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When adults are asked to indicate whether a probe had been present in a
previously viewed number pair, probes that are the sum of the pair take more
time to reject than unrelated numbers. In Experiment 1, we explore how factors
such as the size of the numbers and the delay between the pair and probe influence
this effect in adults. In Experiment 2, we present evidence that this interference
effect is also present in elementary school children although it varies with the size
of the numbers in the pair and the age of the child. In our third experiment, we
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explore a related interference effect known as the associative confusion effect
which arises for adults in arithmetic verification tasks when multiplicative answers
are given to addition problems and additive answers are given to multiplication
problems. The results of our third experiment suggest that children in grades 3
through 5 also exhibit associative confusion effects but that again these effects
vary with the size of the numbers. We argue that the processes that underlie
mental arithmetic are partially autonomous in elementary school children and that
although integer size has a more pronounced effect on the performance of younger
children, the temporal parameters that govern these effects are similar for children
and adults. © 1994 Academic Press, Inc.

How do children and adults solve simple arithmetic problems? Most
researchers believe adults solve these problems by retrieving the solutions
directly from semantic memory (Abdi, 1986; Ashcraft, 1982, 1983, 1987,
1992; Campbell & Graham, 1985; Siegler & Shrager, 1984; but see Bar-
oody, 1985, for an opposing view). Advocates of this view argue that
knowledge about arithmetic is represented and accessed in the same fash-
ion as other forms of long-term memory knowledge. More specifically,
this information is presumably accessed by a process of spreading acti-
vation in which separate sources of activation spread though a network
and intersect most strongly at the point of information retrieval.

Research on children’s mental arithmetic skills has focused on a number
of developmental questions that have arisen in connection with these
associative models. These questions include whether children, like adults,
rely primarily on direct retrieval to solve these problems or whether
reconstructive processes dominate early in development and later give
way to retrieval-based algorithms. Current developmental models (e.g.,
Ashcraft, 1982, 1983, 1987, 1992; Fayol, 1990; Siegler & Shrager, 1984)
suggest that even though counting-based algorithms play an important
role in young children’s mental arithmetic, kindergartners and first-graders
may at times use direct retrieval to solve small highly practiced addition
problems.

Although it is likely that memory retrieval plays an increasingly im-
portant role in mental arithmetic during the elementary school years, it
is less clear whether retrieval processes operate in the same way in the
child as they do in the adult. According to associative network models,
presentation of an arithmetic problem (e.g., 3 + 4) results in activation
of the number nodes specified in the problem (e.g., 3 and 4). Activation
spreads from these presented nodes along associative links so that related
number nodes, including the sum, are activated. An important question
in the adult literature, and one with developmental implications that the
present study addresses, is whether this activation process is autonomous
or under intentional control.

Zbrodoff and Logan (1986) have suggested that a process be classified
as autonomous “‘if it can (a) begin without intention, triggered by the
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presence of a relevant stimulus in the task environment; and (b) run on
to completion ballistically once it begins, whether or not it is intended”
(p. 118). In a series of experiments, Zbrodoff and Logan explored the
possibility that the processes underlying simple mental arithmetic are au-
tonomous in adults. They asked subjects to verify simple arithmetic equa-
tions of the form a + b = cand ¢ X b = c. Half of the equations were
false, and, more importantly, half of these false equations contained ¢
terms that would have been correct if the subjects performed a different
operation (e.g., 3 + 4 = 12; 3 x 4 = 7). Zbrodoff and Logan called
these distractors associative lures. The remaining false problems contained
nonassociative [ures, that is, answers that would not be true for any
conventional arithmetic operation (e.g., 3 + 4 = 8). Zbrodoff and Logan
reasoned that if the processes underlying mental arithmetic are autono-
mous, once the two arguments (3 and 4) are encoded, activation should
spread to both the sum and product. This activation would increase the
amount of time needed to reject the associative as opposed to nonasso-
ciative lures, a pattern of results referred to as the associative confusion
effect (see also Winkelman & Schmidt, 1974). Obviously, one prerequisite
for this effect is that the facts for the relevant operations, here, multi-
plication and addition, must be stored in the same network.

Zbrodoff and Logan (1986) attempted to distinguish between completely
and partially autonomous processes by manipulating the extent to which
subjects intended to perform the irrelevant operation within a block of
trials. The logic was that if a process is completely autonomous, it should
not be affected by intention nor should it be possible to inhibit it once
it has begun. They found that the associative confusion effect is modulated
by intention and that the processes that give rise to this effect can be
inhibited within certain temporal parameters. The general conclusions they
draw from their studies are first, that there are direct associations between
single digits and their sums and products which are activated without
intention and that this activation gives rise to the associative confusion
effect; and second, that this initial activation may be supplemented with
deliberate activation to achieve the required threshold and that this sup-
plemental activation might result from memory search strategies or count-
ing algorithms.

In a subsequent study, LeFevre, Bisanz, and Mrkonjic (1988) examined
the extent to which this activation is obligatory by asking undergraduates
to perform a number-matching task. Subjects were presented with number
pairs separated by a space or an addition sign. In the latter case, the
number pairs were presented in both digit and verbal form (i.e., 5 + 1,
five + one). On each trial, the subject’s task was the same: He or she
had to indicate whether a subsequent probe matched one of the numbers
on the first slide. Two types of distractors were included on the false
trials. On half of the false trials, the probe was the sum of the first two
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numbers and on the remaining “neutral” trials, there was no relationship
between the first two numbers and the probe. LeFevre et al. found that
the sum probes were rejected more slowly than the neutral probes, and
this effect did not depend on the format of the presentation. What did
affect the results, however, was the amount of time between the ap-
pearance of the pair and probe. The sum probes resulted in significant
interference at 120~ms stimulus onset asynchronies (SOAs) but this effect
disappeared at 180-ms SOAs. Interference effects with sum probes were
also obtained at 60-ms SOAs, but only in the blank condition, suggesting
that the spread of activation may reach a critical threshold earlier if there
is one less symbol to encode. More importantly, it suggests that within
180-ms of exposure, adults are able to inhibit the obligatory activation of
arithmetic facts when arithmetic operations are not relevant for the task.

Taken together, LeFevre et al.’s (1988) and Zbrodoff and Logan’s
(1986) results suggest that in adulthood the processes underlying simple
mental arithmetic can be initiated without intention, and that for addition,
this activation can occur even when the primary goal of the task does not
involve arithmetic operations. These processes, however, appear to be
only partially autonomous; given sufficient time, adults are able to inhibit
operations that are not relevant for the task. The confusion effects that
have arisen in these studies suggest that adults’ knowledge of simple
arithmetic facts can be captured by a network model in which information
about different arithmetic operations is highly integrated and activation
spreads throughout the network. As processing proceeds, the information
relevant for the target task is activated more strongly whereas the irrel-
evant information decreases in strength. In the present paper, we explore
how this network might develop during the elementary school years.

The interference effects reported by LeFevre et al. (1988) and Zbrodoff
and Logan (1986) presuppose strong associations between a number pair
and its sum or product, but it is not clear whether these associations are
strong enough in elementary school children to lead to automatic acti-
vation. In adults, interference effects in number-matching tasks are not
only a product of sum activation; distance effects have also been observed.
For example, LeFevre et al. (1988) found that numbers close in magnitude
to the original number pair produce more interference than distant num-
bers. These distance effects are presumably rooted in number-line asso-
ciations that have been built up through counting experiences. For adults,
sum activation is a more potent source of interference effects than number-
line associations but number-line associations may be the primary source
of interference effects in young elementary school children (see LeFevre,
Kulak, & Bisanz, 1991; Siegler & Shrager, 1984).

LeFevre et al. (1991) used a number-matching task to evaluate the
relative strength of sum activation and number-line associations in chil-
dren. Sum activation only produced minimal interference effects in the
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third-, fourth-, and fifth-graders who participated in their study, but these
children did exhibit substantial interference effects as a function of the
distance between the distractor and the original number pair. Based on
these findings and the results of an earlier study (LeFevre & Bisanz,
1987), LeFevre et al. concluded that whereas number-line associations
remain a major source of interference effects up through fifth grade, sum
activation does not produce substantial interference until sixth grade.
Similarly, Hamann & Ashcraft (1985) only found interference effects due
to sum activation in their older subjects. In their study, interference effects
due to cross-operation activation of sums and products did not emerge
prior to tenth grade.

Although these studies suggest that sums and products are not auto-
matically activated in elementary school children, a recent study by Le-
maire, Fayol, and Abdi (1991) calls this conclusion into question. In that
study, fourth- and fifth-graders exhibited associative-based confusion ef-
fects in an arithmetic verification task: Children were slow to reject dis-
tractors that would have been correct if a different operation were per-
formed. These findings suggest that sums and products are automatically
activated when children solve arithmetic equations, but that the extent
to which interference effects are observed may depend on specific aspects
of the task situation. The present set of experiments examine in more
detail the developmental time-course of these two types of interference
effects. In the first two experiments, we focus on interference effects
resulting from the obligatory activation of sums in a number-matching
task, and in the third experiment, we examine confusion effects resulting
from obligatory activation of sums and products in an arithmetic verifi-
cation task.

EXPERIMENT 1

In the first experiment, we focused on whether sum activation occurs
in number-matching tasks that do not in any way implicate addition and
whether these effects vary as a function of the size of the integers. In
studies of mental arithmetic, problems with large answers have consistently
been associated with long response times (see Ashcraft, 1992, for a re-
view). The initial research on the parameters surrounding this problem
size effect involved children’s and adults’ performance on mental addition
tasks (Groen & Parkman, 1972). Differences in the shape and temporal
characteristics of the response curves suggested that mental counting is
widely used in childhood but serves only as a back-up strategy for adulits.
Although mental counting may be responsible for some of the problem
size effects obtained in addition tasks, similar effects have emerged in
production and verification tasks involving subtraction, multiplication, and
division (e.g., Siegler, 1987b; Campbell, 1987c). This suggests that to
some extent problem size effects are a function of how arithmetic knowl-



ADDITION AND MULTIPLICATION FACTS 229

edge 1s retrieved and stored in long-term memory. If the problem size
effect reflects how arithmetic facts are stored in long-term memory, then
the size of the numbers may affect performance even when arithmetic
operations are not relevant for the task. In the first experiment, we ex-
plored whether the size of the initial integers affects the magnitude of
sum activation for adults in a number-matching task. This question is
especially important for understanding the developmental time-course of
obligatory activation of arithmetic facts because it is likely that interference
effects appear first with small numbers. Experiment 1 focused on whether
the size of the integers affects adult performance in a number-matching
task modeled after LeFevre et al.’s (1988) study. In Experiment 2, we
explore these same issues with elementary school children.

In Experiment 1, undergraduates were shown number pairs and asked
to indicate whether a subsequent probe had been present in the pair. Our
task was similar to LeFevre et al.’s (1988) with one exception: In their
study, subjects viewed number pairs with and without addition signs in
the same session whereas our subjects never saw addition signs. Addition
was not mentioned during our sessions so we could evaluate whether sum
activation occurs even when arithmetic operations are not in any way
implicated in the task. Like LeFevre et al., we varied the interval between
the presentation of the number pair and probe, and based on their findings,
we expected to find interference effects due to sum activation provided
the probe appeared less than 180 ms after the original pair. The stimuli
in our study were drawn from three size categories defined by the size
of the initial pair. If the problem size effects that have been found in
other arithmetic tasks are also present in simple number-matching tasks,
then interference effects should be strongest with the small problems.

Method

Subjects. Twenty introductory students at the University of Bourgogne
at Dijon, France (10 males and 10 females) participated in partial ful-
fillment of class requirements. The mean age of the students was 19 years,
2 months (the range was 18.0 to 26.1).

Stimuli. Each trial consisted of a pair of numbers separated by a space
followed by a probe. The same integer never appeared twice within a
pair. Twelve different number pairs were presented; four pairs of integers
were selected for each of the three size conditions. In the small integer
condition, both integers were 5 or smaller. In the medium integer con-
dition, one integer was 5 or smaller and the other integer was between
6 and 9. In the large integer condition, both integers were between 6 and
9. The complete set of number pairs is presented in Table 1.

Three types of problems were presented. For true problems, the prob-
lem matched one of the members of the original pair. To equate the
number of true and false responses, 2 true problems were created for
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TABLE 1
StiMuLUs ITEMS FOR EXPERIMENTS 1 aND 2
Probe
Number pair Sum Neutral True
Small integers
1 3 4 ) 1,3
2 4 6 7 2,4
3 5 8 7 3,5
4 5 9 8 4,5
Medium integers
2 6 8 9 2,6
3 6 9 8 3,6
3 7 10 11 3,7
4 8 12 11 4.8
Large integers
6 7 13 12 6,7
6 8 14 15 6.8
6 9 15 14 6,9
7 9 16 17 7.9

each pair by presenting each of the initial integers in the probe position.
Thus, subjects were presented with a total of 24 true problems and 24
false problems. Two types of false problems were created. For sum prob-
lems, the probe was equal to the sum of the original pair, and for neutral
pairs, the probe was equal to the sum plus or minus one and was never
the product of the original numbers. Because additional time is required
to reject numbers that are close to the original pair (LeFevre et al., 1991),
the mean distance for each false problem was computed by calculating
the average distance between the probe and each member of the number
pair. Although the mean distance necessarily increased with the size of
the initial number pair (the respective mean values were 3.38, 4.88, and
7.25 for small, medium, and large problems), more importantly, the mean
distance was the same for the sum and neutral problems within each
condition.

Although only single digits appeared in the original pairs, false answers
for all of the large integer problems and half of the medium integer
problems were two-digit numbers. Consequently, for these problems, it
would be possible to reject probes based on the presence of two digits
without comparing the probe to the original pair. To eliminate this con-
found, all single digits were preceded by a zero (e.g., 08).

Procedure. The integers were presented in the center of a computer
screen (IBM PS/2). Each trial began when a 750-ms ready signal (a line
of five “a”s) appeared in the center of the screen. The number pair then
appeared in the center of the screen separated by a double space. Fol-
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lowing a variable delay (80, 150, 240, or 480 ms), the number pair dis-
appeared and the probe was presented in the center of the screen one
line below the position of the number pair. The probe remained on the
screen until the subject responded ‘“‘yes” or “no” by pressing the appro-
priate key on the keyboard with his or her index finger. The two middle
keys on the bottom row were designated for responses. Subjects were
instructed to rest their finger on the space bar in between trials. The
position of the yes key was counterbalanced across subjects. After the
subject responded, there was a 1500-ms delay before the next trial began.

Each of the 48 problems in Table 1 were presented at each SOA,
resulting in 192 test trials per subject. Problems were randomized sepa-
rately for each subject with the constraint that no more than three con-
secutive true or false answers appear in a row. SOA, integer size, and
type of probe varied across trials. After each set of 50 problems, subjects
were given a brief rest period. Before the experimental trials, subjects
were given one block of 40 practice trials to familiarize them with the
apparatus, procedure, and stimulus display. Practice trials included items
that were similar to (but not identical to) the test items. Twenty true, 10
sum, and 10 neutral problems were included in the practice set. After
the practice trials, subjects were told their median latency and error rate
and encouraged to respond as quickly as possible without making mistakes.
The entire session lasted 20~30 min.

Results

Latencies. Median correct latencies for the false items that were cor-
rectly rejected were analyzed in a 4 (SOA: 80, 150, 240, or 480 ms) X
3 (Size: small, medium, or large) x 2 (Probe: sum, neutral) repeated
measures analysis of variance. There was a main effect of SOA; response
times decreased as SOA increased, F(3, 57) = 10.84; p < .001, and this
effect was more pronounced with large and medium integers than with
small integers, F(6, 114) = 4.25, p < .001. Presumably, the significant
decline in latencies with SOA reflects the fact that at short SOAs the
response latencies include encoding and preprocessing time for the initial
pair. With longer SOAs, much or all of this processing can be completed
during the delay, and so the initial processing time has only a minimal
effect on response time.

The most interesting effects, however, concern differences between the
sum and neutral probes. As predicted, sum probes were rejected more
slowly than neutral probes (814 ms vs 766 ms), F(1, 19) = 11.90, p <
.01, and there was a significant interaction between probe and SOA, F(3,
57) = 10.64, p < .001. The difference between sum and neutral probes
was only significant at 80-ms SOAs, F(1, 57) = 22.78, p < .001, and
150-ms SOAs, F(1, 57) = 39.29, p < .001. These interference effects are
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TABLE 2
ApULTS’ MEAN MEDIAN LATENCIES (IN mS) AND PERCENTAGE ERRORS FOR THE FALSE ITEMS
(SuM/NEUTRAL PROBES) IN EXPERIMENT 1

SOA

Integers 80 150 240 480
Small M 908/787%** 897 /740%** 781/775 758/682**
E(%) 18.8/3.8%x*x* 17.5/5.07%** 7.5/7.5 7.5/2.5%%*

Medium M 859/788** 863/782** 774/803 693/744

E(%) 16.2/6.2%** 15.0/5.0%** 7.5/6.2 3.8/3.8

Large M 934/878* 837/749%%* 735/721 727/747

15.0/3.8%** 15.0/6.2%+* 6.2/6.2 4.0/3.8

E(%)

* Marginal interference effect p < .10.
** Significant interference effect p < .05.
*** Significant interference effect p < .01,

consistent with LeFevre et al.’s (1988) finding that obligatory activation
of arithmetic facts is most pronounced at short SOAs.

The difference between sum and neutral probes interacted with the size
of the initial pair, F(2, 38) = 3.48, p < .05. The difference between sum
and neutral probes only proved significant with small integers, F(1, 38)
= 4.26, p < .05. Although the size by probe by SOA interaction was
not significant, given the significant probe by SOA interaction and the
need to know whether the effects of obligatory activation are present with
all integer sizes at short SOAs, we used the error term for the three-way
interaction to evaluate the size by probe interaction separately at each
SOA. The relevant means are presented in Table 2. At 80-ms SOAs, the
difference between sum and neutral probes proved significant with small
integers, F(1, 114) = 12.39, p < .001, with medium integers, F(1, 114)
= 4.26, p < .05, and marginally significant with large integers, F(1, 114)
= 2.65, p < .10." At 150-ms SOAs, the interference effect proved sig-
nificant with small integers, F(1, 114) = 20.85, p < .01, medium integers,
F(1, 114) = 5.55, p < .05, and large integers, F(1, 114) = 6.55. p <
.01. At 240 ms, there was no evidence of significant interference, but at
480 ms, the interference effect proved significant with the small integers,
F(1, 114) = 4.89, p < .05. LeFevre et al. (1991) also found that inter-
ference effects resurfaced at S00 ms but only for their low-skill subjects;
their low-skill subjects also failed to experience interference at 80-ms
SOAs. LeFevre et al. attribute the interference experienced at longer

' In the process of equating the splits for the sum and neutral probes, we inadvertently
included a neutral probe (**17”) that contained one of the digits in the original pair. This
may have elevated the amount of interference obtained with the neutral probes, thereby
minimizing the interference effect for the large digits.
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delays to either more persistent or less efficient suppression of sum ac-
tivation in these subjects.

Accuracy. As can be seen in Table 2, errors were low, averaging 8.1%
across subjects, and accordingly, differences in accuracy must be inter-
preted with caution. Errors were analyzed using a 4 (SOA) x 3 (Size)
x 2 (Probe) repeated measures analysis of variance. Error rates decreased
with SOA, F(3, 57) = 5.28, p < .01, and sum probes were associated
with higher error rates than neutral probes, F(1, 19) = 22.50, p < .001.
Once again, the probe by SOA interaction proved significant, F(3, 57)
= 6.81, p < .05, with sum probes resulting in significantly more errors
at 80-ms SOAs, F(1, 57) = 6.81, p < .01, and at 150-ms SOAs, F(1,
57) = 5.05, p < .0L.

There was no main effect of integer size on accuracy nor was integer
size a factor in any significant interaction. Following the analyses per-
formed on the latency data, the probe by size interaction was evaluated
separately at each SOA. Once again, at 80-ms SOAs, the difference
between sum and neutral probes was significant with small integers, F(1,
114) = 13.90, p < .001, with medium integers, F(1, 114) = 6.18, p <
.05, and with large integers, F(1, 114) = 7.82, p < .01. At 150-ms SOAs,
the interference effect was again significant with all integer sizes, F(1,
114) = 9.85, p < .01 for small integers, F(1, 114) = 6.18, p < .05 for
medium integers, and F(1, 114) = 4.73, p < .05 for large integers.

Discussion

The results of the first experiment were consistent with LeFevre et al.’s
(1988, 1991) findings concerning obligatory activation of sums in a number-
matching task. In our experiment, adults were never presented with equa-
tions, and single-digit numbers were presented in a less familiar form (i.e.,
preceded by a zero), and yet, our findings were remarkably similar to
LeFevre et al.’s. At 80- and 150-ms SOAs, probes that were the sum of
the initial number pair were rejected more slowly than other false items.
Thus our findings support LeFevre et al.’s argument that obligatory ac-
tivation of sums occurs at delays of less than 180 ms and persist even
when less familiar formats are used. Like LeFevre et al.’s findings, our
results suggest that when the delay exceeds 240 ms, subjects are able to
inhibit incorrectly activated sums. The pattern of results in our experiment
is consistent with Zbrodoff and Logan’s (1986) hypothesis that the pro-
cesses underlying simple arithmetic are partially autonomous. There ap-
pears to be a direct association between single digits and their sums which
is activated immediately without intention and produces interference ef-
fects in adults. These effects, however, are not long-lasting and within
240 ms of processing sum-based associations dissipate or are inhibited.

Interference effects persisted with all three integer sizes in our number-
matching task. According to network distance models, interference effects
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should have been strongest with small number pairs because these op-
erands are most closely associated with the correct answer node in memory
(e.g., Ashcraft, 1982, 1987; Siegler & Jenkins, 1989; Siegler & Shipley,
in press). Our findings were consistent with this prediction: The difference
in response time for sum and neutral probes was greater for small problems
than for large problems in the 80-ms SOA and 150-ms SOA conditions.
In Experiment 2, we explore sum-based interference effects in children.
Our prediction was that the size of the problem would prove to be an
important determinant of sum-based interference effects in elementary
school children.

EXPERIMENT 2

The interference effects we obtained with adults presuppose strong
associations between a number pair and its sum. Although Siegler and
Shrager (1984) offer evidence that a few of these associations are present
in 4-year-olds, it is not clear whether these sum-based associations are
strong enough to lead to automatic activation in elementary school chil-
dren. In the second experiment, we explore whether children in grades
2 through 5 experience interference effects in a number-matching task as
a consequence of obligatory activation of addition facts and whether these
effects vary with the size of the numbers. LeFevre et al.’s (1991) work
suggests that, at most, sum activation only plays a minimal role in pro-
ducing confusion effects prior to sixth grade. It is possible, however, that
sum-based confusion effects are present in younger children, but that
initially these effects are limited to small numbers because only the as-
sociations between small addends and their sums are of sufficient strength
to produce interference effects in the early elementary school years. Evi-
dence that these associations are built up early in development comes
from findings that 4- and 5-year-olds use direct retrieval to solve small
sum addition problems (Siegler & Robinson, 1982; Siegler & Shrager,
1984). Size-related differences in the strength of association between the
operands and answers are expected to be strongest early in development,
and presumably, these differences are related to the order in which small
and large number problems are learned and the frequency with which
they occur in children’s textbooks (Hamann & Ashcraft, 1985).

In Experiment 2, in addition to exploring the effects of problem size,
we will also consider the temporal parameters that govern interference
effects at different points in development. It is quite possible that the
time-course of interference effects differs for children and adults. LeFevre
et al. (1991) found that adults who are more practiced in basic arithmetic
experience interference effects at shorter SOAs and that interference
effects persist at longer delays for adults with lower skill levels. This
suggests that longer SOAs may be required to produce interference effects
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in children and that sum-based associations may take more time to inhibit.
In Experiment 2, SOA was varied so this possibility could be evaluated.

Method

Subjects. Eighty elementary school children, 20 each from grades 2, 3,
4, and 5, were randomly selected from a French upper class urban public
school to take part in the study. The respective mean ages for each grade
were 7.1 (range, 6.11 to 7.2), 8.2 (range, 8.0 to 8.7), 9.0 (range, 8.10 to
9.5), and 10.4 (range, 10.0 to 10.11).

Stimuli. The stimuli were identical to those used in the first experiment
(see Table 1).

Procedure. The procedure was identical to that used in the first ex-
periment with one exception. In pilot work, second- and third-graders’
error rates exceeded 30% at 80-ms SOAs, and consequently, we opted
to use only the 150-, 240-, and 480-ms SOAs in this experiment. In
Experiment 2, children were presented with 144 trials in a session lasting
approximately 30 to 45 min. Like the adults, children were told their
median latencies and error rates for the practice trials and were encour-
aged to respond as quickly as possible without making mistakes. Children
had been in school a few months before they participated in the exper-
iment; the study was conducted in November.

Results

Latencies. Mean median correct latencies for false problems were ana-
lyzed in a 4 (Grade: second, third, fourth, or fifth) x 3 (SOA: 150, 240,
or 480 ms) X 3 (Size: small, medium, or large) x 2 (Probe: sum or
neutral) ANOVA with repeated measures on the last three factors. The
main effect of grade was significant, F(3, 76) = 11.28, p < .001; children
in higher grades responded more quickly than children in lower grades.
Latencies declined with increasing SOA, F(2, 152) = 15.88, p < .001,
presumably because longer SOAs afforded more encoding and prepro-
cessing time for the initial pair. Response time decreased as the size of
the initial pair increased, F(2, 152) = 3.37, p < .05. Although the main
effect of probe was not significant, the probe by SOA interaction was
F(2, 152) = 17.37, p < .001. More specifically, sum probes only resulted
in significant interference at 150-ms SOAs, F(1, 152) = 7.77, p < .001.
The probe by size interaction also proved significant, F(2, 152) = 3.27,
p < .05; interference effects were obtained with small integers, F(1, 152)
= 5.19, p < .01, but not with medium or large integers. For the sum
probes, response time decreased as integer size increased, F(2, 38) =
8.02, p < .01; however, integer size did not have an effect on trials
involving neutral probes. More importantly, the Grade X SOA X Size
interaction was significant, F(12, 304) = 2.48, p < .001. The nature of
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this interaction is discussed below. No other effects proved to be significant
in the overall analysis.

Given our interest in more specific age effects and the differences in
variability across grades, mean median correct rejection latencies were
analyzed separately for each grade level using a 3 (SOA) x 3 (Size) x
2 (Probe) repeated measures ANOVA. The data from both the fourth-
and fifth-graders mirror our earlier findings with adults. More specifically,
for the fifth-graders, there was a significant effect of SOA, F(2, 38) =
19.73, p < .001, due to a decrease in response time with increasing SOA®.
Although there was no main effect of probe, there were significant two-
way interactions between probe and SOA, F(2, 38) = 9.33, p < .001,
and probe and size, F(2, 38) = 3.35, p < .05. The probe by SOA
interaction reflected the fact that the interference effect was only signif-
icant at 150-ms SOAs, F(1, 38) = 15.7, p < .001, and the probe by size
interaction resulted from significant overall interference effects being ob-
tained with the small integers, F(1, 38) = 6.38, p < .01, but not with
medium or large integers. The more important findings, however, concern
the relation among SOA, integer size, and type of probe. Although the
three-way interaction did not prove significant, planned comparisons were
used to test the difference between sum and neutral probes separately
for small, medium, and large integers at each SOA. The pattern of results
was similar to our earlier findings with adults; significant interference was
obtained with small, F(1, 76) = 8.67, p < .01, medium, F(1, 76) = 5.10,
p < .05, and large, F(1, 76) = 6.89, p < .01, integers but only at 150-
ms SOAs (see Table 3). Unlike the adults, however, with the large in-
tegers, fifth-graders rejected the sum probes more quickly than the neutral
probes at 480-ms SOAs, F(1, 76) = 6.05, p < .05. As we report below,
a similar facilitation effect appeared in the second-graders’ data for the
large integers at 480-ms SOAs. We do not have any explanation for these
negative effects but given they only appear with our oldest and youngest
subjects, and in each case only with one size category, it is probably best
not to attach too much weight to these occurrences.

Our findings with fourth-graders were quite similar. The SOA factor
again proved significant, F(2, 38) = 9.48, p < .001, and once again, there
was a decrease in response time with increasing SOA. SOA also interacted
with the probe factor, F(2, 38) = 3.30, p < .05, showing a significant
interference effect at 150-ms SOAs, F(1, 38) = 5.23, p < .05, but not
at longer SOAs. Although the SOA X Size X Probe interaction was not
significant, planned comparisons revealed that at 150-ms SOAs, the sum
probes were responded to more slowly than the neutral probes regardless

? Polynomial trend analyses (Abdi, 1987; Keppel, 1982) were used to assess the differences
among the three means associated with significant F values. In all cases, the results of the
trend analyses proved significant.
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TABLE 3
MEaN MEDIAN LATENCIES (IN mS) AND PERCENTAGE ERRORs FOR THE FALSE ITEMs

(Sum/NEUTRAL PROBES) IN EXPERIMENT 2

237

SOA
Grade Integers 150 240 480
Second
Small M 1998/1704* 1808/1631 1637/1577
E(%) 28.8/8.8 25.0/11.3 21.3/8.8
Medium M 1712/1598 1645/1671 1448/1543
E(%) 22.5/6.3 21.3/5.0 20.0/5.0
Large M 1528/1632 1552/1483 1441/1879"
E(%) 27.5/10.0 25.0/6.3 20.0/6.3
Third
Small M 1786/1531* 1711/1667 1686/1816
E(%) 26.3/8.8 25.0/8.9 16.3/5.0
Medium M 1820/1567* 1735/1602 1430/1596
E(%) 17.5/7.5 16.3/2.5 10.0/2.5
Large M 1762/1637 1634/1696 1444 /1511
E(%) 26.3/5.1 26.3/3.8 16.3/2.5
Fourth
Small M 1661/1512* 1467/1457 1363/1486
E(%) 26.3/8.8 16.3/5.0 13.8/5.0
Medium M 1725/1559* 1375/1207 1352/1483
E(%) 20.0/3.8 16.25/3.8 12.5/5.0
Large M 1647/1510* 1373/1557 1337/1340
E(%) 22.5/5.1 13.8/5.0 12.5/3.8
Fifth
Small M 1157/1011* 955/936 987/970
E(%) 22.5/7.5 23.8/10.0 12.5/6.3
Medium M 1167/995* 954/1025 894/1016°
E(%) 17.5/3.8 21.3/3.8 12.5/2.5
Large M 1159/1029* 926/990 905/942
E(%) 18.8/5.1 16.3/5.0 8.8/1.3

Note. All differences in error rates for sum and neutral probes were significant at p <

05.

* Significant interference effect, p < .05.
* Reversal of the interference effect, p < .05.

of integer size, F(1, 76) = 4.24, p < .05 for the small integers, F(1, 76)
= 4.78, p < .05 for the medium integers, and F(1, 76) = 3.90, p < .05
for the large integers. No other comparisons reached significance.

As predicted, for both the third-graders and second-graders the inter-
ference effects depended on both SOA and the size of the integers. For
the third-graders, the SOA factor was marginally significant, F(2, 38) =
2.90, p < .10, and response times decreased with increasing SOA. SOA
interacted with integer size, F(4, 76) = 2.56, p < .05; for the small
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integers, response time increased as SOA increased, F(1, 76) = 13.0,
p < .001, whereas for the medium and large integers, response times
decreased as SOA increased, F(1, 76) = 5.20, p < .05 and F(1, 76) =
7.67, p < .01, respectively. Although the reason for this interaction is
unclear, it appears to be primarily a function of differences that occurred
with the neutral probes. The SOA by probe interaction also proved sig-
nificant, F(2, 38) = 8.09, p < .01; again because the interference effect
was only significant at 150-ms SOAs, F(1, 38) = 13.09, p < .001. The
three-way interaction involving SOA, size, and probe was not significant,
but planned comparisons revealed that the interference effect was only
significant at 150-ms SOAs with the small integers, F(1, 76) = 4.11,
p < .05, and the medium integers, F(1, 76) = 4.05, p < .05 (see Table
3).

For second-graders, the SOA by probe interaction was significant, F(2,
38) = 4.40, p < .05; the interference effect was marginally significant at
150-ms SOAs, F(1,38) = 3.66, p < .10, and did not approach significance
at any other SOA. There was a main effect of size, F(2, 38) = 3.33,
p < .05; response times quickened as integer size increased. The size
factor also interacted with the probe factor, F(2, 38) = 4.56, p < .05;
significant interference effects were only obtained with small integers,
F(1, 38) = 5.09, p < .05. There was no significant three-way interaction,
but planned comparisons revealed that the interference effect was only
significant with small integers at 150-ms SOAs, F(1, 76) = 5.48, p < .05,
and that significant facilitation for the sum probes was seen at 480 ms for
the large integers, F(1, 76) = 12.61, p < .01.°

* One question that might be raised in connection with our findings is whether our results
were affected by multiplicative relations that existed between some of the pairs and probes.
Although the product of the original digit pair never appeared as a probe, occasionally a
member of the pair was a multiple of one of the probes. For the small integers, a multiple
of one of the probes appeared on both a sum trial and neutral trial, making any potential
effects on this condition negligible. However, for the medium integers, three of the sum
probes bore this relation to a member of the digit pair, and for the large integers, one of
the neutral probes did. If these multiplicative relations affected performance, sum-based
interference effects would have been overestimated with the medium integers and under-
estimated with the large integers. Although this possibility cannot be ruled out, the inter-
action between age and integer size that emerged in our experiments argues against it.
Older children and adults experienced interference with all three integer sizes although it
is possible that this factor may have inflated the interference effect displayed by the third-
graders with the medium integers. It is also worth pointing out that in our third experiment,
interference effects again depended on the age of the child and the size of the numbers
even though different stimulus materials were used. Finally, we point out that although
cross-operation answers produce interference in addition tasks and same table errors have
proved problematic in multiplication tasks, there is no evidence that multiplication relations,
especially those involving a digit that is one possible multiplier of another, disrupt perfor-
mance in number-matching tasks that do not make explicit mention of arithmetic operations.
Thus, although differences in the number of multiples that appeared in our stimulus set
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Accuracy. Errors averaged 12.5% across subjects and were analyzed
both in an overall analysis and in separate analyses performed at each
grade level (see Table 3 for the relevant means). For the overall analysis,
error rates were examined in a 4 (Grade) x 3 (SOA) x 3 (Size) x 2
(Probe) ANOVA with repeated measures on the last three factors. All
main effects proved significant. Older children made fewer errors, F(3,
76) = 4.19, p < .01; overall error rates were 15.5, 12.6, 11.0, and 11.0%
for grades 2, 3, 4, and 5, respectively. Longer SOAs were associated with
fewer errors, F(2, 152) = 15.07, p < .001 (mean error rates were 14.8%
at 150 ms, 13.2% at 240 ms, 9.6% at 480 ms SOAs). Error rates for sum
probes were 19.4% and for neutral probes 5.7%, indicating a significant
interference effect, F(1, 76) = 34.53, p < .001. The only significant
interaction was between SOA and probe, F(2, 152) = 6.06, p < .01,
which reflected the greater interference obtained at shorter SOAs.

Separate ANOVAs were performed at each grade level. For the fifth-
graders, higher error rates were associated with shorter SOAs, F(2, 38)
= 5.18, p < .01, and sum probes resulted in more errors than neutral
probes, F(1, 19) = 71.51, p < .001. Error rates were also lower with
larger integers, F(2, 38) = 4.21, p < .05, but none of the interactions
proved significant. For the fourth-graders, error rates were higher at
shorter SOAs, F(2, 38) = 4.42, p < .05, and more errors were made
with sum probes than with neutral probes, F(1, 19) = 62.77, p < .001.
No other effects reached significance.

All three main effects proved significant for the third-graders. Shorter
SOAs led to more errors, F(2, 38) = 7.08, p < .01, and error rates were
higher with sum probes, F(1, 19) = 106.06, p < .001. The medium integers
resulted in more errors than the small and large integers, F(1, 38) =
10.42, p < .01. None of the interactions proved significant. For the second-
graders, only one effect reached significance; children’s error rates were
higher with the sum probes than they were with the neutral probes, F{(1,
19) = 110.45, p < .001.

To summarize, at all grade levels, the sum probes were associated with
higher error rates, and there was no evidence that differences in response
time were a function of a speed-accuracy trade-off. Errors sometimes
varied as a function of SOA and integer size, although the interaction
effects we observed in the latency data were not always seen in the
accuracy data, presumably due to floor effects.

Discussion

Our results show that elementary school children take more time to
reject distractors that are equal to the sum of the digits in a number-

could have affected our results, we do not believe that their presence compromised our
findings.
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matching task. In our experiment, the prevalence of these latency-based
confusion effects depended on the age of the subject and the size of the
numbers. Second-graders only evidenced confusion effects when both in-
tegers in the original pair were 5 or smaller. Third-graders experienced
interference effects with both small problems and medium problems in
which one integer in the original pair was 5 or smaller and the other
integer was between 6 and 9. Like the adults in Experiment 1, fourth-
and fifth-graders experienced these confusion effects with all three integer
sizes, including large problems in which both numbers were between 6
and 9. Moreover, the temporal parameters that governed these effects
were similar for children and adults. All age groups experienced inter-
ference effects at 150-ms SOAs, but these effects were not evident at 240
ms. Our results, then, suggest that associations between integers and their
sums are sufficiently built up by second grade to receive obligatory ac-
tivation in a number-matching task despite the fact that additive operations
are not relevant in this context, and that these task-irrelevant associations
are inhibited, or begin to dissipate, within 240 ms of processing. Recall
that the critical difference between a completely and partially autonomous
process is that although both are initiated without intention, only partially
autonomous processes can be inhibited once they have begun (see Zbro-
doff & Logan, 1986). Thus, our findings suggest that for certain number
pairs, the processes that mediate sum activation are partially autonomous
in elementary school children, although the extent to which this is true
depends on both the age of the child and the size of the integers.

In LeFevre et al.’s (1991) study, the only suggestion that elementary
school children might experience additive-based confusion effects came
from error rates. Children made more errors when the probe was the
sum of the original pair and this effect was strongest when the sum was
also relatively close to the original pair. In their study, distance was
operationalized as the average difference between each number in the
pair and the probe. LeFevre et al. suggest that upon presentation of the
original pair, both sums and numbers relatively close to the original digits
become active and that it may take activation from both these sources to
produce substantial interference in number-matching tasks. There was no
evidence in LeFevre et al.’s study that sum activation had an effect on
response time either by itself or in conjunction with the distance manip-
ulation. In contrast, the distance effects were rather pronounced: Children
responded more slowly to probes that were close to the original numbers.
LeFevre et al. offer these findings as evidence that count-string associa-
tions remain strong throughout the elementary school years and that fact-
based associations only gradually reach sufficient strength to produce in-
terference effects.

In our study, the mean distance between the pair and the probe covaried
with integer size, and younger children took longer to reject false answers
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to small problems. This is consistent with LeFevre et al.’s (1991) claim
that interference is strongest when the distance between the pair and
probe is small. LeFevre et al. argue that the prevalence of counting-based
solution strategies in young children contributes to this effect. The strong
number-line connections that develop as a consequence of these com-
putational strategies are thought to result in the numbers close in mag-
nitude to the initial pair being more strongly activated than distant num-
bers. Although we agree that number-line associations can produce
interference, these associations are not sufficient for explaining the overall
pattern of response times we observed in our study. In our experiment,
integer size only had an effect on second- and third-graders’ performance
with sum probes; distant effects were not evident with the neutral probes.
Although this could mean that both number-line associations and sum-
based activation are required to produce interference, an alternative ex-
planation is that sum activation is strongest for small numbers because
small number facts are learned first and practiced more frequently. How-
ever, regardless of which alternative proves correct, it is clear from our
findings that obligatory activation of sums occurs as early as grade 2 in
simple number-matching tasks despite the fact that addition is not relevant
in these contexts. Our work also suggests that these effects follow a similar
time-course in children and adults.

EXPERIMENT 3

When adults are asked to verify simple arithmetic problems, false an-
swers that have associative links to the presented problems take more
time to reject. The interference effects that arise when multiplicative
answers are given to addition problems and additive answers are given
to multiplication problems have been labeled associative confusion effects.
Presumably, these effects are a result of activation spreading from the
arguments in the equation to their sum and product independent of which
operation is designated in the equation. In the third experiment, we
examine whether the associations between a number pair and its sum or
product are strong enough to produce associative interference effects in
children. More specifically, we focus on whether children’s knowledge of
simple arithmetic is represented in an integrated network that can po-
tentially give rise to associative confusion effects.

One reason for suspecting that elementary school children might ex-
perience an associative confusion effect is that they frequently make mis-
takes of this sort when solving simple arithmetic problems. In their analysis
of elementary school children’s arithmetic errors, Miller and Paredes (Expt
2, 1990) found that cross-operation errors (responding with a multipli-
cation answer, such as 32, to an addition problem, such as 8 + 4 = ?)
accounted for 48% of all addition errors made by fourth-graders, 14%
of the addition errors made by the third-graders, and 4% of the addition
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errors made by the second-graders. It is worth noting that in this particular
experiment, the trials were blocked so that children only needed to per-
form a single operation for each block of trials. Cross-operation errors
were even more frequent when addition and multiplication problems were
mixed within the same trial block. What is especially interesting about
Miller and Paredes’ study is that they found a pattern of developmental
changes suggesting that learning to multiply interferes with children’s
ability to solve addition problems. When children first learn to multiply,
their solution times for addition problems become slower and they make
substantially more cross-operation errors on addition problems than on
multiplication problems. Miller and Paredes argue that this temporary
disruption in addition skills is a result of multiplication facts being in-
corporated into knowledge structures that also serve addition.

Although Miller and Paredes’ (1990) work suggests that facts about
different arithmetic operations are integrated in the early stages of skill
acquisition, it is not clear how or when information about irrelevant
operations is activated. Recall that adults experience associative confusion
effects because information about irrelevant operations is always activated
to some extent. If simple arithmetic operations can be activated in the
absence of intention (i.e., if they are at least partially autonomous), then
children should take more time to reject an incorrect answer if it is an
associative lure.

Hamann and Ashcraft (1985) present data suggesting that the associative
confusion effect emerges rather late in development. In their study, stu-
dents in grades 1, 4, 7, and 10 verified simple and complex addition
problems. Half of the false problems contained associative lures (i.¢., the
incorrect answer was the product). In this study, only the tenth-graders
produced the slower responses for the associative problems which are
indicative of this confusion effect. In subsequent work on latency-based
confusion effects, Koshmider and Ashcraft (1991) found that confusion
problems containing incorrect answers that were near multiples of the
target problem (e.g., 4 X 8 = 24) do not slow verification time until
ninth grade, suggesting more generally that simple arithmetic processes
that are partially autonomous later in development may not be initiated
without intention prior to ninth- or tenth-grade.*

The results of our second experiment, however, argue against this inter-
pretation. The interference effects we observed suggest that when children
see a pair of numbers, a certain amount of activation automatically spreads
to their sum. If sum activation also occurs when number pairs are pre-

* Koshmider and Ashcraft (1991) also found that error rates were higher when the false
answer was a near multiple of the target problem. This difference in error rates was significant
beginning in fifth grade. A similar trend emerged in Miller and Parades’ (1990) production
task. One of the more common errors made by both children and adults involved reporting
a product that was off by a factor of one (see also Campbell, 1987a, 1987b).
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sented in a multiplication equation, associative confusion effects should
be evident for these problems. Similarly, confusion effects due to product
activation also seem likely given that many of the errors older elementary
children make when solving addition problems involve incorrectly re-
porting the product of the addends. Additional evidence that both product
and sum activation occur in elementary school children comes from Zbro-
doff’s (1979) and Lemaire et al.’s (1991) research on latency-based con-
fusion effects in equation verification tasks. In contrast to Hamann and
Ashcraft’s (1985) findings, both studies report evidence of associative
confusion effects in elementary school children.

Experiment 3 focuses on the emergence of associative confusion effects
in elementary school children. Children were tested at the beginning,
middle, and end of the academic year in an attempt to pin down more
clearly when in development these effects emerge and whether they
emerge simultaneously for addition and multiplication. In Miller and Pa-
rades’ (1990) study, solution times for addition and multiplication prob-
lems varied during the school year. Although children became faster at
solving multiplication problems over the course of the school year, solution
times for addition problems revealed a different pattern. More specifically,
second-graders in advanced math classes and third-graders in regular math
classes required more time to solve addition problems as the school year
progressed, and significantly, this increase in solution times for addition
problems occurred during the time period when children were actively
learning multiplication. Changes in error patterns also suggested that
learning to multiply temporarily disrupts addition skills: The percentage
of cross-operation errors was highest for third- and fourth-graders and
reached its peak in the middle of fourth grade. Based on Miller and
Parades’ findings, we expected that third- and fourth-graders would find
false addition equations in which the answer corresponded to the product
especially difficult.

In Experiment 3, children were presented with simple equations and
had to indicate whether the presented answer was true or false as quickly
and as accurately as possible. Half of the problems contained associative
lures that would have been correct under a different operation. Longer
rejection times for problems with associative lures would be indicative of
an associative confusion effect. In the adult literature, associative con-
fusion effects have proven stronger when addition and multiplication prob-
lems are presented in the same block, and in our experiment, we presented
children with mixed blocks of simple addition and multiplication problems
to maximize the likelihood that we would obtain evidence of these effects.

Method

Subjects. Twenty-seven elementary school students, nine each from
grades 3, 4, and 5 of a suburban school in France participated in this
study. At the beginning of testing, the third-graders ranged in age from
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7.9 to 8.2 (M = 8.0), the fourth-graders ranged in age from 8.8 to 9.3
(M = 9.1), and the fifth-graders ranged in age from 10.0 to 10.9 (M =
10.1).

Stimuli. The stimuli were addition and multiplication equations pre-
sented in standard form (i.e., a + b = cor a X b = ¢), where the
operands @ and b were single digits from 2 to 9. One and zero were not
included because it is generally believed that subjects do not solve these
problems by retrieving the solution directly from memory but instead
retrieve rules (e.g., n X 0 = 0) that guide their solution (see Ashcraft,
1982; Baroody, 1985). The equations 2+ 2 and 2 x 2 were not included
because the sum and product of these operands are identical. In generating
the stimuli, operand order was ignored (i.e., 3 x 4 and 4 x 3 were
considered to be equivalent problems and only one variant was presented).
The resulting set of stimuli consisted of 35 true addition problems and
35 true multiplication problems. Following the procedure outlined in the
first experiment, the problems were classified as small, medium, or large
based on the size of the arguments. In the small integer condition, both
arguments were 5 or smaller. In the medium integer condition, one ar-
gument was 5 or smaller and the other argument was between 6 and 9.
In the large integer condition, both arguments were between 6 and 9.

A set of false problems was also created. For each equation, both a
confusion and nonconfusion problem were generated. When the equation
involved addition, the ¢ term for the confusion problem was the product
of the two operands (3 + 5 = 15), and for the multiplication problems,
¢ was the sum (3 X 5 = 8). Nonconfusion problems were also generated
such that ¢ was neither the sum nor the product of a and b (e.g., 3 +
4 = 8). The ¢ terms for the nonconfusion problems were chosen so that
the difference between the correct answer to the equation and the ¢ term
(the *‘split”) would match the corresponding split in the confusion con-
dition (see Zbrodoff & Logan, 1986). This was necessary because some
confusion problems have large splits (e.g., 9 + 9 = 81) and the split is
known to affect reaction time in arithmetic verification tasks (Ashcraft &
Battaglia, 1978; Zbrodoff & Logan, 1990). To equate the splits, the answer
to the nonconfusion problem was equal to the answer to the corresponding
confusion problem plus or minus one. The false problems were also catego-
rized as involving small, medium, or large integers, and the mean splits
for the confusion and nonconfusion problems were equated for each prob-
lem type. Because the correct answers and the answers to the confusion
problems for addition and multiplication were the inverse of one another,
the split did not vary across operation. Each of the 70 true equations
appeared twice so subjects saw 140 true equations and 140 false equations
(half of which were confusion problems).

Procedure. The equations were presented in the center of a computer
screen (SAMSUNG SPC 3000V). Each trial began with a 750-ms ready



ADDITION AND MULTIPLICATION FACTS 245

signal (a line of five ““a”s) which appeared in the center of the screen.
The equation was then displayed horizontally in the center of the screen.
The equations were in the form “a + b = ¢” or “a X b = c¢.” The
symbols and numbers were separated by spaces equal to one half the
width of each character. The equation remained on the screen until the
child responded. The subject was instructed to respond “true” or “false”
by pressing the appropriate button on the keyboard. The two farthest
letter keys on the second row were designated as true and false. All
subjects were instructed to use their left and right index fingers to press
these keys and the position of the true and false keys was counterbalanced
across subjects.

All children were presented with the same 280 problems. These prob-
lems were randomly ordered for each subject with the restriction that no
more than four consecutive trials could require the same response. The
stimuli were presented in two 140-problem trial blocks; each block was
composed of 70 true and 70 false problems. Children were permitted a
5-min rest between blocks. Before the experimental trials, children were
given one block of 40 practice problems to familiarize them with the
apparatus and procedure. After these practice trials, children were re-
minded of the instructions and were told their median latency and error
rate. They were also encouraged to work as fast as they could without
making mistakes. Each session lasted approximately 30-45 min.

Children were tested in October, February, and June of the same school
year. The same procedure with the same subjects and identical problems
was repeated for each session of testing. The first session began after the
first 4 weeks in the school year. The final session of testing concluded
within 3 weeks of the end of the school term.

Results

Latencies for true problems. The mean median correct response times
for the true problems were analyzed using a 3 (Grade: third, fourth, and
fifth) x 3 (Testing session: October, February, and June) x 3 (Integer
size: small, medium, and large) x 2 (Operation: addition and multipli-
cation) ANOVA with repeated measures on the last three factors. Ties
(ie, problems with identical arguments) were excluded from the analysis.’
Children in higher grades responded more quickly than those in lower
grades, F(2, 24) = 79.01, p < .001, and performance improved across

* Although we included ties (i.e., problems with identical arguments) in our design, past
work suggests that problem size effects are less likely to be seen with these number pairs.
In our preliminary analyses, we found that integer size did not have a significant effect on
either the true problems involving ties or the false problems involving ties. Given the
importance of integer size in our work and that ties have been eliminated from a number
of other studies, we only report the results of the analyses from which ties were excluded
although a similar pattern of results emerged when the ties were included in the data set.
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sessions, F(2, 48) = 8.41, p < .001. Verification times also decrcased as
integer size decreased, F(2, 48) = 54.94, p < .001. No other effects reach
significance.

Given the difference in variability across grades and our interest in
more specific age effects, separate ANOVAs were performed on the data
for each grade level. The factors wee Testing session, Integer size, and
Operation. The fifth-graders performed similarly across sessions. How-
ever, their performance did vary as a function of both integer size, F(2,
16) = 24.68, p < .001, and operation, F(1, 8) = 14.02, p < .01. The
interaction between these two factors was also significant, F(2, 16) =
16.83, p < .001. Pairwise comparisons using Tukey’s honestly significant
difference (HSD) test revealed that the multiplication equations were
verified more quickly than the addition equations, but that this was only
true for problems involving small and medium numbers. For problems
with large numbers, although the means were in the same direction, the
difference was not significant.

The fourth-graders did improve across testing sessions, F(2, 16) = 6.44,
p < .01, and the interaction between testing session and operation proved
significant, F(2, 16) = 33.17, p < .001. True multiplication facts were
verified more quickly than the addition facts but this difference was only
significant in June. Children’s verification times also decreased as integer
size decreased, F(2, 16) = 59.88, p < .001.

The third-graders also improved across testing sessions, F(2, 16) =
25.50, p < .001, and their verification times decreased as integer size
decreased, F(2, 16) = 55.37, p < .001. There was a main effect of
operation, F(1, 8) = 15.85, p < .01. Multiplication problems were faster
than addition problems, but this advantage was only evident at the Feb-
ruary and June testing sessions and was only seen with the small and
medium integers. These effects were reflected in the significant session
by operation interaction, F(2, 16) = 49.98, p < .001, and size by operation
interaction, F(2, 16) = 82.46, p < .001.

Latencies for false problems. The mean median reaction times for false
problems that were correctly rejected (excluding the ties) were analyzed
in a 3 (Grade: third, fourth, and fifth) X 3 (Testing session: first, second,
and third) X 3 (Integer size: small, medium, and large) x 2 (Operation:
addition and multiplication) X 2 (Probe: confusion, nonconfusion) design
with repeated measures on the last four factors.

The grade effect proved significant, F(2, 24) = 57.93, p < .01: Older
children responded more quickly than younger children. Mean median
rejection times were 1595 ms for the fifth-graders, 2443 ms for the fourth-
graders, and 3035 ms for the third-graders. Overall response times de-
creased as the school year progressed, F(2, 48) = 14.36, p < .001, and
the grade by testing session interaction also reached significance, F(4, 48)
= 8.25, p < .001. Separate analyses revealed that both the third-graders
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and fourth-graders rejected the false problems more quickly as the school
year progressed [F(2, 16) = 15.51, p < .001; F(2, 16) = 5.77, p < .05,
respectively]. For fifth-graders, the testing session effect was not signifi-
cant. More importantly, the confusion problems were rejected more slowly
than the nonconfusion problems, F(1, 24) = 167.60, p < .001, and as
the size of the problem increased, so did the time needed to reject the
false answers, F(2, 48) = 83.77, p < .001. The size by probe interaction
proved significant, F(2, 48) = 145.32, p < .001, as did the size by grade
and probe by grade interactions [F(4, 48) = 27.65, p < .001; F(2, 16)
= 03.49, p < .001, respectively]. Finally, the four-way interaction in-
volving grade, size, probe, and testing session was significant, F(8, 96)
= 18.68, p < .001. The nature of this interaction was explored further
in separate analyses performed on the data for each grade. Mean correct
rejection latencies were analyzed using an ANOVA for a 3 (Testing
session} X 3 (Size) x 2 (Operation) x 2 (Probe) within-subjects design.
The mean latencies for each age group are presented separately in
Table 4.

For fifth-graders, the confusion effect proved significant, F(1, 8) =
8.80, p < .05, as did the effect of integer size, F(2, 16) = 44.81, p <
.001; rejection time increased as integer size increased. Although the
operation factor was not implicated in any interactions in the overall
analysis, the fifth-graders exhibited both a significant operation by size
effect, F(2, 16) = 15.43, p < .001, and a significant operation by size
by probe effect, F(2, 16) = 27.21, p < .001. For each grade and each
session, planned comparisons were used to evaluate the difference be-
tween confusion and nonconfusion problems for each size condition, and
the data are summarized in Table 4. With the multiplication problems,
fifth-graders evidenced an associative confusion effect for the small and
medium integers at each testing session. With the addition problems,
confusion effects were not evident in October but were seen in February
and June with both the small and medium integers. Confusion effects
were not obtained with the large integers at any testing session, and in
fact, the fifth-graders were faster at rejecting answers to multiplication
problems that were the sum of the arguments at the last two testing
sessions, although the reason for this advantage is not known. The more
important finding to note from the fifth-grade data is that the associative
confusion effect was seen with both small and medium numbers.

For the fourth-graders, significant main effects were found for testing
session, F(2, 16) = 5.77, p < .05, integer size, F(2, 16) = 75.22, p <
.001, and probe, F(1, 8) = 11.64, p < .01. These effects were similar to
those found for the fifth-graders. Children’s performance improved over
the school year, and as integer size increased so did response time. Once
again, confusion problems took longer to reject than nonconfusion prob-
lems. These effects were qualified by a number of significant two-way
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TABLE 4

MEAN MEDIAN LATENCIES (IN ms) AND PERCENTAGE ERRORs FOR THE FaLse [TEMs

(CoNFUSION/NONCONFUSION ANSWERS) IN EXPERIMENT 3

Session
Integers October February June
Grade 3
Multiplication Small M 3592/3398** 2740/2488** 2238/1987**
E(%) 2.0/1.9 1.7/1.8 1.1/1.3
Medium M 3640/3528 2779/2603* 227772102
E(%) 2.2/2.2 2.0/2.1 1.4/1.6
Large M 3616/3791 2761/2841 231572335
E(%) 2.4/2.2 2.4/2.3 1.7/1.9
Addition Small M 3424/3631" 2798/2829 2576/2334**
E(%) 2.2/2.0 2.4/2.6 1.8/1.8
Medium M 3534/3761" 2907/2944 2681/2449
E(%) 2.0/2.0 2.6/2.4 1.9/1.8
Large M 373874065 3103/3256 2876/2761
E(%) 2.3/2.0 2.5/2.5 1.9/1.8
Grade 4
Multiplication Small M 2869/2573%** 2319/2127* 2269,/1983***
E(%) 1.9/2.0 1.7/2.0 1.0/1.1
Medium M 2917/2703%** 2358/2242 2308,2098
E(%) 1.8/1.9 1.9/2.0 1.2/1.2
Large M 2893/2978 2339/2497 2290,/2353
E(%) 2.0/2.0 2.1/2.1 1.4/1.3
Addition Smail M 2758/2623 2321/2073** 2045/1805%*
E(%) 2.0/2.0 1.5/1.5 1.9/1.8
Medium M 2865/2752 2420/2172** 2151/1913%**
E(%) 2.1/2.3 1.6/1.7 1.1/12
Large M 3079/3077 2613/2521 2347/2243
E(%) 2.2/2.1 1.4/1.3 1.3/1.3
Grade §
Multiplication Small M 1544 /1254*** 1455/1313%*+ 1326/ 1145%**
E(%) 1.7/1.8 1.6/1.7 1.5/1.8
Medium M 1669/1382%** 1600/1428%** 1438/1252%**
E(%) 1.8/2.0 1.8/1.9 1.4/1.8
Large M 1613/1681 1513/1747" 1397/1587"
E(%) 1.9/2.2 2.0/2.1 1.6/1.8
Addition Smail M 1709/1629 1710/1532%%* 1518/133 7+
E(%) 1.6/1.7 1.9/2.1 1.0/1.0
Medium M 1828/1769 1839/1651*** 1617/1492**
E(%) 1.8/2.0 1.9/2.2 1.1/1.2
Large M 2003/2046 2017/1990 1825/1844
E(%) 2.0/2.2 1.9/2.0 1.1/1.2

* Marginal confusion effect, p < .10.
** Significant confusion effect, p < .05.
*** Significant confusion effect, p < .01.
* Reversal of the confusion effect, p < .05,
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interactions involving session and probe, F(2, 16) = 24.77, p < .001,
session and operation, F(2, 16) = 51.39, p < .001, size and operation,
F(2, 16) = 21.95, p < .001, as well as a significant three-way interaction
involving size, operation, and probe, F(2, 16) = 28.02, p < .001, and a
marginally significant interaction involving session, operation, and probe,
F(2, 16) = 2.81, p < .10. The four-way interaction involving session,
size, operation, and probe was also marginally significant, F(4, 32) =
2.25, p < .10, and once again, the nature of these effects is most easily
understood with reference to the means presented in Table 4. As can be
readily seen, the fourth- and fifth-graders performed similarly. With mul-
tiplication problems, fourth-graders experienced an associative confusion
effect with small integers in October and June, although the confusion
effect was only marginally significant for the small integers in February.
For the medium multiplication problems, the confusion effect was also
significant in October and June but not February. With addition problems,
a confusion effect was evident in February and June, and again this was
present for both the small and medium integers, suggesting that by Feb-
ruary product-based associations are strong enough to iead to automatic
activation. Response times for the large integers did not differ for the
confusion and nonconfusion problems.

For the third-graders, the overall confusion effect was only marginally
significant, F(1, 8) = 4.51, p < .10. Response times became slower as
integer size increased, F(2, 16) = 73.44, p < .001. A significant testing
session effect was observed, F(2, 16) = 15.51, p < .001; children rejected
the false problems more quickly at each session. A number of interactions
involving integer size and probe proved significant. These included a size
by probe interaction, F(2, 16) = 24.04, p < .001, a size by probe by
session interaction, F(4, 32) = 23.20, p < .001, a size by probe by
operation interaction, F(2, 16) = 17.71, p < .001, and a size by probe
by operation by session interaction, F(4, 32) = 20.60, p < .001. Table
4 helps to clarify the nature of these effects. An associative confusion
effect was observed with the small multiplication problems at all three
testing sessions which indicates that sum-based associations compete with
third-graders’ retrieval of multiplication facts. For the addition problems,
an associative confusion effect was obtained with both the small and
medium integers in June indicating that as children master multiplication
facts, confusion effects due to product activation become more prevalent.
In October, children were faster at rejecting answers to addition problems
that were the product of the two numbers; the reason for this reversal
of the confusion effect is not clear although it is worth noting that inter-
ference effects due to product activation were not evident at the first
session for any age group.

Accuracy. The overall error rates in our verification task were relatively
low (3.1% for the true problems and 1.7% for the faise problems) in
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comparison to the error rates obtained when children are required to
generate answers to comparable problems (see Miller & Paredes, 1990),
and, consequently, any differences in error rates must be interpreted with
caution. The mean error rates are included in Table 4. Errors on the true
problems were examined using a Grade X Session X Size X Operation
ANOVA with repeated measures on the last three factors. The grade
effect was significant, F(2, 24) = 9.55, p < .001; the mean error rates
were 2.2% for the fifth-graders, 3.2% for the fourth-graders, and 4.0%
for the third-graders. Children’s error rates also varied with integer size,
F(2, 48) = 4.96, p < .01, they erred on 2.7% of the small problems,
3.1% of the medium problems, and 3.5% of the large problems. No other
main effects or interactions proved significant.

Errors on the false problems were also examined using an ANOVA;
Grade was a between-subjects factor and Session, Size, Operation, and
Probe were within subject factors. The grade effect again proved signif-
icant, F(2, 24) = 12.10, p < .001; the mean error rates were 1.7% for
the fifth-graders, 1.6% for the fourth-graders, and 1.9% for the third-
graders. Error rates also decreased across sessions, F(2, 48) = 15.16,
p < .001. Children erred on 2% of the problems in October, 1.9% in
February, and 1.4% in June. No other effects were significant, and as
indicated in Table 4, differences in error rates for the confusion problems
were never significant. Again, this result is likely to be a function of floor
effects. Although it is difficult to draw any strong conclusions from the
error data, it is clear that the results obtained with the latency data are
not compromised by a speed—accuracy trade-off.

Discussion

The results of the third experiment demonstrate that latency-based
associative confusion effects are not limited to adults and high school
students. In our study, children in grades three through five were slow
to reject answers that would have been correct if a different operation
was performed. The prevalence of this effect, however, varied with the
age of the child and the size of the numbers. Differences in the prevalence
of associative confusion effects across sessions were also observed. Con-
fusion effects due to sum activation affected children’s performance with
the multiplication problems at all three sessions. In contrast, interference
due to product activation became evident later in the school year. These
variations most likely reflect differences in how addition and multiplication
facts are taught in school. Children in the French school system learn to
multiply in second grade, and multiplication facts are mastered through
rote memorization. In contrast, little time is spent memorizing addition
facts; children become familiar with addition facts in the context of prob-
lem solving activities. By the end of the school year, the French third-
and fourth-graders in our study verified simple multiplication equations
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faster than simpie addition equations, and for the fifth-graders, this ad-
vantage for multiplication problems was evident at all three sessions.
Miller and Parades (Experiment 1, 1990) report a similar finding: The
affluent students, who also had high math achievement scores, solved
multiplication problems faster than addition problems. Presumably, these
differences in response time are a function of the greater effort spent
developing multiplication skills. In our study, interference effects due to
product activation became increasingly evident as the school year pro-
gressed. The time children spent practicing their multiplication facts un-
doubtedly contributed to this effect. Thus while associations between two
integers and their sum were strong enough in October to produce inter-
ference effects, associations between two integers and their product had
not yet achieved sufficient strength to be automatically activated.

Although operation was one important determinant of confusion effects,
an even more important factor was the size of the numbers. Confusion
effects were never seen with large numbers despite the fact that children
were drilled on these problems. Not surprisingly, third-graders were most
affected by the difference between small and medium problems. Auto-
matic activation of the sum resulted in significant interference effects with
the small integers at all three sessions but these effects were never seen
with the medium integers. As the school year progressed and children
became more proficient in multiplication, interference effects were seen
with the addition problems due to product activation. When interference
effects were obtained with addition problems, these effects appeared si-
multaneously with both the small and medium integers and this may be
a reflection of the rote training with these facts that was part of the
multiplication curriculum. For the fourth- and fifth-graders, there was
little difference between the small and medium problems. At each testing
session, fifth-graders displayed the same pattern of confusion effects with
both the small and medium integers. For the most part, this was also true
for fourth-graders.

GENERAL DISCUSSION

It is clear from these experiments that the associations between a num-
ber pair and its sum or product are of sufficient strength during the
elementary school years to produce interference effects in a variety of
situations. When the present findings are considered in the context of
other research on confusion effects, it becomes apparent that the processes
that underlie mental arithmetic are partially autonomous in older ele-
mentary school children and adults and that the temporal parameters that
govern the inhibition of these effects are remarkably similar across de-
velopment.

In our first experiment, we found interference effects in a task which
required subjects to verify whether a target number had appeared in a
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previous number pair. When the target corresponded to the sum of the
original number pair, adults took longer to reject it, suggesting that when
a pair of numbers is presented, activation automatically spreads to its
sum. If the sum was presented within 150 ms of the target, interference
effects were clearly evident but these effects disappeared at longer SOAs,
suggesting that activation initially spreads to the sum of the arguments
and dissipates or is inhibited within 240 ms of processing. Our findings
complement LeFevre et al.’s (1991) results and suggest that sum activation
also occurs with large number pairs.

When we tested for interference effects in elementary school children,
we found that the size of the integers was a critical determinant of whether
interference effects were obtained with a specific age group. Even second-
graders experienced sum-based interference effects provided both integers
in the original number pair were small. Although the range of problems
affected by interference effects increased during the elementary school
years, it is worth noting that the temporal parameters responsible for
these effects remained the same. At all ages, interference effects appeared
when sums were presented within 150 ms of the original number pair and
disappeared at longer SOAs. One conclusion that we can draw from the
present study that is also supported by Lemaire et al. (1991) is that
obligatory activation of addition facts occurs in both children and adults
and that the temporal parameters governing interference effects are re-
markably similar in both groups. It would seem, then, that the processes
mediating sum activation are partially autonomous in elementary school
children as well as adults.

Research with adults suggests that interference effects are not limited
to sum activation. In arithmetic verification tasks, interference effects have
been attributed to inappropriate activation of both sums and products.
More specifically, associative confusion effects appear when adults are
presented with false answers that would have been correct if a different
operation was performed (Zbrodoff & Logan, 1986). These associative
confusion effects, however, can be inhibited and interference effects are
not obtained when the cross-operation answer is presented 300 ms after
the equation. This suggests that once adults are presented with an equa-
tion, they begin to activate nodes related to the two arguments and that
this activation spreads to both the sum and product. If adults are presented
with an incorrect answer that corresponds to either the sum or the product
of these arguments, they are slow to reject it because the corresponding
node has been partially activated, albeit incorrectly. However, the effects
of this initial activation are not long lasting, and within 300 ms, irrelevant
activation patterns either dissipate or are inhibited, and consequently,
associative lures cease to be problematic.

In the third experiment, we examined whether associations between
number pairs and their sums and products are of sufficient strength to
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produce interference effects in elementary school children. Our results
suggest that associative confusion effects are similar for elementary school
children and adults. When presented with a problem, children in grades
three though five activate candidate answers. The longer rejection time
associated with the confusion condition is necessary to inhibit incorrectly
activated answers and to select the correct answer which is then compared
to the proposed answer (Ashcraft, 1982, 1987; Ashcraft & Battaglia, 1978;
Hamann & Ashcraft, 1985). In our study, the extent to which sum and
product activation disrupted performance depended on whether children
were tested early or late in the school year. Sum activation proved to be
more robust than product activation and interfered with performance at
all three testing sessions. In contrast, interference effects due to product
activation emerged later in the school year. This suggests that a certain
amount of practice with multiplication facts is required before the asso-
ciations between operands and products are strong enough to lead to
automatic activation.

The associative confusion effects we observed in Experiment 3 depended
on both the age of the child and the size of the numbers. Fourth- and
fifth-graders only evidenced a confusion effect with the small and medium
numbers. These results differ slightly from our findings with these age
groups in the number-matching task. In that task, sum probes resulted
in more errors than neutral probes for small, medium, and large numbers.
For the third-graders, interference effects due to sum activation only
proved significant with the small integers in the arithmetic verification
task, although in the number-matching task, sum-based interference was
a problem with both small and medium numbers. Thus, although integer
size tends to have a somewhat more restrictive effect on arithmetic ver-
ification tasks, in both tasks, with increasing age, children experience
interference effects across a wider range of problems.

It should be noted that the interaction between integer size and the
confusion effect that emerged in our tasks was very different from the
interaction seen in Koshmider and Ashcraft’s (1991) study. In that study,
seventh-graders, ninth-graders, and college students only experienced con-
fusion effects with large problems; confusion effects were not seen with
small problems (operationalized as problems with products under 20). In
Koshmider and Ashcraft’s study, subjects only viewed multiplication prob-
lems and cross-operation answers were not presented. Instead, false an-
swers in the confusion condition were near multiples obtained by increas-
ing or decreasing one of the problem’s multipliers by one. The problem
size effect Koshmider and Ashcraft observed probably reflects the asso-
ciations that have been built up for the times table associated with each
multiplier. For large integers, the products tend to be more unique to
each table, making the associations between one multiplier and the other
entries in the table fairly strong. Large problems are also likely to be less
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well-known and consequently, the associations between the multiplier and
the correct answer and the multiplier and the confusion answer are likely
to be of comparable strength. In contrast, with small problems, the correct
associations between the multipliers and their product would be strong
relative to competing incorrect near multipliers, making interference ef-
fects less likely.

The confusion answers we presented in our study bore a different re-
lation to the arguments than those used in Koshmider and Ashcraft’s
(1991) work. In our arithmetic verification task, the association between
the arguments and the false answers in the confusion condition would
have been correct if the equation involved a different operation. In the
number-matching task, the confusion answers were the sum of the two
integers. Thus, our tasks look at the relative strength of correct associ-
ations between a pair of numbers and its sum and product. Under these
conditions, smaller well-known problems would be expected to produce
the strongest confusion effects because of the strong connections between
the arguments and the answers associated with them under various op-
erations.

Although we only examined the temporal factors that mediate inter-
ference in the number-matching task, in a related study, Lemaire et al.
(1991) investigated the time-course of the associative confusion effect in
fourth- and fifth-graders. In Lemaire et al.’s experiment, children were
presented with simple addition and multiplication problems under three
different conditions. In one condition, the answer was presented within
the equation, but in the other two conditions the answer was presented
either 300 or 500 ms after the equation. In that study, children proved
capable of inhibiting associative-based confusion effects: Confusion effects
were not seen at 500-ms delays although they were present at shorter
delays. The fifth-graders in Lemaire et al.’s study only experienced in-
terference effects with the addition problems; the interference effect for
the multiplication problems was not significant although the difference
between the means was in the right direction. In contrast, for the fourth-
graders, sum activation produced more interference than product acti-
vation and interference effects were evident at delays of 300 ms. When
we compare the present findings to Lemaire et al.’s results, it is not clear
why the relative effects of product and sum activation differ between the
two studies. It is worth noting, however, that Miller and Parades (1990)
report a similar discrepancy between two of their experiments and suggest
that differences in the extent to which multiplication is emphasized in the
schools and at home may account for the difference. Environmental factors
may also be responsible for the differences we observed. One of the
striking similarities, however, between the present findings and Lemaire
et al.’s is that in both studies, the processes mediating confusion effects
in children and adults appear to be partially autonomous.
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One question that can be raised about research on the associative con-
fusion effect is whether perceptual factors are responsible for this effect.
For example, subjects may perform poorly with associative lures because
after seeing an answer that would have been correct under a different
operation, subjects check to see if they have “‘misperceived” the sign.
Although we do not want to dismiss summarily the role perception plays
in the phenomenon, we believe that our experiments demonstrate rather
clearly that confusion effects are not an artifact of perceptual factors. The
strongest argument against this view is our finding that the effects of sum
activation are remarkably similar in arithmetic verification tasks and num-
ber-matching tasks even though the latter does not involve any arithmetic
signs that could be misperceived. It is also true that the interaction between
age and integer size is not easily explained by a perceptual account nor
are the effects of operation and testing session. Finally, Miller and Paredes’
(1990) finding that cross-operation errors are commonly produced by third-
and fourth-graders even when students are presented with only addition
problems or only multiplication problems also suggests that perceptual
factors alone are not responsible for associative confusion effects (see also
Winkelman & Schmidt, 1974; Zbrodoff & Logan, 1990).

A variety of tasks have been used to evaluate how arithmetic facts are
organized and retrieved in elementary school children. These include
number-matching tasks, arithmetic verification tasks, and priming tasks
(Koshmider & Ashcraft, 1991). One conclusion that emerges from this
work is that by third grade, children’s knowledge of some addition and
multiplication facts has reached sufficient strength to be routinely re-
trieved. This is not to deny that there are also age-related changes in
performance. With schooling, children become increasingly proficient at
retrieving arithmetic facts and the range of facts that are retrieved au-
tomatically increases. Our findings suggest that processes involved in solv-
ing simple addition and multiplication problems can be initiated without
intention, and that sum-based associations can be activated even when
the primary goal of the task does not involve arithmetic problem solving.

The results of our experiments are consistent with associative models
of mental arithmetic (e.g., Ashcraft, 1987, 1992; Campbell, 1987a, 1987b;
Campbell & Graham, 1985; LeFevre et al., 1988, 1991; Siegler, 1988,
Siegler & Jenkins, 1989, Siegler & Shipley, in press, Siegler & Shrager,
1984). According to these models, arithmetic knowledge consists of a
highly interconnected network of associations that are accessed upon pres-
entations of pairs of numbers via spreading activation (Anderson, 1983;
Collins & Loftus, 1975). For example, in Siegler’s model, children begin
with an initial distribution of varying strengths between each simple arith-
metic problem and possible answers. Answers are activated for a given
problem as a function of their associations to that problem. Our work
suggests that with experience, the structure of associations changes; con-



256 LEMAIRE ET AL.

nections between increasingly larger integers and their sums and products
are strengthened and activation of these associations becomes automatic.
One consequence of this is that with increasing age, children experience
interference effects on a wider range of problems. Thus, whereas early
in development, activation patterns are restricted to small integers that
are near neighbors on the number-line (see LeFevre et al., 1991) or that
involve small sums, as children gain experience, arithmetic knowledge
becomes less and less locally activated.

By charting the developmental time course of interference effects, our
studies help shed light on how arithmetic facts are accessed in school
children. More generally, our results suggest that investigating sum-based
and associative confusion effects and their inhibition may lead to a more
complete understanding of how arithmetic knowledge is stored and used
at different points in development. Given that these effects can be ob-
served in elementary school children, interference effects are likely to
prove useful tools for exploring developmental changes in the memory
network that encompasses simple arithmetic, and when combined with
findings from production tasks, may also provide some insights for un-
derstanding how children select strategies for solving arithmetic problems
(see Siegler, 1986, 1987a, 1987b, 1988; Siegler & Shrager, 1984).
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