
Partial Least Square Regression

PLS-Regression

Hervé Abdi1

1 Overview

PLS regression is a recent technique that generalizes and combines

features from principal component analysis and multiple regres-

sion. Its goal is to predict or analyze a set of dependent variables

from a set of independent variables or predictors. This predic-

tion is achieved by extracting from the predictors a set of orthog-

onal factors called latent variables which have the best predictive

power.

PLS regression is particularly useful when we need to predict

a set of dependent variables from a (very) large set of indepen-

dent variables (i.e., predictors). It originated in the social sciences

(specifically economy, Herman Wold 1966) but became popular

first in chemometrics (i.e., computational chemistry) due in part

to Herman’s son Svante, (Wold, 2001) and in sensory evaluation

(Martens & Naes, 1989). But PLS regression is also becoming a tool

of choice in the social sciences as a multivariate technique for non-

experimental and experimental data alike (e.g., neuroimaging, see

Mcintosh & Lobaugh, 2004; Worsley, 1997). It was first presented
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as an algorithm akin to the power method (used for computing

eigenvectors) but was rapidly interpreted in a statistical framework.

(see e.g., Phatak, & de Jong, 1997; Tenenhaus, 1998; Ter Braak & de

Jong, 1998).

2 Prerequisite notions and notations

The I observations described by K dependent variables are stored

in a I ×K matrix denoted Y, the values of J predictors collected on

these I observations are collected in the I × J matrix X.

3 Goal of PLS regression:

Predict Y from X

The goal of PLS regression is to predict Y from X and to describe

their common structure. When Y is a vector and X is full rank,

this goal could be accomplished using ordinary multiple regres-

sion. When the number of predictors is large compared to the

number of observations, X is likely to be singular and the regres-

sion approach is no longer feasible (i.e., because of multicollinear-

ity). Several approaches have been developed to cope with this

problem. One approach is to eliminate some predictors (e.g., us-

ing stepwise methods) another one, called principal component

regression, is to perform a principal component analysis (PCA) of

the X matrix and then use the principal components (i.e., eigen-

vectors) of X as regressors on Y. Technically in PCA, X is decom-

posed using its singular value decomposition as

X = S∆VT

with:

STS = VTV = I,

(these are the matriceds of the left and right singular vectors), and

∆ being a diagonal matrix with the singular values as diagonal el-

ements. The singular vectors are ordered according to their corre-

sponding singular values which correspond to the square root of
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the variance of X explained by each singular vector. The left sin-

gular vectors (i.e., the columns of S) are then used to predict Y us-

ing standard regression because the orthogonality of the singular

vectors eliminates the multicolinearity problem. But, the problem

of choosing an optimum subset of predictors remains. A possible

strategy is to keep only a few of the first components. But these

components are chosen to explain X rather than Y, and so, noth-

ing guarantees that the principal components, which “explain” X,

are relevant for Y.

By contrast, PLS regression finds components from X that are

also relevant for Y. Specifically, PLS regression searches for a set

of components (called latent vectors) that performs a simultane-

ous decomposition of X and Y with the constraint that these com-

ponents explain as much as possible of the covariance between X

and Y. This step generalizes PCA. It is followed by a regression step

where the decomposition of X is used to predict Y.

4 Simultaneous decomposition of

predictors and dependent variables

PLS regression decomposes both X and Y as a product of a com-

mon set of orthogonal factors and a set of specific loadings. So,

the independent variables are decomposed as X = TPT with TTT = I

with I being the identity matrix (some variations of the technique

do not require T to have unit norms). By analogy with PCA, T is

called the score matrix, and P the loading matrix (in PLS regression

the loadings are not orthogonal). Likewise, Y is estimated as Ŷ =

TBCT where B is a diagonal matrix with the “regression weights” as

diagonal elements and C is the “weight matrix” of the dependent

variables (see below for more details on the regression weights and

the weight matrix). The columns of T are the latent vectors. When

their number is equal to the rank of X, they perform an exact de-

composition of X. Note, however, that they only estimate Y. (i.e., in

general Ŷ is not equal to Y).
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5 PLS regression and covariance

The latent vectors could be chosen in a lot of different ways. In fact

in the previous formulation, any set of orthogonal vectors span-

ning the column space of X could be used to play the rôle of T.

In order to specify T, additional conditions are required. For PLS

regression this amounts to finding two sets of weights w and c in

order to create (respectively) a linear combination of the columns

of X and Y such that their covariance is maximum. Specifically, the

goal is to obtain a first pair of vectors t = Xw and u = Yc with the

constraints that wTw = 1, tTt = 1 and tTu be maximal. When the

first latent vector is found, it is subtracted from both X and Y and

the procedure is re-iterated until X becomes a null matrix (see the

algorithm section for more).

6 A PLS regression algorithm

The properties of PLS regression can be analyzed from a sketch

of the original algorithm. The first step is to create two matrices:

E = X and F = Y. These matrices are then column centered and

normalized (i.e., transformed into Z -scores). The sum of squares

of these matrices are denoted SSX and SSY . Before starting the it-

eration process, the vector u is initialized with random values. (in

what follows the symbol ∝ means “to normalize the result of the

operation”).

Step 1. w ∝ ETu (estimate X weights).

Step 2. t ∝ Ew (estimate X factor scores).

Step 3. c ∝ FTt (estimate Y weights).

Step 4. u = Fc (estimate Y scores).

If t has not converged, then go to Step 1, if t has converged, then

compute the value of b which is used to predict Y from t as b = tTu,

and compute the factor loadings for X as p = ETt. Now subtract

(i.e., partial out) the effect of t from both E and F as follows E =
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E − tpT and F = F − btcT. The vectors t, u, w, c, and p are then

stored in the corresponding matrices, and the scalar b is stored as

a diagonal element of B. The sum of squares of X (respectively Y)

explained by the latent vector is computed as pTp (respectively b2),

and the proportion of variance explained is obtained by dividing

the explained sum of squares by the corresponding total sum of

squares (i.e., SSX and SSY ).

If E is a null matrix, then the whole set of latent vectors has

been found, otherwise the procedure can be re-iterated from Step

1 on.

7 PLS regression and

the singular value decomposition

The iterative algorithm presented above is similar to the power

method (for a description, see Abdi, Valentin,& Edelman, 1999)

which finds eigenvectors. So PLS regression is likely to be closely

related to the eigen- and singular value decompositions, and this

is indeed the case. For example, if we start from Step 1 which com-

putes: w ∝ ETu, and substitute the rightmost term iteratively, we

find the following series of equations: w ∝ ETu ∝ ETFc ∝ ETFFTt ∝

ETFFTEw. This shows that the first weight vector w is the first right

singular vector of the matrix XTY. Similarly, the first weight vector

c is the left singular vector of XTY. The same argument shows that

the first vectors t and u are the first eigenvectors of XXTYYT and

YYTXXT.

8 Prediction of the dependent variables

The dependent variables are predicted using the multivariate re-

gression formula as Ŷ = TBCT
= XBPLS with BPLS = (PT+)BCT (where

PT+ is the Moore-Penrose pseudo-inverse of PT). If all the latent

variables of X are used, this regression is equivalent to principal

component regression. When only a subset of the latent variables

is used, the prediction of Y is optimal for this number of predictors.
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Table 1: The Y matrix of dependent variables.

Wine Hedonic Goes with meat Goes with dessert

1 14 7 8

2 10 7 6

3 8 5 5

4 2 4 7

5 6 2 4

Table 2: The X matrix of predictors.

Wine Price Sugar Alcohol Acidity

1 7 7 13 7

2 4 3 14 7

3 10 5 12 5

4 16 7 11 3

5 13 3 10 3

An obvious question is to find the number of latent variables

needed to obtain the best generalization for the prediction of new

observations. This is, in general, achieved by cross-validation tech-

niques such as bootstrapping.

The interpretation of the latent variables is often helped by ex-

amining graphs akin to PCA graphs (e.g., by plotting observations

in a t1 × t2 space, see Figure 1).

9 A small example
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Table 3: The matrix T.

Wine t1 t2 t3

1 0.4538 −0.4662 0.5716

2 0.5399 0.4940 −0.4631

3 0 0 0

4 −0.4304 −0.5327 −0.5301

5 −0.5633 0.5049 0.4217

Table 4: The matrix U.

Wine u1 u2 u3

1 1.9451 −0.7611 0.6191

2 0.9347 0.5305 −0.5388

3 −0.2327 0.6084 0.0823

4 −0.9158 −1.1575 −0.6139

5 −1.7313 0.7797 0.4513

Table 5: The matrix P.

p1 p2 p3

Price −1.8706 −0.6845 −0.1796

Sugar 0.0468 −1.9977 0.0829

Alcohol 1.9547 0.0283 −0.4224

Acidity 1.9874 0.0556 0.2170
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Table 6: The matrix W.

w1 w2 w3

Price −0.5137 −0.3379 −0.3492

Sugar 0.2010 −0.9400 0.1612

Alcohol 0.5705 −0.0188 −0.8211

Acidity 0.6085 0.0429 0.4218

Table 7: The matrix BPLS when 3 latent vectors are used.

Hedonic Goes with meat Goes with dessert

Price −1.0607 −0.0745 0.1250

Sugar 0.3354 0.2593 0.7510

Alcohol −1.4142 0.7454 0.5000

Acidity 1.2298 0.1650 0.1186

Table 8: The matrix BPLS when 2 latent vectors are used.

Hedonic Goes with meat Goes with dessert

Price −0.2662 −0.2498 0.0121

Sugar 0.0616 0.3197 0.7900

Alcohol 0.2969 0.3679 0.2568

Acidity 0.3011 0.3699 0.2506

We want to predict the subjective evaluation of a set of 5 wines.

The dependent variables that we want to predict for each wine are

its likeability, and how well it goes with meat, or dessert (as rated

by a panel of experts) (see Table 1). The predictors are the price,

the sugar, alcohol, and acidity content of each wine (see Table 2).

The different matrices created by PLS regression are given in

Tables 3 to 11. From Table 11 one can find that two latent vec-

8



Hervé Abdi: PLS-Regression

Table 9: The matrix C.

c1 c2 c3

Hedonic 0.6093 0.0518 0.9672

Goes with meat 0.7024 −0.2684 −0.2181

Goes with dessert 0.3680 −0.9619 −0.1301

Table 10: The b vector.

b1 b2 b3

2.7568 1.6272 1.1191

tors explain 98% of the variance of X and 85% of Y. This suggests

to keep these two dimensions for the final solution. The exam-

ination of the two-dimensional regression coefficients (i.e., BPLS,

see Table 8) shows that sugar is mainly responsible for choosing a

dessert wine, and that price is negatively correlated with the per-

ceived quality of the wine, whereas alcohol is positively correlated

with it (at least in this example . . . ). Looking at the latent vectors

shows that t1 expresses price and t2 reflects sugar content. This in-

terpretation is confirmed and illustrated in Figures 1a and b which

display in (a) the projections on the latent vectors of the wines

(matrix T) and the predictors (matrix W), and in (b) the correla-

tion between the original dependent variables and the projection

of the wines on the latent vectors.

10 Relationship with other techniques

PLS regression is obviously related to canonical correlation, STATIS,

and to multiple factor analysis. These relationships are explored

in details by Tenenhaus (1998), Pagès and Tenenhaus (2001), and

Abdi (2003b). The main originality of PLS regression is to preserve

the asymmetry of the relationship between predictors and depen-

9



Hervé Abdi: PLS-Regression

T
a

b
le

1
1

:
V
ar

ia
n
ce

of
X

an
d

Y
ex

p
la

in
ed

by
th

e
la

te
n
t

ve
ct

or
s.

C
u

m
u

la
ti

v
e

C
u

m
u

la
ti

v
e

P
e

rc
e

n
ta

g
e

o
f

P
e

rc
e

n
ta

g
e

o
f

P
e

rc
e

n
ta

g
e

o
f

P
e

rc
e

n
ta

g
e

o
f

E
xp

la
in

e
d

E
xp

la
in

e
d

E
xp

la
in

e
d

E
xp

la
in

e
d

V
a

ri
a

n
c

e
fo

r
X

V
a

ri
a

n
c

e
fo

r
X

V
a

ri
a

n
c

e
fo

r
Y

V
a

ri
a

n
c

e
fo

r
Y

L
a

te
n

t
V

e
c

to
r

1
7

0
7

0
6

3
6

3

2
2

8
9

8
2

2
8

5

3
2

1
0

0
1

0
9

5

10



H
e

rv
é

A
b

d
i:

P
L

S
-R

e
g

re
ssio

n

Sugar

Alcohol

Acidity 1

2

1

2

3

4

5

Price

2LV

Meat

Dessert

LV
Hedonic

1

a b
Figure 1: PLS-regression. (a) Projection of the wines and the predictors on the first 2 latent vectors (respectively
matrices T and W). (b) Circle of correlation showing the correlation between the original dependent variables
(matrix Y) and the latent vectors (matrix T).
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dent variables, whereas these other techniques treat them sym-

metrically.

11 Software

PLS regression necessitates sophisticated computations and there-

fore its application depends on the availability of software. For

chemistry, two main programs are used: the first one called SIMCA-

P was developed originally by Wold, the second one called the UN-

SCRAMBLER was first developed by Martens who was another pio-

neer in the field. For brain imaging, SPM, which is one of the most

widely used programs in this field, has recently (2002) integrated

a PLS regression module. Outside these domains, SAS PROC PLS is

probably the most easily available program. In addition, interested

readers can download a set of MATLAB programs from the author’s

home page (www.utdallas.edu/∼herve). Also, a public domain

set of MATLAB programs is available from the home page of the N -

Way project (www.models.kvl.dk/source/nwaytoolbox/) along

with tutorials and examples. From brain imaging, a special toolbox

written in MATLAB (by McIntosh, Chau, Lobaugh, & Chen) is freely

available from www.rotman-baycrest.on.ca:8080. And finally,

a commercial MATLAB toolbox has also been developed by EIGEN-

RESEARCH.

References

[1] Abdi, H. (2003a&b). PLS-Regression; Multivariate analysis. In

M. Lewis-Beck, A. Bryman, & T. Futing (Eds): Encyclopedia

for research methods for the social sciences. Thousand Oaks:

Sage.

[2] Abdi, H., Valentin, D., & Edelman, B. (1999). Neural networks.

Thousand Oaks (CA): Sage.

[3] Escofier, B., & Pagès, J. (1988). Analyses factorielles multiples.

Paris: Dunod.

[4] Frank, I.E., & Friedman, J.H. (1993). A statistical view of chemo-

metrics regression tools. Technometrics, 35 109–148.

12



Hervé Abdi: PLS-Regression

[5] Helland I.S. (1990). PLS regression and statistical models. Scan-

divian Journal of Statistics, 17, 97–114.

[6] Höskuldson, A. (1988). PLS regression methods. Journal of

Chemometrics, 2, 211-228.

[7] Geladi, P., & Kowlaski B. (1986). Partial least square regression:

A tutorial. Analytica Chemica Acta, 35, 1–17.

[8] McIntosh, A.R., & Lobaugh N.J. (2004). Partial least squares

analysis of neuroimaging data: applications and advances.

Neuroimage, 23, 250–263.

[9] Martens, H, & Naes, T. (1989). Multivariate Calibration. Lon-

don: Wiley.

[10] Pagès, J., Tenenhaus, M. (2001). Multiple factor analysis com-

bined with PLS path modeling. Application to the analysis

of relationships between physicochemical variables, sensory

profiles and hedonic judgments. Chemometrics and Intelli-

gent Laboratory Systems, 58, 261–273.

[11] Phatak, A., & de Jong, S. (1997). The geometry of partial least

squares. Journal of Chemometrics, 11, 311–338.

[12] Tenenhaus, M. (1998). La régression PLS. Paris: Technip.

[13] Ter Braak, C.J.F., & de Jong, S. (1998). The objective function of

partial least squares regression. Journal of Chemometrics, 12,

41–54.

[14] Wold, H. (1966). Estimation of principal components and re-

lated models by iterative least squares. In P.R. Krishnaiaah

(Ed.). Multivariate Analysis. (pp.391-420) New York: Acad-

emic Press.

[15] Wold, S. (2001). Personal memories of the early PLS develop-

ment. Chemometrics and Intelligent Laboratory Systems, 58,

83–84.

[16] Worsley, K.J. (1997). An overview and some new developments

in the statistical analysis of PET and fMRI data. Human Brain

Mapping, 5, 254–258.

13


