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The study of human face processing has advanced considerably in recent
years, from consisting of a collection of isolated empirical facts and anecdotal
observations, to a relatively coherent view of the complexity and diversity
of the problems tackled by a human observer when confronted with a face.
This rapid progress can be traced to the proposal of comprehensive theories
of face processing (cf. Bruce & Young, 1986; Ellis, 1975, 1986; Hay & Young,
1982), which have provided a theoretical framework for investigating human
face processing within functional subsystems. These models have had much
to say about the kinds of tasks subserved by the human face processing sys-
tem (e.g., naming faces, extracting visual categorical information such as sex
and age, etc.), and about the coordination of processing among these tasks
(e.g., Young, McWeeny, Hay, & Ellis, 1986). They have also provided im-
portant constraints for making sense of neuropsychological data on patients
with various face processing deficits (e.g., Bruyer, 1986). Despite the suc-
cess of these models in guiding research efforts into many aspects of human
face processing, they have provided somewhat less guidance in understand-
ing the immensely complicated problems solved by the perceptual system
in extracting and representing the richness of the perceptual information
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available in human faces. In recent years, it has been primarily from com-
putational models that the difficulty of this problem and its importance to
understanding human face processing abilities has come to be appreciated.

In the present chapter, we concentrate entirely on the problem of quan-
tifying and representing the information in human faces. We propose a
quantifiable theory of the perceptual information in faces and propose a
simple statistical/neural network model to simulate the learning of this in-
formation. We believe that perceptual learning provides a useful analogy
for the problem of selecting and “learning” the information in faces that is
most useful for performing a given task. In many ways, acquiring expertise
in processing human faces seems similar to learning many of the kinds of
stimuli for which we typically call on perceptual learning as a theoretical
construct. For example, how do we listen to music and extract features that
enable us to accurately distinguish among different composers? Of primary
importance is experience. Both the amount and diversity of experience we
have with music constrain the kinds of distinctions we can make. While
many people can distinguish a previously unheard Mozart piece from a pre-
viously unheard Prokofiev piece after hearing only a few different examples
of Mozart and Prokofiev, the problem of distinguishing Mozart and Haydn
pieces may require a great deal more experience and considerably more so-
phisticated distinctions. Second, explicit verbal instructions in learning seem
to be little-used and of little use. Someone is more likely to tell you that
Prokofiev is “gentler” or “rounder” than Stravinsky, than they are to give you
a list of objective musical features for distinguishing the two. Also analogous
to the face processing problem is the recognition/naming dissociation—the
perceived familiarity of a piece of music is a compelling experience that oc-
curs frequently even when we are unable to recall anything else about it,
such as who wrote it, or where we heard it.

What seems to make faces similar to the kinds of stimuli to which we ap-
ply perceptual learning theory is the elusiveness of a feature list with which
they can be described in a precise and globally agreed upon language. This
intuition is supported by empirical evidence indicating that verbalizing a
detailed physical description of faces can actually impair later recognition
of the described faces (Schooler & Engstler-Schooler, 1990). As with mu-
sic, human observers seem to be surprisingly comfortable applying abstract
language to convey information about faces. We often describe faces using
language like “mean-looking” or ‘perky”, which oddly enough, most of us
seem to find helpful for distinguishing among faces, and which some stud-
ies have found to be beneficial for recognizing faces (e.g., Bower & Karlin,
1974).

While we believe a perceptual learning theory is applicable to learning
faces in many respects, what makes faces very different from these other
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kinds of stimuli is the sheer quantity of experience we have with them and
the strong importance they play in social interaction. In these ways, learning
human faces is perhaps comparable to some aspects of natural language
learning. We will develop this analogy shortly in the context of learning
same- versus other-race faces.

The perceptual learning or statistical structure theory we propose repre-
sents faces using “features” derived from the statistical structure of a set
of learned faces. With perceptual learning, the information most useful for
distinguishing among faces within a learned set emerges as an optimal code.
We propose to model this learning process with a computational autoassocia-
tive memory that operates on image-based codings of faces. This “memory”
implements principal components analysis, which is a statistical procedure
used for expressing a set of correlated variables in terms of a (smaller) set of
uncorrelated variables (Hotelling, 1933). Further, the model we propose can
be viewed in standard neural network terms as a parallel distributed process-
ing system (McClelland & Rumelhart, 1988). It is important to note that we
do not view this model as a replacement for current face processing models
(Bruce & Young, 1986; Ellis, 1986; Hay & Young, 1982), but rather, as a
perceptual “front-end”! to these more comprehensive systems. We would
argue, however, that the nature of this front-end has strong implications for
the efficiency and accuracy with which different face processing tasks can be
performed. In fact, we believe that many robust empirical findings concern-
ing faces are due, at least in part, to difficulties that can be understood in
terms of perceptual constraints on the problem.

As a psychological model of processing the perceptual information in faces,
autoassociative memories have several appealing properties that have to do
primarily with the distributed nature of the storage mechanism in the model.
Since faces share the same storage space, the representations of similar faces
can interfere with each other in relatively natural ways. This is another way
of saying that the memory is context sensitive and so its performance will
depend on similarity relationships within the entire set of faces on which
it is trained. At the level of individual faces, this model makes interesting
predictions about the distinctiveness of individual faces. At the level of sets
of faces, the model’s ability to act as a statistical analysis tool that operates
on physical codings of sets of faces allows for some interesting explorations of
the effects of the heterogeneity of the faces learned on the model’s recognition
and classification abilities.

Before proceeding, it is perhaps worth mentioning the goals of such a
model. Any psychological model of the information in faces should meet the
following criteria. First, it should be adequate to support the diversity of face
processing tasks that humans achieve. Additionally, with a psychologically

'A term we borrow from Bruce (1988).
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relevant, quantifiable model of the information in faces, it should be possible
to predict the quality of information available for any given task (e.g., sex
classification or recognition). While these criteria are very far from being met
by any current model, including the one we propose, we believe that much
can be learned by exploring the extent to which informational or perceptual
constraints alone can account for some well-known phenomena associated
with human face processing. Hence, one goal of testing this model will be to
determine where cognitive or semantic factors must be postulated to account
for these phenomena.

This chapter is organized as follows. First, we outline a sample of ap-
proaches that have been used for specifying the information in faces. Second,
we give a brief definition of the autoassociative neural network model. In the
next section we demonstrate, first, that the computational model is capable
of solving some useful face processing tasks. We then review some recent
studies suggesting its potential psychological relevance. Finally, we discuss
the relationship of a perceptual learning representation to the approaches
discussed in the representational issues section.

1. Representational issues

An overview of the psychological and computational literature on face
processing reveals a variety of attempts to “specify” the kinds of physical in-
formation in human faces. Unfortunately, while several of these approaches
are related, it is often very difficult to make concrete comparisons between
them (and sometimes even within an approach) due to differences in the
way definitions have been operationalized or to differences in the kinds of
data they have been used to describe. In this section of the chapter, we
outline a sample of the approaches that are commonly found in the liter-
ature and point out common threads in these approaches. While concrete
comparisons are not possible in many cases, it seems unreasonable to ignore
the important ways in which the approaches may be tapping similar kinds
of coding principles. With that caution in mind, our primary purpose in
this endeavor is to lay a foundation for comparing the proposed perceptual
learning approach to these other well-studied approaches.

In the psychological literature, the most frequently encountered distinc-
tion made concerning the kinds of information in faces is a qualitative
one drawn between feature-based and configural information. As noted by
Bartlett and Searcy (1993), this is perhaps better described as a family of
distinctions that have been referred to variously as component (piecemeal)
versus configural (e.g., Carey & Diamond, 1977), global versus local (Navon,
1977), and isolated features versus second-order relational information (Rho-
des, Brake, & Atkinson, 1993). Bruce (1988) defines a feature as “a discrete
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component part of a face such as a nose or a chin”, whereas configural infor-
mation refers to the “spatial interrelationship of facial features” (p. 38). The
primary practical difficulty encountered in testing the relative importance of
feature-based versus configural information in face processing concerns the
problem of selectively varying the two sources of information. Thus, while
it seems possible to selectively alter facial configuration, it is not clear that
it is possible to selectively vary feature-based information. As noted by Ser-
gent (1984), changes in the features of faces, such as switching the noses of
two faces, necessarily change some properties of the configuration. In fact,
Rhodes et al. (1993) note that even simple configuration changes can change
the dimensions of what may be plausibly considered isolated features (e.g.,
moving the mouth up or down in a face changes a feature like upper lip
length).

In practice, the manipulation of configural information has been oper-
ationally defined in experiments in a wide variety of ways. For example,
Young, Hellawell, and Hay (1987) distorted configural information in com-
posite faces? by horizontally misaligning the top and bottom halves of the
faces. Additionally, inversion of the eyes and mouth in an upright face, the
primary manipulation in the Thatcher illusion (Thompson, 1980), is gener-
ally considered a disruption of configural information. (See Stevenage, this
volume). While both manipulations disrupt the spatial configuration of the
features, intuitively, they seem to be very different kinds of manipulations.
Additionally, both entail some change to the facial features. Aligning and
misaligning the top and bottom halves of faces change the shape of individ-
ual features in the center of the faces — like the nose and ears. Likewise, the
inversion of the mouth and eyes in an upright “Thatcherized face” changes
the form of the eyes/mouth to the point of grotesqueness. Selective config-
uration manipulations are most closely approximated in studies that move
features relative to one another (e.g., Bartlett & Searcy, 1993; Sergent, 1984).
Interestingly, what seems to operationally bind all three of these manipu-
lations together are the measurable differences in human performance with
these faces inverted, as opposed to upright. We will discuss some aspects
of the effects of inversion in the final section of this paper. What has been
gained by using a configural/feature-based dichotomy is the understanding
that for a human observer, the face is clearly more that the sum of its parts.
This has provided insight into the nature of the perceptual unit comprised
by a face and has been useful for linking face studies to the larger literature
on processing visual features.

2Faces made by combining two faces, in this case, the top half of one face and the
bottom half of a second face.
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A second approach to describing the information in faces that has been
explored in psychological studies is a quantitative analysis of the spectral in-
formation in face images. As imaged on the retina, faces are two-dimensional
spatial patterns of light intensities that can be measured using standard
Fourier analysis. The appeal of quantifying the information in faces in this
way is two-fold. First, converging evidence in neurophysiology and psychol-
ogy is consistent with the notion that the visual system analyzes input at
several spatial resolution scales (cf. Shapley, Caelli, Grossberg, Morgan, &
Rentschler, 1989, for a thorough review). Thus, spatial frequency preprocess-
ing of faces is consistent with what is known about early visual processing.
Like the principal components analysis model we propose, spatial frequency
analysis represents an image as a weighted combination of basis functions —
specifically, trigonometric (sine and cosine) functions of different frequencies,
amplitudes, and phases. High frequencies carry finely detailed information,
whereas low frequencies carry coarse, shape-based information. This con-
tinuum of low to high frequency information is in some ways related to the
feature-based versus configural dichotomy in that the low frequency informa-
tion tends to capture global form information, whereas the high frequency
information tends to capture local information.

A second advantage of the spatial frequency analysis is that it is an objec-
tive physical measure and hence can be assessed directly in individual faces
and varied selectively. While this information must be specified with respect
to faces rather than in visual angle dimensions (i.e., cycles per face rather
than cycles per degree of visual angle), within this context it can serve as
a useful tool for objectively quantifying the information in faces. Though
most early work using a spatial frequency quantification of faces was aimed
at discovering the minimal spectral information for recognizing faces (e.g.,
Ginsburg, 1978; Harmon, 1973), the primary contribution resulting from
studies that have varied spatial frequency content in faces has been the real-
ization that different kinds of information may be optimal for different face
processing tasks. For example, Sergent (1986) showed that human observer
performance in the tasks of face identification, male/female categorization,
and a semantic categorization (whether the familiar face was a professor,
graduate student, etc.) interacted with spatial frequency content and visual
hemisphere field of presentation, thus indicating the necessity of considering
the task when evaluating the importance of different kinds of information in
faces.

The spatial frequency approach to quantifying the information in faces
forms a bridge between the qualitative feature-based versus configural dis-
tinction and the focus on the functional value of information that is common
in computational modeling approaches. We review computational modeling
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approaches only briefly here since very recent, thorough reviews of both non-
connectionist (Samal & Iyengar, 1992) and connectionist (Valentin, Abdi,
O’Toole, & Cottrell, in press) models are available. Typically, computa-
tional models have been designed to solve only a single face processing task.
For example, the neural network models of Brunelli and Poggio (1992) and
Golomb, Lawrence, and Sejnowski (1991), as well as the discriminant anal-
ysis model of Burton, Bruce, and Dench (1993)® were designed to classify
faces by sex. In the models of Burton, et al. (1993) and Brunelli and Poggio
(1992), the features used were those that seemed likely to be informative
for the task. In fact, one focus of the Burton et al., study was to apply
the discriminant analysis for evaluating the utility of individual features for
this purpose. Using both feature-based and configural codings derived from
two- and three-dimensional face representations yielded reasonable levels of
accuracy. Unfortunately, however, in all of their coding attempts, model
misclassifications of individual faces by sex were unrelated to human mis-
classifications, indicating that the information used by humans may be quite
different from that used by the model. Likewise, Brunelli and Poggio (1992)
used measures of the dimensions of faces, including thickness of eyebrow,
breadth of the face, and six chin radii (i.e., the length of lines drawn at vary-
ing angles from the center point of the mouth to the chin contour). These
features were input to a hyper basis function network that learned to clas-
sify faces by sex. Even though these representations have been useful for
accomplishing the specific task for which they have been designed, the facial
representations they employ are perhaps not optimal for other tasks, such
as face recognition.

One problem with pre-selected feature sets is that they often discard im-
portant information about the texture and internal shape contours of the
face. The autoassociative model we propose and several other related com-
putational models (e.g., Cottrell & Fleming, 1990; Golomb, Lawrence, &
Sejnowski, 1991; Sirovich & Kirby, 1987; Turk & Pentland, 1991) have used
a normalized, pixel-based coding of faces. This is unabashedly a “kitchen-
sink” approach to the problem that has both advantages and disadvantages.
The primary advantage is that no information is discarded a priori. Thus,
geometric representations are coded implicitly, but in addition, detailed tex-
ture and shape information are preserved. For faces we believe that this kind
of pixel-based code is a reasonable approach for two reasons, a theoretical
one and a practical one. From a theoretical point of view, when we consider
face recognition by comparison to object recognition, it becomes evident
that we mean different things by “recognition”. The processes implied by

3While presented by these authors as a statistical discriminant model, the analysis is
formally equivalent to a perceptron type of neural network (Rosenblatt, 1958; cf. Abdi,
1994 for equivalence proof).
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face recognition are operating at a different level of the processing hierarchy.
Specifically, in most object recognition applications, the goal of the task is
to identify a subset of pixels in an image as an instance of a particular ob-
ject, a chair, for instance. In standard cognitive psychology terminology, this
task is a basic level category classification (Rosch & Mervis, 1975). Little
importance is placed on the chair being a particular chair, one you know or
have sat in previously, for example. For faces, the identification of a subset
of pixels in the image as a face represents only the first step of the process.
Additionally, you would like to know if the face is one you know. To ap-
proach the person to begin a conversation, often you would like to know the
age, sex, and even current mood of the person. To accomplish these latter
tasks, internal shading and texture information is likely to be very useful. In
fact, if the object recognition task were aimed at this level of information,
a reevaluation of the coding schemes generally used for object recognition
would be in order. So, for example, if your task were to be the identification,
not of a car, but of your car, from among a parking lot full of similar models,
you would need to consider subtle textural information, including “dings”
and the dirt layer texture, and so on.

The primary disadvantage of a pixel-based approach is that it does not
create a translation or view-invariant representation. From a practical point
of view, however, good algorithms exist for finding a face in an image (Turk
& Pentland, 1991), and the computational problem of scaling and aligning
faces (necessary for processing faces in the present approach) is easy to solve.
Using a pixel code, therefore, allows modelers to concentrate on the prob-
lems of recognition and visual categorization that make faces a qualitatively
different kind of visual stimulus from the other kinds of objects with which
we interact.

2. Autoassociative Model Definition

In this section we will give a very brief definition of the autoassociative
memory model and will show how faces can be described as a weighted
sum of the eigenvectors extracted from the autoassociative matrix. A very
detailed presentation of this model and its application to face processing can
be found elsewhere (e.g., Valentin, Abdi, & O’Toole, in press; for a tutorial
presentation see Abdi, in press).

An autoassociative memory matrix is constructed as the sum of outer-
product (i.e., cross product) matrices for a set of stimuli coded as vectors:

(1) A= ff]
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where f;is the i-th face, coded as a pixel vector consisting of the concatena-
tion of the rows of the face image, and where the faces are assumed to be
normalized vectors (i.e., f1 f; = 1). Simply stated, A contains a measure of
the covariance of all possible pairs of pixels in the set of learned faces. Recall
of the i-th face from this matrix is achieved as follows:

(2) f. = Af,

where is the system estimate of f;. The quality of the output face estimate
is measured by comparing the “retrieved” (reconstructed) image with the
original image, using the cosine (i.e., normalized correlation) of the angle
between the vectors E and f;.

Like any positive semi-definite matrix, the matrix A can be expressed as
a weighted sum of the outerproducts of its eigenvectors :

(3) A=) Nee]
%

where ); is the i-th eigenvalue and e; is the i-th eigenvector of A. Retrieval
of a face vector from this matrix can be illustrated by rewriting Equation 2
and substituting Equation 3 for A as follows:

(4) /fi:)‘1(fi'e1)+/\2(fi-e2)+---+)\n

where the weights are (f; - e;) , which is equal to the dot product between
the i-th face vector and the j-th eigenvector, and where n is the rank of the
matrix. In other words, each retrieved face can be represented by a weighted
sum of eigenvectors, and thus, individual faces are made by putting together
these “eigen-images” in different weighted combinations.

The storage capacity of an autoassociative matrix can be improved by ap-
plying error correction in the form of the Widrow-Hoff or delta rule (Duda
& Hart, 1973) during learning of the faces. Error correction can be imple-
mented iteratively as follows:

(5) Ap1) = Ay + (i — Ayf)E"

where 7 is a learning rate parameter. Simply seen, the matrix A is updated
at time t+ 1 by calculating the “error”, or difference between the actual face
and the model estimate at time ¢, (f,-—A[ﬂ f;), and reteaching this “difference”
vector to the model via the outerproduct rule (Equation 1). This process is
repeated for all faces over many iterations. The learning parameter 7 can be
set to be very small or can decrease exponentially such that finer and finer
changes are made to the matrix over time. From the principal component
point of view, the effect of this error correction is equivalent to dropping the
eigenvalues from Equations 4 or 3 (cf. Abdi, 1994).



168 PERCEPTUAL LEARNING OF INFORMATION IN FACES

3. Demonstrations of the Model’s Ability to Perform Useful
Face Processing Tasks

3.1. Recognition. How can this model be applied to the problem of distin-
guishing learned from new faces? In general, we have begun by training a
model with a large number of full-face images. The model can then be tested
by “recalling” both learned and novel faces using Equation 2. We can then
evaluate the “quality of the representation” for any given learned or new
face by computing the cosine between the original and model-reconstructed
faces. The higher this cosine, the more faithful the autoassociative memory’s
representation of the face. This cosine measure is a sort of model resonance
or "feeling of familiarity” with the face. To test the model’s ability to recog-
nize faces, we would like to show that the model’s “feeling of familiarity” is
higher for learned than for new faces. We have used signal detection theory
(sDT) methodology for this purpose. With this procedure, we define the sig-
nal+noise distribution as the OLD or learned faces and the noise distribution
as the NEW or unlearned faces. Using the cosine between the original and
reconstructed faces, the procedure assigns each face to the category of OLD
or NEW as follows. If the cosine for a given face exceeds some criterion, the
face is assigned to the OLD face category, otherwise, the face is assigned to
the NEW face category. Faces, then, can be categorized as hits, false alarms,
misses, and correct rejections. To select the criterion we generally use the
“ideal observer” criterion, midway between the mean of the cosines for the
oLD and NEW faces. A d' is then calculated in the standard manner.* A
complete ROC curve can be calculated simply by sliding the criterion along
the cosine histogram (cf. O’Toole, Deffenbacher, Abdi, & Bartlett, 1991).

On the average, cosines for the learned faces exceed those for the novel
faces, indicating that the model, within capacity limits, can distinguish the
learned from the novel faces (O’ Toole, Millward, & Anderson, 1988; O’Toole,
Deffenbacher, et al., 1991; and O’Toole, Abdi, Deffenbacher, & Valentin,
1993). We will discuss the relationship between model and human recogni-
tion performance in the section considering the application of the model to
psychological issues.

3.2. Visually-derived Semantic Categorization. Variations of the present mo-
del have been used for the categorization of faces along the visually-derived
semantic dimensions of race and sex. O’Toole, Abdi, Deffenbacher, & Bartlett
(1991) have shown that when a heterogeneous set of male and female, Japan-
ese and Caucasian faces is learned by the model, information about the race
and sex of faces can be found in a single or small subset of eigenvectors. As
noted previously, a face can be represented by the set of weights needed to

“See Turk & Pentland (1991) for another recognition algorithm.
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combine the eigenvectors to reconstruct it. Figure 1 shows the weight pro-
files of the faces divided by race. As can be seen, the weight on the second
eigenvector appears to provide good information about the race of a face. We
tested this formally by taking the mean of the mean weights for the Japanese
and Caucasian faces and using this grand mean as a criterion. Race mem-
bership predictions were made by assigning faces with weights exceeding the
criterion to one race and faces with weights less than this criterion to the
other race. Using only the weights for the second eigenvector yielded correct
race predictions for 88.6% of the faces.’

One advantage of this approach is that the present model is not trained
explicitly to classify by race, but rather is trained to recognize faces. Hence,
the classification information is a natural part of the information used in the
recognition task.

4. Demonstrations of the Feasibility of Applying the Model to
Psychological Issues

4.1. The other-race effect. It is well-known that people are better at recog-
nizing faces of their own race than faces of other races. While a variety of
explanations have been proposed, a very simple one can be framed in terms
of perceptual learning. By this account, long-term repeated exposure to the
many faces of one race allows the perceptual system to make effective use
of subtle variations in the form and configuration of the facial features of
the “same-race” faces (i.e., those learned). Unfortunately, other-race faces
are not well-characterized by these highly specialized features, and so we
are less accurate at recognizing such faces. This account of the other-race
effect is not unlike what is known about learning one’s own native language.
With a great deal of exposure to a single language, people become adept
at processing the features of the language that are most useful for distin-
guishing between speech sounds in that language. This occurs at the cost of
loosing an ability to distinguish speech sounds that are important in other
languages, but are not particularly useful in one’s own language.

Using Japanese and Caucasian faces, we (O’Toole et al., 1991) simulated
a “face history” by training a neural network to recognize a large number
of faces of one race, (a “majority” race), and a lesser number of faces of
another race, (a “minority” race). We found that the model “perceived” or

®Note that for visually-based classifications (e.g., sex) it is possible to achieve 100%
correct categorizations of the learned faces by combining all eigenvector weights. Perfor-
mance on new faces, while less than perfect, is well-above what can be achieved with a
single eigenvector (cf. Abdi, Valentin, & O’Toole, in preparation). Additionally, while
using the weights on all eigenvectors allows for perfect performance on the learned faces,
only the eigenvectors with relatively larger eigenvalues contribute to the model’s ability to
generalize sex information to unlearned faces (Abdi, et al., in press).
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FIGURE 1. Mean coefficient z-score profiles of Caucasian and
Japanese faces. Error bars show the standard deviations of
the z-scores. The best race separation is achieved with the
second eigenvector.

represented novel faces from the minority race with codings that were more
similar to one another than the codings with which it represented novel
majority faces. This is reminiscent of the oft-noted feeling that other-race
faces “all look alike” and is consistent with Bruce’s (1988) and Shepherd’s
(1981) suggestion that other-race faces are less recognizable because they
are perceived as more similar to one another. Both authors suggested that
the higher perceived interface similarity for other-race faces is due to the
fact that the dimensions of the similarity space are determined mostly by
same-race faces. We also found that the model recognized majority faces
more accurately than minority faces in an episodic memory task.® This is
the classic“other-race effect” phenomenon.

5Both Japanese and Caucasian faces served alternately as the majority and minority
race faces for tests yielding conclusions 1. and 2. Due to a shortage of Japanese faces for
the episodic recognition task, this was tested with only Caucasian faces as the majority
race faces.
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4.2. Typicality and recognizability. The relationship between rated typical-
ity and recognizability of faces has been demonstrated by a number of in-
vestigators (e.g., Light, Kayra-Stuart, & Hollander, 1979). This relationship
has been interpreted in terms of the existence of a facial prototype, with
typical faces being less well recognized than unusual faces. Recent findings
by Vokey & Read (1992), however, indicate that rated typicality is a more
complicated concept than had been thought previously. Applying a prin-
cipal components analysis’ to faces rated by human subjects for typicality,
memorability (i.e., “one that the observer thought would be easy to remem-
ber”), familiarity (i.e., “a face that they believe they may have seen around
campus”), attractiveness, and likability, they show that the rated typicality
of faces is composed of two orthogonal components:

1. a general familiarity component consisting of a positive manifold of
typicality, familiarity, attractiveness, and likability,

2. a memorability component showing typicality inversely related to the
rated memorability of a face.

This suggests that human observers are basing their typicality ratings on
two independent aspects of the faces, dissociable via their independent re-
lationship to attractiveness, likability, and familiarity, on the one hand, and
to memorability on the other hand.

While the data of Vokey and Read (1992) are robust and replicable (O’ Too-
le, Deffenbacher, Valentin, & Abdi, 1994), little is understood about what
makes a face typical versus atypical with respect to the two orthogonal
components. Recently, we (O’Toole, et al., 1994) have extended the two-
component typicality results of Vokey & Read (1992) by adding a variable
derived from the autoassociative memory to the coding for each face in the
principal components analysis. Specifically, we added to the human rating
and recognition data the model’s “feeling of familiarity” measure (cosine) for
each face. We then applied principal components analysis to the combined
performance, rating, and model data for the faces. The results indicated a
separation of the multidimensional space into performance and rating sub-
spaces. The rating subspace replicated the typicality component results
found by Vokey and Read (1992). The performance axes were interpretable
as a criterion (“indictability”) axis and an accuracy axis. The cosine mea-
sure taken from the autoassociative memory loaded more strongly on the
accuracy axis than did any of the observer ratings. In other words, the
model measure related more strongly to human performance accuracy than
did any of the human ratings. Additionally, by looking at particular faces
that contributed strongly to the different typicality components, the model

"This principal components analysis was applied to subject judgments, not to a repre-
sentation of the stimuli. Note also, that a Varimax rotation was applied to the space after
the principal components analysis.
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gave insight into the reason for the separation of the typicality components
in the human data. Faces that contributed strongly to the memorability
component were characterized by a distinctive localized feature such as an
unusual mouth expression, a grimace, for example, whereas faces important
for the familiarity component were characterized by more global deviations,
such as unusual face shapes.

These results suggest the importance of considering faces as perceptual
stimuli that provide observers with very rich, elaborate information that
they use quite effectively, but which they cannot capture very well in discrete
verbal ratings.

4.3. Recognition and the Perception of Visually-Derived Semantic Informa-
tion. Interestingly, a good likeness of a face can be captured using only a
subset of the eigenvectors, those with larger eigenvalues (cf. Sirovich and
Kirby, 1987). While this representation is optimal in a least squares error
sense for approximating the face, we have noted that in eliminating eigenvec-
tors from the reconstructed faces, the likeness or general perceptual quality
of the face decreases more by eliminating ranges of eigenvectors with smaller
eigenvalues than by eliminating the“more important” eigenvectors, those
with larger eigenvalues (O’Toole, et al., 1993). For example, Figure 2 dis-
plays an original face and the appearance of the face produced by eliminating
different ranges of eigenvectors.

This observation, in combination with the results indicating the impor-
tance of the eigenvectors with larger eigenvalues for determining visual cat-
egory information from faces (O’Toole, Abdi, et al., 1991), motivated us to
examine the importance of different ranges of eigenvectors for recognition
and sex categorization. O’Toole, et al., (1993) trained the model with a
large number of male and female young adult Caucasian faces and recon-
structed both the learned faces and a second set of faces not learned by the
model, while varying the range of eigenvectors used in the reconstruction.
The model was tested for recognition using sDT methodology. The d’ for
discriminating learned and new faces across this range appears in Figure 3
and shows that the discriminability of the image information provided by
the model peaks bimodally, with the most useful information found in the
eigenvectors with smaller eigenvalues. This indicates that the least squares
error minimization strategy is perhaps not the best one for the purposes of
recognition.

We then carried out a test of the model’s ability to classify faces by sex
across the eigenvectors. We did this for each eigenvector by computing point
biserial correlations between the eigenvector weight for each of the faces
and the face sex.® Figure 4 shows the cumulative proportion of explained

8 As defined by 0 and 1 for male and female faces, respectively.
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FIGURE 2. From left to right: a.) the original face; reconstructions using b.) the first 20 eigenvectors;
c.) the first 40 eigenvectors; d.) all but the first 20 eigenvectors; e.) all but the first 40 eigenvectors.
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FIGURE 3. Mean d’ peaks in 2 separate ranges of eigenvec-
tors, with best performance in a range of eigenvectors with
smaller eigenvalues.

variance for sex classification across the eigenvectors.’ As can be seen, the
best information for predicting face sex is found in the eigenvectors with
the largest eigenvalues. The second eigenvector was particularly useful (r =
.66) as is demonstrated in Figure 5 (O’Toole, et al., 1993). From left to
right, the figure shows the first eigenvector, the second eigenvector, the first
eigenvector plus the second eigenvector, and the first eigenvector minus the
second eigenvector. Adding the second eigenvector to the first produces a
masculine looking face, whereas subtracting the second eigenvector from the
first produces a feminine looking face. This is particularly striking in that
the second eigenvector, at first glance, reveals little information that would
appear to be relevant to the sex of the face.

Combined, the data from the recognition and sex categorization tasks
show that the model contains information for both tasks, but that the op-
timal information for each task is found in different ranges of eigenvectors.
For the visually-derived semantic classification by sex, the eigenvectors with

®Only eigenvector weights that correlated significantly (significance of r test, p < .05)
are included. One-hundred percent of the variance would be explained if all eigenvectors
were included.
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FIGURE 4. Weights on the eigenvectors with larger eigenval-
ues account for most of the explained variance in sex classi-
fication

larger eigenvalues provide the best information. For the recognition task, the
eigenvectors with smaller eigenvalues provide the most useful information.

5. Representational Issues Revisited

In this section, we present some ways in which the statistical structure/perceptual
learning theory of the information in faces can be related to all three repre-
sentational approaches discussed previously:

1. the configural versus feature-based distinction
2. the spatial frequency approach
3. the functional emphasis of computational models.

We stress, again, that while concrete comparisons are not possible, it seems
unreasonable to ignore important ways in which the approaches may be
related. We do this with the goal of building links that may enable a more
coherent view of representational issues found in the literature.

To begin, the informational components of the perceptual learning/statistical
structure theory are eigenvectors. Each eigenvector can be measured in terms
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(a) (h) ) (d)

FIGURE 5. From left to right: a.) first eigenvector; b.) second eigenvector; c.) a + .4b; d.) a — .4b.
Positive weights of the second eigenvector give rise to faces that appear masculine, whereas negative
weights give faces that are feminine in appearance.
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of its “importance” to the general face representation system as the propor-
tion of variance it explains in the pixel-by-pixel autoassociative matrix. A
primary aspect of this concept is that “importance” for any given eigenvec-
tor can come from two sources, which can be described in intuitive terms as
follows. First, not too surprisingly, eigenvectors that are useful for making
distinctions relevant for many faces will explain relatively larger proportions
of variance than eigenvectors useful for making distinctions relevant for only
a few faces. Major visually-based categorical distinctions such as sex, race,
and age are examples of distinctions relevant for many/all faces. This is
likely to be one reason that we have found the eigenvectors most related to
the sex and race of a face to have relatively large eigenvalues.

A second source of “importance”, which is perhaps less obvious, concerns
the relative intensity of different kinds of information in faces. By contrast
to the first source, which is related to the number of faces for which a par-
ticular eigenvector is important, this source is related to properties of the
face image per se, and becomes evident when the computational problem is
viewed in terms of a spatial frequency description of faces. The statistical
structure of natural images, of which faces are an example, is such that low
spatial frequency components generally have higher amplitudes than high
spatial frequency components.'® An analogy to auditory stimuli may prove
helpful for understanding the point. The amplitude of a spatial frequency
component is like the “loudness” of a frequency component in an auditory
stimulus. For face images, the “loudest” components tend to be the lower
frequency, shape-based properties of faces rather than the higher frequency
details. In a principal components analysis, therefore, low frequencies will
generally account for more variance than high frequencies and hence will
be associated with eigenvectors with larger eigenvalues (i.e., be more im-
portant). In fact, a face reconstructed with different subsets or ranges of
eigenvectors from a principal components analysis (cf. Figure 2) appears
to vary systematically in spatial frequency content. While we have not con-
firmed this formally, principal components analysis on faces would appear to
naturally implement some aspects of spatial frequency filtering—primarily
as a function of the relative intensities of the different frequency components.

To what extent does the relative amplitude relationship of different fre-
quencies impact performance on face processing tasks? Returning to ques-
tions concerning the optimality of different information for different tasks,
some previous findings become more clear. The higher amplitude of lower

10This “energy” differential between high and low frequency information in faces is one
of several factors outlined by Sergent (1989) as potentially accounting for diverging conclu-
sions on human studies of the importance of spatial scale information in face processing.
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frequency components'! should make the global configural information eas-
ier to detect and also detectable/resolvable from a further distance. Addi-
tionally, as Sergent (1986) has illustrated, using psychological experiments
varying the spatial frequency content of faces, and as the principal compo-
nents model tends to confirm computationally, these low frequency, higher
amplitude components seem to be particularly useful for visually-based cat-
egorizations such as sex and race categorizations. It is possible that the
difference in the intensity of these components explains some of the rea-
sons why sex classification can be done more quickly than other semantic
categorizations and identifications (Sergent, 1986).

The particularly useful nature of the high amplitude, low frequency, global
information for making sex and race classifications is likely to be a second
reason why we have found eigenvectors useful for these classifications to
have relatively large eigenvalues. Presumably, however, the number and
intensity factors are independent. Intuitively, we might imagine these factors
dissociating in a problem like classification by age, where low intensity, high
frequency, texture information such as wrinkling might actually be useful for
large scale distinctions among many faces. We have not yet explored this
problem.

The perceptual learning and spatial frequency approaches are different,
however, in the sense that spatial frequency analysis measures the informa-
tion in a single face image, whereas principal components analysis measures
the information in a set of face images. The representation of faces that
emerges is sensitive, therefore, to the model’s face history. This is a useful
component of any computational model interested in simulating human face
processing phenomena, like the effects of face typicality and the “other-race
effect”. A good example of how the properties of the set of faces affect model
reconstructions of faces can be found in Valentin, Abdi, & O’Toole (in press,
a,b).

A final common thread we wish to explore concerns the puzzle of human
observers’ difficulties in representing and processing inverted faces. Psy-
chologists have been fascinated with the effects of face inversion since Yin’s
original paper in 1969. Perhaps the principal lesson that has been learned
from these effects is that as amazingly accurate and flexible as our abilities
with faces seem to be, the representation of faces we employ is not without
limits. From a computational point of view, the surprise has been that the
inversion transformation, technically-speaking, discards no information.

From a perceptual point of view, Rock (1974) has argued that the key to
understanding inversion effects with faces is two-fold. First, faces are highly

"Even in light of the modulation transfer function of the eye (cf. Cornsweet, 1970),
the intensity difference between the lowest and highest frequency information in faces is
very large (unpublished observations).
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complex and similar to one another, containing many small nuances that
are important for distinguishing among similar faces. The second factor is
the large differential in experience that human observers have with upright
rather than inverted faces—faces are typically mono-oriented in space. The
combination of these two factors is in many ways typical of the problems
we have in acquiring the subtle features of some classical perceptual learn-
ing stimuli. Returning to our original example of distinguishing the music
of two composers, the complexity of musical phrasing and interrelation of
subcomponents in music creates a perceptual experience that is difficult to
“subdivide” into simple parts. Likewise, a phoneme in language, while serv-
ing as a perceptual unit of sorts (perhaps not unlike the eyes, nose, and
mouth of a face), is strongly affected both perceptually and computationally
by contextual factors. It is for this reason that the phonemic unit has proved
somewhat less useful than expected for quantifying speech streams. Both
faces and these auditory stimuli are: 1.) highly complex; and 2.) mono-
oriented with respect to a (some) physical dimension(s)—specifically, the
and y dimensions of space for faces and the time dimension for language and
music. Inversion of a face might be considered similar to inverting time in a
speech stream or musical composition; that is, playing a tape of a sentence
or Mozart piece backwards. Clearly, all of the physical information remains
present in this kind of a transformation, (e.g., Fourier spectrum). We are,
nonetheless, completely unable to identify words or musical phrases with
such a transformation.

The inversion of faces constitutes a much less extreme transformation
than the inversion of time in an auditory stimulus due to the fact that faces
can be inverted in space naturally, whereas music and speech cannot be
inverted naturally in time (at least not at less than the speed of light! cf.
Einstein, 1918). In fact, most of us have some limited experience with upside
down faces and have much more experience with recognizing less complicated
inverted objects (cups, chairs, etc.). Additionally, all of us have experience
in observing objects undergoing spatial inversion (watching an object being
turned upside down).

The face representation used in the perceptual learning model would be
likely to perform very badly on inverted faces. Just how badly would depend
primarily on the proportion of inverted to upright faces the model learns.
From a perceptual learning point of view, this suggests that the problem we
have recognizing inverted faces is similar to the problem we have recognizing
other-race faces. The experience differential with upright versus inverted
faces yields a representation optimal for coding upright faces in ways that
make them optimally distinctive. Inverted faces, like other-race faces, should
appear more similar to each other than upright faces—this may be related to
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the fact that a face and its “Thatcherization” appear very dissimilar upright,
but much more similar inverted (Bartlett & Searcy, 1993).

Despite coding principles in the perceptual learning model that might
predict some aspects of the effects

of inversion, we do not expect that it will provide a complete account of
the various inversion phenomena. In particular, the model does not have
general knowledge about the statistical structure of non-face objects, nor
does it have access to general procedures that we seem to be able to call on
successfully for general object recognition, (e.g., mental rotation, Shepard
& Metzler, 1971). Understanding how these more general-purpose object
recognition tools work may eventually be useful, perhaps even necessary, for
understanding face inversion phenomena.

In summary, we believe that many problems in face processing can be
understood, at least in part, at the level of the perceptual constraints on
face processing. This indicates the importance in psychological and com-
putational models of taking into account the kinds of perceptual problems
posed by the statistical structure of faces as visual stimuli. The model we
propose is far from answering many important questions about the kinds of
information we derive from faces. It falls particularly short in giving insight
into how we accomplish view transformations and in how the representation
of an unfamiliar face changes with additional and more diverse experience
with the face, over time and through motion, for instance. While the former
may reasonably be attacked by enriching the quality of three-dimensional
information available to the model, the later will likely require much more
sophisticated modeling techniques than the ones we are currently employing.
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