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Introduction

The different methods of factor analysis first extract a set a factors from a
data set. These factors are almost always orthogonal and are ordered according
to the proportion of the variance of the original data that these factors explain.
In general, only a (small) subset of factors is kept for further consideration and
the remaining factors are considered as either irrelevant or nonexistent (i.e.,
they are assumed to reflect measurement error or noise).

In order to make the interpretation of the factors that are considered rel-
evant, the first selection step is generally followed by a rotation of the factors
that were retained. Two main types of rotation are used: orthogonal when the
new axes are also orthogonal to each other, and oblique when the new axes are
not required to be orthogonal to each other. Because the rotations are always
performed in a subspace (the so-called factor space), the new axes will always
explain less variance than the original factors (which are computed to be opti-
mal), but obviously the part of variance explained by the total subspace after
rotation is the same as it was before rotation (only the partition of the variance
has changed). Because the rotated axes are not defined according to a statistical
criterion, their raison d’être is to facilitate the interpretation.

In this article, I illustrate the rotation procedures using the loadings of vari-
ables analyzed with principal component analysis (the so-called R-mode), but
the methods described here are valid also for other types of analysis and when
analyzing the subjects’ scores (the so-called Q-mode).

Before proceeding further, it is important to stress that because the rotations
always take place in a subspace (i.e., the space of the retained factors), the choice
of this subspace strongly influences the result of the rotation. Therefore, in the
practice of rotation in factor analysis, it is strongly recommended to try several
sizes for the subspace of the retained factors in order to assess the robustness
of the interpretation of the rotation.

Notations
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To make the discussion more concrete, I will describe rotations within the
principal component analysis (pca) framework. Pca starts with a data matrix
denoted Y with I rows and J columns, where each row represents a unit (in gen-
eral subjects) described by J measurements which are almost always expressed
as Z-scores. The data matrix is then decomposed into scores (for the subjects)
or components and loadings for the variables (the loadings are, in general, cor-
relations between the original variables and the components extracted by the
analysis). Formally, pca is equivalent to the singular value decomposition of
the data matrix as:

Y = P∆QT (1)

with the constraints that QT Q = PT P = I (where I is the identity matrix), and
∆ being a diagonal matrix with the so-called singular values on the diagonal.
The orthogonal matrix Q is the matrix of loadings (or projections of the original
variables onto the components), where one row stands for one of the original
variables and one column for one of the new factors. In general, the subjects’
score matrix is obtained as F = P∆ (some authors use P as the scores).

Rotating: When and why?

Most of the rationale for rotating factors comes from Thurstone (1947) and
Cattell (1978) who defended its use because this procedure simplifies the factor
structure and therefore makes its interpretation easier and more reliable (i.e.,
easier to replicate with different data samples).

Thurstone suggested five criteria to identify a simple structure. According to
these criteria, still often reported in the literature, a matrix of loadings (where
the rows correspond to the original variables and the columns to the factors) is
simple if:

1. each row contains at least one zero;

2. for each column, there are at least as many zeros as there are columns
(i.e., number of factors kept);

3. for any pair of factors, there are some variables with zero loadings on one
factor and large loadings on the other factor;

4. for any pair of factors, there is a sizable proportion of zero loadings;

5. for any pair of factors, there is only a small number of large loadings.

Rotations of factors can (and used to) be done graphically, but are mostly
obtained analytically and necessitate to specify mathematically the notion of
simple structure in order to implement it with a computer program.

Orthogonal rotation

An orthogonal rotation is specified by a rotation matrix denoted R, where
the rows stand for the original factors and the columns for the new (rotated)
factors. At the intersection of row m and column n we have the cosine of the
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angle between the original axis and the new one: rm,n = cos θm,n. For example
the rotation illustrated in Figure 1 will be characterized by the following matrix:

R =

[

cos θ1,1 cos θ1,2

cos θ2,1 cos θ2,2

]

=

[

cos θ1,1 − sin θ1,1

sin θ1,1 cos θ1,1

]

, (2)

with a value of θ1,1 = 15 degrees. A rotation matrix has the important property
of being orthonormal because it corresponds to a matrix of direction cosines and
therefore RT R = I.

θ

x
y

y

x1

1

2
2

1,1

θ2,2

θ1,2

θ2,1

Figure 1: An orthogonal rotation in 2 dimensions. The angle of rotation between
an old axis m and a new axis n is denoted by θm,n.

Varimax

Varimax, which was developed by Kaiser (1958), is indubitably the most
popular rotation method by far. For varimax a simple solution means that each
factor has a small number of large loadings and a large number of zero (or small)
loadings. This simplifies the interpretation because, after a varimax rotation,
each original variable tends to be associated with one (or a small number) of
factors, and each factor represents only a small number of variables. In addition,
the factors can often be interpreted from the opposition of few variables with
positive loadings to few variables with negative loadings.

Formally varimax searches for a rotation (i.e., a linear combination) of
the original factors such that the variance of the loadings is maximized, which
amounts to maximizing

V =
∑

(

q2

j,` − q̄2

j,`

)2

, (3)
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Table 1: An (artificial) example for pca and rotation. Five wines are described
by seven variables.

For For
Hedonic meat dessert Price Sugar Alcohol Acidity

Wine 1 14 7 8 7 7 13 7
Wine 2 10 7 6 4 3 14 7
Wine 3 8 5 5 10 5 12 5
Wine 4 2 4 7 16 7 11 3
Wine 5 6 2 4 13 3 10 3

Table 2: Wine example: Original loadings of the seven variables on the first two
components.

For For
Hedonic meat dessert Price Sugar Alcohol Acidity

Factor 1 −0.3965 −0.4454 −0.2646 0.4160 −0.0485 −0.4385 −0.4547
Factor 2 0.1149 −0.1090 −0.5854 −0.3111 −0.7245 0.0555 0.0865

with q2

j,` being the squared loading of the jth variable on the ` factor, and q̄2

j,`

being the mean of the squared loadings (for computational stability, each of
the loadings matrix is generally scaled to length one prior to the minimization
procedure).

Other orthogonal rotations

There are several other methods for orthogonal rotation such as the quar-

timax rotation, which minimizes the number of factors needed to explain each
variable, and the equimax rotation which is a compromise between varimax

and quartimax. Other methods exist, but none approaches varimax in pop-
ularity.

An example of orthogonal varimax rotation

To illustrate the procedure for a varimax rotation, suppose that we have
5 wines described by the average rating of a set of experts on their hedonic
dimension, how much the wine goes with dessert, how much the wine goes with
meat; each wine is also described by its price, its sugar and alcohol content, and
its acidity. The data are given in Table 1.

A pca of this table extracts four factors (with eigenvalues of 4.7627, 1.8101,
0.3527, and 0.0744, respectively), and a 2 factor solution (corresponding to the
components with an eigenvalue larger than unity) explaining 94% of the variance
is kept for rotation. The loadings are given in Table 2.

The varimax rotation procedure applied to the table of loadings gives a
clockwise rotation of 15 degrees (corresponding to a cosine of .97). This gives the
new set of rotated factors shown in Table 3. The rotation procedure is illustrated
in Figures 2 to 4. In this example, the improvement in the simplicity of the
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Table 3: Wine example: Loadings, after varimax rotation, of the seven vari-
ables on the first two components.

For For
Hedonic meat dessert Price Sugar Alcohol Acidity

Factor 1 −0.4125 −0.4057 −0.1147 0.4790 0.1286 −0.4389 −0.4620
Factor 2 0.0153 −0.2138 −0.6321 −0.2010 −0.7146 −0.0525 −0.0264

interpretation is somewhat marginal, maybe because the factorial structure of
such a small data set is already very simple. The first dimension remains linked
to price and the second dimension now appears more clearly as the dimension
of sweetness.
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Figure 2: Pca: Original loadings of the seven variables for the wine example.

Oblique Rotations

In oblique rotations the new axes are free to take any position in the fac-
tor space, but the degree of correlation allowed among factors is, in general,
small because two highly correlated factors are better interpreted as only one
factor. Oblique rotations, therefore, relax the orthogonality constraint in order
to gain simplicity in the interpretation. They were strongly recommended by
Thurstone, but are used more rarely than their orthogonal counterparts.
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Figure 3: Pca: The loading of the seven variables for the wine example showing
the original axes and the new (rotated) axes derived from varimax.

Table 4: Wine example. Promax oblique rotation solution: correlation of the
seven variables on the first two components.

For For
Hedonic meat dessert Price Sugar Alcohol Acidity

Factor 1 −0.8783 −0.9433 −0.4653 0.9562 0.0271 −0.9583 −0.9988
Factor 2 −0.1559 −0.4756 −0.9393 −0.0768 −0.9507 −0.2628 −0.2360

For oblique rotations, the promax rotation has the advantage of being fast
and conceptually simple. Its name derives from procrustean rotation because
it tries to fit a target matrix which has a simple structure. It necessitates two
steps. The first step defines the target matrix, almost always obtained as the
result of a varimax rotation whose entries are raised to some power (typically
between 2 and 4) in order to “force” the structure of the loadings to become
bipolar. The second step is obtained by computing a least square fit from the
varimax solution to the target matrix.

Even though, in principle, the results of oblique rotations could be presented
graphically they are almost always interpreted by looking at the correlations
between the rotated axis and the original variables. These correlations are
interpreted as loadings.

For the wine example, using as target the varimax solution raised to the 4th
power, for a promax rotation gives the loadings shown in Table 4. From these
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Figure 4: Pca: The loadings after varimax rotation of the seven variables for
the wine example.

loadings one can find that, the first dimension once again isolates the price
(positively correlated to the factor) and opposes it to the variables: alcohol,
acidity, “going with meat,” and hedonic component. The second axis shows
only a small correlation with the first one (r = −.01). It corresponds to the
“sweetness/going with dessert” factor. Once again, the interpretation is quite
similar to the original pca because the small size of the data set favors a simple
structure in the solution.

Oblique rotations are much less popular than their orthogonal counterparts,
but this trend may change as new techniques, such as independent component
analysis, are developed. This recent technique, originally created in the domain
of signal processing and neural networks, derives directly from the data
matrix an oblique solution that maximizes statistical independence.
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