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Abstract—In the past decades, learning an effective distance
metric between pairs of instances has played an important role
in the classification and retrieval task, for example, the person
identification or malware retrieval in the IoT service. The core
motivation of recent efforts focus on improving the metric forms,
and already showed promising results on the various applications.
However, such models often fail to produce a reliable metric on
the ambiguous test set. It happens mainly due to the sampling
process of the training set, which is not representative of the
distribution of the negative samples, especially the examples that
are closer to the boundary of different categories (also called
hard negative samples). In this paper, we focus on addressing
such problems and propose an adaptive margin deep adversarial
metric learning (AMDAML) framework. It exploits numerous
common negative samples to generate potential hard (adver-
sarial) negatives and applies them to facilitate robust metric
learning. Apart from the previous approaches that typically
depend on the search or data augmentation to find hard negative
samples, the generation of adversarial negative instances could
avoid the limitation of domain knowledge and constraint pairs’
amount. Specifically, in order to prevent over fitting or under-
fitting during the training step, we propose an adaptive margin
loss that preserves a flexible margin between the negative
(include the adversarial and original) and positive samples. We
simultaneously train both the adversarial negative generator and
conventional metric objective in an adversarial manner and learn
the feature representations that are more precise and robust. The
experimental results on practical data sets clearly demonstrate
the superiority of AMDAML to representative state-of-the-art
metric learning models.

Index Terms—Adversarial Learning, Deep Metric Learning,
Deep Neural Network, Adaptive Margin

I. INTRODUCTION

Metric learning aims to learn a distance metric from ex-
ample pairs to measure their similarities, which makes the
classification or retrieval tasks more efficient. It plays a fun-
damental role in a variety of machine learning and pattern
recognition applications, such as person re-identification [1],
[2], image classification [3], [4], multi-output tasks [5], [6],
or security application [7], [8]. Currently, the existing metric
learning training methods are typically based on an objective
function that minimizes the distance between similar examples
and maximizes the distance between dissimilar examples.
The distance of a pair of examples D(x,y) typically uses
the Mahalanobis distance [9], which could be described as:
D2
M (x,y) = (x − y)TM(x − y). Here, the symmetric

positive definite (SPD) matrix M can be learned through
training data pairs to reflect the similarity, which represents a
linear transformation. Furthermore, some recent methods were

Fig. 1: The comparison of traditional metric learning and proposed
AMDAML. Different colors represent various classes. We utilize the
generated adversarial negatives to train the distance metric instead
of the observed negatives, then simultaneously train the adversarial
generator and metric objective in an adversarial manner.

proposed to replace the linear Mahalanobis matrix by non-
linear methods, like kernel trick [10], [11], or the deep neural
networks, e.g. CNN [3], [12]–[14].

During the training phase, positive and negative pairs will
be sampled from the training set to train the distance metric.
Compared with the “easy negative samples” that are relatively
easier to be distinguished from positive samples. A common
example of them is in the object recognition scenario: car
seems different from lorry which could be regarded as an easy
negative example, but it will become a potential hard negative
example if the car is replaced by a pick-up. Although pairs
of hard negative [15] and positive examples would produce
gradients with larger magnitudes [16], they usually account
for the tiny minorities of training samples; the vast majority
of negative ones, which are called as “easy negatives” in
the previous description, make limited contribution to the
optimization in metric learning. So we propose that enough
hard negative samples could impact the learned distance metric
performance significantly.

Some existing methods have been proposed to address the
previous problems, such as the Data Augmentations [12],
[17] and Hard Negative Searching [17], [18]. However, these
methods strongly depend on the heuristic rules or the negative
distribution of the training set to select proper pairs. Therefore,
their performances would be limited. Following the idea of
adversarial training [19]–[21], we provide a solution that



generates ambiguous but critical adversarial negative samples
to represent potential ”hard negatives”, and further enhance
the algorithm robustness. Apart from the existing adversarial
learning strategy [19], which aims to search the negative
samples in the neighborhood of current instances to confuse
the learned metric, we focus on generating ”adversarial nega-
tives”, which used to simulate potential hard negatives in the
unobserved space. We expect them to be able to attack/confuse
the learned metric as much as possible.

This paper proposes an adaptive margin based on deep
adversarial metric learning (AMDAML) framework to address
the previous challenges. The distance metric will be learned
from both original training pairs and the generated adversarial
negative pairs. Specifically, we design an adaptive margin loss
to dynamically adapt its margin to distinguish the different
categories of instances, under the assistance of the adversar-
ial samples. It also applied to avoid over-fitting or under-
fitting during the learning process, especially when relative
large amount of adversarial negatives that participated into
the training step. We aim to generate potential adversarial
negatives from the existing instances, which works as an im-
portant synthetic complements (as hard negative ones) during
the learning step. We jointly train the adversarial negative
generator and metric objective in an adversarial manner, so
that the discrimination and robustness of our learned feature
representation will be enhanced. The main contributions of
this paper are summarized as follows: (1) We propose a novel
framework AMDAML, which is able to generate adversarial
negative pairs from the existing negative samples in training
data, and enhance the robustness and discriminating power
of the model; (2) We implement an adaptive margin loss
for AMDAML that could dynamically preserve an adaptive
margin between negative (both original and adversarial) and
positive pairs. To our knowledge, it is the first work to
introduce an adaptive margin with the distance metric for
adversarial learning. (3) AMDAML empirically outperforms
the state-of-the-art metric learning models on real-world image
sets.

II. RELATIVE WORK

Based on the types of Deep neural networks (DNNs),
several deep metric learning (DML) works are proposed to
solve real-world applications such as structured feature em-
bedding [3], face recognition [13]. The most famous one is
the Siamese network [22], [23], which is proposed with a
contrastive loss for image recognition. It uses a two-channel
neural network architecture to learn a non-linear distance
metric to minimize the distance between similar sample pairs,
and push the pairwise distance between dissimilar pairs larger
than a fixed margin. Furthermore, studies [24]–[26] have also
explored computing feature representations using triplet or N-
pair loss, where constraints are specified by relative similarity
and dissimilarity among instances; Smart-mining [27] applied
the global loss to optimize the deep metric with hard-samples
mining, and Proxy-NCA [28] utilized a proxy-agent view
as classification loss. Previous approaches mainly generate

the metric by designing discriminative losses, they do not
consider the aforementioned issue about generalization capa-
bility. Additionally, studies exploring sample-mining strategies
aim to improve the performances of metric learning through
the selection [29], [30], or generation [31] of hard-samples.
Different from previous methods, AMDAML provides a fur-
ther analysis of the adversarial samples of DML, shows how
to improve robustness by introducing the adversarial sample
term. Furthermore, we consider the adaptive margin bound of
the distance metric, which is more practical in the learning
step with adversarial samples.

III. APPROACH

As shown in Figure. 1, the AMDAML consists of two steps:
generating the adversarial negative samples, and learning the
reliable distance metric. We introduce necessary notations in
Sec. III-A, and explain two parts of AMDAML with relative
discussion in Sec. III-B and Sec. III-C. Finally, we provide
the optimization step and relative prove in Sec. III-D.

A. Preliminaries

Given a set of training instances D = {(xi)}Ni=1, xi ∈
Rd with associated label set Y = {(yi)}Ni=1, yi ∈ [1 . . . C],
where C is the number of existing classes. In general, the goal
of (deep) metric learning is to learn a nonlinear embedding
function φ : Rd → Rd1 , which could map the d-dimensional
input into an embedding space with d1-dimension. Here, given
an anchor point xi ∈ D, x+i is the positive point with yi = y+i ,
we define the (xi, x

+
i ) as such positive pairs; if yi 6= y−i , the

negative point with corresponding pair could be (xi, x
−
i ). The

φ is typically applied to make the distance of a positive pair
examples Dφ(xi, x

+
i ) as small as possible, and expand the

distance between negative pairs (xi, x
−
i ) as much as possible

simultaneously. We also define the description of the generated
adversarial negative samples as x̂.

B. Adaptive Margin Loss

In general, the parameter of deep metric learning is φ that
comes from the network parameters, existing works typically
use it to measure the squared Euclidean distance of an input
pair: Dφ(xi, xj)

2 = ||f(xi;φ)−f(xj ;φ)||22, f(xi;φ). It means
the representation of the final output layer for xi. In the
paper, we apply a M -layers Deep Neural Nets (DNN) for the
learning step of φ. For Xm

i , which is the feature representation
generated at layer m could be described as:

f(Xi;φ) = XM
i , Xm

i = σ(W (m)X
(m−1)
i + b(m)),

∀i = 1, . . . , N,∀m = 1, . . . ,M ;X
(0)
i = Xi. (1)

where W (m) are the weights in the mth layer, bm refers
to the corresponding biases in this layer, and σ is a non-
linear activation function. For simplicity, we consider the
network parameters as a whole: φ(m) =

[
W (m), b(m)

]
, and

φ = {φ(1), . . . , φ(M).} Our adaptive margin loss function
consists of two terms: the pairwise constrain term and the
regularization part, which are formulated as follows:



min
φ
LAM (X;φ) = min

φ
(LPC(X;φ) + λLR) (2)

here the λLR is the regularization term used to smooth
the parameters of the DNN. Our adaptive margin loss aims
to compact the intra-class and separate the inter-class, while
preserving an adaptive margin between them. For the pairwise
constrain term, we expect there will be a suitable adaptive
margin between the distance of positive pairs and negative
pairs (negative pairs include the original pairs and generated
pairs). Here, we define the mean distance of the positive pairs
Dp and the negative pairs Dn as: Dp =

1
N+

∑N+

i=1Dφ(xi, x
+
i ),

Dn = 1
N−

∑N−

i=1Dφ(xi, x
−
i ). For the positive pair (xi, x

+
i ),

Dp ≤ Tup (Tup is an adaptive up-threshold); and for the
negative pair (xi, x

−
i ), Dn ≥ Tdown (Tdown is an adaptive

down-threshold). Considering the mutation of pairwise dis-
tance, Tup and Tdown should be flexibly determined. When the
negative-pair distances are increased, Tup should be smaller
than a moderate upper bound to make the inter-class samples
more distinguishable; the similar things also happened for the
dynamic adaptation of the Tdown value. Based on the softplus
function [1], [32](the smooth approximation of the RELU),
we use the following equations for the adaptive margins:

Tup =
1

α+ 1
(1− e(−αDn)) (3)

Tdown =
1

β − 1
log(1 + e(βDp)) (4)

For the adaptive margins Tdown and Tup, these could be
regarded as a nonlinear mapping of the average positive and
negative pairs distances Dp, Dn, respectively. The underlying
mechanism of the Eq. 3 is that, when the Dp goes up in further
iterations, the Tdown, also the lower bound of Dn, will increase
further more. So the mapping function will gradually increase
the Tup to avoid the under-fitting problem by excessively
penalizing the positive distances into an upper bound value.
Meanwhile, increasing of Tdown into a proper bound will also
enhance the discrimination of positive pairs from the negative
ones and avoid over-fitting. We will prove in the Sec. III-D
that whenever the value of Dp and Dn changed, Tup, Tdown
will be bounded in a certain value, which can well avoid the
overfitting or underfitting problem caused by the fixed margin
strategy in the training process.

Here, in order to simplify the representation of pairwise
constraint, we preset the Tup = τ − γ, Tdown = τ + γ. From
the middle plot from the Figure. 2, it shows that the intra-class
distance should be smaller than τ − γ (Tup), and the distance
between instances of different classes will be larger than τ +
γ (Tdown). And τ > γ, so given the input pair (xi, xj),the
adaptive margin between the intra-class samples and inter-class
instances can be enforced by: yi(τ −D2

φ(xi, xj))−γ > 0. By
applying the hinge-like loss function, the final adaptive margin

loss could be described as follows:

min
φ
LAM (X;φ) = LPC(X;φ) + λLR

=

N∑
i=1

[
γ − yi(τ −D2

φ(xi, xj))
]
+
+

λ

2

M∑
m=1

(||W (m)||2F + ||b(m)||22)

(5)

where m is the number of layers in the network structure,
||W ||F represents the Frobenius norm of the weight W , ||b||2
represents the Euclid norm of bias b, and λ is a regularization
parameter for the corresponding term LR.

We compare our function with two previous common fixed
margin functions in the Figure. 2, including the contrastive and
triplet loss. For the LPC in Eq. 5 and the contrastive loss [22]
which penalizes the inter-class distances bigger than a fixed
positive margin, we expand them as follow:

LPC =

N+∑
i=1

[
γ − τ +D2

φ(xi, x
+
i )
]
+
+

N−∑
j=1

[
γ + τ −D2

φ(xj , x
−
j )
]
+

(6)

LCont =

N+∑
i=1

[
0 +D2

φ(xi, x
+
i )
]
+
+

N−∑
j=1

[
ω −D2

φ(xj , x
−
j )
]
+

(7)

where (xi, x
+
i ) means the positive pairwise, N+ is the

corresponded number of the positive pairs. Eq. 7 shows that
we could regard contrastive loss as a special case of LPC
when τ = γ ( then ω1 = τ + γ, ω1 is the fixed margin of
the contrastive). Figure. 2 shows that adaptive margin loss will
constrain the similar pairs distance which is smaller than τ−γ,
and negative pairs distance larger than τ + γ. For contrastive
loss, when τ = γ, the distance between similar pairs may
be limited to zero, and its constraint may be too strong and
lead to over-fitting. The triplet loss needs a fixed margin to
penalize the distance between negative samples and positive
(anchor) instances. However, if the dissimilar instances are
closer than similar instances (especially when positive x+i is
closer to negative x−i and further from anchor xi), it means
the triplet loss

[
ω2 +D2(xi, x

+
i )−D2(xi, x

−
i )
]
+

may be
equal to 0. The optimization of triplet loss will incorrectly
ignore this constraint due to its zero loss value. For this
problem, we apply regularization term to avoid zero loss
value. Furthermore, benefits from the adaptive margin strategy,
our model could update the Tup and Tdown which jointly
considered the variations of negative distance and positive
distance, and it is more suitable for the scenario that generated
adversarial samples dynamically inserted.

C. Adversarial Negative Samples Generator

The existing metric learning approaches take advantage of
the observed pairs to train distance metrics. However, the
sampling strategies of the positive/negative pairs will make
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Fig. 2: Comparison of our method with two fixed margin approaches, the left one shows the contrastive loss function penalizes the positive
distances and negative distances with a fixed margin; the right show the triplet loss function minimizes the relative distances between the
intra-class samples and inter-class samples with a fixed margin; the middle one shows adaptive margin loss function preserves the positive
distances and negative distances with an adaptive margin.

the selected ”hard negative samples” not enough to fully
describe the distributions of negative samples, especially when
the number of sampling pairs is limited. The main target of
the generator is applied to produce the adversarial negatives
from original instances and use them as complements to the
observed data. As described in Sec. III-B, our metric learning
approaches aim to obtain the parameters φ through optimiza-
tion of the adaptive margin objective function in Eq. 5. In
this section, we aim to enhance the training procedure through
adversarial negative generator. We simultaneously optimize the
adversarial samples and the distance metric in an adversarial
manner by utilizing the adversarial negative samples as the
adversary in Eq. 5. Here, different from existing negative pairs
(x+i , x

−
i ), we apply x̂ to attack the metric objective, it is

produced through an advanced mix-up process [33].
In the generating process of x̂, as the adversarial instances

will be generated dynamically according to different sampling
examples, we simultaneously collect x+i , x−i as the input of the
producing of x̂. The adversarial negative samples should be:
1) close to both the selected instances and their corresponding
negative examples in the original feature space; 2) misclas-
sified by the learned metric in sec. III-B. We describe the
objective function of the adversarial generator with parameter
θg as follows:

min
θg

Ladv = maxLPC((x
+
i , x̂i);φ) + [θgx

+
i + (1− θg)x−i ]

= [θgx
+
i + (1− θg)x−i ]−minLPC((x

+
i , x̂i);φ)

(8)

In Eq. 8, [θgx+i + (1− θg)x−i ] aims to generate adversarial
samples, that close to both the original sampled instances and
negatives. The core idea of this process is to extend the training
distribution, through incorporating the prior knowledge that

linear interpolations of feature vectors should lead to linear
interpolations of the associated targets. It will produce large
magnitudes for the training procedure of metric learning,
also could be regarded as a form of data augmentation, that
encourages the model to behave linearly in-between training
examples. For the maximum of LPC((x+i , x̂i);φ), it means
adversarial samples aims to confuse the learned metric as
much as possible, and encourage the distance between the
negative and positive samples smaller than the margin value.
The procedure of adversarial training manner enhances both
the discriminated power and robustness of the learned metrics
to solve the potential ”hard negative” instances.

D. Adversarial Metric Learning

The AMDAML framework will simultaneously train the
adversarial negative generator and the adaptive margin distance
metric with the following objective function:

min
φ,θg

L = LAM + εLadv (9)

where ε ∈ [0, 1] is the parameter to balance the weights
of different terms. AMDAML consists of the adaptive metric
objective and adversarial negative generator, they form an ad-
versarial learning scheme by optimizing the opposite objective
functions. During the training period, when the adversarial
negatives participate into the learning function Eq. 9, the Dn

will go down while the value of Dp may increase. We will
prove that under such dynamic situation of Dn and Dp value,
the up or down margin of our approach (in Eq. 3) could still
be bounded into a certain range of value, and further avoid
the under-fitting or over-fitting during the this step.



1) Theorem 1: : Tup and Tdown have upper bounds
respectively.

2) Proof of Theorem 1: : From ∂Tup
∂Dn

= α
α+1 exp (−αDn),

it is easy to see if Dn goes up, Tup will increase. When Dn ≥
0, we could get: limDn→∞ Tup = 1

α+1 . When Dn increased
Tup has an upper bound, and Dp also has the same upper
bound since Dp ≤ Tup.Then, from

∂Tdown
∂Dp

=
β

(β − 1) ln 2

exp(βDp)

exp(βDp) + 1
(10)

it is obviously that Tdown is increasing when β > 1. Since
Dp has the upper bound 1

α+1 , Tdown also could be bounded
at the upper value:

lim
Dp→ 1

α+1

Tdown =
1

β − 1
log (1 + exp (

β

α+ 1
)) (11)

3) Theorem 2: : Tup and Tdown have lower bounds
respectively.

4) Proof of Theorem 2: : Tdown has a lower bound:

lim
Dp→0

Tdown =
1

β − 1
(12)

Since Dn ≥ Tdown, Dn has the same lower bound. Then we
show that Tup has a lower bound:

lim
Dn→ 1

β−1

Tup =
1

α+ 1
(1− exp

−α
β − 1

) (13)

Finally, when bounded, Dn >
1

β−1 , Dp <
1

α+1 , and:

Dn −Dp >
α− β + 2

(β − 1)(α+ 1)
(14)

it prove that adaptive margin loss preserve a proper margin
between negative (both original and adversarial) and positive
pairs when α − β + 2 > 0 finally, and the upper or lower
bound of margin value is existed during the training step.

For the optimization, we apply the Stochastic Gradient
Descent (SGD) back-propagation method to optimize the
parameters of the L.

We show the overall process in Algorithm. 1.

IV. EXPERIMENT

In this section, empirical investigations are conducted to
validate the effectiveness of AMDAML. In detail, we first
compare the performance of the proposed approach with four
state-of-the-art metric learning methods (GB-LMNN [34],
HDML [10], GMML [35], AML [19]), and two deep met-
ric learning methods: Contrastive [12], Triplet [3] on four
benchmark classification datasets. Next, all the methods are
compared on two image datasets related to face verification
and matching. Finally, the parametric sensitivity of AMDAML
is studied. More experiment result could be seen in the

Algorithm 1 AMDAML
Require: X - Training sample pairs; I - iterations times;

τ, γ, λ, λ1, λ2, ε - hyper parameters for the approach;
Ensure: Parameter of adversarial generator θg and parameters

of the deep metric learning function φ.
1: Pre-train φ under the sampling pairs from D without the

generated adversarial negatives through Eq. 5
2: Initialize θg , making i = 0;
3: while i < I: do
4: Random sampling mini-batch of M pairs of instances
5: Do forward propagation to get representations for M
6: Compute the Tup and Tdown through Eq. 3
7: Apply the hyper parameters and jointly optimize θg and

φ in Eq.9, through back-propagate.
8: end while
9: return θg and φ

1) Datasets: For classification task, we evaluated all the
methods on four widely used benchmark datasets named
MNIST [36]1, FASHION-MNIST [37]2, SVHN [38]3,
CIFAR-10 [39]4. In this task, We compare all approaches
over 10 random trials, and in each trial, 20% of examples
are randomly selected as the training set, and the rest are used
for testing. The training pairs ({Xi}Ni=1) are generated through
randomly picked 10,000 constraint pairs among all the training
examples.

We also applied four datasets to evaluate the capabilities
of all methods on face verification and model generalization
test. For the face verification, we select PubFig [40]5,
which consists of 2*104 pairs of images belonging to 140
people; another one is LFW [41]6, which includes 13,233
unconstrained face images of 5,749 samples. For both of
them, we extracted the adopted features following [19], then
select first 60% pairs for face training and the rest are used
for verification testing. Next, for the model generalization
test, we select CAR196 [42] for the experiment. The Cars196
dataset contains 16,185 images from 196 car models, we
used the first 98 models with 8,054 images for training and
the remaining for testing. Here, we also adopt the same data
prepossessing steps for the to make fair comparisons with
other baselines.

2) Implementation: AMDAML is implemented using
Pytorch 0.4.0 library7, for the deep metric network, it is
trained through a AlexNet deep network [43], and randomly
initialized the weight parameter on each layer. This network
structure used for Contrastive and Triplet methods for fair
comparisons. The learning rate is 0.01 for the deep metric

1http://yann.lecun.com/exdb/mnist/
2https://github.com/zalandoresearch/fashion-mnist
3http://ufldl.stanford.edu/housenumbers/
4https://www.cs.toronto.edu/ kriz/cifar.html
5http://www.cs.columbia.edu/CAVE/databases/pubfig/
6http://vis-www.cs.umass.edu/lfw/
7https://pytorch.org/



Fig. 3: Accuracy rates of competing methods with increasing number
of constraint pairs on FASHION-MNIST dataset.

network, and 0.002 for the generator net. We fixed the
maximum training iteration to 5,000 and set the batch size
as 128, at last, we empirically fixed the parameters λ, λ1, λ2
and ε as 1, 0.1, 50, 0.1 to balance the weights of different
terms. For other methods, we test all of them based on
code released by corresponding authors, and initialize the
hyper parameters in each method based on the author’s
recommendation, then fine-tune via a validation set. For
triplet and contrastive, we use the same network architecture
and corresponding parameters with our approach. Overall, we
repeat each experiment 10 times independently and report the
average result.

3) Experiments on Classification: We adopted the classifi-
cation accuracy and macro F1 score as the evaluation criteria.
Moreover, we perform the t-test (significance level 0.05) to
investigate the superiority of our method to the best baseline
method on all datasets. The results are shown in Table. I. We
could see GB-LMNN and HDML are performed poorly on
most of the datasets, AML is better than these methods, it
proved the effectiveness of the adversarial learning manner.
However, AML still applies the Mahalanobis distance, so
it could not perform well on complex image sets such as
CIFAR-10. Benefit from DNN, Contrastive, Triplet and AM-
DAML have significantly better performance. Compared with
Contrastive and Triplet, our approach could achieve not only
significantly higher classification accuracy, but also higher F1
score. It proved that generated adversarial is more effective as
a complement pairwise constraint, the learned distance metric
presents better performance with synthetic negative samples.

To illustrate the effectiveness of different numbers of
constraints on the learned distance metric, we use various
input constraint amounts for the competing methods. Figure. 3
shows the comparison of accuracy on FASHION-MNIST
dataset. The higher variance of GB-LMNN, HDML indicates
the strong dependency on the quality of input constraints.
Compared with Triplet and Contrastive, AMDAML provides

(a) (b)

Fig. 4: ROC curve with AUC value of each method on PubFig and
LFW datasets

the best and relative stable classification performance,
indicating the learned distance metric presents strong
robustness with synthetic hard negative samples.

4) Experiments on Verification: The goal of face verifi-
cation in the two datasets is to determine whether a pair
of face images belongs to the same person. We plot the
Receiving Operator Characteristic (ROC) curve by changing
the thresholds of different distance metrics. Then the values
of Area Under Curve (AUC) are calculated to evaluate the
performances quantitatively. From the ROC curves and AUC
values in Fig. 4, it is obvious that for both of the PubFig and
LFW datasets, AMDAML outperforms all baseline approaches
by providing higher AUC value. Compared with the existing
methods which only exploit the observed negative samples in
their form, our approach generates adversarial samples for a
full description of the negative distributions, which helps for
learning more robust distance metric model.

5) Experiments on generalization: The evaluation for gen-
eralization task is different with other works, we apply Re-
call@K metric [44], for every test sample in the CAR196 data
set. We first retrieve K most similar images from the test set,
if an instance of the same class is retrieved among these K
samples, a score of 1 would return, otherwise it would be 0. We
evaluate the generalization effective of Ladv for AMDAML
(in Eq. 9) through explicitly comparing the performance of
the recall value (R@1) retrieval result curves, mainly on the
training(seen) and testing(unseen) in Fig. 5. Specifically, the
training curve of the contrastive/triplet method rises quickly,
however, they drop to quite a low level after several iterations
in the test set. It shows that existing approaches are more
likely to generalize worse on the unseen class. After employing
the Ladv on such loss functions,the training result curve rises
much slower than the original ones; but on the testing set, they
steadily increase to a relatively high value. It implies that our
adversarial loss could act as a regularization term to improve
the generalization ability of the learned metric.

Moreover, comparing with the contrastive/triplet loss, we
observe that our adaptive margin loss makes the learned
metric could be adjusted more quickly to the final level, and
perform more stable comparing with others. It shows that the



TABLE I: Comparison of classification performance on competing methods under totally 10k constraints of sample pairs. X indicates
that AMDAML performs statistically better than the baseline method according to the p-values.

Methods FASHION-MNIST X MNIST X CIFAR-10 X SVHN X
Accuracy (%) F1 Scores Accuracy (%) F1 Scores Accuracy (%) F1 Scores Accuracy (%) F1 Scores

GB-LMNN 84.78 ± 0.07 84.63 ± 0.01 94.97 ± 0.04 94.89 ± 0.00 45.81 ± 0.10 45.71 ± 0.08 54.47 ± 0.09 54.35 ± 0.06
HDML 84.16 ± 0.09 84.02 ± 0.02 94.13 ± 0.05 94.04 ± 0.01 45.65 ± 0.08 45.53 ± 0.09 54.62±0.10 54.51 ± 0.03
GMML 83.28 ± 0.08 83.16 ± 0.05 94.69 ± 0.05 94.60 ± 0.01 40.79 ± 0.10 40.70 ± 0.06 50.23 ± 0.06 50.14 ± 0.04

AML 85.27 ± 0.08 85.14 ± 0.05 95.05 ± 0.05 94.94 ± 0.01 49.58 ± 0.12 49.47 ± 0.06 55.28 ± 0.14 55.17 ± 0.08

Triplet 90.91 ± 0.09 90.79 ± 0.04 98.11 ± 0.05 98.02 ± 0.01 63.67 ± 0.12 63.58 ± 0.05 78.41 ± 0.11 78.35 ± 0.04
Contrastive 89.51 ± 0.10 86.41 ± 0.03 97.93 ± 0.03 97.78 ± 0.02 62.58 ± 0.13 50.97 ± 0.06 77.49 ± 0.13 77.37 ± 0.05
AMDAML 91.95± 0.10 87.86 ± 0.05 98.86 ± 0.04 98.25 ± 0.02 65.12 ± 0.12 53.88 ± 0.07 80.03 ± 0.12 79.92 ± 0.07

Fig. 5: Top figs show the Recall@1 curves on seen training classes, and the bottom figs describe the unseen testing classes, experiments on
the CARS dataset.

adaptive property of our metric learning approach.

6) Parametric Sensitivity Analysis: There are two parame-
ters which might influence the model performance: α and β
in Eq. 3. As shown in Sec. III-D, α−β+2 > 0. Here we will
analyze the influence by changing one parameter while fixing
the other one.

The influence of α on Tup: We plot different Tup values
under various α in Fig. 6(a). It is obvious that Tup would be
decreased when α goes up (from blue, orange to green line).
If α is too large, Tup value could be extremely small and lead
to overfitting; on the other hands, too small α would weakean
the constraint of intra-class distance. Figure. 6(c) showes the
correspond result on CIFAR-10 and SVHN dataset with a fixed
β and varying α, we can see that when α is relative low,
constrain would be weaken, and accuracy would go down.
The performance is relative optimal when α is around 5.0.

The influence of β on Tdown: From Fig. 6(b), we could
find that when β value increaes(from blue, orange to green
line), Tdown diminishes. Similarly, a large β value would cause
small down-margin Tdown and under-fitting might happened;
small β will lead to huge Tdown and over-fitting. Results with
a certain α value and varying β are shown in Figure. 6(d).

The results indicate that performance reaches best when β =
3.0.

V. CONCLUSION AND FUTURE WORK

We propose an adversarial learning based metric learning
framework, named AMDAML. This framework contains two
essential components including adaptive margin based distance
metric learning term and adversarial negative generator part.
Unlike existing metric learning approaches that focus on
sampling strategies to maintain the quality of the metric, we
exploit existing instances to generate adversarial negatives to
the training step. Then, combined with the adaptive margin
metric objective function, AMDAML could intensify the dis-
criminable within the learned embedding. Our empirical eval-
uation of real-world image data sets shows that our approach
effectively improves the performance of the existing methods
in an adversarial manner.

In the future work, we aim to extent our current work to
more domain applications, such as the graph embedding [45],
stream based mining in the cyber-security [46]. We could make
AMDAML focus on tapping the potential of finging more
informative samples, it is an interesting work to apply it as
an efficient data augmentation approach in such area.
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Fig. 6: The illustration of two different nonlinear mapping strategies for the adaptive margin
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