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Abstract

This paper presents an extension of Necula and Lee’s Proof-Carrying Code (PCC) system
to support the x86 architecture. PCC is a security scheme which allows the safe execution
of untrusted code. Untrusted code to be executed is required to be coupled with a proof
that the code satisfies certain safety properties. This code-proof pair is statically checked by
the client system prior to execution. If the check succeeds, then the code is deemed “safe”
and is accepted and executed by the client. This x86 adaptation rejects all programs which
could potentially terminate with an unhandled exception or memory fault. It accepts most x86
programs which satisfy the standard conventions of the architecture, but conservatively rejects
some safe programs. Most reasonable programs can be translated into a form which will be
accepted.



1 Introduction

Many common computing tasks require the execution of sub-programs which are provided to the
system or application by some external source. For example, compilers allow linking of external
binaries, perhaps compiled with some other compiler or from some other source language, into
the program being compiled. Web browsers allow the transfer and execution of small programs or
“applets” supplied by foreign systems. Operating systems run user programs as processes. In such
cases it is advantageous for the system to somehow ensure that these sub-programs do not violate
certain safety properties as they execute. These safety properties may dictate, for example, that
the sub-program terminates within some pre-specified number of instruction cycles, performs no
invalid memory accesses, adheres to the standard calling convention of the machine (it preserves a
particular set of machine registers across function calls, for example), or perhaps other requirements.

Proof-Carrying Code (PCC) is a solution to this problem wherein a code consumer can verify
that code provided by an untrusted code producer adheres to a certain safety policy. The safety
policy is a set of rules chosen by the code consumer. These rules define which programs will be
accepted by the code consumer and which will be rejected. A code consumer’s safety policy is
made known in advance to code producers wishing to supply code. The code consumer requires
that code producers supply a proof that the code being provided satisfies the safety policy. This
proof is then checked by the code consumer to be sure that it is valid. Based on the results of this
proof verification step, the supplied code is then either accepted or rejected.

A working PCC system was developed and implemented by Necula and Lee [9, [10] for the DEC
Alpha architecture. My research explores an adaptation of this scheme for x86-based architectures.
Because of the non-RISC nature of the architecture, it can be difficult to state and prove safety
policies for x86 machine language programs. I demonstrate that it is possible to implement PCC
for a reasonable subset of all x86 programs. Common safety policies can be stated, proved, and
verified for programs in this subset. Programs not in this subset can be detected and rejected by
the code consumer. I also propose some ways in which this x86 PCC scheme could be improved
to allow a larger set of x86 programs and propose an informal method of showing that the code
consumer side of a PCC implementation is correct.

2 The PCC Scheme

In its most general form, a PCC interaction consists of three entities: a code producer, a proof
producer (often the same as the code producer), and a code consumer. Each of these entities has a
different goal. The code producer’s goal is to convince the code consumer that a particular piece of
code that it provides satisfies the consumer’s safety policy. The code producer works with the proof
producer to accomplish this. The proof producer’s goal is simply to provide proofs of whatever
is requested. The code consumer trusts neither the code producer nor the proof producer. The
consumer’s goal is to accept code-proof pairs and verify that the proof proves that the code satisfies
the safety policy.

A PCC interaction generally proceeds as follows: We begin with the code producer holding a
piece of code which it wishes to provide to a code consumer. The code producer first discovers
the code consumer’s safety policy (which is assumed to be publicly available). The code producer
then uses both the safety policy and the code together to generate a statement called a verification
condition. This verification condition is a logical statement which, if proved, would be sufficient to
ensure that the code satisfies the safety policy. As a simplistic example, suppose that the safety
policy consists of a single rule: nothing may be written to memory location 10. And suppose that
the code consists of two operations: calculate a mathematical expression E, then write to memory



location E. In that case, a verification condition for this code under this safety policy would be
FE # 10. If proved, this would ensure that the code satisfies the safety policy.

Once the verification condition has been generated, the code producer passes it to the proof
producer and requests a proof. The proof producer uses a theorem-proving algorithm to search
for a proof of the given verification condition. Upon finding a proof, it is returned to the code
producer. Continuing the example provided in the previous paragraph, suppose the expression E
that our sample code calculates is 2 x R1 4+ 1 where R1 is a machine register which holds integers.
Then the resulting proof might be:

R1 is an integer
= 2% R1 is even
= 2% R1+1isodd
= 2% R1 + 1 # 10 (because 10 is not even)
= E # 10.

Thus we’ve constructed a proof of the verification condition which uses only fundamental assump-
tions about the architecture and about arithmetic.

The resulting proof and the original code are then paired together and passed to the code
consumer. The code consumer must now verify this code-proof pair. First, there is the obvious
syntactic check that the code constitutes a legal “code object” and the proof constitutes a legal
“proof object.” This is a straightforward format check. Next there are three more interesting
checks that must be performed: (1) The proof must have a conclusion which proves that the safety
policy has been satisfied, (2) the proof must be valid, and (3) the proof must match the code. The
code consumer checks these things by following a procedure similar to that of the code producer.
First it uses its own safety policy together with the supplied code to construct the verification
condition independently. This verification condition is compared against the conclusion of the
supplied proof to be sure that they match. This completes checks (1) and (3). The code consumer
then walks through the proof and checks that each proof rule is applied properly and that no invalid
assumptions are made. This completes check (2).

The following informal argument illustrates why the checking scheme described above is suffi-
cient to guarantee that the safety policy will not be violated by the provided code. By generating
the verification condition from the safety policy and the code independently, the code consumer
formulates a condition which, if proved, is sufficient to guarantee that the safety policy is not vi-
olated. It then verifies that the provided proof is a proof of the condition. Assuming these two
checks succeed, the code consumer has therefore proved that the code does not violate the safety
policy. Thus no matter what tampering or manipulation of the proof and/or code may have taken
place, the code consumer accepts the code only if the code does not violate the safety policy.

The PCC scheme has a number of advantages over other methods. First, there are few restric-
tions imposed on the language in which programs are written. The code consumer accepts programs
in machine language so that theoretically programs could be compiled by the code producer from
any source language or even written by hand in assembly code for maximum efficiency. Second,
there are also few restrictions imposed on the nature of the safety policy. Many different notions of
program safety can be represented as PCC safety policies, and different safety policies may be used
by different code consumers. Third, the PCC scheme eliminates the need for inserting potentially
unnecessary runtime checks in the code to ensure safety. All safety checking is performed before
execution begins so that the program can run at full speed once it has been verified. Fourth and
finally, with PCC there is no need to pre-negotiate trust between systems with tools like encryption
or binary signatures. Thus there is no need to guard against theft of these encryption keys or signa-



tures. Furthermore, systems which have gained the code consumer’s trust cannot then abuse that
trust and violate the safety policy, whether intentionally or unintentionally. The code consumer
trusts no foreign systems and verifies each code-proof pair it receives using its own proof-checker.

Another major advantage of the PCC scheme is that the trusted computing base (TCB) is very
small. A security scheme’s trusted computing base is the set of programs or code that the consumer
must trust without formal verification. This generally includes things like the consumer’s operat-
ing system and whatever program is performing the consumer’s verification of foreign-supplied
programs. With PCC the code consumer’s verification program is quite small and simple. This is
because although in general proof generation can be a difficult and complex task, verification of
arbitrary existing proofs can be performed by a very elementary algorithm. Minimizing the TCB
is important because it allows us to trust the security scheme based on the integrity of as small and
as simple a program as possible. We can trust a PCC implementation without trusting the code
producer’s compiler or the proof producer’s theorem-prover, for example. We need only trust the
code consumer’s small proof-verifier.

2.1 Practical Implementation Issues for PCC

The simplistic PCC scheme described above has several problems which make it somewhat unwieldy
and difficult to implement. In order to resolve these difficulties, a few extra details must be
introduced to the scheme.

First, it is in general impractical (and unnecessary) to assume that arbitrary proofs can be gen-
erated by the proof producer upon request. Proof search can be an intensive process but fortunately
it will need to be performed only rarely. In the common case, code producers will wish to supply
one of a relatively small number of pre-compiled programs to arbitrary code consumers. These
code consumers, while numerous, will usually each hold one of a small number of common safety
policies. Thus the code consumer can, for each of its programs and each commonly encountered
safety policy, generate the necessary proof in advance and store it for later reference. Pre-generated
proofs can then be served upon request without the need to generate them on the fly.

Another problem with the proof-generation step as it was described earlier is that it is often
too difficult to automatically generate proofs of verification conditions without any additional in-
formation provided. In practice, proof-generators will often wish to make use of the original source
code from which the machine code was compiled. The source code can then be used to guide the
proof search effort. In some cases it may even be desirable to insert code or otherwise modify
the code to simplify proof generation. For this reason it is often advantageous to incorporate the
proof-generator into the compiler itself. Such an augmented compiler is called a certifying compiler
[8]. When the code producer uses a certifying compiler, the code producer and proof producer are
combined into a single entity.

In order to allow extra information provided by the source code to be used in this way, the code
producer needs a mechanism for guiding the direction of both proof search and proof verification.
We must take care, however, not to introduce anything which requires the code consumer (the
entity performing the proof verification) to trust something provided by an external source. For
this reason, code provided by the code producer is augmented with some “hints” called annotations
which are not trusted by the code consumer. These commented programs are called annotated
erecutables. Annotations can be thought of as claims about the code that must be proved along
with the safety policy. In effect, the code producer is saying, “Not only does this code satisfy your
safety policy, but these extra invariants also hold and I will prove it.” At first it may seem like
this makes a difficult problem worse. If it is difficult to prove and verify the safety policy, how
will adding more claims to be proved help? Annotations have the effect of guiding and aiding
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Figure 1: Flowchart representation of a common PCC scheme.

proof generation and verification because, once proved, they can be used as assumptions which
help to prove that the safety policy holds. In essence, the annotations can be thought of as small,
specialized lemmas.

The resulting final picture of a PCC interaction is shown in Figure On the code/proof-
producer side, the certifying compiler takes a source program and generates an annotated exe-
cutable. A verification condition is generated from this annotated executable and then a theorem-
prover takes this condition (and possibly the original source code) and generates a proof. The
annotated executable and proof are sent to the code consumer. On the code consumer end, a
verification condition is generated from the annotated executable and then a proof-verifier checks
that the supplied proof is valid and that it proves the verification condition.

2.2 Necula and Lee’s PCC Implementation

The PCC scheme implemented by Necula and Lee [9, [10] uses a procedure like the one depicted in
Figure|ll On the code/proof producer end, a certifying compiler takes source programs written in
a simplified version of the C programming language as input and outputs annotated DEC Alpha
assembly code. The annotations are represented as assembly data directives.

The resulting assembly language program is then assembled into an annotated executable.
Annotated executables take the form of DEC Alpha COFF (Common Object File Format) files [3].



The annotations in the COFF file are logical statements or “predicates” written in first-order logic
which are stored in a binary form and placed in a special section in the object file. Each annotation
uses pointers to addresses in the code and data segments of the file to refer to parts of the program.
The logical language used to represent the annotations is LF (Logical Framework) [12].

The verification condition generator program (VCGen) takes these annotated Alpha COFF
files as input, parses the Alpha machine code, data declarations, and annotations, and emits a
verification condition. This verification condition is also represented in LF. In the worst case, the
VCGen algorithm can be trans-exponential, but in practice it runs in linear time.

Finally, the proof-producer program uses a theorem-proving algorithm based on Greg Nelson’s
Techniques for Program Verification [11]. In the worst case this algorithm can be hyper-exponential,
but in practice the algorithm runs in linear time.

The code consumer uses the same VCGen program as the code/proof producer. VCGen is used
to independently generate the verification condition from the provided code. The proof-checker
program then verifies that the supplied proof is a valid proof of the condition. The proof-checker
is a very simple linear-time algorithm written in LF.

The trusted computing base (TCB) for Necula and Lee’s PCC implementation is quite small
and fast. The VCGen and proof-checker programs together comprise only about 4000 lines of C
and LF code and both tend to run in linear time.

3 Porting PCC to a New Platform

Before addressing the issue of how to modify Necula and Lee’s PCC implementation to support the
x86 architecture, it is worthwhile to consider the more general question of how to port an existing
PCC scheme of the form depicted in Figure[l|to a new architecture. There is reason to expect that
much of a PCC implementation can remain unchanged when moving from platform to platform.

As with a traditional modularly designed compiler, a certifying compiler can be adapted to
output assembly code for a new architecture by providing it with a new “back end.” That is, a
new code generation module together with perhaps minor changes to the intermediate language(s)
should be sufficient. The differences between a certifying compiler and a traditional compiler
concern the generation of appropriate annotations for the annotated executable. As was mentioned
previously, annotations are primarily tools for propagating pertinent information from the source
code all the way through the compilation process to the final object code. Since the source language
is the same no matter which architecture is being targeted, we expect that the much of the content
of annotations will not need to be modified for a new architecture. However, more annotations
and new types of annotations may need to be added to annotated executables in order to make
verification conditions for the new architecture provable. A new machine language will often have
a new and different set of “weaknesses” which user programs could potentially exploit in order to
violate safety policies. Annotated executables for this new machine language will need to include
annotations sufficient to allow the construction of proofs that demonstrate that these weaknesses
are not so exploited.

Both the theorem-prover and the proof-checker modules should be almost completely portable.
Both deal strictly with the architecture-independent logical language used to represent verification
conditions, annotations, and proofs. A new set of allowable assumptions which describe the specific
nature of the new architecture will need to be provided, but the internal proof-search and proof-
verification algorithms can remain untouched. In rare cases a new architecture may require the
generation of verification conditions which include new mathematical operators or new logical
connectives. If this is the case, the theorem-prover and proof-checker will need to be provided with



extra rules of inference explaining the proper use of these operations and connectives. Occasionally
it may also be advantageous to provide the theorem-prover with specialized heuristics or methods
of proof search in order to deal with particular operations that arise often on the new architecture.

The module remaining to be discussed is the verification condition generator, the one module
that exists on both the code/proof producer and the code consumer ends of the scheme. The
verification condition generator is in many ways the PCC component which plays the greatest role
in dealing with specifics of particular architectures. It will therefore usually need to be almost
entirely rewritten when porting to a new architecture. A parser for the new machine language
must be written. This parser must take in object files of a format that is likely to be specific to the
new architecture and output a verification condition which encodes every aspect of the code which
may possibly violate the safety policy.

Most of the remainder of this paper will explain the theory and implementation of a verification
condition generator for x86 machine language. New annotation types will be added to the scheme
as they are motivated in the context of describing the x86 VCGen program.

4 An x86 Safety Policy

Before embarking on a discussion of the implementation of an x86 VCGen, it is necessary to first
define the safety policy which it will enforce. The precise definition of a safety policy is often
very architecture-specific. This is to be expected since safety policies should generally be based
in part on the set of “weaknesses” (conditions under which hardware exceptions will be thrown,
etc.) of the architecture being supported. The x86 safety policy which I will enforce in this paper
will be based upon standard conventions for the 32-bit execution model for the x86 architecture
[5]. Specific applications of PCC may require extensions to this safety policy, however since the
32-bit execution model is standard, most x86-based applications will probably include the safety
requirements dictated by this safety policy.

An informal description of this x86 safety policy will be given here. A rigorous definition of
the safety policy will be provided by the x86 VCGen algorithm itself which will be defined in the
section 5.

4.1 Segment Register Assignment Safety

The x86 architecture uses a register file consisting of eight “general-purpose” registers, six “seg-
ment” registers, and a selection of status and control registers. Some of these registers have special
meanings and the safety policy will require that no illegal values be assigned to them. In partic-
ular, the segment registers may only be assigned legal “segment selector” values. When an x86
machine language program is to be executed, it is the loader’s responsibility to initialize the seg-
ment registers to point to appropriate code, data, and stack segments. Generally assignments to
segment registers during execution only occur when the value of one segment register is copied to
another. An assignment of a value which does not correspond to a legal “segment selector” causes
an exception to be thrown and will not be permitted by the safety policy. I will therefore define the
set of legal segment selector values by the set of values held in the segment registers at the start of
execution. These are the only values which may be assigned to segment registers.

4.2 Calling Convention Safety

I will also require the standard CALL-RET calling convention for 32-bit x86 applications to be
observed. This convention dictates that function calls in x86 programs be performed in the following



way:

1. The caller procedure begins by pushing zero or more :
32-bit data items onto the stack which are to be passed
to the callee procedure as parameters. The current
stack pointer is held in the ESP general-purpose reg-
ister and is decremented as the stack grows. Each Param1i
data item placed on the stack must occupy exactly 32

Param2

bits. (Data items larger than 32 bits must be passed Return Addr
via a 32-bit pointer to a memory address in another Old EBP
segment.) EBP >

Local Var1

2. The caller procedure then executes a CALL instruc-

tion which pushes the current program counter ad- Local Var2
dress onto the stack and passes control to the callee ESP g
procedure. . .

Figure 2: Stack configuration during
execution of the body of the callee
procedure.

3. The callee is expected to preserve the contents of the
segment registers, the ESP register (stack pointer),
and the EBP register (frame pointer). Other registers
are generally assumed to be volatile and the caller may
not assume that they are preserved across the function call. Upon being called, the callee
procedure usually saves the contents of the EBP register by pushing it onto the stack and
then copies the contents of the ESP register to EBP.

4. The callee procedure may then add local variables to the stack by decrementing the ESP
register. The new EBP register contents remains unchanged, serving as a base address from
which to access stack parameters (positive offsets from EBP) and local variables (negative
offsets from EBP).

5. At the conclusion of the subroutine, the callee pops all of its local variables from the stack
by assigning the address in EBP to ESP. The old value of EBP is next popped off the stack
using a POP instruction.

6. Finally, a RET instruction executed which pops the return address off of the stack and jumps
to it, transferring control back to the calling procedure.

4.3 Memory Safety

Under this safety policy, an x86 application may read and write to/from its data and stack segments
but may only read from its code segment. Memory read/writes to/from the data and code segments
may only be performed on addresses which correspond to data structures which have been pre-
defined in the object file. Annotations must be used to define the alignment type and size of each
such data structure. Access of each such data item must then conform to its prescribed alignment
and size restrictions. Essentially this means that program data must be used in a consistent way
and typecasting from one bit width to another is not permitted. 16-bit integers must be read and
written as 16-bit integers, similarly for 32-bit integers, etc.

Stack data does not require any pre-defined data typing because on x86 machines stack data
is “boxed” by convention. That is, each stack read/write must be 32-bit aligned and must access
exactly 32 bits. Memory read/writes to/from the stack segment may only be performed within the



range of addresses delimited by the start of the parameter list above and the ESP pointer below.
This enforces the local scope of each procedure. In addition, the callee may not alter the return
address pushed onto the stack by the original CALL instruction.

For now, dynamic memory allocation will not be supported. This can be added in the future.

4.4 Control Flow Safety

Conceptually, this safety policy considers each procedure in the program as a separate sequence of
instructions. Control may be passed only into and out of a procedure block via a CALL or RET
instruction. In addition, all branch and jump destination addresses must be absolute. That is, no
branch, jump, or procedure call may target a destination address which is stored in a register or
in writable memory. Thus higher-order functions are not supported. Support for function pointers
and other higher-order programming techniques can probably be added in future work.

5 The Semantic Translation Scheme

The algorithm used by the x86 VCGen program to implement the above safety policy can be
considered as a semantic translation which maps annotated machine language programs to logical
predicates (statements in first-order logic). The mapping of a particular program to a particular
predicate will be called a judgment. One way to formally represent an algorithm which constructs
proper judgments is to define it as a set of derivation rules which take zero or more judgments
as hypotheses and conclude a single judgment. A sequence of derivation rules is then termed a
derivation. A derivation is like a “proof” whose conclusion is a judgment which defines a safety
predicate. The derivation rules are defined in such a way that it is clear from the machine language
program being processed which rules must be applied in what order. The resulting derivation then
serves as a recipe for generating the verification condition from the annotated executable.

The next few sections will define the form and meaning of judgments for this algorithm. Deriva-
tion rules which manipulate these judgments will then be defined and explained. Finally, an exam-
ple derivation will be given which strings these derivation rules together to generate a verification
condition for a simple program.

5.1 Judgments

I will begin by defining the main judgment for this derivation system:

In this judgment, S will denote a machine state, K; and Ko will denote (possibly empty) sequences
of machine language instructions, I will denote a single machine language instruction, and P will
denote a logical predicate. I define this judgment to mean that if a machine language program
consisting of the instructions in K; followed by instruction I followed by instructions in Ky is
given, and if this program is to be executed starting with instruction I and with an initial machine
state S, then a verification condition ensuring that this program does not violate our x86 safety
policy is given by P.

5.1.1 Expressions and Predicates

Before this definition is complete, a definition for each individual component of the above judgment
must be provided. The syntax of logical predicates is an extension of that given by Necula and Lee



in [10]:

Variables X
Expressions E :=X|N|E; + FE2|E1 — E3|E; - E2|E mod N|E > N|
E| @ E3|Ey © E3|Ey © Es
sel(Ev, Es)|upd(E, Ea, E3)
Expresion Predicates EP ::=true|false| 1 = E3|E1 # E9|Ey > Es|Ey < Es
Predicates P ::=EP|P; N P5|P; D P,|VX.P|
dWrite32(E)|dRead32(FE)|cRead32(E)|dWritel16(E)| - - -

Here I have listed only the syntactic elements that will be needed for the examples provided in the
remainder of this paper. An actual implementation of the algorithm would include more operators
and connectives.

In the syntax for expressions I distinguish between normal addition, subtraction, and multiplica-
tion (+,—,-) and unsigned addition, subtraction, and multiplication with 32-bit wrapping (®,5,0).
ILe. OxFFFFFFFF 4 0x1 = 0x100000000 but OxFFFFFFFF @ 0x1 = 0x0. The > operator denotes
right-shifting (division by a constant power of two). There are also expressions to facilitate mem-
ory reads and writes. sel(Ej, Fy) returns the value stored in memory address Fy when the state
of memory is described by E;. upd(E1, E2, E3) denotes the memory state produced when initial
memory state E7 is altered by writing the value of expression F3 into memory address Es. Thus
the expression sel(upd(m,a,v),a) evaluates to v.

Several of the predicates also deserve special comment. The xWritenn and zReadnn predicates
are statements about the writability and readability (respectively) of memory addresses. For ex-
ample, dWrite32(E) indicates that the expression E refers to the address of a 32-bit wide writable
memory address in the data segment, as indicated by the data annotations in the executable. (See
the safety policy described in section ) There are 32-, 16-, and 8-bit dWrite and dRead predi-
cates for accesses to the data segment and a 32-, 16-, and 8-bit cRead predicate for reads from the
code segment. Stack segment accesses do not require special predicates and will be explained later.

5.1.2 Instruction Sequences

Next I will consider the components K1, I, and Ky which together comprise the machine language
program being examined. Individual instructions will be described by a label followed by an optional
“loop marker” followed by an assembly language mnemonic with appropriate arguments:

Labels L =N
Assembly Mnemonics M ::=mov eaz, ebz|add eax, N|push ebp|---
Instructions I:=L:M|L:\/M

A label is simply the numerical memory address where the first byte of the given instruction is
stored in the code segment.

The optional loop marker / is an annotation provided by the code producer which marks
some instruction within the body of each loop in the program. Recall from section 3 that the
code producer can supply “comments” about the code called annotations in a separate section
of the object file. Each annotation has a pointer to some memory address either corresponding
to a location in the executable code or corresponding to the location of a data item in the data
segment. The loop markers are therefore represented in the object file as annotations which point
to the given instruction. The code producer will be required to mark each loop by attaching a
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loop marker annotation to some instruction within the loop. Loops which are not marked will be
detected by the code consumer and will cause the code to be rejected. More about loops and how
they are handled will be discussed later.

For the machine instructions themselves, assembly language mnemonics are used here for pur-
poses of readability. In the actual VCGen implementation, instructions are parsed directly as binary
machine code without using an assembly language representation.

Instruction sequences will be denoted by semicolon-separated lists of instructions:

Instruction Sequences K = |I1;1s;...51

In practice they are represented in the annotated executable as consecutive binary machine code
instructions.

5.1.3 Machine States

The final remaining component to be defined is S, the machine state:

Machine State S := [ eax = Eyj,ebx = Ea,...,cs = E3,ss = Ey,. ..,
s1 = FE5,80 = Eg, . . .,
of = EP1,sf = EPo, zf = EP3,af = EP4, cf = EPs5, df = EPg,
m = Er,
h={Ly,Lo,...}
inv = {(Ls, S1), (L4, 52),...} ]

The machine state is a collection of symbolic expressions and predicates which represent the
contents of the machine registers (eazx, ebx, cs, ss, etc.), stack variables (s1,52, etc.), status flags
(of, sf, #f, af, cf, and df), and memory (m). It also includes a (possibly empty) set (h) of labels
and another (possibly empty) set (inv) of label-machine state pairs. These final two members will
denote certain key points in the program which have already been visited by the VCGen algorithm
and, in the case of the inv member, the machine states previously seen at those points. This will be
helpful later in the analysis of loops. The contents of memory are represented as a single expression
(a nested set of upd memory state expressions) assigned to the member m. Stack variables are listed
separately in the machine state instead of being represented in the memory expression because on
the x86 the stack is used like an extended register file. At any point during execution, access to the
stack is limited by the safety policy to a relatively small local scope consisting exclusively of 32-bit
values. In addition to the set of machine registers, the stack, and memory, the x86 architecture
also includes a selection of status flags which can be either true or false (1 or 0). These status flags
are represented in the machine state as expression predicates of the same form as those defined
previously. The flags supported will be the overflow flag (of ), sign flag (sf), zero flag (zf), adjust
flag (af), carry flag (¢f), and direction flag (df). (See [5] for a description of each flag’s meaning.)
The x86 architecture also includes a parity flag, but it will not be supported in this scheme. Any
programs whose adherence to the safety policy depend upon the value of the parity flag will be
rejected by the code consumer.

It will be helpful to have a convenient notation for examining the value of a particular member
of a state and for describing the new state that results from assigning a value to a particular member
of the state. The notation S[eax = E] will denote a state S such that the eaz member holds the
expression F. The notation S[eaz < E] will denote the state that results from taking state S and
assigning expression E to the eax member.

11



5.1.4 An Example Judgment

Now that all components of the main judgment have been defined, let us return to the simple
example program described in section 2 for an example of such a judgment. The proposed example
program takes the value in the EAX register, multiplies it by 2, adds 1, and then stores a value to
the memory address defined by the result. The following is an implementation of such a program
expressed in x86 assembly language. The leftmost column lists the program address for each
instruction. The middle column shows the binary machine language disassembly expressed in
hexadecimal. The rightmost column expresses the program in standard x86 assembly mnemonics.

40A438 : 6B CO 02 IMUL EAX, EAX, 2
40A43B : 83 CO 01 ADD EAX, 1
40A43E : C6 00 00 MOV [EAX], O
40A441 : C3 RET

Under the stated x86 safety policy, one judgment which might be derived for this program would
be

So b=+ / 40A438 :imul eazx, eax,2 / 40A43B :add eaz, 1;
40A43E :mov [eaz],0;
40A441 ret — Va.dWrite32(x ©2® 1)

where Sy is some machine state consisting of register, stack, and status flag values which are known
to be initialized by the x86 program loader prior to execution. The judgment states that the given
program consisting of an IMUL, ADD, MOV, and RET instructions in that order is to be executed
starting with the IMUL instruction and with an initial machine state Sg. It concludes that a
verification condition sufficient to guarantee that the x86 safety policy given in section 4 is honored
by the program is given by the logical predicate Va.d Write32(x ©® 2 @ 1). Thus the proof producer
must prove that no matter what EAX is, the memory write will end up writing to a valid memory
location.

The derived safety predicate in this case guarantees the memory safety aspect of the x86 safety
policy (section . It should be pointed out that the calling convention safety requirements
imposed by section have been ignored for now. (Normally, in order to prove that the sub-
program above satisfies the x86 safety policy, the code producer would have to prove that the
sub-program conforms to the standard calling convention.) For now, note that by visual inspection
the program performs no stack accesses and that the values of the ESP and EBP registers remain
untouched. One would expect that this should mean that there is little, if anything, for the code
producer to prove in order to show that the calling convention safety requirements have been
satisfied. This is the informal reason why nothing about calling convention safety appears in this
verification condition. A more formal justification will be provided in section which concerns
the enforcement of the standard calling convention.

5.1.5 Annotation Judgments

To complete the judgment system I must introduce one more judgment type. This final judgment
allows us to refer to the remaining (non-assertion) annotations in the annotated executable. I define
the judgment

AL
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to mean that the annotation A is attached to the instruction at label L. Arbitrary numbers of
annotations may be attached to each program label. Annotations will be described using the
following syntax:

Register Sets R C{eaz,ax,...,81,82,...,¢f, 2f,...}
Annotations A = Func(Py, P2, N, R)|Loop(P, R)

An annotation consists of a “type” (Func or Loop) followed by a list of parameters. The number
and types of the parameters depends on the annotation type. One possible parameter type is a
“register set” (R) which consists of some subset of the member fields of a machine state (excluding
the h and inv members). The other annotation parameters consist of predicates (P) and integers
(N). The meaning of each annotation type and its parameters will be explained later.

5.2 Derivation Rules

Now that the judgments have been defined, the next step is to show how a derivation is constructed.
A derivation consists of an upside-down “tree” of derivation rules. Each node in this tree is an
application of a derivation rule. A derivation rule takes zero or more judgments as hypotheses
and concludes a single judgment from those hypotheses. As an example, consider the simplest
derivation rule, the NOP Introduction rule:

StKi;nop /I /) Ky— P
SHK; /nop /I;Ky— P

The judgment on top is the single hypothesis for this rule. The bottom judgment is the conclusion.
The label which should precede the NOP instruction has been omitted for brevity. Labels will
generally be omitted unless they have particular importance in the rule.

The NOP mnemonic stands for “No OPeration.” As its name implies, it has no effect except
to let execution of the program pass to the next instruction. The above derivation rule models the
behavior of the NOP instruction by saying the following: If P is a sufficient verification condition for
a particular program given by K1;nop; I; Ko when that program is executed starting at instruction
I with machine state S, then P is also a sufficient verification condition for the program when it is
executed with the same machine state S starting at the NOP instruction which appears immediately
before instruction I. The rule is called the “NOP Introduction rule” because its effect is to introduce
the NOP instruction to the flow of execution of the program. All rules in the derivation system
described in this paper will be introduction rules.

Note that this rule cannot be applied to an illegal use of the NOP instruction in a program. It is
difficult to misuse an instruction as benign as the NOP instruction, but there is one circumstance
where use of a NOP would result in an error. Namely, if no legal instruction follows the NOP,
then control would be passed to a potentially illegal opcode and the program would abort with an
exception. Observe that the hypothesis for this rule requires that the legal instruction I immediately
follow the NOP. Thus a program with no legal instruction after the NOP violates the stated
assumptions and the rule is not applicable.

5.2.1 Changes to the Machine State

Some rules will involve changes to the machine state. Consider the MOV-Immediate Introduction

rule:
Sleax — N+ Ky;mov eax,N /I | Ko — P

S+ Ky /mov eax,N |/ I; Ky — P
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The MOV EAX,imm instruction moves a 32-bit integer constant, imm, (called an “immediate
argument” ) into the EAX register. The rule above models this behavior by stating the following:
If P is a sufficient verification condition for the program Ki;mov eazx, N;I; Ko when it is executed
starting at instruction I with a machine state S in which eax has been assigned the expression IV,
then P is also a sufficient verification condition for the same program when execution begins at the
MOV instruction immediately preceding instruction I with the same machine state .S but with any
value stored in eaz. (Any value may be stored in eaz because the MOV is about to overwrite that
value when it stores N there.)

Memory writes are a special case where not only is the state modified, but an extra predicate
is added to the verification condition as well. Consider the Indirect MOV-Immediate Introduction

rule:
Slm «— upd(E, EP,N)| + Ky;mov [eax],N /I /| Ko — P

Slear = EP,m = E|+ K; / mov [eax],N / I; Ky — dWrite32(EP) N P
The MOV [EAX],#mm instruction, instead of assigning imm to EAX, assigns imm to the memory
address pointed to by EAX. (EAX is in this case an offset into the data segment.) The rule above
models the change in memory by making an appropriate assignment to the m member of the
machine state. A new dWrite32 predicate is also conjoined with the old condition, requiring the
code producer to prove that the memory write targets a legal address.

5.2.2 Status Flags

Unfortunately, assignments on an x86 platform often involve a number of state changes in addition
to the specific assignment requested. One way in which this occurs is that assignments are made
to the status flags as a side-effect of many operations. Although the MOV instructions illustrated
in the previous section do not have these side-effects, most x86 arithmetic and bitwise instructions
do. I will use the ADD-Immediate Introduction rule as an example.

The ADD EAX,dmm instruction increments the value in the EAX register by imm. After per-
forming the calculation, the status flags are set with various boolean values to indicate the nature
of the result. The following is a statement of the ADD-Immediate Introduction rule:

S"+ Ki;add eax,N /I | Ky — P
Slear = EP]+ K, / add eaz, N |/ I; Ky — P

where
S":= Sleax «+ (EP @ N), ¢f « (EP + N > 0xFFFFFFFF), f « (EP & N = 0),.. ].

Thus not only has the EAX register been assigned the result of the 32-bit addition, but the various
status flags are set with expression predicates indicating the nature of the result. The CF flag is
set to true if, treating the addition as unsigned, the sum would have been larger than 32 bits. It is
cleared otherwise. The ZF flag is set to true if the result is 0 and otherwise cleared. The OF, SF,
and AF flags are also affected by the ADD instruction and their respective state members must be
set with appropriate expression predicates.

Every rule which introduces an instruction which modifies the status flags must include all of
these state changes in its hypotheses. Because the assignments are numerous, I will generally omit
them and replace them with ellipses in this document.

5.2.3 Overlapping Registers

The other state changes that take place as a side-effect of any particular register assignment are
due to the fact that x86 registers “overlap.” T will use the EAX, AX, AH, AL family of registers
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Figure 3: x86 “overlapping” registers.

as an example. The EAX register is a 32-bit register. The lower 16 bits of this register are also
known as the AX register. An assignment to the AX register automatically changes the lower 16
bits of the EAX register. Similarly, an assignment to the EAX register will alter the contents of
the AX register. In addition, the upper 8 bits of the AX register are also known as the AH register
while the lower 8 bits are known as the AL register. Represented diagrammatically, this family of
registers looks like Figure

Thus an assignment to the EAX register must be modeled by an assignment to the eaz, azx, ah,
and al state members. An assignment to the AX register involves changes to the EAX, AH, and
AL registers. Assignments to AH and AL change both EAX and AX.

One way of modeling this feature of the architecture is to have only a single state member,
eax, representative of the entire family and then represent writes and reads of the other registers
using suitable expressions. For example, assignment of N to AX would be modeled by a state
change described by S[eaxr = E][ear < E — (E mod 65536) + N|. However, this means that even
simple computations performed using the smaller registers will result in large, complex symbolic
expressions to be proved as part of the verification condition. The vast majority of x86 machine
language programs make little or no use of the overlapping nature of the register families. So a
32-bit computation will make use of the 32-bit registers without reading from or writing to the
smaller registers. Similarly, a 16-bit computation will ignore the existence of the 32-bit and 8-bit
registers which overlap it.

Therefore I use an alternative representation which results in smaller verification conditions for
most programs. All registers in the family are represented as separate members in the state. An
assignment to one of these registers is modeled by making a straightforward assignment to the
stated register and then assigning suitable expressions to registers which overlap it. If the program
never refers to a register unless it assigns directly to it first, these more complex expressions will
never appear in the verification condition. An assignment of NV to AX would therefore be modeled
by the following assignments (where eaz originally holds the expression E):

eax — E — (E mod 65536) + N
ar <+ N

ah «— (N > 8) mod 256

al — N mod 256

When stating derivation rules in this document, side-effect assignments to overlapping registers will

not be given explicitly. Rather, whenever a register assignment is stated, appropriate corresponding
assignments to overlapping registers should be assumed.
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5.3 Derivations

At this point we have enough background on derivation rules to make a first attempt at formally
deriving the verification condition for the program given in section As mentioned previously,
derivations consist of an upside-down “tree” of derivation rules. So far we have seen only derivations
with exactly one hypothesis, so this tree structure will not be seen in this example. (It will
become evident starting in section ) We have also not discussed derivation rules which model
function calls and returns. For now we will ignore calling convention safety and assume that a
RET instruction by itself constitutes a legal program. Our resulting simplified RET-Introduction
derivation rule is a leaf rule, having no hypotheses:

Sk Ky /ret | Ko — true

Given this rule and the rules provided in section [5.2] we may now construct a derivation of the
verification condition for the program given in section and restated below.

40A438 : 6B CO 02 IMUL EAX, EAX, 2
40A43B: 83 CO 01 ADD EAX, 1
40A43E: C6 00 00 MOV [EAX], O
40A441: C3 RET

I begin with a statement of the judgment which we wish to derive.
So k- / imul eaz, eazx,2 / add eaz,1;mov [eaz],0;ret — P

for some predicate P which we wish to determine. Sy is the initial state of the machine prior to
execution as set up by the system’s program loader. On x86 we are guaranteed that when the
program starts, the CS, DS, and SS segment registers are set to appropriate code, data, and stack
segment selector values, the ESP register is pointing to the top of the stack, and the top element
on the stack is a valid return address. Therefore we will model this initialization by setting each
of the corresponding members of Sy to some special constants: csg, dsg, sso, and espy;. Other
register contents are unknown. Thus we will set all of the remaining register members of Sy to
unbound variables. The number of available stack variables will, for now, be assumed to be 1 (the
return address). This stack variable, s, will also be set to an unbound variable as will the memory
state variable, m. The values of the status flags are also unknown at the start of execution, but
we cannot model this by simply setting them to unbound variables since a variable is not a valid
expression predicate. Instead, we will set them equal to expression predicates whose truth values
depend upon unbound variables. Thus we define Sy to be

[ eax =z,ebx =y,...,esp = espy, cs = csg, ds = dsp, $s = $S0,
51 =%,
of = (UZO),Zf: (’U:O),...,
m=w,h={},inv ={} ]
where u, v, w, z, y, and z are all unbound variables. The state members h and inv are set to the
empty set since no points in the program have yet been visited.

I now wish to construct a derivation of the judgment. Judgments will be derived “bottom-up.”
That is, I start with the conclusion to be derived (the judgment given above) with its missing
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verification condition predicate, and assume that it is the bottom judgment of some derivation
rule. I then infer the identity of this unknown rule and what the hypothesis judgment(s) of this rule
would have to be. Next I recursively attempt to construct a derivation of the inferred hypothesis
judgment(s) in the same way. The process continues until there are no more judgments to be
derived.

As an example of this “bottom-up” process, I will construct a derivation of the judgment
for the sample program. Any derivation of this judgment must end with an IMUL-Immediate
Introduction rule. This is because the IMUL instruction is the first instruction being executed
in the program and hence must be the last instruction introduced to the head of the instruction
stream by a rule in the derivation. I haven’t yet stated the IMUL-Immediate Introduction rule,
but it is a standard arithmetic rule like the ADD-Immediate Introduction example given in section
except that it multiplies EAX by 2 instead of incrementing it by émm. Applying this IMUL-
Immediate Introduction rule, I arrive at

Solear «— x ® 2,...] Fimul eaz, eaz,2 / add eaz,1 / mov [eaz],0;ret — P

So - / imul eaz, eaz,2 / add eaz,1;mov [eaz],0;ret — P

For brevity, I have omitted the various assignments made to the state flags, replacing them with
an ellipsis.

I now have a new judgment to derive. If I could construct a derivation of the judgment on top,
I would then have a completed derivation of the original judgment. By the same logic as before,
any derivation of the top judgment must end with an ADD-Immediate Introduction rule. The
ADD-Immediate Introduction rule was presented in section Applying it to the top judgment,
I obtain

Solear —x®2&1,...]F... / mov [eaz],0 / ret;- — P
Solear —x ®2,...]F ... /add eaz,1 / mov [eaz],0;... — P
So - / imul eazx, eax,2 / add eaz,1;... — P

Again T find myself with a new judgment to derive on top. This time I must use the memory as-
signment variant of the MOV-Immediate Introduction rule. This is another rule that was presented
in section[5.2.1] Here I get my first information as to the identity of the unknown predicate, P. The
applicable MOV rule demands that the resulting predicate P be of the form dWrite32(EP) AND
(Q where EP is the expression assigned to the eax state member and () is an unknown predicate.
So I make this required substitution for P, propagating it down the derivation:

Solear —x@2®1,...]F... /ret /- —Q
Solear —x®2®1,...]F... / mov [eazx],0 / ret — dWrite32(z ©2S 1) A Q
Solear —x ®2,...]F ... /add eazr,1 / mov [eaz],0;... — dWrite32(x ©®2& 1) A Q
So F -/ imul eaz, eax,2 / add eaz,1;... — dWrite32(z ©2& 1) AQ

The judgment to be derived on top now requires a RET Introduction rule. I must therefore
make use of the simplified rule given at the beginning of this section. Again, this is a rule which
identifies part of the unknown predicate. In this case we must substitute true for @ in order to
apply the rule. The resulting derivation is:

Soleax —x©2@®1,...]F... /ret /- true
Soleax —x®2@®1,...]F ... / mov [eax],0 / ret — dWrite32(x © 2® 1) A true
Solear — x®2,...]F ... /add eaz,1 / mov [eaz],0;... — dWrite32(x © 2® 1) A true
So b+ / imul eaz, eaz,2 / add eax,1;... — dWrite32(x © 2 & 1) A true
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There are no more top judgments to be derived (the simplified RET Introduction rule has no
hypotheses) and hence this is a completed derivation of the desired judgment.

Note that in constructing the derivation I have automatically generated the missing verification
condition. Also note that the procedure used to generate the derivation was completely determinis-
tic. At every step there was only one possible rule which applied. This means that the search for a
derivation never requires backtracking and there is no need to remember a history of rules applied.
An automated implementation of this procedure need only remember the set of top judgments to
be derived (in general there may be more than one since derivation rules can have multiple hy-
potheses) and the current version of the final verification condition. At each step, the automated
derivation-generator arbitrarily selects and removes a judgment from the set of top judgments to
be derived and applies the only applicable derivation rule to it. If a judgment is ever encountered
for which no rule applies, the program is illegal and the code consumer should reject it. Applying
a rule will generally involve making substitutions to the verification condition being constructed
and adding new judgments to the set of top level judgments. When there are no more judgments
to be derived, the derivation and the verification condition are complete.

Going back to the verification condition that was just generated, there are two small refinements
I can make in order to acquire the exact verification condition predicted in section First, ob-
serve that the conjunction of an arbitrary predicate and true is equivalent to the predicate without
the conjunction with true. An automated VCGen need not perform any reductions on verifica-
tion conditions, but simplifications like this one are very easy to detect and can result in smaller
predicates to be exchanged between the code producer and code consumer. Eliminating the true
leaves me with dWrite32(z ©®2@®1). Finally, all remaining unbound variables should be universally
quantified at the outermost level. The final verification condition is then Va.d Write32(x © 2@ 1)
which is exactly what was predicted in section [5.1.4]

6 Obtaining Derivation Rules from Pseudo-Code Hardware Spec-
ifications

Now that judgments have been introduced and explained and the basic VCGen algorithm has been
shown, I can propose a systematic translation scheme which is capable of handling most common
x86 programs. Explicitly listing derivation rules for every x86 machine language instruction would
not be feasible in a paper of any reasonable length. Categorizing the set of x86 instructions and
giving a representative rule from each category would be misleading due to the non-RISC nature of
the architecture. Each instruction tends to have very individualistic behavior. However, in a formal
specification for the x86 architecture, the behavior of each instruction is often couched in terms of a
simple pseudo-code language. See [6] for an example of this. This pseudo-code description is usually
directly translatable into appropriate derivation rules. The corresponding VCGen implementation
then becomes very easy to verify by inspection, lending more credibility to the trusted computing
base.

As an example of translating a pseudo-code description of an x86 instruction into a derivation
rule I will use the second machine instruction specified in [6]. The pseudo-code specification given
on page 3-12 of [6] for the AAD (ASCII Adjust AX before Division) instruction is reproduced

18



below.

tempAL « AL;

tempAH « AH;

AL < (tempAL + (tempAH * OAH)) AND FFH;
AH — 0

The corresponding AAD Introduction rule is given by

Slal < (Ey + (F2-10)) mod 256, ah <— O] F Ky;aad / I /| Ko — P
Slal = Ey,ah = B3l - K, [ aad / I; Ko — P

Notice that this rule closely matches the pseudo-code given above it. The same assignments are
made and the same computations are performed with minor adjustments. (In this case the AND
operation has been transformed into an equivalent mod.)

This is admittedly a particularly simple example, but even complex pseudo-code descriptions
can usually be transformed in this way. An example of a more difficult transformation will be given
in section [§

7 Enforcing the x86 Safety Policy

Recognizing that the behavior of most x86 instructions can be modeled by derivation rules that
can be obtained directly from hardware pseudo-code descriptions, we can then turn our attention
to derivation rules which are instrumental in enforcing the x86 safety policy outlined in section
The next several sections will each center on one of the x86 safety policy components and show
how derivation rules which enforce this policy are constructed.

7.1 Enforcing Segment Register Safety

I will begin with the simplest of the four safety policy components from section 4} segment register
safety. As stated in section no x86 segment register (CS, DS, SS, ES, FS, or GS) may ever be
assigned an invalid segment selector value. Most x86 programs should not need to construct their
own segment selectors. Segment selector values for the program’s code segment, data segment, and
stack segment are loaded into the CS, DS, and SS registers respectively by the system loader prior
to execution. The program may then need to copy these values into the ES, FS, or GS registers in
order to perform memory-copy operations, but generally these are the only segment assignments
ever made. CS, DS, and SS are generally not written to at all.

The x86 VCGen implementation will enforce this common behavior. The initial machine state
will have the special constants, csg, dsg, and ssg, assigned to the cs, ds, and ss members. es, fs,
and gs will initially be assigned unbound variables. When an assignment is made to a segment
register, the symbolic expression being assigned must be identically one of csq, dsg, or ssg. Thus
segment selector values may only be copied directly from register to register or from a register to
the stack and back. When a memory access is performed, the segment selector which identifies
the segment for the memory access must be exactly csg, dsgp, or ssg. No extra safety predicates
are added to the verification condition when these checks are performed. The pertinent segment
selectors must each have one of the three legal symbolic expressions for segment registers at the
time of verification condition generation or the code will be rejected immediately.
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Thus derivation rules which assign to segment registers are limited to rules like the following:

Sles «— dso| F K1;mov es,eax /| I | Ko — P
Slear = dso] - K1 / mov es,eax | I; Ko — P

7.2 Enforcing Memory Safety

Next I will skip to section memory safety. Since the rules for segment register safety given in
the previous section guarantee that the value of all segment registers are known at all points in
the program before runtime, it then becomes a trivial matter to enforce the various memory safety
policies associated with each of the different memory segments.

When a memory write is performed, the corresponding segment selector must hold the symbolic
expression dsg or ssg. If the segment selector expression is dsg, then an appropriate memory safety
predicate (dWrite32, dWritel6, etc.) is added to the verification condition. If the segment selector
expression is ssg then the write must be a 32-bit write to a valid memory address in the current
local stack scope. Guaranteeing the validity of stack accesses will be discussed further in section
[7.4) as part of the discussion of calling convention enforcement.

When a memory read is performed, the corresponding segment selector must hold the symbolic
expression csg, dsg, or ssg. If the segment selector expression is csg or dsg, then an appropriate
memory safety predicate (dRead32, cReadl6, etc.) is added to the verification condition. Again,
stack reads must be 32-bit reads to a properly aligned memory address within the local stack scope.
Enforcement of this convention will be discussed in section as part of calling convention safety.

7.3 Enforcing Control Flow Safety

Control flow safety is a complex issue which will involve the presentation of a number of new
concepts involving derivation rules. The simplest kind of control transfer has already been shown.
Most machine instructions simply pass control to the next instruction in the sequence. Ensuring
that a next instruction in the sequence exists is achieved by requiring that this next instruction
be parsed before the derivation rule which passes control to it can be applied. The first sample
derivation rule, NOP Introduction, is an example:

StKisnop /1) Ky — P
SHK; /nop /I;Ky— P

The existence of a legal instruction, I, following the NOP is required in order to apply the rule.

7.3.1 TUnconditional Jumps

Next there are instructions which unconditionally jump to a specified program address. The JMP
instruction is an example. Unlike NOP instructions, the JMP instruction does not require that a
legal instruction immediately follow it in the instruction sequence. Instead it requires that a legal
instruction exist at the destination address specified. The following is a statement of the Forward
JMP Introduction rule:

StKi;jmp LKy / L:1 ) K3 — P

SHFK; /jmpL /Ky L:I;K3— P

7.3.2 Conditional Forward Jumps

Not all control transfers are unconditional like those enacted by the JMP instruction. The x86
instruction set, like most architectures, includes a set of machine instructions which, depending
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on a particular conditional expression, either transfer control to a specified destination address or
allow control to pass to the next instruction in the sequence. Such instructions are called branch
instructions. A verification condition for a program which includes a branch instruction must
ensure that whether or not the branch is taken, the safety policy is satisfied. This notion can
be formalized in a verification condition by using the D connective. The branch condition must
imply the verification condition which results from taking the branch. The negation of the branch
condition must imply the verification condition which results from allowing control to pass to the
next instruction.

An example is the Forward JZ Introduction rule. The JZ assembly mnemonic stands for “Jump
on Zero.” It examines the contents of the Zero status flag and, if it is set to true, it branches to
the indicated address. Otherwise control falls through to the next instruction. The Forward JZ
Introduction rule will be the first example of a rule which has multiple hypotheses. Hypotheses
are listed in arbitrary order horizontally across the top portion of the rule. Like the Forward JMP
Introduction rule, the Forward JZ Introduction rule will only apply to forward branches. The
following is a statement of the rule:

S}—Kl;jz L;Kg/L:Ig/Kg%Pl Sl_Kl;jZL/Il/KQ;L:IQ;K:;‘—)PQ
S[Zf:EP]l— /jzL/Il;KQ;L:IQ;Ki}‘—)(EPDPl)/\(ﬁDPQ)

The rule above states that if you know the safety predicate resulting from execution of the program
starting at the instruction after the branch, and you know the predicate resulting from execution
of the program starting at the target of the branch, then you can formulate the predicate resulting
from execution starting at the branch instruction itself. This resulting safety predicate will say that
the branch condition being true implies whatever predicate results from taking the branch, and the
branch condition being false implies whatever predicate results from not taking the branch.

There is one bit of notation used here which has not been seen previously. The expression EP
denotes the negation of expression predicate FP. This will appear often in rules for instructions
whose behavior depends on a particular condition or set of conditions. For reasons of efficient
proof search there is no not connective in the language of logical predicates. However, expression
predicates are all of a form that can be explicitly negated. true = false, false = true, and all of
the relational operators have corresponding opposites. Thus the symbolic expression for EP can
be computed directly and substituted into the verification condition.

Because it has multiple hypotheses, an implementation of the Forward JZ Introduction rule
requires multiple recursive calls to the VCGen algorithm. Thus an example derivation which uses
this rule will illustrate the tree structure of derivations. Consider the following program fragment:

0040A438 74 03 JZ 0040A43D
0040A43A 83 CO 01 ADD EAX, 1
0040A43D C6 00 00 MOV [EAX],0

A verification condition for this program must ensure that if the predicate currently stored in the
zf state member is true, then EAX is an 8-bit writable address. Otherwise, EAX~+1 is required
to be an 8-bit writable address. The derivation fragment which constructs this condition is given
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below:

Slear — E® 1] ... / mov [eaz],0 / ...
: — dWrite§(E @ 1) A Q2
St.../L:mov [eazx],0 / ... St... /add eax,1/ ...
— dWrite8(E) A Q1 — dWrite8(E & 1) A Q2
Slsf = EPjeax = E|F ... /[jz L/ ...
— (EP D dWrite8(E) A Q1) A (EP D dWrite8(E & 1) A Q2)

Here 1 and )2 denote unknown predicates that would be generated by whatever instructions
follow the final MOV instruction in the program fragment. (Note that (1 and @2 may well be
different despite the fact that they are generated from the same sequence of instructions. Qo is
generated using an initial state in which the EAX register holds a value which is 1 larger than the
value of EAX in the state used in the generation of ;. This difference in state can later have a
profound effect upon the verification condition generated.) EP and E denote the contents of the
ZF flag and the EAX register respectively upon execution of the fragment.

Although the derivation looks complex, it is constructed using the same deterministic algorithm
demonstrated in section [5.3] Handling of the JZ instruction simply requires two recursive calls to
the algorithm instead of one.

7.3.3 Backwards Jumps: Loops

The final type of control flow which needs to be addressed is looping. Recall from section that
annotations called loop markers (denoted with a y/ symbol) may be attached to any instruction in
the instruction sequence. Also, recall that in addition to the judgment type that has been used so

far, a second judgment type of the form
AL

was introduced in section which has subsequently gone unused. These annotation judgments
will permit the construction of derivation rules which require the existence of certain annotations.
Annotation judgments never appear as conclusions of derivation rules; they only appear as hy-
potheses. These hypotheses can be checked (“derived”) by simply verifying the existence of the
required annotation in the annotated executable.

Each loop in the program is required to be marked by a loop marker annotation (y/) attached
to some instruction in the loop body. When an instruction is encountered which has a loop marker
attached, a second annotation of type Loop attached to the same instruction is also located. (In
practice these two annotations are actually one and the same. That is, the Loop annotation itself
is the loop marker. However, it is convenient for notational purposes to represent them as two
separate annotations here.) The second annotation of type Loop contains information which will
allow the construction of a suitable verification condition for the loop. In order to enforce the
restriction that all loops must contain a loop marker, no backwards branch may be traversed twice
in a single path of control through the program without visiting a loop marker for that loop at
least once.

In section it was mentioned that Loop annotations have the form Loop(P, R) and hence
have two parameters: a logical predicate and a register set. The logical predicate is a suggested loop
invariant. It is a predicate of the usual form except that machine state member names (registers,
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stack variables, and the memory state variable m) may be used as unbound variables. Certain
other variable names which will denote the initial contents of registers and memory may also be
used. For example, the variable name eax( is reserved to represent the initial contents of the
EAX register. The complete set of reserved variable names will be given in section [7.4.1| as part
of the discussion on calling convention safety. As an example, one valid predicate P would be
(eax < eaxp) A (ebr mod 8 = 0).

Loop safety is encoded in the verification condition by an inductive argument. First, the loop
invariant must hold at the point when its corresponding loop marker is first seen. This is the
base case of the induction. An “iteration” of the loop will then be defined as a flow of control
through the program which starts and ends at the same loop marker. For an arbitrary such
iteration, the invariant is assumed to hold and the verification condition for one iteration must be
shown to satisfy the safety policy. Finally, when the loop marker is revisited at the conclusion of
this arbitrary iteration, the loop invariant must hold for the next iteration. This completes the
inductive argument.

The suggested loop invariant is not in any way trusted by the code consumer. Loop safety
demands only that there exist some loop invariant for which the above inductive argument holds.
Thus the verification condition described is valid regardless of the suggested invariant supplied by
the code producer. Providing a “wrong” invariant can make the verification condition unprovable
or overly strict, but it will never allow the safety policy to be violated.

Before this inductive argument can be written as a verification condition, several ideas must be
formalized. First, the notion of an “arbitrary iteration” must be expressed as a logical predicate.
The register set parameter of the Loop annotation facilitates this. The register set is to be regarded
as the set of state members which may change from one loop iteration to the next. Thus an
“arbitrary iteration” of the loop is expressed by setting each of these state members to a new
unbound variable and then generating a verification condition for a single iteration of the loop
using these values. At the conclusion of this iteration an altered machine state will have been
produced. Each of the state members which are not in the register set are compared with their
original values to be sure that they have indeed not been altered by the “arbitrary iteration”. This
ensures that the register set supplied in the Loop annotation cannot be falsified.

The second idea which must be formalized is the notion of enforcing the loop invariant. The
predicate provided in the Loop annotation uses registers, stack variables, and the memory state
variable as its unbound variables. Each of these must be substituted with the corresponding
symbolic expression assigned to that state member in the current machine state. I will denote the
substitution of the symbolic expressions in state S into a predicate P by og(P).

The following, then, is the Loop Start Introduction rule which, upon encountering a loop marker,
begins to construct a safety predicate for a proof by induction.

(L, )&V Loop(Py,R) <L S'[inv — VU{(L,S|FK, /L: VI /Ky~ P,
S[inv = V] F K, / L: \/I / Ky — Us(Pl) AYYeaz VYebs - - - .(O’S/(Pl) D) PQ)

where
S" = S[x + y.|Vx € R]

Here we see the first example of a use of the inv state member. The Loop Introduction rule only
applies when this is the first time that label L has been visited. The hypothesis (L, ) ¢ V
represents a check that the label L is not in one of the pairs in inv. When the recursive call to
the VCGen algorithm is performed (third hypothesis), the label is marked as having been visited
and the current register state recorded by adding the label-machine state pair (L, S’) to inv. Also
each member of the register set given by R must be assigned an unbound variable. This is denoted
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by the construction of state S” with the assignment [z « y,|Vz € R]. Then, when the resulting
predicate is returned from the recursive call, these new variables must be universally quantified.
This is denoted by the expression Ve Vyepy - - - -(05/(P1) D P). The informal notation ) has
been used in the third hypothesis to denote that the instruction I should then be processed as if
the loop marker were not present. However, the loop marker is not erased and should be observed
by the algorithm when (if) label L is visited again. (A rule for revisiting loop markers will be given
shortly.)

The induction argument is completed when a previously visited loop marker is later revisited.
When a loop marker is revisited, the following Loop End Introduction rule applies:

(L, [eax = Eeuy, €bx = Egpy,...]) €V Loop(P,R) < L Vo & Rx = E,
Slinv =VIF K1 / L: VI ] K» — o5(P)

Note that the jump destination L is extracted from the inv state member thus making this rule
only applicable to loop markers which have already been visited by a Loop Start Introduction rule.
In extracting the jump destination L, I also look up the original machine state that existed when
the loop was entered. The third hypothesis uses this machine state to check that no state member
not in the register set R has been modified since label L was first visited. The resulting verification
condition states that beginning the next iteration of the loop requires that the loop invariant for
this next iteration holds. Since it has already been shown that the satisfaction of the loop invariant
implies the safety of an iteration of the loop, this is sufficient to complete the inductive argument.
No recursive calls to the VCGen algorithm are necessary. Thus the Loop End Introduction rule is
one of the base cases for the VCGen algorithm.

It is still necessary to ensure that at least one loop marker exists in every loop. Otherwise
the VCGen algorithm would not terminate on some inputs. This is accomplished by remembering
backwards jumps traversed during each flow of control through the program. No backwards jump
should ever be traversed more than once if a loop marker exists in every loop. The following
Backwards JMP Introduction rule enforces this idea:

LQQH S[hHHU{LQ}]l—Kl/Llif/KQ;Lgrjmle;Kg‘—>P
Slh=H|FK;K,:1;Ky / Ly: jmp Ly /| K3 — P

The rule is essentially identical to a regular unconditional forward jump rule as seen in section
except that it jumps backwards instead of forwards and it requires that the jump not have
been previously traversed. The set of backwards jumps previously traversed is stored in the h state
member. There is no corresponding rule for the case when the jump at Lo has already been taken
because this case only occurs when no loop marker exists in the loop. When this is the case, the
program should be rejected by the code consumer because no rule applies.

Labels are added to h only when backwards jumps are taken, not just when they are visited by
the algorithm. The following Backwards JZ Introduction rule demonstrates this:

Slh— HU{L2}| - SEKy Ly Iy Ko Losjz Ly [ I | K3
Lo¢g H Ky /) Li: 11 | Koy Lojjz Ly; K3 — Py — P
S[Zf:EP,h:H] I_Kl;Llifl;Kg / L2 ZjZ Ll/IQ;Kg‘—> (EPDPl)/\(ﬁDPQ)

The label Ly is added to A only in the recursive call where the conditional jump is taken, not in
the recursive call where the jump is not taken and control is passed to the next instruction in the
sequence.

24



It should be noted that there is nothing which prevents a malicious code producer from inserting
loop markers and loop annotations which do not correspond to any loop in the program. This is
not a concern. The effect of such falsified loops is that the entire remainder of the program will be
treated as a single arbitrary iteration of a very large loop. This interpretation, while strange and
overly abstract, is more than sufficient to uphold the safety policy. Inserting more than one loop
marker into a single loop has a similar effect but, again, cannot result in a verification condition
insufficient to uphold the safety policy.

Similarly, jumps which escape a loop body are also not a concern. Such jumps are interpreted
as a jump out of an arbitrary iteration of the loop and a suitably abstract version of the verification
condition for the remainder of the program will be generated. No special case rules are necessary;
the existing rules as they are stated will generate the proper condition.

This completes the enforcement of control flow safety. The one remaining issue of constraining
jump destinations to addresses within the same procedure block will be handled by the methods of
enforcing calling convention safety.

7.3.4 Instruction Sequence Aliasing

At this point, readers already familiar with the peculiarities of the x86 architecture may be con-
cerned about the problem of handling jumps whose targets correspond to the “middle” of an
instruction in the instruction sequence. Although in this document I have represented instruction
sequences as semicolon-separated lists of assembly mnemonics, this formalism cannot represent all
legal x86 programs. In practice, each machine instruction in an x86 program consists of one or
more consecutive bytes in the code segment. Since each byte has its own memory address, it is
possible to write an x86 program with a jump target that corresponds to the middle of an instruc-
tion. Different machine instructions take up different numbers of bytes, so it is not entirely obvious
when a program contains such a jump. Further complicating matters, a program which does jump
to the middle of an instruction may actually execute without error. When a jump instruction is
executed by the hardware, the bytes starting at the destination memory address are interpreted as
the beginning of a new machine instruction regardless of any previous interpretation of those same
bytes as, perhaps, the middle of an instruction. The following x86 program is an example of this.

0040101A: 05 90 B8 00 00 ADD EAX,B890h
0040101F : EB FA JMP 40101B
00401021 : 74 F7 JZ 40101A
00401023 : C3 RET

Notice that the JMP instruction jumps to an address which corresponds to the middle of the ADD
instruction. Disassembling this same series of bytes starting at the jump destination, we actually
obtain a legal sequence of x86 instructions which will then be executed when this jump is taken:

0040101B: 90 NOP

0040101C: B8 00 00 EB FA MOV EAX, FAEBOOOOh
00401021 : 74 F7 JZ 40101A
00401023 : C3 RET

I refer to programs like this as examples of instruction sequence aliasing because the same
sequence of bytes is interpreted as two different instruction sequences. Although such programs
cannot be represented using the notational conventions of section they are nonetheless handled
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perfectly well by the derivation rules prescribed in sections through I will use the
program above as an example.

The VCGen algorithm will accept this program only if a loop marker and Loop annotation are
both attached to address 40101A, 40101B, 40101C, 40101F, or 401021. (If not, there will exist
a flow of control which will result in the backwards branch at 401021 being taken twice without
a loop marker having been seen.) Suppose such annotations are attached to address 40101C.
Then a verification condition sufficient to guarantee that the program adheres to the safety policy
will be generated. The sequence of rules applied, from bottom to top, during the course of the
algorithm will be: ADD Immediate Introduction, Backwards JMP Introduction, NOP Introduction,
Loop Start Introduction, MOV Immediate Introduction, Backwards JZ Introduction, and then
two different branches in the proof tree begin. One simply consists of the RET Introduction
rule. The other, from bottom to top, consists of: ADD Immediate Introduction, Backwards JMP
Introduction, NOP Introduction, and Loop End Introduction.

The algorithm essentially treats the program like a jump into the middle of a loop body. In
actuality there was no explicit “jump.” Instead, execution managed to get past the loop marker at
address 40101C via instruction sequence aliasing. The effect, however, is the same. Once the loop
marker is visited for the first time and the loop officially “starts,” the backwards jump at 40101F
is simply treated as a natural continuation of the loop iteration. A new iteration does not begin
until the loop marker is revisited.

This example illustrates the versatility of the VCGen algorithm. Even pathological examples
such as the one above result in accurate (and even reasonable!) verification conditions to be proved.

7.4 Enforcing Calling Convention Safety

Calling convention safety is the final point of the x86 safety policy presented in section [4| that must
be enforced. A treatment of calling convention safety has been saved until last because it takes all
of the individual pieces provided in the preceding sections and constructs a “big picture” of how
to generate a verification condition for a full x86 program.

7.4.1 Function Calls and Returns

The beginning and end of the block of code assigned to each procedure in an annotated executable
must be clearly defined in the object file. The x86 COFF object file format includes this information
already. If an object file format to be supported does not include this information, it must be added
with new annotation types. Each procedure block must be disjoint; none may overlap in memory.

In addition, the first instruction in each procedure must have an annotation of the form
Func(Py, Py, N, R) attached where P; and P, are predicates, N is an integer, and R is a reg-
ister set. The predicates P, and P» are, respectively, a precondition and postcondition for the
procedure. They are expressed in the same manner as loop invariant predicates: in the language
of regular predicates but using machine state member names as unbound variables. The integer
N denotes the number of parameters which the procedure expects to receive on the stack. The
register set R is the set of registers which the procedure does not promise to preserve. If the calling
convention described in section is to be honored, R may not contain the cs, ds, ss, esp, or ebp
state members. Those registers are required to be preserved across all function calls.

A separate verification condition is generated for each procedure using the VCGen algorithm
described previously. Each procedure is treated as a separate sequence of instructions. Thus control
may not flow out of one procedure block and into another without the use of a CALL or RET
instruction. The initial machine state, Sy, supplied to the VCGen algorithm for each procedure is
constructed similar to the method used in section The segment register members cs, ds, and
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ss are assigned the constants csg, dsg, and ssg. All other registers are assigned unbound variables.
I will use the following naming scheme for these unbound variables: eax will initially be assigned
the unbound variable z.q, ebz will be assigned z.,, etc. Each of the status flags are assigned an
expression predicate containing an unbound variable: z,;; = 0, z,s = 0, etc. Sp will initially have
N + 1 stack variables where N is the integer provided in the Func annotation. Stack variables 1
through N correspond to the N available parameters. Stack variable N + 1 corresponds to the
return address. Each of these are initialized with an unbound variable. Also the stack variable
SN41 may never appear in the register set R since the return value must be preserved by the callee.
Finally, the memory state member m is also initialized with an unbound variable z,.

The VCGen algorithm is then used to derive the judgment So F - / I / K — VC where
I is the first instruction of the procedure, K is the rest of the instruction sequence, and VC
is the verification condition produced by the algorithm. The verification condition which the
proof producer is responsible for proving for this procedure is then given by VzeVzeps ... (P1 D
V(). That is, given that the function precondition holds, the proof producer must show that
the verification condition for the function body holds. All unbound variables in the verification
condition for the function body are universally quantified. The proof producer must prove a
statement of this form for every procedure in the program. Thus a complete verification condition
for a full x86 program has the form

(V...PlD VCl)/\(V...PQD VCQ)/\"'/\(V...PkD VCk)

where k is the number of procedures in the program.

The postcondition and the preservation of registers not in R must also be checked. This is done
within the VCGen algorithm at the termination of the procedure. Since the calling convention
demands that all procedures terminate with a RET instruction, these checks are performed by the
following RET Introduction rule

Func(Py, Py, N,R) < L Ve & Rx =z,
SI—L:Kl/ret/K2<—>JS(P2)

where the first hypothesis denotes that the given Func annotation is assigned to the current proce-
dure and the second hypothesis performs the register preservation check. Asin section os(Pa)
represents the predicate P, with state member names substituted with their associated symbolic
expressions from the current machine state S.

Correspondingly, procedure calls require that the precondition of the called function be satisfied
and that the necessary number of stack variables be available in the local scope. After the call
completes, the caller may assume that the postcondition of the called procedure has been satisfied
and that the registers not in R have been preserved.

Before providing a rule which accurately represents such a procedure call, I must introduce
a new substitution. Across a procedure call, stack variables in the machine state get renamed.
The caller’s top N stack variables (Si41-n through S where k is the number of stack variables
in the current machine state) are the callee’s bottom N stack variables (S; through Sy). The
substitution dy j will denote the mapping of the names of the callee’s bottom IV stack variable
names to the caller’s top NV names where the caller has a total of k stack variables. So for example,
5N7k(dWT7;t€32(Sl) AN (S2 < 10)) would reduce to dWTit€32(5k+1_N) N (Sk+2—N < 10).

Using this new substitution, a CALL Introduction rule which models the procedure call con-
vention described above is given by

Func(Pl,Pg,N,R)QL k>N Sll—Kl;CallL/I/Kg%Pg
S K / call L / I; Ky — US((sN,k(Pl)) /\VyeaxVyebx . (US(éN,k(PQ)) D) P3)
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where as usual
S":= S[x « y.|Vx € R].

The notation S*) indicates that S is a machine state in which there are k stack variables. The
state assignments in the third hypothesis are again the assignment of unbound variables to all state
members which have been declared to be volatile across the function call. Since the precondition P;
and the postcondition P, are written from the called procedure’s “point of view,” the d substitution
is used to map the stack variable names to their corresponding names in the caller’s stack frame.

7.4.2 Stack Usage

Rules governing proper use of the stack within a procedure body are quite restrictive compared
to accesses of the data segment. As mentioned in section [5.1.3] it is standard practice for x86
programs to treat the stack as an extended register file. The derivation rules for modifying the
ESP register and performing memory accesses within the stack segment will enforce this idea.

The esp state member may only be assigned a symbolic expression which is composed solely
of the operators @ and ©, integer constants, and the variable z.s, (the initial value of the ESP
register). When such an expression is assigned, it is immediately reduced to an expression of the
form z.s © ¢ where ¢ is a constant. If c is negative, the assignment is invalid and the code is
immediately rejected. (This is to prevent a procedure from popping more stack variables off of the
stack than it pushes on.) ¢ must also be a multiple of 4, otherwise the code is rejected. (In the
32-bit execution model, the stack pointer must always be 4-byte aligned.) When an assignment to
esp is made which conforms to these restrictions, the number of stack variables in the machine state
is adjusted appropriately. Any new stack variables are initially assigned new unbound variables.

The following are two examples of rules which model this behavior. The first is a PUSH
Introduction rule which pushes a value onto the stack.

Sk esp «— (Fy ©4), 341 — Eo] - Ky;push eaz | I | Ky < P
S esp = By, ear = B+ Ky / push eaz / I; Ky — P

Here, the new state member s;,; gets added and assigned the pushed value F» and the stack
pointer is decremented. The second is an example of a direct assignment made to the ESP register,
such as that which would be executed at the end of a procedure call in order to return the stack
pointer to its original value.

S(N+C/4+1)[€Sp «— (Zesp @ C)]

[sj — y;|Vj € (k+1.c/4)]+
E ~~ (2esp © €) Punc(Py, P2, N,R) <l L L:Ky;mov esp,ebp /| I | Ko — P
SE)ebp = E]F L: K1 / mov esp, ebp | I; Ky — P

The ~~ symbol denotes the assertion that the given expression reduces to the indicated form where
c is required to be a non-negative multiple of 4. The lookup of the Func annotation associated
with the current procedure (second hypothesis) is performed in order to acquire the value of N
which appears in the third hypothesis. The state assignments in the third hypothesis denote the
assignment of new unbound variables to any new state members.

Stack memory accesses have similar restrictions. All memory accesses to/from the stack segment
must target memory addresses which are given by expressions of the same form as described for
esp, reducing to zesp © c. Again, ¢ must be a multiple of 4 but in this case it can range from
—4(N +1) to 4(k — 2 — N) where N is the number of parameters expected by the procedure and
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k is the number of stack variables in the current machine state. This range allows access to the
parameter list and any local variables. Limiting stack accesses to this range enforces the local scope
of the procedure’s stack frame.

The following is an example of a rule which writes to a stack variable. Here, the memory being
written to is in the stack segment because, by default, EBP is taken to be an offset into the stack
segment.

(Ee4)~ (zesp O ) S[s¢/a « 0] = K1;mov [ebp —4],0 / I /| Ky — P
Slebp = E|+ Ky / mov [ebp —4],0 /| [; Koy — P

Reads from the stack segment are analogous to the write shown here.

8 A Second Pseudo-Code Translation Example

The basis for the x86 VCGen algorithm has now been shown in its entirety. The collection of
derivation rules that have been proposed may appear somewhat complex and difficult to construct,
but it was suggested back in section [0] that derivation rules for the various x86 instructions can
be obtained fairly straightforwardly from hardware pseudo-code descriptions. Now that the basic
ideas behind the derivation rules for various classes of x86 instructions have been explained, a more
advanced example of such a pseudo-code translation may be instructive.

The following is the pseudo-code description of the AAA (ASCII Adjust After Addition) in-
struction given on page 3-11 of [6] (the first instruction listed).

IF ((AL AND OFH) > 9) OR (AF = 1)
THEN
AL <« (AL + 6);
AH < (AH + 1);
AF — 1;
CF «— 1;
ELSE
AF «— 0
CF «— 0;
FI;
AL « AL AND OFH;

As you can see, it includes a number of logical constructs not present in the example in section
[6] including an IF-THEN-ELSE block with a fairly sophisticated conditional expression. Here is the
corresponding AAA Introduction rule:

Slal « (E7 + 6) mod 16,

ah < (E3 + 1) mod 256, Slal — E; mod 16,
af «— true, af — false,
cf «— true]t- Ky;aaa / I /| Ko — Py cf « false]F Ky;aaa /I | Ko — Py

Slal = Ey,ah = E,af = EP|F K, [ aaa / I; Ky —
((F1 mod 16 > 10) D P1) A ((E; mod 16 < 10) A EP) D P)
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Observe that the same technique for handling conditional forward branches in section has been
used to model the IF-THEN-ELSE block here. In addition, the technique of representing bitwise AND’s
with mod operators introduced in section [6] has been used again.

The derivation rule makes the same distinctions. It indicates that assuming either of the two
conditional expressions are true, the verification condition corresponding to the first of the two
execution paths must hold. Assuming both are false, the verification condition corresponding to
the other path must hold. Each of the two possible paths are modeled by hypotheses which make
the appropriate assignments to the machine state and generate the needed verification condition.

9 Timing

A brief word should be said about the performance of the VCGen algorithm. Every application of a
derivation rule introduces exactly one instruction (or loop marker) to the instruction sequence. Most
of the derivation rules stated require only one recursive call to the algorithm. Thus the algorithm
is nearly linear in the size of the code being processed. The exception to this are instructions which
involve conditional behavior. Conditional branch instructions and the AAA Introduction rule given
in section [§] are examples of conditional behavior. Such instructions require two recursive calls to
the algorithm causing some instructions in the program to be visited twice as often. However, since
each procedure block is processed separately, the effect of each such double recursive call is limited
to the scope of a single procedure block. Hence the VCGen algorithm runs in O(2°n) time where
b is the number of instructions per procedure block exhibiting conditional behavior and n is the
number of instructions in the entire program.

10 Conclusions and Future Work

The VCGen algorithm that has been presented detects and rejects all programs capable of com-
mitting illegal memory accesses, violations of the standard x86 calling convention, or illegal jumps
or branches. In order to accomplish this, it conservatively rejects some programs which are safe in
all these respects. The major restrictions it imposes on safe programs are:

e Dynamic allocation is not yet supported.
e Typecasting from one bit width to another is not permitted.
e Higher order function programming (function pointers, etc) are not supported.

e Temporary stack variables are limited to 32-bit values which may not “escape” (e.g. get
passed by reference to a callee or get accessed from a nested function). Therefore complex
datatypes like arrays must be stored as permanent structures in the data segment. (Or, if
dynamic allocation is made possible later, they can be represented as temporary allocated
structures in the bss segment.)

Each of these current deficiencies could potentially be supported in the future. Dynamic allo-
cation would require the addition of new memory state expressions which represent the allocation
and freeing of blocks of memory. Extending the overlapping register solution proposed in section
to memory state expressions could permit typecasting from one bit width to another. Tech-
niques for formally verifying programs which use higher-order functions are known and could be
incorporated into the scheme. I also believe that a set of stack-oriented memory predicates like
those used to represent structures in the data segment could be combined with the register file
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treatment of the stack proposed in section to permit complex datatypes to be stored on the
stack. Such a combination could also probably be used to allow stack variables to “escape.” This
remains to be explored.

One remaining problem, however, is that the size of any x86 VCGen program is likely to be
significantly larger than VCGen programs for RISC architectures. This size increase is due to
the need for a rather unique, albeit easily formulated derivation rule for each instruction in the
architecture. Space limitations can be partially overcome by storing implementations of the various
derivation rules in separate modules. Few x86 programs make use of the full instruction set so that
in practice it should not be necessary to load all of these modules into memory for any single
program. The trusted computing base, however, remains somewhat large and is therefore perhaps
difficult to trust.

Translating pseudo-code hardware specifications into derivation rules is one way to attack this
problem. Formalizing this procedure would require the development of a universal architecture
specification language capable of expressing the operational semantics of architectures at the in-
struction set level. Such a language could be used by architecture designers to write specifications
which would serve as definitions of correctness during development. These same specifications could
then be used by PCC programmers to automatically generate VCGen programs which correctly
model the operational semantics of the architectures. Various safety policies for the architectures
could then be expressed using the universal hardware specification language. These safety policies
could then be incorporated into the VCGen program as part of the VCGen generation process.
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