation
(SFI) to isolate module data and stack segments from cross-module writes. However, this
approach cannot support modules that need direct access to each other’s memory (e.g., when
trusted modules store object references into writable buffers provided by untrusted modules).

An important line of future research therefore entails the development of binary-level
code analyses and tools that can discover the memory safety policies implicitly expected
and enforced by interoperating modules with differing protection schemes. Future work
should use such analyses to derive appropriate memory and control-flow safety policies for
application-level retrofitting algorithms to enforce in order to ensure safety in the presence

of unmodifiable libraries that have differing security expectations and requirements.
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Table 3.5. APIs with callback pointers

API DLL

_ beginthread msvert

_ beginthreadex msvert
__initterm msvert

_ onexit msvert
CallWindowProc user32
ChooseColor comdlg32
ChooseFont comdlg32
DialogBoxIndirectParam user32
DialogBoxParam user32
CreateDialogIndirectParam  user32
CreateDialogParam user32
EnumFonts user32
EnumFontFamilies gdi32
EnumFontFamiliesEx gdi32
EnumObjects gdi32
EventRegister advapi32
GetOpenFileName comdlg32
GetSaveFileName comdlg32
PrintDlg comdlg32
RegisterClass user32
RegisterClasskEx user32
SendMessageCallback user32
SetAbortProc gdi32
SetProp user32
SetWindowLong user32
SetWindowsHookEx user32
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3.6 Conclusion

We have presented a modular approach that hardens application-level software without the
need to modify interoperating modules on which the application replies. Our interface-
driven approach presented in this paper mediates object exchanges across inter-module trust
boundaries with proxy objects, and therefore modules that obeys their interface specifications
get protected when they call proxy object methods. We showed that coupled with OFI and
CF1I, the approach can effectively thwart CODE-COOP attacks by completely mediating the

interfaces between trusted and untrusted modules.
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CHAPTER 4
EVALUATING COMPATIBILITY AND RELEVANCE OF CONTROL-FLOW

INTEGRITY PROTECTIONS FOR MODERN SOFTWARH]

4.1 Introduction

This chapter considers the challenge of accurately evaluating the performance overheads,
security assurances, and software compatibility of the binary software hardening algorithms
detailed in Chapters [2| and [3] as well as those advanced by prior works.

Control-flow integrity (CFI) (Abadi et al. 2005) (supported by vtable protection (Gawlik
and Holz, |2014) and/or software fault isolation (Wahbe et al., |1993))), has emerged as one
of the strongest known defenses against modern control-flow hijacking attacks, including
return-oriented programming (ROP) (Roemer et al., 2012) and other code-reuse attacks.
These attacks trigger dataflow vulnerabilities (e.g., buffer overflows) to manipulate control
data (e.g., return addresses) to hijack victim software. By restricting program execution to
a set of legitimate control-flow targets at runtime, CFI can mitigate many of these threats.

Inspired by the initial CFI work (Abadi et al., 2005), there has been prolific new research
on CFI in recent years, mainly aimed at improving performance, enforcing richer policies,
obtaining higher assurance of policy-compliance, and protecting against more subtle and so-
phisticated attacks. For example, between 2015-2018 over 25 new CFI algorithms appeared
in the top four applied security conferences alone. These new frameworks are generally
evaluated and compared in terms of performance and security. Performance overhead is
commonly evaluated in terms of the CPU benchmark suites (e.g., SPEC), and security is

often assessed using the RIPE test suite (Wilander et al., 2011) or with manually crafted

IThis chapter contains material previously submitted for publication as: Xiaoyang Xu, Wenhao Wang,
Masoud Ghaffarinia, and Kevin W. Hamlen. “CoONFIRM: Evaluating Compatibility and Relevance of
Control-flow Integrity Protections for Modern Software.”
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proof-of-concept attacks (e.g., COOP (Schuster et al., 2015)). For example, a recent sur-
vey systematically compared various CFI mechanisms against these metrics for precision,
security, and performance (Burow et al., [2017)).

While this attention to performance and security has stimulated rapid gains in the ability
of CFT solutions to efficiently enforce powerful, precise security policies, less attention has
been devoted to systematically examining which general classes of software can receive CFI
protection without suffering compatibility problems. Historically, CFI research has strug-
gled to bridge the gap between theory and practice (cf., [Zhang et al. (2013)) because code
hardening transformations inevitably run at least some risk of corrupting desired, policy-
permitted program functionalities. For example, introspective programs that read their own
code bytes at runtime (e.g., many VMs, JIT compilers, hot-patchers, and dynamic linkers)
can break after their code bytes have been modified or relocated by CFIL.

Compatibility issues of this sort have dangerous security ramifications if they prevent
protection of software needed in mission-critical contexts, or if the protections must be
weakened in order to achieve compatibility. For example, to avoid incompatibilities related
to C/C++ pointer arithmetic, the three most widely deployed compiler-based CFI solutions
(LLVM-CFT (Tice et al 2014), GCC-VTV (Tice et al., 2014), and Microsoft Visual Studio
MCFG (Tang, 2015)) all presently leave return addresses unprotected, potentially leaving
code vulnerable to ROP attacks—the most prevalent form of code-reuse.

Understanding these compatibility limitations, including their impacts on real-world soft-
ware performance and security, requires a new suite of CFI benchmarks with substantially
different characteristics than benchmarks typically used to assess compiler or hardware per-
formance. In particular, CFI relevance and effectiveness is typically constrained by the
nature and complexity of the target program’s control-flow paths and control data dependen-
cies. Such complexities are not well represented by SPEC benchmarks, which are designed

to exercise CPU computational units using only simple control-flow graphs, or by utility
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suites (e.g., Gnu corelibs) that were all written in a fairly homogeneous programming style
for a limited set of compilers, and that use a very limited set of standard libraries chosen for
exceptionally high cross-compatibility.

To better understand the compatibility and applicability limitations of modern CFI so-
lutions on diverse, modern software products, and to identify the coding idioms and features
that constitute the greatest barriers to more widespread CFI adoption, we present CON-
FIRM (CONtrol-Flow Integrity Relevance Metrics), a new suite of CFI benchmarks designed
to exhibit code features most relevant to CFI evaluation. Our design of CONFIRM is based
on over 25 years of collective experience building and evaluating CFI systems for a variety
of architectures, including Linux, Windows, Intel x86/x64, and ARM32 in both academia
and industry. Each benchmark is designed to exhibit one or more control-flow features that
CF1I solutions must guard in order to enforce integrity, that are found in a large number of
commodity software products, but that pose potential problems for CFI implementations.

We used CONFIRM to reevaluate 9 publicly available CFI implementations published
in the open literature. The results show substantial performance differences and trade-offs
not revealed by prior CPU-based benchmarking. For example, tested CFI implementations
exhibit a median overhead of over 70% to secure returns, in contrast with average overheads
of about 3% reported in the prior literature for CPU benchmarks; and a new cross-thread
stack-smashing attack defeats all tested CFI defenses.

In summary, our contributions include the following:

o We present CONFIRM, the first benchmarking suite designed specifically to test com-
patibility and performance characteristics relevant to control-flow security hardening

evaluation.

o A set of 19 important code features and coding idioms are identified, that are widely
found in deployed, commodity software products, and that pose compatibility, perfor-

mance, or security challenges for modern CFI solutions.
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« Evaluation of 9 CFI implementations using CONFIRM reveals that existing CFI im-
plementations are compatible with only about half of code features and coding id-
ioms needed for broad compatibility, and that performance evaluations based on CPU

benchmarks bear little relevance to CFl-affected code features.

o Discussion and analysis of these results highlights significant unsolved obstacles to

realizing CFI protections for widely deployed, mainstream, commodity products.

Section begins with a summary of technical CFI attack and defense details important
for understanding the evaluation approach. Section next presents CONFIRM’s evalua-
tion metrics in detail, including a rationale behind why each metric was chosen, and how it
impacts potential defense solutions, and Section describes implementation of the result-
ing benchmarks. Section reports our evaluation of CFI solutions using CONFIRM and

discusses significant findings. Finally, Section concludes.

4.2 Background

CFI defenses first emerged from an arms race against early code-injection attacks, which
exploit memory corruptions to inject and execute malicious code. To thwart these malicious
code-injections, hardware and OS developers introduced Data Execution Prevention (DEP),
which blocks execution of injected code. Adversaries proceeded to bypass DEP with “return-
to-libc” attacks, which redirect control to existing, abusable code fragments (often in the
C standard libraries) without introducing attacker-supplied code. In response, defenders
introduced Address Space Layout Randomization (ASLR), which randomizes code layout
to frustrate its abuse. DEP and ASLR motivated adversaries to craft even more elaborate
attacks, including ROP and Jump-Oriented Programming (JOP) (Bletsch et al., 2011), which
locate, chain, and execute short instruction sequences (gadgets) of benign code to implement

malicious payloads.
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CFI emerged as a more comprehensive and principled defense against this malicious code-
reuse. Most realizations consist of two main phases: (1) A program-specific control-flow
policy is first formalized as a (possibly dynamic) control-flow graph (CFG) that whitelists
the code’s permissible control-flow transfers. (2) To constrain all control flows to the CFG,
the program code is instrumented with guard code at all computed (e.g., indirect) control-
flow transfer sites. The guard code decides at runtime whether each impending transfer
satisfies the policy, and blocks it if not. The guards are designed to be uncircumventable
by confronting attackers with a chicken-and-egg problem: To circumvent a guard, an attack
must first hijack a control transfer; but since all control transfers are guarded, hijacking a
control transfer requires first circumventing a guard.

Both CFI phases can be source-aware (implemented as a source-to-source transforma-
tion, or introduced during compilation), or source-free (implemented as a binary-to-binary
native code transformation). Source-aware solutions typically benefit from source-level infor-

mation to derive more precise policies, and can often perform more aggressive optimization

to achieve better performance. Examples include WIT (Akritidis et al., [2008), NaCl

et all 2009), CFL (Bletsch et al) 2011), MIP (Niu and Tan| [2013), MCFI (Niu and Tan|
2014a)), RockJIT (Niu and Tan|, 2014b)), Forward CFI (Tice et al., 2014)), CCFI (Mashtizadeh
et all 2015), #CFI (Niu and Tan| [2015), MCFG (Tang, [2015) CFIXX (Burow et al) 2018)

and pCFI (Hu et al., 2018)). In contrast, source-free solutions are potentially applicable to

a wider domain of software products (e.g., closed-source), and have a more flexible deploy-

ment model (e.g., consumer-side enforcement without developer assistance). These include

XFI (Erlingsson et al., 2006), Reins (Wartell et al., 2012b)), STIR (Wartell et al. [2012a),

CCFIR (Zhang et al., 2013)), bin-CFI (Zhang and Sekar| [2013)), BinCC (Wang et al., 2015),
Lockdown (Payer et all 2015)), TypeArmor (van der Veen et al., [2016]), OCFI (Mohan et al.,
2015), OFI (Wang et al., 2017) and 7CFI (Muntean et all 2018).

The advent of CFI was a significant step forward for defenders, but was not the end of

the arms race. In particular, each CFI phase introduces potential loopholes for attackers to
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exploit. First, it is not always clear which policy should be enforced to fully protect the code.
Production software often includes complex control-flow structures, such as those introduced
by object-oriented programming (OOP) idioms, from which it is difficult (even undecidable)
to derive a CFG that precisely captures the policy desired by human developers and users.
Second, the instrumentation phase must take care not to introduce guard code whose decision
procedures constitute unacceptably slow runtime computations. This often results in an
enforcement that imprecisely approximates the policy. Attackers have taken advantage of
these loopholes with ever more sophisticated attacks, including Counterfeit Object Oriented
Programming (COOP) (Schuster et all 2015), Control Jujutsu (Evans et al., [2015), and
Control-Flow Bending (Carlini et al., 2015)).

These weaknesses and threats have inspired an array of new and improved CFI algorithms
and supporting technologies in recent years. For example, to address loopholes associated
with OOP, vtable protections prevent or detect virtual method table corruption at or before
control-flow transfers that depend on method pointers. Source-aware vtable protections
include GNU VTV (Tice|, 2012), CPI (Kuznetsov et al. 2014), SAFEDISPATCH (Jang et al.|
2014), Readactor++ (Crane et all 2015), and VTrust (Zhang et all 2016); whereas source-
free instantiations include T-VIP (Gawlik and Holz, 2014), VTint (Zhang et al., [2015]), and
V{Guard (Prakash et al., 2015)).

However, while the security and performance trade-offs of various CFI solutions have
remained actively tracked and studied by defenders throughout the arms race, attackers
are increasingly taking advantage of CFI compatibility limitations to exploit unprotected
software, thereby avoiding CFI defenses entirely. For example, 88% of CFI defenses cited
herein have only been realized for Linux software, but over 95% of desktops worldwide are
non-Linux | These include many mission-critical systems, including over 75% of control

systems in the U.S. (Konkel, 2017), and storage repositories for top secret military data

Zhttp:/ /gs.statcounter.com/os-market-share/desktop/worldwide
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(Office of Inspector General, [2018). None of the top 10 vulnerabilities exploited by cyber-
criminals in 2017 target Linux software (Donnelly| 2018).

While there is a hope that small-scale prototyping will result in principles and approaches
that eventually scale to more architectures and larger software products, follow-on works that
attempt to bridge this gap routinely face significant unforeseen roadblocks. We believe many
of these obstacles remain unforeseen because of the difficulty of isolating and studying many
of the problematic software features lurking within large, commodity products, which are not
well represented in open-source codes commonly available for study by researchers during
prototyping.

The goal of this research is therefore to describe and analyze a significant collection of
code features that are routinely found in large software products, but that pose challenges to
effective CFI enforcement; and to make available a suite of CFI benchmarking test programs
that exhibit each of these features on a small scale amenable to prototype development. The

next section discusses this feature set in detail.

4.3 Compatibility Metrics

To measure compatibility of CFI mechanisms, we propose a set of metrics that each includes
one or more code features from either C/C++ source code or compiled assembly code.
We derived this feature set by attempting to apply many CFI solutions to large software
products, then manually testing the functionalities of the resulting hardened software for
correctness, and finally debugging each broken functionality step-wise at the assembly level
to determine what caused the hardened code to fail. Since many failures manifest as subtle
forms of register or memory corruption that only cause the program to crash or malfunc-
tion long after the failed operation completes, this debugging constitutes many hundreds of
person-hours amassed over several years of development experience involving CFI-protected

software.
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Table presents the resulting list of code features organized into one row for each root
cause of failure. Column two additionally lists some widely available, commodity software
products where each of these features can be observed in non-malicious software in the wild.
This demonstrates that each feature is representative of real-world software functionalities
that must be preserved by CFI implementations in order for their protections to be usable

and relevant in contexts that deploy these and similar products.

4.3.1 Indirect Branches

We first discuss compatibility metrics related to the code feature of greatest relevance to most
CFI works: indirect branches. Indirect branches are control-flow transfers whose destination
addresses are computed at runtime—via pointer arithmetic, memory-reads, or both. Such
transfers tend to be of high interest to attackers, since computed destinations have more
potential to be manipulated. CFT solutions therefore guard indirect branches to ensure that
they target permissible destinations at runtime. Indirect branches are commonly categorized
into three classes: indirect calls, indirect jumps, and returns.

Figure shows a simple example of source code being compiled to an indirect call.
The function called at source line 10 depends on user input (line 3). This prevents the
compiler from generating a direct branch that targets a fixed memory address at compile
time. Instead, the compiler generates a memory-indirect call (assembly line 5) whose target
is computed at runtime. While this is one common example of how indirect branches arise,

in practice they are a result of many different programming idioms, discussed below.

4.3.1.1 Function Pointers

Calls through function pointers typically compile to indirect calls (depending on source code
and compiler options). For example, using gce with the -02 option generates register-indirect

calls for function pointers, and MSVC does so by default.
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Table 4.1. CONFIRM compatibility metrics

Compatibility metric

Real-world software examples

Function Pointers

Callbacks

Dynamic Linking

Delay-Loading
Exporting/Importing Data

Virtual Functions

CODE-COOP Attack
Tail Calls

Switch-Case Statements

Returns
Exceptions

Calling Conventions
Multithreading

TLS Callbacks
Position-Independent Code

Memory Protection

7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, FireFox,
JVM, Notepad, MS Paint, MS PowerPoint, PotPlayer, PowerShell, Putty,
Skype, TeXstudio, UPX, Visual Studio, Windows Defender, WinSCP
7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, FireFox,
JVM, Notepad, MS Paint, MS PowerPoint, PotPlayer, PowerShell, Putty,
TeXstudio, Visual Studio, Windows Defender, WinSCP

7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, FireFox,
JVM, Notepad, MS Paint, MS PowerPoint, PotPlayer, PowerShell, Putty,
Skype, TeXstudio, UPX, Visual Studio, Windows Defender, WinSCP
Adobe Reader, Calculator, Chrome, FireFox, JVM, MS Paint, MS Power-
Point, PotPlayer, Visual Studio, WinSCP

7-Zip, Apache, Calculator, Chrome, Dropbox, FireFox, MS Paint, MS Pow-
erPoint, PowerShell, TeXstudio, UPX, Visual Studio

7-Zip, Adobe Reader, Calculator, Chrome, Dropbox, FireFox, JVM,
Notepad, MS Paint, MS PowerPoint, PotPlayer, PowerShell, Putty, TeXs-
tudio, Visual Studio, Windows Defender, WinSCP

Programs built on GTK+ or Microsoft COM can pass objects to trusted
modules as arguments.

Mainstream compilers provide options for tail call optimization. e.g. /02
in MSVC, -02 in GCC, and -02 in LLVM.

7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, FireFox,
JVM, MS Paint, MS PowerPoint, PotPlayer, Putty, TeXstudio, Visual Stu-
dio, WinSCP

Every benign program has returns.

7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, FireFox,
JVM, MS Paint, MS PowerPoint, PotPlayer, PowerShell, Putty, Skype,
TeXstudio, Visual Studio, Windows Defender, WinSCP

Every program adopts one or more calling convention.

7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, FireFox,
JVM, Notepad, MS Paint, MS PowerPoint, PotPlayer, PowerShell, Putty,
Skype, TeXstudio, UPX, Visual Studio, Windows Defender, WinSCP
Adobe Reader, Chrome, FireFox, MS Paint, TeXstudio, UPX

7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, FireFox,
JVM, Notepad, MS Paint, MS PowerPoint, PotPlayer, PowerShell, Putty,
Skype, TeXstudio, UPX, Visual Studio, Windows Defender, WinSCP
7-Zip, Adobe Reader, Apache, Chrome, Dropbox, FireFox, MS PowerPoint,
PotPlayer, TeXstudio, Visual Studio, Windows Defender, WinSCP

JIT compiler
Windows API Hooking

Self-Unpacking

Adobe Flash, Chrome, Dropbox, FireFox, JVM, MS PowerPoint, Pot-
Player, PowerShell, Skype, Visual Studio, WinSCP

Microsoft Office family software, including MS Excel, MS PowerPoint, MS
PowerPoint, etc.

Programs decompressed by self-extractors (e.g. UPX)
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Source code Assembly code

o void foo { return; } 0o ...

1 void bar { return; } 1 call _input

2 void main { > test eax, eax

3 int n = input(); s jnz offset_7

4 void (* fptr) (); 1+ mov [fptr], offset_foo
5 if (n) 5 call [fptr]

6 fptr = foo; 6 ...

7 else 7 mov [fptr], offset_bar
8 fptr = bar; s jmp offset_5

9 fptr(); 9

0}

Figure 4.1. Source code compiled to indirect call
4.3.1.2 Callbacks

Event-driven programs frequently pass function pointers to external modules or the OS,
which the receiving code later dereferences and calls in response to an event. These callback
pointers are generally implemented by using function pointers in C, or as method references
in C++. Callbacks can pose special problems for CFI, since the call site is not within the
module that generated the pointer. If the call site is within a module that cannot easily be
modified (e.g., the OS kernel), it must be protected in some other way, such as by sanitizing

and securing the pointer before it is passed.

4.3.1.3 Dynamic Linking

Dynamically linked shared libraries are widely used to reduce program size and improve
locality. But dynamic linking has been a challenge for CFI compatibility, because CFG
edges that span module boundaries may be unavailable statically.

In Windows, dynamically linked libraries (DLLs) can be loaded into memory at load time
or runtime. In load-time dynamic linking, a function call from a module to an exported DLL

function is usually compiled to a direct call, targeting an address stored in the module’s
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import address table (IAT). But if this function is called more than once, the compiler
first moves the target address to a register, and then generates register-indirect calls to
improve execution performance. In run-time dynamic linking, a module calls APIs, such as
LoadLibrary(), to load the DLL at runtime. When loaded into memory, the module calls
the GetProcAddress() API to retrieve the address of the exported function, and then calls
the exported function using the function pointer returned by GetProcAddress().

Additionally, MSVC (since version 6.0) provides linker support for delay-loaded DLLs
using the /DELAYLOAD linker option. These DLLs are not loaded into memory until one of
their exported functions are invoked.

In Linux, a module calls functions exported by a shared library by calling a stub in
its procedure linkage table (PLT). Each stub contains a memory-indirect jump whose target
depends on the writable, lazy-bound global offset table (GOT). As in Windows, an application
can also load a module at runtime using function dlopen(), and retrieve an exported symbol
using function dlsym().

Supporting dynamic and delay-load linkage is further complicated by the fact that shared
libraries can also export data pointers within their export tables in both Linux and Windows.
CF1T solutions that modify export tables must usually treat code and data pointers differently,

and must therefore somehow distinguish the two types to avoid data corruptions.

4.3.1.4 Virtual Functions

Polymorphism is a key feature of OOP languages, such as C++. Virtual functions are used
to support runtime polymorphism, and are implemented by C++ compilers using a form of
late binding embodied as virtual tables (vtables). The tables are populated by code pointers
to virtual function bodies. When an object calls a virtual function, it indexes its vtable by a

function-specific constant, and flows control to the memory address read from the table. At
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the assembly level, this manifests as a memory-indirect call. The ubiquity and complexity
of this process has made vtable hijacking a favorite exploit strategy of attackers.

Some CFT and vtable protections address vtable hijacking threats by guarding call sites
that read vtables, thereby detecting potential vtable corruption at time-of-use. Others seek
to protect vtable integrity directly by guarding writes to them. However, both strategies
are potentially susceptible to COOP (Schuster et al., [2015) and CODE-COOP (Wang et al.|
2017)) attacks, which replace one vtable with another that is legal but is not the one the
original code intended to call. The defense problem is further complicated by the fact that
many large classes of software (e.g., GTK+ and Microsoft COM) rely upon dynamically
generated vtables. CFI solutions that write-protect vtables or whose guards check against a

static list of permitted vtables are incompatible with such software.

4.3.1.5 Tail Calls

Modern C/C++ compilers provide tail call optimization options. Table reports the
specific options for mainstream compilers. With these options enabled, a tail call is complied
to an register-indirect jump. Additionally, tail call optimization can result in unmatched

call /return pairs that affect precision of some CFG recovery algorithms.

4.3.1.6 Switch-case Statements

Many C/C++ compilers optimize switch-case statements by generating a separate code
block for each case statement, and creating a static dispatch table populated with pointers
to different code blocks. When the switch block is executed at runtime, it first calculates
the index of the pointer in the dispatch table, fetches the pointer stored at that index, and
then jumps to the correct code block. This introduces memory-indirect jumps that refer to

code pointers not contained in any vtable, and that do not point to function boundaries.
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CF1I solutions that compare code pointers to a whitelist of function boundaries can therefore

cause the switch-case code to malfunction.

4.3.1.7 Returns

Nearly every benign program has returns. Unlike indirect branches whose target addresses
are stored in registers or non-writable data sections, return instructions read their destination
addresses from the stack. Since stacks are typically writable, this makes return addresses
prime targets for malicious corruption.

On Intel-based CISC architectures, return instructions have one of the shortest encodings
(1 byte), complicating the efforts of source-free solutions to replace them in-line with secured
equivalent instruction sequences. Additionally, many hardware architectures heavily opti-
mize the behavior of returns (e.g., via speculative execution powered by shadow stacks for
call-return matching). Source-aware CFI solutions that replace returns with some other in-
struction sequence can therefore face stiff performance penalties by losing these optimization

advantages.

4.3.2 Other Metrics

While indirect branches tend to be the primary code feature of interest to CFI attacks and
defenses, there are many other code features that can also pose control-flow security prob-
lems, or that can become inadvertently corrupted by CFI code transformation algorithms,

and that therefore pose compatibility limitations. Important examples are discussed below.

4.3.2.1 Multithreading

With the rise of multicore hardware, multithreading has become a centerpiece of software

efficiency. Unfortunately, concurrent code execution poses some serious safety problems for
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many CFI algorithms. For example, in order to take advantage of hardware call-return
optimization (see above), most CFI algorithms produce code containing guarded return
instructions. The guards check the return address before executing the return. However,
on parallelized architectures with flat memory spaces, this is unsafe because any thread
can potentially write to any other (concurrently executing) thread’s return address at any
time. This introduces a TOCTOU vulnerability in which an attacker-manipulated thread
corrupts a victim thread’s return address after the victim thread’s guard code has checked it
but before the guarded return executes. We term this a cross-thread stack-smashing attack.
Since nearly all modern architectures combine concurrency, flat memory spaces, and returns,
this leaves almost all CFI solutions either inapplicable, unsafe, or unacceptably inefficient

for a large percentage of modern production software.

4.3.2.2 Position-Independent Code

Position-independent code (PIC) is designed to be relocatable after it is statically generated,
and is a standard practice in the creation of shared libraries. Unfortunately, the mechanisms
that implement PIC often prove brittle to code transformations commonly employed for CFI
enforcement. For example, PIC often achieves its position independence by dynamically
computing its own virtual memory address (e.g., by performing a call to itself and reading
the pushed return address from the stack), and then performing pointer arithmetic to locate
other code or data at fixed offsets relative to itself. This procedure assumes that the relative
positions of PIC code and data are invariant even if the base address of the PIC block
changes.

However, CFI transforms typically violate this assumption by introducing guard code that
changes the sizes of code blocks, and therefore their relative positions. To solve this, PIC-
compatible CFI solutions must detect the introspection and pointer arithmetic operations

that implement PIC and adjust them to compute corrected pointer values. Since there are
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typically an unlimited number of ways to perform these computations at both the source
and native code levels, CFI detection of these computations is inevitably heuristic, allowing

some PIC instantiations to malfunction.

4.3.2.3 Exceptions

Exception raising and handling is a mainstay of modern software design, but introduces
control-flow patterns that can be problematic for CFI policy inference and enforcement.
Object-oriented languages, such as C++, boast first-class exception machinery, whereas
standard C programs typically realize exceptional control-flows with gotos, longjumps, and
signals. In Linux, compilers (e.g., gce) implement C++ exception handling in a table-driven
approach. The compiler statically generates read-only tables that hold exception-handling
information. For instance, gce produces a gcc_except_table comprised of language-specific
data areas (LSDAs). Each LSDA contains various exception-related information, including
pointers to exception handlers.

In Windows, structured exception handling (SEH) extends the standard C language with
first-class support for both hardware and software exceptions. SEH uses stack-based excep-
tion nodes, wherein exception handlers form a linked list on the stack, and the list head is
stored in the thread information block (TIB). Whenever an exception occurs, the OS fetches
the list head and walks through the SEH list to find a suitable handler for the thrown excep-
tion. Without proper protection, these exception handlers on the stack can potentially be
overwritten by an attacker. By triggering an exception, the attacker can then redirect the
control-flow to arbitrary code. CFI protection against these SEH attacks is complicated by
the fact that code outside the vulnerable module (e.g., in the OS and/or system libraries)
uses pointer arithmetic to fetch, decode, and call these pointers during exception handling.

Thus, suitable protections must typically span multiple modules, and perhaps the OS kernel.

84



From Windows XP onward, applications have additionally leveraged vectored exception
handling (VEH). Unlike SEH, VEH is not stack-based; applications register a global handler
chain for VEH exceptions with the OS, and these handlers are invoked by the OS by inter-
rupting the application’s current execution, no matter where the exception occurs within a
frame.

There are at least two features of VEH that are potentially exploitable by attackers.
First, to register a vectored exception handler, the application calls an API AddVectored-
ExceptionHandler () that accepts a callback function pointer parameter that points to the
handler code. Securing this pointer requires some form of inter-module callback protection.

Second, the VEH handler-chain data structure is stored in the application’s writable heap
memory, making the handler chain data directly susceptible to data corruption attacks. Win-
dows protects the handlers somewhat by obfuscating them using the EncodePointer () API.
However, EncodePointer () does not implement a cryptographically secure function (since
doing so would impose high overhead); it typically returns the XOR of the input pointer
with a process-specific secret. This secret is not protected against memory disclosure attacks;
it is potentially derivable from disclosure of any encoded pointer with value known to the
attacker (since XOR is invertible), and it is stored in the process environment block (PEB),
which is readable by the process and therefore by an attacker armed with an information
disclosure exploit. With this secret, the attacker can overwrite the heap with a properly
obfuscated malicious pointer, and thereby take control of the application.

From a compatibility perspective, CFI protections that do not include first-class sup-
port for these various exception-handling mechanisms often conservatively block unusual
control-flows associated with exceptions. This can break important application functionali-

ties, making the protections unusable for large classes of software that use exceptions.

85



4.3.2.4 Calling Conventions

CFI guard code typically instruments call and return sites in the target program. In order
to preserve the original program’s functionality, this guard code must therefore respect the
various calling conventions that might be implemented by calls and returns. Unfortunately,
many solutions to this problem make simplifying assumptions about the potential diversity of
calling conventions in order to achieve acceptable performance. For example, a CFI solution
whose guard code uses EDX as a scratch register might suddenly fail when applied to code
whose calling convention passes arguments in EDX. Adapting the solution to save and restore
EDX to support the new calling convention can lead to tens of additional instructions per
call, including additional memory accesses, and therefore much higher overhead.

The C standard calling convention (cdecl) is caller-pop, pushes arguments right-to-
left onto the stack, and returns primitive values in an architecture-specific register (EAX on
Intel). Each architecture also specifies a set of caller-save and callee-save registers. Caller-
popped calling conventions are important for implementing variadic functions, since callees
can remain unaware of argument list lengths.

Callee-popped conventions include stdcall, which is the standard convention of the
Win32 API, and fastcall, which passes the first two arguments via registers rather than the
stack to improve execution speed. In OOP languages, every nonstatic member function has
a hidden this pointer argument that points to the current object. The thiscall convention
passes the this pointer in a register (ECX on Intel).

Highly optimized programs also occasionally adopt non-standard, undocumented calling
conventions, or even blur function boundaries entirely (e.g., by performing various forms
of function in-lining). For example, some C compilers support language extensions (e.g.,
MSVC’s naked declaration) that yield binary functions with no prologue or epilogue code,
and therefore no standard calling convention. Such code can have subtle dependencies on

non-register processor elements, such as requiring that certain Intel status flags be preserved
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across calls. Many CFI solutions break such code by in-lining call site guards that violate

these undocumented conventions.

4.3.2.5 TLS Callbacks

Multithreaded programs require efficient means to manipulate thread-local data without
expensive locking. Using thread local storage (TLS), applications export one or more TLS
callback functions that are invoked by the OS for thread initialization or termination. These
functions form a null-terminated table whose base is stored in the PE header. For compiler-
based CFT solutions, the TLS callback functions do not usually need extra protection, since
both the PE header and the TLS callback table are in unwritable memory. But source-
free solutions must ensure that TLS callbacks constitute policy-permitted control-flows at

runtime.

4.3.2.6 Memory Protection

Modern OSes provide APIs for memory page allocation (e.g., VirtualAlloc and mmap)
and permission changes (e.g., VirtualProtect and mprotect). However, memory pages
changed from writable to executable, or to simultaneously writable and executable, can
potentially be abused by attackers to bypass DEP defenses and execute attacker-injected
code. Many software applications nevertheless rely upon these APIs for legitimate purposes
(see Table , so conservatively disallowing access to them introduces many compatibility
problems. Relevant CFI mechanisms must therefore carefully enforce memory access policies

that permit virtual memory management but block code-injection attacks.

4.3.2.7 Runtime Code Generation

Most CFT algorithms achieve acceptable overheads by performing code generation strictly

statically. The statically generated code includes fixed runtime guards that perform small,
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optimized computations to validate dynamic control-flows. However, this strategy breaks
down when target programs generate new code dynamically and attempt to execute it,
since the generated code might not include CFI guards. Runtime code generation (RCG) is
therefore conservatively disallowed by most CFT solutions, with the expectation that RCG
is only common in a few, specialized application domains, which can receive specialized
protections.

Unfortunately, our analysis of commodity software products indicates that RCG is be-
coming more prevalent than is commonly recognized. In general, we encountered RCG

compatibility limitations in at least three main forms across a variety of COTS products:

1. Although typically associated with web browsers, just-in-time (JIT) compilation has
become increasingly relevant as an optimization strategy for many languages, including
Python, Java, the Microsoft .NET family of languages (e.g., C#), and Ruby. Software
containing any component or module written in any JIT-compiled language frequently

cannot be protected with CFI.

2. Mobile code is increasingly space-optimized for quick transport across networks. Self-
unpacking executables are therefore a widespread source of RCG. At runtime, self-
unpacking executables first decompress archived data sections to code, and then map
the code into writable and executable memory. This entails a dynamic creation of fresh
code bytes. Large, component-driven programs sometimes store rarely used compo-
nents as self-unpacking code that decompresses into memory whenever needed, and is

deallocated after use.

3. Component-driven software also often performs a variety of obscure API hooking initial-
izations during component loading and clean-up, which are implemented using RCG.
As an example, Microsoft Office software dynamically redirects all calls to certain
system API functions within its address space to dynamically generated wrapper func-

tions. This allows it to modify the behaviors of late-loaded components without having
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to recompile them all each time the main application is updated. To hook a function f
within an imported system DLL (e.g., ntdll.dll), it first allocates a fresh memory page
f" and sets it both writable and executable. It next copies the first five code bytes from
f to f’, and writes an instruction at '+ 5 that jumps to f 4 5. Finally, it changes f
to be writable and executable, and then overwrites the first five code bytes of f with
an instruction that jumps to f’. As a result, all subsequent calls to f get redirected
to f’, where new functionality can later be added dynamically before f’ jumps to the

preserved portion of f.

Such hooking introduces many dangers that are difficult for CFI protections to secure
without breaking the application or its components. Memory pages that are simulta-
neously writable and executable are susceptible to code-injection attacks, as described
previously. The RCG that implements the hooks includes unprotected jumps, which
must be secured by CFI guard code. However, the guard code itself must be designed to
be rewritable by more hooking, including placing instruction boundaries at addresses
expected by the hooking code (f + 5 in the above example). No known CFT algorithm

can presently handle these complexities, to our knowledge.

4.4 Implementation

To facilitate easier evaluation of the compatibility considerations outlined in Section
along with their impact on security and performance, we developed the CONFIRM suite
of CFI benchmarks. CONFIRM consists of 23 programs written in C++ totaling about
2,300 lines of code. Each benchmark isolates one of the compatibility metrics of Section
(or in some cases a few closely related metrics) by emulating behaviors of COTS software
products. Source-aware solutions can be evaluated by applying CFI code transforms to the

source codes, whereas source-free solutions can be applied to native code after compilation
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with a compatible compiler (e.g., gcc, LLVM, or MSVC). The benchmarks are described as

follows:

fptr. This benchmark tests whether function calls through function pointers are suitably

guarded or can be hijacked.

callback. As discussed in Section [4.3] call sites of callback functions can be either guarded
by a CFI mechanism directly, or located in immutable kernel modules that require some
form of indirect control-flow protections. This benchmark therefore tests whether a CFI

mechanism can secure callback function calls in both cases.

load__time_ dynlnk. Load-time dynamic linking is exercised, and tests determine whether
function calls to symbols that are exported by the dynamically linked library are suitably

protected.

run_ time_ dynlnk. This benchmark tests whether a CFI mechanism supports run time
dynamic linking, whether it supports retrieving symbols from the dynamically linked library

at run time, and whether it guards function calls to the retrieved symbol.

delay_ load (Windows only). CFI compatibility with delay-loaded DLLs is tested, in-
cluding whether function calls to symbols that are exported by the delay-loaded DLLs are
protected.

data__symbl. Data and function symbol imports and exports are tested, to determine
whether any controls preserve their accessibility and operation.

vtbl__call. Virtual function calls are exercised, whose call sites can be directly instru-
mented.

code__coop. This benchmark tests whether a CFI mechanism is robust against CODE-
COOP attacks. For the object-oriented interfaces required to launch a CODE-COOP attack,
we choose Microsoft COM API functions in Windows, and gtkmm API calls that are part

of the C++ interface for GTK+ in Linux.
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tail__call. Tail call optimizations of indirect jumps are tested.

switch. Indirect jumps associated with switch-case control-flow structures are tested, in-
cluding their supporting data structures.

ret. Validation of return addresses (e.g., dynamically via shadow stack implementation, or
statically by labeling call sites and callees with equivalence classes) is tested.

signal. This benchmark uses signal-handling in C to implement error-handling and excep-

tional control-flows.
cppeh. C++ exception handling structures and control-flows are exercised.

seh (Windows only). SEH-style exception handling is tested for both hardware and software
exceptions. This benchmark also checks whether the CFI mechanism protects the exception

handlers stored on the stack.

veh (Windows only). VEH-style exception handling is tested for both hardware and soft-
ware exceptions. This benchmark also checks whether the CFI mechanism protects callback
function pointers passed to the AddVectoredExceptionHandler() API.

convention. Several different calling conventions are tested, focusing on conventions widely
used in C/C++ languages on 32-bit x86 processors, including cdecl, stdcall, fastcall,
and thiscall.

multithreading. Safety of concurrent thread executions is tested. Specifically, one thread

simulates a memory corruption exploit that attempts to smash another thread’s stack and

break out of the CFI-enforced sandbox.

tls__callback (Windows source-free only). This benchmark tests whether static TLS call-

back table corruption is detected and blocked by the protection mechanism.
pic. Semantic preservation of position-independent code is tested.

mem. This benchmark performs memory management API calls for legitimate and mali-

cious purposes, and tests whether security controls permit the former but block the latter.
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jit.  This benchmark generates JIT code by first allocating writable memory pages, writing
JIT code into those pages, making the pages executable, and then running the JIT code.
To emulate behaviors of real-world JIT compilers, the JIT code performs different types of
control-flow transfers, including calling back to the code of JIT compiler and calling functions

located in other modules.

api__hook (Windows only). Dynamic API hooking is performed in the style described in
Section

unpacking (source-free only). Self-unpacking executable code is implemented using RCG.

4.5 Evaluation
4.5.1 Evaluation of CFI Solutions

To examine CONFIRM’s effect on real CFI solutions, we used it to reevaluate 9 major CFI
implementations for Linux and Windows that are either publicly available or were obtainable
in a self-contained, operational form from their authors at the time of writing. Table
reports the results of this evaluation. Columns 2—4 report testing results for Windows CFI
approaches, and columns 5-11 report results for Linux CFI.

All the Windows experiments were performed on an Intel Xeon E5645 workstation with
24 GB of RAM running 64-bit Windows 10. The Linux experiments were conducted on
different versions of Ubuntu VM machines based on what version the CFI platform was
tested by the original developers. All the VM machines had 16GB of RAM with 6 Intel
Xeon CPU cores. The overheads for source-free approaches were evaluated using benchmark
binaries compiled with most recent version of gce available for each test platform. All source-
aware approaches were applied before or during compilation with the most recent version
of LLVM for each test platform (since LLVM provides greatest compatibility between the

tested source-aware solutions).
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Two forms of compatibility are assessed in the evaluation: A CFI solution is categorized
as permissively compatible with a benchmark if it produces an output program that does
not crash and exhibits the original benchmark’s non-malicious functionality when executed.
The solution is effectively compatible if it is permissively compatible and any malicious func-
tionalities are blocked. Effective compatibility therefore indicates secure and transparent
support for the code features exhibited by the benchmark.

Column 2 of Table 4.2 begins with an evaluation of Microsoft’s MCFG solution, which is
integrated into the MSVC compiler. MCFG provides security checks for calls via function
pointers, vtable calls, tail calls, and switch-case statements. It also passes all benchmarks
related to dynamic linking, including load_time dynlnk, run_time dynlnk, delay load,
and data_ symbl. As a part of MSVC, MCFG provides transparency for generating position-
independent code and handling various calling conventions. With respect to exception han-
dling, MCFG is permissively compatible with all the related features, but does not adequately
protect structured or vectored exception handlers. MCFG’s most significant shortcoming is
its weak protection of return addresses. In addition, MCFG generates guard code at call
sites at compile time only. Therefore, code that links to immutable modules or modules
compiled with a different protection scheme remains potentially insecure. This results in
failures against callback corruption attacks and CODE-COOP attacks.

Columns 4-5 of Table[f.2]report compatibility testing results for Reins and OFI, which are
both source-free binary rewriting solutions for Windows. Reins validates control-flow transfer
targets for function pointer calls, vtable calls, tail calls, switch-case statements, and returns.
It supports dynamic linking at both load time and runtime, and is one of the only solutions
we tested that secures callback functions whose call sites cannot be directly instrumented.
Like MCFG, Reins fails against CODE-COOP attacks. However, OFI extends Reins with
additional protections that succeed against our CODE-COOP. OFI also exhibits improved

compatibility with delay-loaded DLLs, data exports, all three styles of exception handling,
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all tested calling conventions, and TLS callbacks. Both Reins and OFI nevertheless proved
vulnerable against attacks that abuse position-independent code and memory management
API functions, however.

The Gnu C-compiler does not yet have built-in CFI support, but includes virtual table
verification (VIV). VIV is first introduced in gee 4.9.0. It checks at virtual call sites
whether the vtable pointer is valid based on the object type. This blocks many important
OOP vtable corruption attacks, although type-aware COOP attacks can still succeed by
calling a different virtual function of the same type (e.g., supertype). As shown in column 4
of Table[4.2] VTV does not attempt to protect other types of control flow transfer, including
function pointers, callbacks, dynamic linking for both load-time and run-time, tail calls,
switch-case jumps, return addresses, error handling control-flows, or JIT code. However, it
is permissively compatible with all the applicable benchmarks, and can compile any feature
functionality we considered.

LLVM-CFT enforces stronger policies that constrain impending control-flow transfers at
every call site except returns. The omission of returns is significant, however, since it ad-
mits ROP attacks. In addition to return addresses, LLVM-CFI does not attempt to secure
callback pointers passed to external modules not compiled with LLVM-CFI, leaving it vul-
nerable CODE-COOP attacks. LLVM-CFI overhead ranges from -6.93% (for switch control
structures) to 6.97% (for protecting function pointers), giving it the overall best performance
scores within the scope of protections it provides.

MCEFT and 7CFTI are source-aware control-flow techniques. We tested them on x64 Ubuntu
14.04.5 with LLVM 3.5. The results are shown in columns 6-8 of Table [£.2l TICFI comes
with an option to turn off tail call optimization, which increases the precision at the price
of a small overhead increase. We therefore tested both configurations, observing no compat-
ibility differences between 7CFI with and without tail call optimizations. Incompatibilities

were observed in both MCFI and wCFI related to callbacks and runtime dynamic linking.
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MCEFT additionally suffered incompatibilities with the function pointer and virtual table call
benchmarks. For callbacks, both solutions incorrectly terminate the process reporting a CFI
violation. In terms of effective compatibility, MCFI and mCFI both securely support dynamic
linking, switch jumps, and return addresses, but are susceptible to CODE-COOQOP attacks. In
our perfomance analysis, we did not measure any considerable overheads for 7CFT’s tail call
option (only 0.3%). This option decreases the performance for dynamic linking but increases
the performance of vtable calls, switch-case, and return benchmarks. Overall, TCFI scores
more compatible and more secure relative to MCFI, but with slightly higher performance
overhead.

PathArmor offers improved power and precision over the other tested solutions in the
form of contextual CFI policy support. Contextual CFI protects dangerous system API calls
by tracking and consulting the control-flow history that precedes each call. Efficient context-
checking is implemented as an OS kernel module that consults the last branch record (LBR)
CPU registers (which are only readable at ring 0) to check the last 16 branches before the im-
pending protected branch. Our evaluation demonstrated high permissive compatibility, only
observing crashes on benchmarks for C++ exception handling and signal handlers. However,
our benchmarks were able to violate CFI policies using function pointers, callbacks, virtual
table pointers, tail-calls, switch-cases, and return addresses, resulting in a lower effective
compatibility score. Its careful guarding of system calls also comes with high overhead for
those calls (1221.48%). This affects feasibility of dynamic loading, whose associated system
calls all receive a high performance penalty per call. Similarly, load-time dynamic linking
exhibits a relatively high 74.54% overhead.

Lockdown enforces a dynamic control-flow integrity policy for binaries with the help of
symbol tables of shared libraries and executables. Although Lockdown is a binary approach,
it requires symbol tables not available for stripped binaries without sources, so we eval-

uated it using benchmarks specially compiled with symbol information added. Its loader
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leverages the additional symbol information to more precisely sandbox interactions between
interoperating binary modules. Lockdown is permissively compatible with most benchmarks
except callbacks and runtime dynamic linking, for which it crashes. In terms of security, it
robustly secures function pointers, virtual calls, switch tables, and return addresses using a
shadow stack. These security advantages incur somewhat higher performance overheads of
85.85-227.82% (but with only 1.45% load-time dynamic loading overhead). Like most of the
other tested solutions, Lockdown remains vulnerable to CODE-COOP and multithreading

attacks.

4.5.2 FEvaluation Trends

CoNFIRM evaluation of these CFI solutions reveals some notable gaps in the current state-
of-the-art. For example, all tested solutions fail to protect software from our cross-thread
stack-smashing attack, in which one thread corrupts another thread’s return address. We
hypothesize that no CFI solution yet proposed in the literature can block this attack except
by eliminating all return instructions from hardened programs, which probably incurs pro-
hibitive overheads. By repeatedly exploiting a data corruption vulnerability in a loop, our
test program can reliably break all tested CFI defenses within seconds using this approach.
Since concurrency, flat memory spaces, returns, and writable stacks are all ubiquitous in
almost all mainstream architectures, such attacks should be considered a significant open
problem.

Memory management abuse is another major root of CFI incompatibilities and insecuri-
ties uncovered by our experiments. Real-world programs need access to the system memory
management API in order to function properly, making CFI approaches that prohibit it
impractical. However, memory API arguments are high value targets for attackers, since
they potentially unlock a plethora of follow-on attack stages, including code injections. CFI

solutions that fail to guard these APIs are therefore insecure. Of the tested solutions, only
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PathArmor manages to strike an acceptable balance between these two extremes, but only
at the cost of high overheads.

A third outstanding open challenge concerns RCG in the form of JIT-compiled code, dy-
namic code unpacking, and runtime API hooking. RockJIT (Niu and Tan, 2014b) is the only
language-based CFI algorithm proposed in the literature that yet supports any form of RCG,
and its approach entails compiler-specific modifications to source code, making it difficult to
apply on large scales to the many diverse forms of RCG that appear in the wild. New, more
general approaches are needed to lend CFI support to the increasing array of software prod-
ucts built atop JIT-compiled languages or linked using RCG-based mechanisms—including
many of the top applications targeted by cybercriminals (e.g., Microsoft Office).

Table measures the overall compatibility of all the tested CFI solutions. Permissive
and effective compatibility are measured as the ratio of applicable benchmarks to permis-
sively and effectively compatible ones, respectively. All CFI techniques embedded in compil-
ers (viz. MCFG, GCC VTV, and LLVM-CFI), are 100% permissively compatible, avoiding
all crashes. MCFG is applicable to 21 benchmarks (all but TLS callbacks and unpacking),
whereas GCC VTV and LLVM-CFI are applicable to the 17 non-Windows benchmarks.
MCFG and LLVM secure 57% and 64% of applicable benchmarks, while GCC-VTV only
secures 23%.

OFT scores the highest overall compatibility, achieving 83% permissive compatibility and
70% effective compatibility on 23 applicable benchmarks. Reins has the lowest permissive
compatibility score of only 48%. PathArmor and Lockdown are permissively compatible
with 82% and 77% of 17 and 18 benchmarks, respectively. However PathArmor can only
secure 29% of the benchmarks, giving it a lower effective compatibility score. GCC-VTV

has the lowest effective compatibility of 24%.
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4.5.3 Performance Evaluation Correlation

Prior performance evaluations of CFI solutions primarily rely upon SPEC CPU benchmarks
as a standard of comparison. This is based on a widely held (but untested) expectation that
CFI overheads on SPEC benchmark programs are indicative of their overheads on real-world,
security-sensitive software to which they might be applied in practical deployments. To test
this expectation, we computed the correlation between median performance of CFI solutions
on CONFIRM benchmarks with their performances reported on SPEC benchmarks (as re-
ported in the prior literature). Although CONFIRM benchmarks are not real-world software,
they exhibit features particularly relevant to CFI; high correlations therefore indicate to what
degree CPU SPEC benchmarks contain code features relevant to CFI evaluation.

Table [4.4] reports the results, in which correlations are computed as Pearson correlation

coefficients:

o i xy) — (nx 2 x )
Y (n—1) X sz X 8

(4.1)

where z and y are the means, and s, and s, are the sample standard deviations of x and y,
respectively.

The results show that although a few SPEC benchmarks have strong correlations (namd,
xalancbmk, astar, soplex, and povray being the highest), in general SPEC CPU benchmarks
exhibit a poor correlation of only 0.36 on average with tests that exercise CFI-relevant code
features. Almost half the SPEC benchmarks even have negative correlations. This indicates
that SPEC benchmarking is probably an inaccurate method of evaluating CFI performance,

since such benchmarks consist largely of code features irrelevant to CFI.

4.5.4 Performance Prediction

Using the correlation data derived in Table [4.4] it is possible to estimate CONFIRM median

scores for other CFI solutions whose implementations are not available for direct testing
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Table 4.5. CONFIRM performance prediction

puCFI  uCFI+shadow stack PittyPat GRIFFIN

namd 0.24 —0.01 28.8 2.5
xalancbmk 28.5
astar 10.09 13.97 22.5 6.5
soplex 3.95 3.37 27.5 10.5
CoNFIRM median 107.52 129.51 2046.22 31.18

(e.g., because they are not publicly released or require specialized hardware, such as Intel
Process Trace technology), but whose SPEC CPU benchmark overheads are reported in the
prior literature. This is potentially useful as a means of estimating more realistic overheads
that might be exhibited by these solutions on software other than SPEC benchmarks, with
the understanding that the resulting estimations are less reliable than direct measurement
on CONFIRM.

Since many SPEC benchmarks analyzed in Table [4.4] exhibit low correlations, and are
therefore unreliable predictors of CONFIRM overheads, it is reasonable to derive such pre-
dictions from only the highly correlated SPEC overheads. We therefore consider only SPEC
benchmarks with correlations above 0.88—specifically, namd, xalancbmk, astar, and soplex.
With these 4 SPEC benchmarks as features, we apply a linear regression model to each, and
then estimate each solution’s CONFIRM median as a weighted average of the linear regres-
sion estimates, where the correlation scores are the weights. When there is missing data (i.e.,
some SPEC benchmark scores for the solution are unreported in the prior literature), the
missing data terms are omitted from the weighted average, allowing the dependent variable
to be estimated from the remaining data. Data for MCFG, GCC-VTV, LLVM-CFI, MCFI,
and wCFI constitute a training set for the regression model.

Table reports the prediction results. It is worth noting that shadow stack indeed

introduces extra overhead, as shown in first and second columns.
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4.6 Conclusion

CoNFIRM is the first evaluation methodology and benchmarking suite that is designed
to measure applicability, compatibility, and performance characteristics relevant to control-
flow security hardening evaluation. The CONFIRM suite provides 23 benchmarks that test
various CFl-relevant code features and coding idioms, which are widely found in deployed
COTS software products.

Nine publicly available CFI mechanisms are reevaluated using CONFIRM. The evalua-
tion results reveal that state-of-the-art CFI solutions are compatible with only about 49%
of the CFI-relevant code features and coding idioms needed to protect large, production
software systems that are frequently targeted by cybercriminals. Compatibility and security
limitations related to multithreading, custom memory management, and various forms of
runtime code generation are identified as presenting some of the greatest barriers to adop-
tion.

In addition, performance analysis indicates that many of the metrics widely used to
evaluate CFI overheads are not reflective of overheads that might be observed in realistic
CFI deployments. In particular, benchmarks designed to assess CPU computational overhead
exhibit an only 0.36 correlation with benchmarks that exercise code features relevant to CFI.
This suggests a need for more CFI-specific benchmarking to identify important sources of

performance bottlenecks, and their ramifications for CFI security and practicality.
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CHAPTER 5
SEISMIC: SECURE IN-LINED SCRIPT MONITORS

FOR INTERRUPTING CRYPTOJACKY

5.1 Introduction

While CFI enforcement (see Chapters can enforce policies that constrain software to
permitted control-flow paths, some software demands enforcement of policies that cannot be
expressed as a control-flow graph. In this chapter we build upon our foundation of control-
flow safety to implement self-profiling code for malicious intrusion detection. This approach
is applied to achieve cryptojacking attack detection in web browsers without source code.

Cryptojacking—the unauthorized use of victim computing resources to mine and exfil-
trate cryptocurrencies—has recently emerged as one of the fastest growing new web cy-
bersecurity threats. Network-based cryptojacking attacks increased 600% in 2017, with
manufacturing and financial services as the top two targeted industries, according to IBM
X-Force (McMillen, 2017)). Adguard reported a 31% surge in cryptojacking attacks in Novem-
ber 2017 alone (Meshkov, 2017). The Smominru botnet is estimated to be earning its owners
about $8,500 each week via unauthorized Monenﬂ mining, or an estimated $2.8-3.6 million
total as of January 2018 (Kafeine, 2018).

The relatively recent escalation of cryptojacking threats can be traced to several con-
verging trends, including the emergence of new mining-facilitating technologies that make
cryptojacking easier to realize, next-generation cryptocurrencies that are easier to mine and

offer greater anonymity to criminals, and the rising value of cryptocurrencies (Lau, 2017).

IThis chapter contains material previously published as: Wenhao Wang, Benjamin Ferrell, Xiaoyang Xu,
Kevin W. Hamlen, and Shuang Hao. “SEISMIC: SEcure In-lined Script Monitors for Interrupting Crypto-
jacks” In Proceedings of the 23rd European Symposium on Research in Computer Security (ESORICS), pp.
122-142, September 2018.

Zhttps://cointelegraph.com/news/monero
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Among the chiefs of these new technologies is WebAssembly (Wasm)ﬂ a new bytecode lan-
guage for web browsers that affords faster and more efficient computation than previous web
scripting languages, such as JavaScript (JS). By implementing cryptomining algorithms in
Wasm, legitimate miners can make more efficient use of client computing resources to gener-
ate greater revenue, and attackers can covertly establish illicit mining operations on browsers
around the world with only average hardware and computing resources, thereby achieving
the mass deployment scales needed to make cryptojacking profitable. For this reason, a
majority of in-browser coin miners currently use Wasm (Neumann and Toro, 2018]).

Unfortunately, this availability of transparent cryptomining deployment models is blur-
ring distinctions between legitimate, legal cryptomining and illegitimate, illegal cryptojack-
ing. For example, in 2015, New Jersey settled a lengthy lawsuit against cryptomining com-
pany Tidbit, in which they alleged that Tidbit’s browser-based Bitcoin mining software
(which was marketed to websites as a revenue-generation alternative to ads) constituted
“access to computers ... without the computer owners’ knowledge or consent” (OAG, New
Jersey, 2015). The definition and mechanism of such consent has therefore become a cen-
tral issue in protecting users against cryptojacking attacks. For example, numerous top-
visited web sites, including Showtime (Liao, 2017)), YouTube (Goodin, 2018)), and The Pirate
Bay (Hruska, 2017), have come under fire within 2017-2018 for alleged cryptojacking attacks
against their visitors. In each case, cryptocurrency-generation activities deemed consensual
by site owners were not deemed consensual by users.

In order to provide end-users an enhanced capability to detect and consent to (or opt-out
of) browser-based cryptomining activities, this chapter investigates the feasibility of seman-
tic signature-matching for robustly detecting the execution of browser-based cryptomining
scripts implemented in Wasm. We find that top Wasm cryptominers exhibit recognizable

computation signatures that differ substantially from other Wasm scripts, such as games.

3http://webassembly.org
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To leverage this distinction for consent purposes, we propose and implement SEcure In-lined
Script Monitors for Interrupting Cryptojacks (SEISMIC). SEISMIC automatically modifies
incoming Wasm binary programs so that they self-profile as they execute, detecting the echos
of cryptomining activity. When cryptomining is detected, the instrumented script warns the
user and prompts her to explicitly opt-out or opt-in. Opting out halts the script, whereas
opting in continues the script without further profiling (allowing it to execute henceforth at
full speed).

This semantic signature-matching approach is argued to be more robust than syntactic
signature-matchers, such as n-gram detectors, which merely inspect untrusted scripts syn-
tactically in an effort to identify those that might cryptomine when executed. Semantic
approaches ignore program syntax in favor of monitoring program behavior, thereby evading
many code obfuscation attacks that defeat static binary program analyses.

Instrumenting untrusted web scripts at the Wasm level also has the advantage of of-
fering a browser-agnostic solution that generalizes across different Wasm virtual machine
implementations. SEISMIC can therefore potentially be deployed as an in-browser plug-in,
a proxy service, or a firewall-level script rewriter. Additional experiments on CPU-level in-
struction traces show that semantic signature-matching can also be effective for detection of
non-Wasm cryptomining implementations, but only if suitable low-level instruction tracing
facilities become more widely available on commercial processors.

To summarize, this chapter makes the following contributions:

e We conduct an empirical analysis of the ecosystem of in-browser cryptocurrency mining

and identify key security-relevant components, including Wasm.

e We introduce a new proof-of-concept attack that can hijack mining scripts and abuse

client computing resources to gain cryptocurrency illicitly.
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e We develop a novel Wasm in-line script monitoring system, SEISMIC, which instru-
ments Wasm binaries with mining sensors. SEISMIC allows users to monitor and

consent to cryptomining activities with acceptable overhead.

e We apply SEISMIC on five real-world mining Wasm scripts (four families) and seven
non-mining scripts. Our results show that mining and non-mining computations ex-
hibit significantly different behavioral patterns. We also develop a classification ap-

proach and achieve > 98% accuracy to detect cryptomining activities.

The remainder of the chapter is structured as follows. Sections and begin with
an overview of technologies of rising importance in web cryptomining, and a survey of the
cryptomining ecosystem, respectively. Section [5.4] presents a new cryptojacking attack that
demonstrates how adversaries can bypass current security protections in this ecosystem to
abuse end-user computing resources and illicitly mine cryptocurrencies. Section [5.5] intro-
duces our defense strategy based on semantic signature-detection and in-lined reference mon-

itoring, and Section [5.0] evaluates its effectiveness. Finally, Section [5.7] concludes.

5.2 Background
5.2.1 Monero

Monero (XMR) is a privacy-focused cryptocurrency launched in April 2014. The confiden-
tiality and untraceability of its transactions make Monero particularly popular on darknet
markets. Monero’s mining process is egalitarian, affording both benign webmasters and
malicious hackers new funding avenues.

The core of Monero involves the CryptoNight proof-of-work hash algorithm based on the
CryptoNote protocol (van Saberhagen) |2013). CryptoNight makes mining equally efficient

on CPU and GPU, and restricts mining on ASIC. This property makes Monero mining
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particularly feasible on browsers. A majority of current browser-based cryptocurrency miners
target CryptoNight, and miner web script development has become an emerging business
model. Page publishers embed these miners into their content as an alternative or supplement

to ad revenue.

5.2.2 WebAssembly

Wasm (Haas et al., 2017)) is a new bytecode scripting language that is now supported by all
major browsers (DeMocker, 2017). It runs in a sandbox after bytecode verification, where it
aims to execute nearly as fast as native machine code.

Wasm complements and runs alongside JS. JS loads Wasm scripts, whereupon the two
languages share memory and call each other’s functions. Wasm is typically compiled from
high-level languages (e.g., C, C++, or Rust). The most popular toolchain is Emscriptenﬁ
which compiles C/C++ to a combination of Wasm, JS glue code, and HTML. The JS glue
code loads and runs the Wasm module.

Browsers can achieve near-native speeds for Wasm because it is designed to facilitate
fast fetching, decoding, JIT-compilation, and optimization of Wasm bytecode instructions
relative to JS. Wasm does not require reoptimization or garbage collection. These perfor-
mance advantages make Wasm attractive for computationally intensive tasks, leading most

browser-based cryptocurrency miners to use Wasm.

5.3 Ecosystem of Browser-based Cryptocurrency Mining

Although cryptomining is technically possible on nearly any browser with scripting support,
efficient and profitable mining with today’s browsers requires large-scale deployment across

many CPUs. Webmasters offering services that attract sufficient numbers of visitors are

4http:/ /kripken.github.io/emscripten-site
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Figure 5.1. Browser-based mining workflow

therefore beginning to adopt cryptomining as an alternative or supplement to online ads as
a source of revenue. This has spawned a secondary business model of cryptomining web
software development, which markets mining implementations and services to webmasters.

Thus, although mining occurs on visitors’ browsers, miner developers and page publishers
play driving roles in the business model. As more miner developers release mining libraries
and more page publishers adopt them, a browser-based cryptocurrency mining ecosystem
forms. To better understand the ecosystem, we here illustrate technical details of browser-
based mining.

Page publishers first register accounts with miner developers. Registration grants the
publisher an asymmetric key pair. Publishers then download miner code from the miner
developer and customize it to fit their published pages, including adding their public keys.
The miner developer uses the public key to attribute mining contributions and deliver payouts
to page publishers.

Figure [5.1] illustrates the resulting workflow. After publishers embed the customized
miner into their pages, it is served to client visitors and executes in their browsers. The
HTML file first loads into the client browser, causing the mining bar to trigger supporting
JS modules, which share functionalities with Wasm modules. The Wasm code conducts
computationally intensive tasks (e.g., cryptonight_hash), whereas Ul and I/O interactions
(e.g., Websocket communications) are implemented in JS. The code framework is typically
created and maintained by miner developers.

Table summarizes security-related features of top web miner products:
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Table 5.1. Security-related features of popular miners

Wasm Domain Whitelisting Opt-In CPU Throttle

Adless v
Coinhive v
Coinlmp v
Crypto-Loot v
v
v

JSECoin
WebMinePool

*x NIX X X X
x XX X N X
SNENENENENEN

o Wasm: Most miners use Wasm for performance. For example, Coinhive mines Monera

via Wasm, and has about 65% of the speed of a native miner []

o Domain Whitelisting: To help deter malicious mining, some miner developers offer
domain name whitelisting to webmasters. If miner developers receive mining contri-

butions from unlisted domains, they can withhold payouts.

o Opt-In Tokens: To support ad blockers and antivirus vendors, some miner products
generate opt-in tokens for browsers. Mining can only start after an explicit opt-in from
the browser user. The opt-in token is only valid for the current browser session and

domain.

o CPU Throttling: Using all the client’s computing power tends to draw complaints from
visitors. Miner developers therefore advise page publishers to use only a fraction of
each visitor’s available computing power for mining. Webmasters can configure this

fraction.

https://coinhive.com
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1 <script src="https://authedmine.com/lib/simple-ui.min.js" async>
2 </script>

3 <div class="coinhive-miner"

4 style="width:256px;height:310px"

5 data_key="YOUR_SITE_KEY">

6 <em>Loading...</em>

7 </div>

Listing 5.1. Embedded miner HTML code

5.4 Counterfeit Mining Attacks

To underscore the dangers posed by many browser-based mining architectures, and to moti-
vate our defense, we next demonstrate how the ecosystem described in can be compro-
mised through counterfeit mining—a new cryptojacking attack wherein third-party adver-
saries hijack mining scripts to work on their behalf rather than for page publishers or page
recipients.

Our threat model for this attack assumes that miner developers, page publishers, and
page recipients are all non-malicious and comply with all rules of the cryptomining ecosystem
in §5.3] and that mining scripts can have an unlimited variety of syntactic implementations.
Specifically, we assume that miner developers and webmasters agree on a fair payout rate,
publishers notify visitors that pages contain miners, and mining only proceeds with visitor
consent. Despite this compliance, we demonstrate that malicious third-parties can compro-
mise the ecosystem by abusing the miner software, insecure web page elements, and client

computing resources to mine coins for themselves illegitimately.
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To understand the attack procedure, we first illustrate how publishers embed miners into
their web pages. Listing [5.1] shows the HTML code publishers must typically add. Line
imports the JS library maintained by miner developer. Line [4] specifies the dimensions of
the miner rendered on the page. Line [5|identifies the publisher to the miner developer. To
receive revenue, publishers must register accounts with miner developers, whereupon each
publisher receives a unique data key. This allows miner developers to dispatch payroll to the
correct publishers.

Our attack is predicated on two main observations about modern web pages: First,
cross-site scripting (XSS) vulnerabilities are widely recognized as a significant and perva-
sive problem across a large percentage of all web sites (WhiteHat Security|, 2017; |Gupta and
Gupta, [2017)). Thus, we realistically assume that some mining pages contain XSS vulnerabil-
ities. Second, although some XSS mitigations can block injection of executable scripts, they
are frequently unsuccessful at preventing all injections of non-scripts (e.g., pure HTML).
Our attack therefore performs purely HTML XSS injection to hijack miners via web gad-
gets (Lekies et all [2017)—a relatively new technique whereby existing, non-injected script
code is misused to implement web attacks.

Examining the JS library called in line [I] reveals several potentially abusable gadgets,
including the one shown in Listing [5.2] This code fragment selects all div elements of class
.coinhive-miner on the page, and renders a miner within each. Unfortunately, line (1] is
exploitable because it cannot distinguish publisher-provided div elements from maliciously
injected ones. This allows an adversary to maliciously inject a div element of that class
but with a different data key, causing the recipient to mine coins for the attacker instead of
the publisher. We emphasize that in this attack, the exploited gadget is within the miner
software, not within the publisher’s page. Therefore all web pages that load the miner are
potentially vulnerable, creating a relatively broad surface for criminals to attack.

To verify our counterfeit miner attack, we deploy two proof-of-concept attacks. Since

the attacks begin with XSS exploits, we give two demonstrations: one using a reflected XSS
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1 var elements = document.querySelectorAll('.coinhive-miner');
2 for (var i = 0; i < elements.length; i++) {
3 new Miner(elements[i])

4}

Listing 5.2. JavaScript gadget

Mozilla Firefox
1 € c localhost/action.php x
Home Research Education Experience & c @
Counterfeit Miner Attack ' X [ied
HASHES/S TOTAL
localhost/action.php X € ¢ e
0 . O 61 41 Counterfeit Miner Attack Demo
< c
THREADS SPEED Input HTML: | <div class="coinhive-i|
[s) Submit Query.
6 100% . Toma | ERERE EMENT
INJECTING
7 I AFTER
: INJECTION
BEFORE [—_ > >
INJECTION HASHES/S  TOTAL
powered by 0 0
HASHES/S /;7JOTAL THREADS SPEED THREADS SPEED
4 100%
234 7123 6+/— 100% o
https://authedmine.com/media/miner.htmiZkey=2z8RoXFYk2zDGelsOJGxXqNPNT, START MINING

Figure 5.2. Reflected (left) and stored (right) counterfeit mining attacks

vulnerability and one with a stored XSS vulnerability. The reflected XSS attack crafts a
URL link containing the injected HTML code, where the injected code is a div element
similar to Listing . After enticing visitors to click the URL link (e.g., via phishing), the
visitor’s browser loads and executes the counterfeit miner. The left of Figure shows a
snapshot of the infected page, in which the counterfeit miner is visible at the bottom.

The stored XSS attack involves a page that reads its content from a database, to which
visitors can add insufficiently sanitized HTML elements. In this scenario, injecting the
malicious miner HTML code into the database causes the counterfeit miner to permanently
inhabit the victim page. The right of Figure [5.2] illustrates the attack procedure. The three

screenshots show sequential phases of the attack.
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Counterfeit mining attacks illustrate some of the complexities of the cryptomining consent
problem. In this case, asking users to consent to mining in general on affected web pages
does not distinguish between the multiple miners on the compromised pages, some of which
are working for the page publisher and others for a malicious adversary. The next section
therefore proposes an automated, client-side consent mechanism based on in-lined reference
monitoring that is per-script and is page- and miner-agnostic. This allows users to detect
and potentially block cryptomining activities of individual scripts on a page, rather than

merely the page as a whole.

5.5 Detection

In light of the dangers posed by counterfeit and other cryptomining attacks, this section pro-
poses a robust defense strategy that empowers page recipients with a more powerful detection
and consent mechanism. Since cryptojacking attacks ultimately target client computing re-
sources, we adopt a strictly client-side defense architecture; supplementary publisher- and
miner developer-side mitigations are outside our scope.

Section begins with a survey of current static approaches and their limitations.
Section then proposes a more dynamic strategy that employs semantic signature detec-
tion, and presents experimental evidence of its potential effectiveness. Finally, Section [5.5.3

presents technical details of our defense implementation.

5.5.1 Current Methods

Antivirus engines detect browser mining primarily via script file signature databases. The
most popular Wasm implementation of the CryptoNight hashing algorithm (van Saberhagen),
2013)) is flagged by at least 21 engines. A few of these (e.g., McAfee) go a step further and
detect cryptomining implementations based on function names or other recognized keywords

and code file structures.
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21 engines detected this file No engines detected this file

S5HA-256 3f5961a80d3aa7cb0652 5HA-256 000415b2639c960e039299fde2a52e7e9ct
File name cryptonight.wasm File name worker_func_names.wasm
File size 61.02 KB File size 61 KB
Last analysis 2018-04-11 22:34:43 UTC Lastanalysis  2018-04-13 13:24:44 UTC
21/60 RIS (0/59) astandlys
Community score  -23 —
. . o - -
Detection Details Relations Community o Detection Details Community
Ad-Aware A Application.BitCoinMinerZV Ad-Aware o Clean
Arcabit A Application.BitCoinMiner.ZV AhnLab-v3 o Clean
ClamAv A Win.Trojan.Agent-6422508-0 Antiy-AVL O Clean
Drweb A Tool.BtcMine. 1475 Avast o Clean
eScan A Application.BitCoinMiner.ZV AVG Q Clean
F-Secure A Application.BitCoinMiner.ZV AVware o Clean

Figure 5.3. Antivirus detection of CryptoNight before and after function renaming

Unfortunately, these static approaches are easily defeated by code obfuscations. For
example, merely changing the function names in the CryptoNight Wasm binary bypasses
all antivirus engines used on VirusTotal. Figure |5.3| shows detection results for the original
vs. obfuscated CryptoNight binary.

Web browsers also have some detection mechanisms in the form of plugins or extensions,

but these have similar limitations. The No Coin (Keramidas|, 2017) Chrome extension en-

forces a URL blacklist, which prevents miners from contacting their proxies. However, crim-
inals can bypass this by setting up new proxies not on the blacklist. MinerBlockﬂ statically
inspects scripts for code features indicative of mining. For instance, it detects CoinHive min-

ers by searching for functions named isRunning and stop, and variables named _siteKey,

Shttps://github.com/xd4rker/MinerBlock
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_newSiteKey, and _address. These static analyses are likewise defeated by simple code

obfuscations.

5.5.2 Semantic Signature-matching

A common limitation of the aforementioned detection approaches is their reliance on syn-
tactic features (viz., file bytes and URL names) that are easily obfuscated by attackers. We
therefore focus on detection via semantic code features that are less easy to obfuscate be-
cause they are fundamental to the miner’s computational purpose. Our proposed solution
monitors Wasm scripts as they execute to derive a statistical model of known mining and
non-mining behavior. Profiling reveals a distribution of Wasm instructions executed, which
we use at runtime to distinguish mining from non-mining activity.

Using Intel Processor Tracing (PT), we first generated native code instruction counts for
Wasm web apps. We recorded native instruction counts for 1-second computation slices on
Firefox, for web apps drawn from: 500 pages randomly selected from Alexa top 50K, 500
video pages from YouTube, 100 Wasm embedded game or graphic pages, and 102 browser
mining pages. Detailed results are presented in Table 5.2l The traces reveal that crypto-
mining Wasm scripts rely much more upon packed arithmetic instructions from the MMX,
SSE, and SSE2 instruction sets of CISC processors than do other Wasm scripts, like games.

Although PT is useful for identifying semantic features of possible interest, it is not a good
basis for implementing detection on average client browsers since PT facilities are not yet
widely available on average consumer hardware and OSes. We therefore manually identified
the top five Wasm bytecode instructions that JIT-compile to the packed arithmetic native
code instructions identified by the PT experiments. These five instructions are the column
labels of Table 5.3

We next profiled these top-five Wasm instructions at the Wasm bytecode level by instru-

menting Wasm binary scripts with self-profiling code. We profiled four mining apps plus one
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Table 5.2. Top 30 Opcodes Used as Features to Distinguish Mining and Non-mining

Rank Opcode Description

18t SUB subtract.

P CMOVS conditional move if sign (negative).

3rd UNPCKHPS' unpacks and interleaves the two high-order values from two single-
precision floating-point operands.

4th DIVSD?# divide scalar double-precision floating-point values.

5th SETB set byte if below.

e MOVQ* move quadword.

7th MAXPST return maximum packed single-precision floating-point values.

gth CMOVNLE conditional move if not above or equal.

gth COMVLE conditional move if less or equal.

10"  PSUBUSW*  subtract packed unsigned word integers with unsigned saturation.

11t CMOVNL conditional move if not less.

12th  UNPCKLPS' unpacks and interleaves the two low-order values from two single-
precision floating-point operands.

13t ROUNDSD!  round scalar double precision floating-point values.

14t CMPPST compare packed single-precision floating-point values.

15" MOVLHPS'  move two packed single-precision floating-point values from the low
quadword of an XMM register to the high quadword of another XMM
register.

16"  LOCK lock bus.

17t CMOVB conditional move if below.

18th  SETBE set byte if below or equal.

19th  SETNZ set byte if not zero.

20" ROL rotate left.

215t MUL multiply (unsigned).

2224 SETNLE set byte if not less or equal.

23td CVTTSD2SI*  convert with truncation scalar double-precision floating-point values
to scalar doubleword integers.

24 MOVMSKPST extract sign mask from four packed single-precision floating-point val-
ues.

25t CMOVZ conditional move if zero.

26"  TEST logical compare.

27th CMOVNZ conditional move if not zero.

28" ROUNDSST round scalar single precision floating-point values.

29th  STMXCSR!  save mxcsr register state.

30" CMOVNB conditional move if not below or equal.

* MMX Instruction.

T SSE Instruction.

1 SSE2 Instruction.
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Table 5.3. Execution trace average profiles

i32.add 1i32.and i32.shl i32.shr u i32.xor

A-Star 86.78 4.71 5.52 0.44 2.54
Asteroids 89.67 4.33 5.10 0.44 0.42
Basic4GL 75.78 8.43 13.75 1.78 0.27
Bullet(1000) 84.42 3.55 11.30 0.20 0.51
CoinHive 19.90 17.90 22.60 17.00 22.60
CoinHive v0 20.20 17.50 22.70 17.00 22.70
CreaturePack 54.70 0.52 44.27 0.21 0.40
FunkyKarts 77.89 8.68 12.28 0.44 0.71
HushMiner 62.53 6.45 17.87 6.23 6.93
NFEFWebMiner 28.00 15.80 20.40 15.30 20.40
Tanks 61.90 12.29 22.27 2.02 1.51
YAZECMiner  57.99 4.37 30.75 3.26 3.63

variant, and seven non-mining apps. The non-mining apps are mostly games (which is the
other most popular use of Wasm), and the rest are graphical benchmarks. For each app, we
executed and interacted with them for approximately 500 real-time seconds to create each
profile instance. For each app with configurable parameters, we varied them over their entire
range of values to cover all possible cases.

Figure displays the resulting distributions. There is a clear and distinct stratification
for the two CoinHive variants and NFWebMiner, which are based on CryptoNight. YAZEC
(Yet Another ZEC) Miner uses a different algorithm, and therefore exhibits slightly different
but still distinctive profile. Table displays an average across the 100 distributions for all

of the profiled applications.

5.5.3 SEISMIC In-lined Reference Monitoring

Our profiling experiments indicate that Wasm cryptomining can potentially be detected by
semantic signature-matching of Wasm bytecode instruction counts. To implement such a de-

tection mechanism that is deployable on end-user browsers, our solution adopts an in-lined
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Figure 5.4. Semantic profiles for mining vs. non-mining Wasm apps

reference monitor (IRM) (Schneider], |2000; Erlingsson and Schneider} [1999) approach. IRMs

automatically instrument untrusted programs (e.g., web scripts) with guard code that mon-
itors security-relevant program operations. The code transformation yields a new program
that self-enforces a desired policy, yet preserves policy-compliant behaviors of the original

code. In browsing contexts, IRM formalisms have been leveraged to secure other scripting

languages, such as JS and Flash (cf., Phung et al. (2015)), but not yet Wasm. In this sce-

nario, our goal is to design and implement an IRM system that automatically transforms
incoming Wasm binaries to dynamically compute their own semantic features and match
them to a given semantic signature.

Wasm scripts are expressed in binary or human-readable textual form. Each can be trans-

lated to the other using the Wasm Binary Toolkit (WABT). Typically scripts are distributed
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Figure 5.5. SEISMIC transformation of Wasm binaries

1 int pythag(int a, int b) { return a * a + b * b; }

Listing 5.3. C++ source code for compilation to Wasm

in binary form for size purposes, but either form is accepted by Wasm VMs. The programs
are composed of sections, which are each lists of section-specific content. Our automated

transformation modifies the following three Wasm section types:
o Functions: a list of all functions and their code bodies
o Globals: a list of variables visible to all functions sharing a thread
o Exports: a list of functions callable from JS

Figure 5.5 shows a high-level view of our Wasm instrumentation workflow. We here
explain a workflow for a single Wasm binary file, but our procedure generalizes to pages
with multiple binaries. As a running example, Listing [5.3| contains a small C++ function
that computes the sum of the squares of its two inputs. Compiling it yields the Wasm
bytecode in Listing [5.4]

Our prototype implementation of SEISMIC first parses the untrusted binary to a simpli-
fied abstract syntax tree (AST) similar to the one in Listing [5.4| using wasm2wat from WABT
with the -fold-exprs flag (). It next injects a fresh global variable of type i64 (64-bit

integer) into the globals section for each Wasm instruction opcode to be profiled (@). The
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1 (module (table O anyfunc) (memory $0 1)
(export "memory" (memory $0))

(export "pythag" (func $pythag))

(i32.add (i32.mul (get_local $1) (get_local $1))

2
3
4 (func $pythag (; 0 ;) (param $0 i32) (param $1 i32) (result i32)
5
6 (i32.mul (get_local $0) (get_local $0)))))

Listing 5.4. Original Wasm compiled from C++

JS-Wasm interface currently does not support the transfer of 64-bit integers, so to allow JS
code to read these counters, 32-bit accessor functions getInstLo and getInstHi are added
(®). An additional reset function that resets all the profile counters to zero is also added,
to allow the security monitor to separately profile different time slices of execution. All three
functions are added to the binary’s exports (@).

The transformation algorithm next scans the bodies of all Wasm functions in the script
and in-lines counter-increment instructions immediately after each instruction to be pro-
filed (®). Our prototype currently takes the brute-force approach of in-lining the counter-
increment guard code for each profiled instruction, but optimizations that improve efficiency
by speculatively increasing counters by large quantities in anticipation of an uninterruptable
series of signature-relevant operations are obviously possible.

The modified Wasm text file is now ready to be translated to binary form, which we
perform by passing it to wat2wasm from WABT (®). At this point, we redirect the JS code
that loads the Wasm binary to load the new one (@). This can be done either by simply
using the same name as the old file (i.e., overwriting it) or by modifying the load path for
the Wasm file in JS to point to the new one.

Listing shows the results of this process when profiling Wasm instructions i32.add
and 132.mul. Lines export the IRM helper functions defined in lines [1520] Lines
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(module (table O anyfunc) (memory $0 1)
(export "memory" (memory $0))

(export "pythag" (func $pythag))

(export "_getAddsLo" (func $_getAddsLo))

(export " _reset" (func $_reset))

(func $pythag (; 0 ;) (param $0 i32) (param $1 i32) (result i32)
(1i32.add (set_global 0 (i64.add (get_global 0) (i64.const 1)))
(132.mul (set_global 1 (i64.add (get_global 1) (i64.const 1)))
(get_local $1) (get_local $1))
(i32.mul (set_global 1 (i64.add (get_global 1) (i64.const 1)))
(get_local $0) (get_local $0))))

(func $_getAddsLo (; 1 ;) (result i32)
(return (i32.wrap/i64 (get_global 0))))

(func $ reset (; 5 ;)
(set_global 0 (i64.const 0))
(set_global 1 (i64.const 0)))
(global (;0;) (mut i64) (i64.comnst 0))
(global (;1;) (mut i64) (i64.const 0)))

Listing 5.5. Instrumented Wasm
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and [22| define global counter variables to profile 132.add and 132.mul instructions, respec-
tively. The two i32.mul instructions are instrumented on lines [I0] and [I2] and the single
i32.add instruction is instrumented on line @

SEISMIC’s instrumentation procedure anticipates an attack model in which script au-
thors and their scripts might be completely malicious, and adversaries might know all de-
tails of SEISMIC’s implementation. For example, adversaries might craft Wasm binaries
that anticipate the instrumentation procedure and attempt to defeat it. We therefore de-
signed our instrumentation in accordance with secure IRM design principles established in
the literature (Schneider, [2000; [Hamlen et al., 2006; Ligatti et al., 2009). In particular, the
Wasm bytecode language does not include unrestricted computed jump instructions, allow-
ing our transformation to implement uncircumventable basic blocks that pair profiling code
with the instructions they profile. Moreover, Wasm is type-safe (Haas et all 2017)), afford-
ing the implementation of incorruptible state variables that track the profiling information.
Type-safety ensures that malicious Wasm authors cannot use pointer arithmetic or untyped
references to corrupt the IRM’s profiling variables (cf., Sridhar and Hamlen| (2010bjal)).
These language properties are the basis for justifying other Wasm security features, such as
control-flow integrity (WebAssembly Community Group, 2018]).

To start the enforcement, Listing [5.6] instantiates a JS timer that first executes at page-
load and checks whether Wasm code has been loaded and compiled (®). If so, all Wasm
instruction counters are queried, reset, and logged to the console. The timer profiles another
slice of computation time every 5000 milliseconds. This affords detection of scripts that mine

periodically but not continuously.

5.6 Evaluation

To evaluate our approach, we instrumented and profiled the web apps listed in Table[5.3] The

majority of Wasm code we profiled was identifiable as having been compiled with Emscripten,

123



1 function wasmProfiler() {

2 if (Module["asm"] != null &% typeof _reset === "function") {
3 console.log(_getAddsHi() * 232 + getAddsLo() + "_adds");

4 console.log(_getMulsHi() * 23% + _getMulsLo() + " multiplies");
5 _reset();

6 } else { console.log("Wasm not, loaded yet"); }

7 setTimeout (wasmProfiler, 5000);

8}

9 wasmProfiler();

10 ...

11 Module["asm"] = asm;

12 var _getAddsLo = Module[" getAddsLo"] = function() {

13  return Module["asm"]["_getAddsLo"].apply(null, arguments) };
14 ...

Listing 5.6. SEISMIC JavaScript code

an LLVM-based JS compiler that yields a JS-Wasm pair of files for inclusion on web pages.
The JS file contains an aliased list of exported functions, where we insert our new entries
for the counters (®). The remaining Wasm programs we profiled have a similar structure to
the output of Emscripten, so they can be modified in a similar manner.

We profiled every instruction used in the CoinHive worker Wasm, which is a variant of
the CryptoNight hashing algorithm, and determined the top five bytecode instructions used:
i32.add, i32.and, i32.shl, i32.shr_u, and i32.xor. Normalized counts of how many

times these instructions execute constitute feature vectors for our approach.
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Table 5.4. Mining overhead

Vanilla Profiled

CoinHive vl ~ 36 hash/s 18 hash/s
CoinHive vO 40 hash/s 19 hash/s
NFWebMiner 38 hash/s 16 hash/s
HushMiner 1.6 sol/s 0.8 sol/s
YAZECMiner 1.8 sol/s 0.9 sol/s

5.6.1 Runtime Overhead

Table reports runtime overheads for instrumented binaries. The data was obtained by
running each miner in original and instrumented form over 100 trials, and averaging the
results. CoinHive and NFWebMiner were set to execute with 4 threads and their units
are in hashes per second. HushMiner and Yet Another ZEC Miner are single-threaded and
display units in solutions per second. In general, the miners we tested incurred a runtime
overhead of roughly 100%. We deem this acceptable because once mining is explicitly allowed
by the user, execution can switch back to the faster original code.

Non-mining code overhead must be calculated in a different way, since most are interactive
and non-terminating (e.g., games). We therefore measured overhead for these programs by
monitoring their frames-per-second. In all cases they remained at a constant 60 frames-per-
second once all assets had loaded. Overall, no behavioral differences in instrumented scripts
were observable during the experiments (except when mining scripts were interrupted to
obtain user consent). This is expected since guard code in-lined by SEISMIC is implemented

to be transparent to the rest of the script’s computation.

5.6.2 Robustness

Our approach conceptualizes mining detection as a binary classification problem, where

mining and non-mining are the two classes. Features are normalized vectors of the counts
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Table 5.5. SVM stratified 10-fold cross validation

Miner Fold Precision Recall F; Fold Precision Recall F4

N 1 1.00 0.99 0.99 2 1.00 1.00 1.00
Y 0.96 1.00 0.98 1.00 1.00 1.00
N 3 1.00 1.00 1.00 4 1.00 1.00 1.00
Y 1.00 1.00 1.00 1.00 1.00 1.00
N ) 1.00 1.00 1.00 6 1.00 0.99 0.99
Y 1.00 1.00 1.00 0.96 1.00 0.98
N 7 1.00 1.00 1.00 8 1.00 1.00 1.00
Y 1.00 1.00 1.00 1.00 1.00 1.00
N 9 1.00 1.00 1.00 10 1.00 1.00 1.00
Y 1.00 1.00 1.00 1.00 1.00 1.00

of the top five used Wasm instructions. For model selection, we choose Support Vector
Machine (SVM) with linear kernel function. We set penalty parameter C' to 10, since it is
an unbalanced problem (there are far fewer mining instances than non-mining instances).
To evaluate this approach, we use stratified 10-fold cross validation on 1900 instances, which
consist of 500 miners and 1400 non-miners.

The results shown in Table[5.5]are promising. All mining activities are identified correctly,
and the overall accuracy (F; score) is 98% or above in all cases. SEISMIC monitoring
exhibits negligible false positive rate due to our strict threhhold for detection. Visitors can
also manually exclude non-mining pages if our system exhibits a false positive, though the

cross-validation results indicate such misclassifications are rare.

5.7 Conclusion

SEISMIC offers a semantic-based cryptojacking detection mechanism for Wasm scripts that
is more robust than current static detection defenses employed by antivirus products and
browser plugins. By automatically instrumenting untrusted Wasm binaries in-flight with

self-profiling code, SEISMIC-modified scripts dynamically detect mining computations and
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offer users explicit opportunities to consent. Page-publishers can respond to lack of consent
through a JS interface, affording them opportunities to introduce ads or withdraw page con-
tent from unconsenting users. Experimental evaluation indicates that self-profiling overhead
is unobservable for non-mining scripts, such as games (and is eliminated for miners once
consent is granted). Robustness evaluation via cross-validation shows that the approach is

highly accurate, exhibiting very few misclassifications.
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CHAPTER 6

RELATED WORK

6.1 SFI and CFI

SFT was originally conceived as a means of sandboxing untrusted software modules via soft-

ware guards to a subset of a shared address space (Wahbe et al.,|1993). CFT refined this idea

to enforce more specific control-flow graphs (CFGs) (Abadi et al., [2005, 2009)). Later work

merged the two approaches for more efficient enforcement (Erlingsson et al., |2006; [McCa-|

mant and Morrisett, [20006; [Akritidis et all, 2008} [Yee et al., [2009; Niu and Tan|, 2013} [Wartel

, 2012bjal), so that today distinctions between SFI and CFI are blurred. We therefore

here refer to CFI in a broad sense that includes both lines of research.

With the rise of return-oriented programming and code-reuse attacks (cf., [Sadeghi et al.

(2015); |Crane et al. (2015))), the impact of CFI research has increased in recent years. In

addition to securing user-level application software against such threats, it has also been

applied to harden smartphones (Davi et al. [2012; Pewny and Holz, 2013; Miguel et al.,

2009), embedded systems (Abera et al., [2016), hypervisors (Wang and Jiang, [2010), and

operating system kernels (Kemerlis et al., 2012; |Criswell et al., 2014} |Ge et al.| [2016). CFI-

enforcing hardware is also being investigated (Ge et al. [2017; (Gu et al. [2017; de Clercq

et al., [2016; Nick et al., 2016; Xia et al. |2012; [Yuan et al., [2015; |Davi et al., 2015, 2014).

Software CFI methodologies can be broadly partitioned into compiler-side source-aware
approaches and binary-only source-free approaches. Source-aware CFI leverages information

from source code to generate CFl-enforcing object code via a compiler. Examples include

WIT (Akritidis et al. [2008), NaCl (Yee et all [2009), CFL (Bletsch et all, [2011]), MIP

and Tan| 2013), MCFI (Niu and Tan, [2014al), RockJIT (Niu and Tanl 2014b)), Forward

CFI (Tice et al) 2014), CCFI (Mashtizadeh et al. 2015), 7CFI (Niu and Tan, 2015)), and

MCFG , 2015). The availability of source code affords these approaches much greater
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efficiency and precision than source-free alternatives. For example, source code analysis typi-
cally reveals a much more precise CFG for CFI to enforce, and compilers enjoy opportunities
to arrange data structure and code layouts to optimize CFI guard code.

MCEFT highlights the need for better multi-module CFI enforcement algorithms and
tools. To address this problem in source-aware settings, it introduces a modular, separate-
compilation approach integrated into the LLVM compiler. However, this requires all modules
to be recompiled with an MCFI-equipped compiler; environments where some modules are
immutable, are dynamically procured in binary form, or are closed-source, are not supported.

In general, reliance on source code has the potential disadvantage of reducing deploy-
ment flexibility. Much of the world’s software is closed-source, with source-level information
unlikely to be disclosed to consumers due to intellectual property concerns and constraints
imposed by developer business models. Software whose sources are available frequently
link to or otherwise rely upon binary modules (e.g., libraries) whose sources are not avail-
able, requiring approaches for dealing with those source-free components. Finally, software
distribution models that deliver binary code on-demand (e.g., as plugins, mobile apps, or
hotpatches) usually lack readily available source code with which to implement additional
third-party or consumer-side CFI protections.

Concerns over this inflexibility have therefore motivated source-free CFI approaches that
transform and harden already-compiled binary code without the aid of source code. Ex-
amples include XFI (Erlingsson et al., 2006), Reins (Wartell et al., [2012b), STIR (Wartell
et al., [2012a), CCFIR (Zhang et al., 2013), bin-CFI (Zhang and Sekar, 2013), BinCC (Wang
et al) 2015), Lockdown (Payer et al., [2015) TypeArmor (van der Veen et al., 2016) and
OCFT (Mohan et al., [2015). Source-free approaches face some difficult challenges, including
the problem of effectively disassembling arbitrary native code binaries (Wartell et al., 2014]),
and severe restrictions on which code and data structures they can safely transform without

breaking the target program’s functionality. Poorer performance than source-aware solutions
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typically results (Burow et al., 2017)). They also tend to enforce more permissive control-
flow policies, since they lack source-level control-flow semantics with which to craft a tighter
policy (Schuster et al.; 2015|). This has led to successful attacks against these coarse-grained
policies (e.g., Wollgast et al. (2016)); Goktas et al| (2014); Davi et al,| (2014); Conti et al.
(2015))).

In contrast to this usual dichotomy, OFI is source-agnostic—it can extend any of the
source-aware or source-free approaches listed above to enhance the security and compati-
bility of objects that flow between CFI-protected software modules and those lacking CFI
protections. It does, however, require documentation of the API that links the interacting

modules, as described in §2.3.2]

6.2 VTable Protection

VTable protections prevent or detect vtable corruption at or before control-flow operations
that depend on vtable method pointers. Like CFI, there are both source-aware and source-
free approaches:

On the source-aware side, GNU VTV (Tice, |2012), SafeDispatch (Jang et al., [2014),
and VTrust (Zhang et al., [2016) statically analyze source code class hierarchies to generate
CFlI-style guards that restrict all virtual method call sites to destinations that implement
matching callees (according to C++ dynamic dispatch semantics). OVT-IVT (Bounov et al.|
2016)) improves performance by reorganizing vtables to permit quick validation as a simple
bounds check. CPI (Kuznetsov et al. 2014) heuristically derives a set of sensitive point-
ers, and guards their integrity to prevent control-flow hijacking. CPS (Kuznetsov et al.
2014)) optimizes CPI to improve overheads for programs with many virtual functions by
instrumenting only code pointers, but at the expense of less security for vtable pointers ex-
ploited by confused deputy attacks. Readactor++ (Crane et al., [2015) extends vtables into

execute-only memory, where their layouts are randomized and laced with booby trap entries
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(Crane et al. [2013) to counter brute-force attacks. Shrinkwrap (Haller et al., |2015) refines

VTV for tighter object inheritance precision.

On the source-free side, T-VIP (Gawlik and Holz, 2014)) instruments virtual call sites

with guard code that verifies that the vtable is in read-only memory and that the indexed

virtual method is a valid virtual method pointer. VTint (Zhang et al., [2015) additionally

assigns them IDs that are dynamically checked at call sites. This ensures that instrumented

virtual calls always index a valid vtable (though it cannot ensure that the indexed vtable is

the precise one demanded by the original source code semantics). VifGuard (Prakash et al.)

goes further and infers C++ class hierarchies and call graphs from native code through
a suite of decompilation techniques. This yields a more precise, source-approximating CFI
policy that can be enforced through static or dynamic binary instrumentation.

OFT differs from these approaches by focusing on protecting software modules that can-
not be instrumented (e.g., because they cannot be modified, they have defenses that reject
modification, or dynamic loading prevents them from being statically identified). Such im-
mutability renders the vtable protections above inapplicable, since they must instrument all

call sites where corrupted vtables might be dereferenced in order to be effective.

6.3 Prior CFI Evaluations

In total, we surveyed 54 CFI algorithms and implementations published between 2005
2019 to prepare CONFIRM, over half of which were published in 2015-2019. Of these,
66% evaluate performance overhead based on SPEC CPU benchmarks. Examples include
PittSFleld (McCamant and Morrisett, 2006)), NaCl (Yee et al., 2009), CPI
et all [2014), REINS (Wartell et al| 2012b), bin-CFI (Zhang and Sekar|, [2013)), control
flow locking (Bletsch et al., 2011]), MIP (Niu and Tan, 2013), CCFIR (Zhang et al., [2013),
ROPecker (Cheng et all, [2014), T-VIP (Gawlik and Holz, 2014), GCC-VTV (Tice et al.
2014), MCFI (Niu and Tan| 2014a), VTint (Zhang et all 2015)), Lockdown (Payer et al.
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2015), O-CFI (Mohan et al. 2015)), CCFI (Mashtizadeh et al., |2015), PathArmor (van der|
\Veen et al2015), BinCC (Wang et al., 2015), 7CFI (Niu and Tan, 2015), VTT (Bounov et al.,

2016), VTrust (Zhang et all [2016), VTPin (Sarbinowski et all, 2016), TypeArmor
Veen et al. 2016, PrTTYPAT (Ding et al) 2017), RAGuard (Zhang et al., 2017), GRIF-

FIN (Ge et all, 2017), OFI (Wang ct al} [2017), PT-CFI (Gu et al}, 2017), HCIC (Zhang

2018) pCFI (Hu et al., 2018), CFIXX (Burow et al., 2018)), and 7CFI (Muntean et al.,

2018).

The remaining 34% of CFI technologies that are not evaluated on SPEC benchmarks pri-
marily concern specialized application scenarios, including JI'T compiler hardening
Tan| 2014D)), hypervisor security (Wang and Jiang), 2010; [Kwon et al., [2018)), iOS mobile code
security (Davi et all, 2012} [Pewny and Holz, 2013), embedded systems security (Abera et al.,
2016; Abbasi et al., 2017; |Adepu et all [2018), and operating system kernel security

merlis et al., |2012; |Criswell et al., 2014} Ge et al., 2016)). These therefore adopt analogous

test suites and tools specific to those domains (Coker} [2016; The Wine Committee, 2019;

Postmark, 2013; |Pozo and Miller, 2016} |de Melo| [2009).

Several of the more recent works additionally evaluate their solutions on one or more
large, real-world applications, including browsers, web servers, FTP servers, and email
servers. For example, VTable protections primarily choose browsers as their enforcement

targets, and therefore leverage browser benchmarks to evaluate performance. The main

browser benchmarks are Microsoft’s Lite-Brite (Microsoft, |2013) Google’s Octane (Google,

2013)), Mozilla’s Kraken (Mozillal [2013), Apple’s Sunspider (Apple, 2013), and RightWare’s
BrowserMark (Right Ware|, 2019)).

Since compatibility problems frequently raise difficult challenges for evaluations of larger
software products, these larger-scale evaluations tend to have smaller sample sizes. Overall,

88% of surveyed works report evaluations on 3 or fewer large, independent applications,

with TypeArmor (van der Veen et al. 2016 having the most comprehensive evaluation we
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studied, consisting of three FTP servers, two web servers, an SSH server, an email server,
two SQL servers, a JavaScript runtime, and a general-purpose distributed memory caching
system.

To demonstrate security, prior CFI mechanisms are tested against proof-of-concept at-
tacks or CVE exploits. The most widely tested attack class in recent years is COOP. Ex-
amples of security evaluations against COOP attacks include those reported for pCFI (Hu
et al., [2018), 7CFI (Muntean et al., [2018), CFIXX (Burow et al., [2018), OFI (Wang et al.
2017), PrrTyPAT (Ding et al., 2017), VTrust (Zhang et al., [2016]), PathArmor (van der Veen
et al., 2015), and 7CFI (Niu and Tan| 2015).

The RIPE test suite (Wilander et al [2011) is also widely used by many researchers to
measure CFI security and precision. RIPE consists of 850 buffer overflow attack forms. It
aims to provide a standard way to quantify the security coverage of general defense mecha-
nisms. In contrast, CONFIRM focuses on a larger variety of code features that are needed
by many applications to implement non-malicious functionalities, but that pose particular

problems for CFI defenses. These include a combination of benign behaviors and attacks.

6.4 CFI Surveys

There has been one prior survey of CFI performance, precision, and security, published
in 2016 (Burow et al., 2017). It surveys 30 previously published CFI frameworks, with
qualitative and quantitative comparisons of their technical approaches and overheads as
reported in each original publication. Five of the approaches are additionally reevaluated on
SPEC CPU benchmarks.

In contrast, CONFIRM establishes a foundation for evaluating compatibility and rel-
evance of various CFI algorithms to modern software products, and highlights important
security and performance impacts that arise from incompatibility limitations facing the state-

of-the-art solutions.
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6.5 COOP Attacks

COOP (Schuster et al.l 2015) is a dangerous new attack paradigm that substitutes vtable
pointers or vtable method pointers with structurally similar but counterfeit ones to hijack
control-flows of victim programs. In the context of CFI-protected software, such attacks ef-
fectively hijack software without violating the CFI-enforced control-flow policy. They achieve
this by traversing control-flow edges that are permitted by the policy but that were never
intended to be traversed by the original program semantics. They therefore exploit limita-
tions in the defender’s ability to derive suitable policies for CFI to enforce—especially in
source-free contexts.

OFT does not directly defend against COOP attacks because it does not suggest better
policies for CFI to enforce. Rather, it extends defenses that do work against COOP to be
effective in contexts where not all call sites can be instrumented with guard code. For exam-
ple, WIT (Akritidis et al., 2008) can block COOP attacks in WIT-instrumented code, but
not if the code links to uninstrumented modules to which it passes objects. In that context,
a COOP attacker can flow counterfeit objects to unguarded call sites in the uninstrumented
modules. Lacking guards, these sites traverse the prohibited edge prescribed by the object,
resulting in policy violations.

When coupled with a CFI defense enforcing a suitably semantics-aware policy, OFI ad-
dresses this CODE-COOP attack. By completely mediating the interface between guarded
and unguarded modules that share objects, it shields uninstrumented modules from coun-

terfeit objects. OFI is the first defensive work to focus on this attack class.

6.6 Immutable Modules

We are not the first to identify immutable modules as a challenge for CFI. For example,
source-aware CFIT instrumentation of Chrome on ChromeOS identified two third-party li-

braries for which source code was not available, and that interact with instrumented modules
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through object-oriented interfaces (Tice et al., 2014)). Forward CFI’s solution to this mized
code problem validates object references at call sites within instrumented modules. But this
is insecure if the uninstrumented recipients retain persistent references to the shared objects,
or if they execute concurrently with untrusted (instrumented) code. In both cases, the un-
trusted code may later corrupt the shared vtable pointers without calling them, leaving the
uninstrumented module in possession of a corrupt, never-validated vtable.

In general, all prior source-aware and source-free CFI and vtable protection research must
instrument all interoperating modules in order to thwart control-flow hijacking attacks. OFI
is the first solution that accommodates immutable modules. In deployment contexts where
the OS cannot be included in the instrumentation process, such modules can be extremely
prevalent—potentially including most or all of the system libraries, plus an ongoing stream of
incoming upgrades, patches, and extensions to them. OFI seeks to open such environments

to CFI assistance.

6.7 Component-based Software Engineering

Microsoft COM (Gray et al., [1998)) is presently the dominant industry standard for compo-
nent-based software engineering (Mcllroy, [1968) of native code modules in consumer software
markets. Its many facets include Object Linking and Embedding (OLE), ActiveX, COM+,
Distributed COM (DCOM), DirectX, User-Mode Driver Framework (UMDF), and the Win-
dows Runtime (WinRT'). Microsoft .NET applications typically access Windows OS services
via the NET COM Interop, which wraps COM. This prevalence makes COM an appropriate
(but challenging) test of OFI’s real-world applicability.

Another primary competing standard is OMG’s Common Object Request Broker Archi-
tecture (CORBA) (Vinoski, |1997). CORBA resembles COM but enforces additional layers
of abstraction, including an Object Request Broker (ORB) that has the option of supply-

ing different representations of shared objects to communicating modules. OFI is therefore
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potentially easier to realize for CORBA than for COM, since it can take the role of a CFI-
enforcing ORB. Interfaces that communicate between CORBA and COM have also been

developed (Pawar et al., 2013).

6.8 Cryptocurrencies

Researchers have conducted a variety of systematic analyses of cryptocurrencies and dis-
cussed open research challenges (Bonneau et al., [2015). A comprehensive study of Bitcoin
mining malware has shown that botnets generate additional revenue through mining (Huang
et al., 2014). MineGuard (Tahir et al., [2017)) utilizes hardware performance counters to gen-
erate signatures of cryptocurrency mining, which are then used to detect mining activities.
Other research has focused on the payment part of cryptocurrencies. For example, EZC (An-
droulaki et al., [2014) was proposed to hide the transaction amounts and address balances.
Double-spending attacks threaten fast payments in Bitcoin (Karame et al., 2012). Bitcoin
timestamp reliability has been improved to counter various attacks (Szalachowski, 2018]).
Through analysis of Bitcoin transactions of CryptoLocker, prior studies revealed the finan-
cial infrastructure of ransomware (Liao et al.,2016) and reported its economic impact (Conti
et al., 2018). In contrast, in-browser cryptomining, such as Monero, is less studied in the
scholarly literature. In this work, we conducted the first analysis to study Wasm-based

cryptomining, and developed new approaches to detect mining activities.

6.8.1 Cross-Site Scripting

Our counterfeit mining attack (§5.4]) leverages cross-site scripting (XSS). The attacks and
defenses of XSS have been an ongoing cat-and-mouse game for years. One straightforward
defense is to validate and sanitize input on the server side, but this places a heavy burden

on web developers for code correctness. XSS-GUARD (Bisht and Venkatakrishnan, 2008))
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utilizes taint-tracking technology to centralize validation and sanitization on the server-
side. Blueprint (Louw and Venkatakrishnan, 2009), Noncespaces (Gundy and Chen, 2012)),
DSI (Nadji et al., [2014)), and CSP (Stamm et al.,2010]) adopt the notion of client-side HTML
security policies (Weinberger et al., 2011) to defend XSS. Large-scale studies have also been
undertaken to examine the prevalence of DOM-based XSS vulnerabilities (Lekies et al., [2013))
and the security history of the Web’s client side (Stock et al., [2017)), concluding that client-
side XSS stagnates at a high level. To remedy the shortcomings of string-based comparison
methods, taint-aware XSS filtering has been proposed to thwart DOM-based XSS (Stock
et all 2014). DOMPurify (Heiderich and Spath, [2017) is an open-source library designed
to sanitize HTML strings and document objects from DOM-based XSS attacks. Recently,
attacks leveraging script gadgets have been discovered that circumvent all currently existing
XSS mitigations (Lekies et al., 2017). We showed that in-browser crypomining is susceptible
to such gadget-powered XSS attacks to hijack Wasm mining scripts.

Although our SEISMIC defense detects and warns users about cryptomining activities
introduced through XSS, XSS can still potentially confuse users into responding inappropri-
ately to the warnings. For example, attackers can potentially leverage XSS to obfuscate the
provenance of cryptomining scripts, causing users to misattribute them to legitimate page
publishers. This longstanding attribution problem is a continuing subject of ongoing study

(cf., Rowe| (2015))).

6.9 Related Web Script Defenses

A cluster of research on defense mechanisms is also related to our work. ObliviAd (Backes
et al} [2012) is an online behavioral advertising system that aims to protect visitors’ privacy.
MadTracer (Li et al., [2012)) leverages decision tree models to detect malicious web adver-
tisements. JStill (Xu et al., 2013) compares the information from both static analysis and

runtime inspection to detect and prevent obfuscated malicious JS code. Analysis of access
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control mechanisms in the browser has observed that although CSP is a clean solution in
terms of access control, XS-search attacks can use timing side-channels to exfiltrate data from
even prestigious services, such as Gmail and Bing (Gelernter and Herzberg, 2015)). Blacklist
services provided by browsers to thwart malicious URLs have been shown to be similarly
limited (Virvilis et al., 2015). BridgeScope (Yang et al., 2017) was proposed to precisely and
scalably find JS bridge vulnerabilities. Commix (Stasinopoulos et al. 2018]) automates the
detection and exploitation of command injection vulnerabilities in web applications. Our
system is orthogonal to these prior defense mechanisms, in that it profiles Wasm execution

and helps users detect unauthorized in-browser mining of cryptocurrencies.

6.10 Semantic Malware Detection and Obfuscation

Our semantic signature-matching approach to cryptomining detection is motivated by the
widespread belief that it is more difficult for adversaries to obfuscate semantic features than
syntactic ones (cf., |Christodorescu et al| (2005); Kinder et al. (2005)). Prior work has
demonstrated that semantic features can nevertheless be obfuscated with sufficient effort, at
the cost of reduced performance (e.g., Moser et al. (2007); Wu et al. (2010)). While such
semantic obfuscations could potentially evade our SEISMIC monitors, we conjecture that
the performance penalty of doing so could make obfuscated cryptojacking significantly less
profitable for attackers. Future work should investigate this conjecture once semantically

obfuscated cryptojacking attacks appear and can be studied.
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CHAPTER 7

CONCLUSION

This dissertation presents source-free, component-driven methodologies for software security
hardening. The protection approach can be applied to both legacy and commercial-off-the-
shelf (COTS) applications. Recently emerging cryptojacking threats can also be mitigated
by the technology.

OFTI (Chapter [2)) is the first work to extend CFI security protections to the significant
realm of mainstream software where one or more object-exchanging modules are immune
to instrumentation. A prototype implementation of OFI for Microsoft COM indicates that
the approach is feasible without access to source code, and scales to large intlerfaces that
employ callbacks, event-driven programming, interface inheritance, datatype recursion, and
dependent typing. Experimental evaluation shows that OFI exhibits low overheads of under
1% for some real-world consumer software applications.

Chapter |3 reports on experiences with a new interface-driven approach to securing com-
mercial binary software products with component-driven design, and large, object-oriented
APIs with thousands of vtable and method exchanges between dissimilar modules. The
approach statically synthesizes CFI/SFI-preserving wrapper modules for immutable system
modules from their interfaces. This facilitates a stronger form of SFI/CFI protection for
COTS binary Windows applications than was previously possible without modifying the OS
kernel and system libraries.

Chapter 4] presents CONFIRM, which is the first evaluation methodology and benchmar-
cking suite to measure applicability, compatibility, and performance characteristics relevant
to control-flow security hardening evaluation. The CONFIRM suite provides 23 benchmarks
that test various CFl-relevant code features and coding idioms, which are widely found in

deployed COTS software products.
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SEISMIC is discussed in Chapter [5] It offers a semantic-based cryptojacking detection
mechanism for Wasm scripts that is more robust than current static detection defenses em-
ployed by antivirus products and browser plugins. By automatically instrumenting untrusted
Wasm binaries in-flight with self-profiling code, SEISMIC-modified scripts dynamically de-
tect mining computations and offer users explicit opportunities to consent. Page-publishers
can respond to lack of consent through a JS interface, affording them opportunities to intro-

duce ads or withdraw page content from unconsenting users.
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