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Abstract. We give new critical values for the Kolmogorov-Smir-
nov/Lilliefors/Van Soest test of Normality. These values are ob-
tained from Monte-Carlo simulations similar to the original pro-
cedure of Lilliefors and Van Soest. Because our simulations use
a very large number of random samples, the critical values ob-
tained are better estimations than the original values. In order
to allow hypothesis testing with arbitrary α levels, we also derive
a polynomial approximation of the critical values. This facilitates
the implementation of Bonferonni or S̆idák corrections for multiple
statistical tests as these procedures require unusual α values.

1. Introduction

The normality assumption is at the core of a majority of standard
statistical procedures, and it is important to be able to test this as-
sumption. In addition, showing that a sample does not come from
a normally distributed population is sometimes of importance per se.
Among the procedures used to test this assumption, one of the most
well-known is a modification of the Kolomogorov-Smirnov test of good-
ness of fit, generally referred to as the Lilliefors test for normality (or
Lilliefors test, for short). This test was developed independently by
Lilliefors (1967) and by Van Soest (1967). Like most statistical tests,
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Figure 1. Critical values from Lilliefors (1967) ploted
as a function of the sample size and the α level.

this test of normality defines a criterion and gives its sampling distribu-
tion. Because the sampling distribution cannot be derived by standard
analytical procedures, it is approximated with Monte Carlo numerical
simulation procedures. Specifically, both Lilliefors and Van Soest used,
for each sample size chosen, 1000 random samples derived from a stan-
dardized normal distribution to approximate the sampling distribution
of a Kolmogorov-Smirnov criterion of goodness of fit. The critical val-
ues given by Lilliefors and Van Soest are quite similar, the relative error
being of the order of 10−2. Lilliefors (1967) noted that this approach
is more powerful than the standard chi-square procedure for a wide
range of nonnormal conditions. Dagnelie (1968) indicated, in addition,
that the critical values reported by Lilliefors can be approximated by
an analytical formula. Such a formula facilitates writing computer rou-
tines because it eliminates the risk of creating errors when keying in
the values of the table.

There are some small problems, however, with the current tables for
the Lilliefors test. The first one comes from the rather small number
of samples (i.e., 1000) used in the original simulations: The precision
of the table could be improved with a larger number of samples. This
problem can be seen in Figure 1, which displays the critical values
from Lilliefors (1967) as a function of the sample size. The rather
jagged appearance of the curves suggests that the critical values are
contaminated by random fluctuations. A larger number of samples
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would reduce these fluctuations and make the curves look smoother.
The second problem, of greater concern, comes from the limited number
of critical values reported in the original papers. Lilliefors, for example,
reports the critical values for α = [.20, .15, .10, .05, .01]. These
values correspond to most tests involving only one null hypothesis,
as this was the standard procedure in the late sixties. The current
statistical practice favors multiple tests (maybe as a consequence of
the availability of statistical packages). Because using multiple tests
increases the overall Type I error (i.e., the Familywise Type I error or
αPF ), it has become customary to recommend testing each hypothesis
with a corrected α level (i.e., the Type I error per comparison, or
αPC). The main correction procedures are the Bonferonni and the

S̆idák corrections1 (e.g., Abdi, 1987). For a family of J tests, the
Bonferonni correction expresses αPC as

(1.1) αPC = 1
J
αPF ,

whereas the S̆idák correction expresses αPC as

(1.2) αPC = 1− (1− αPF )
1
J .

For example, using a Bonferonni approach with a familywise value of
αPF = .05, and testing J = 3 hypotheses requires that each hypothesis
is tested at the level of

(1.3) αPC = 1
J
αPF = 1

3
× .05 = .0167 .

With a S̆idák approach, each hypothesis will be tested at the level of

(1.4) αPC = 1− (1− αPF )
1
J = 1− (1− .05)

1
3 = .0170 .

As this example illustrates, both procedures are likely to require using
different α levels than the ones given by the original sources. In fact,
it is rather unlikely that a table could be precise enough to provide the
wide range of alpha values needed for multiple testing purposes. A more
practical solution is to generate the critical values for any alpha value,
or, alternatively, to obtain the probability associated to any value of
the Kolmogorov-Smirnov criterion. In brief, the purpose of this paper
is to give better numerical approximations for the Kolmogorov-Smirnov
test of normality, and to derive an analytical formula for the critical
values of the criterion.

This paper is organized as follows: first, we present the numerical
simulations used to approximate the sampling distribution of the Lil-
liefors test; second, we derive a numerical expression for the critical

1Bonferonni is simply an approximation using the first term of a Taylor series of
S̆idák.
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values of the criterion as a function of the sample size and the α level;
third, we give a numerical approximation of the probability associated
to the criterion.

2. Monte Carlo Approximation of the Sampling
Distribution

2.1. Computation of the criterion for the Kolmogorov-Smir-
nov test of normality. The null hypothesis tested by the Lilliefors
test is

H0 = The sample comes from a normal population

with unknown mean and variance.(2.1)

2.1.1. Notations. The sample for the test is made of N scores, each
of them denoted Xi. The sample mean is denoted M and the sample
variance is denoted S2. The criterion for the Lilliefors test is denoted
DL. It is computed from Zi scores which are obtained with the following
formula:

(2.2) Zi =
Xi −M

S

where S is the square root of

(2.3) S2 =

N∑
i

(Xi −M)2

N − 1

and M is

(2.4) M =
1

N

N∑
i

Xi.

The criterion DL is

(2.5) DL = max
i
{|S(Zi)−N (Zi)|, |S(Zi)−N (Zi−1)|}

where S is the relative frequency associated with Zi. It corresponds
to the proportion of scores smaller or equal to Zi and where N is the
probability associated to a normally distributed variable Zi with mean
µ = 0 and standard deviation σ = 1. The term |S(Zi) − N (Zi−1)| is
needed to take into account that, because the empirical distribution is
discrete, the maximum absolute difference can occur at either endpoints
of the empirical distribution.
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Figure 2. Plot of the new critical values for the Kol-
mogorov-Smirnov test of normality. The critical values
are ploted as a function of the sample size and the α
level.

2.2. Numerical simulations. The principle of the Monte Carlo sim-
ulations is to approximate the sampling distribution of the DL criterion
from its relative frequency distribution obtained when the null hypoth-
esis is true. For a sample of size N > 3, the sampling distribution is
obtained by first generating a total of K random samples of size N , and
computing for each sample the value of the DL criterion. Then, the
relative frequency distribution of the criterion estimates its sampling
distribution. The critical value for a given α level is computed as the
K(1− α)th percentile of the relative frequency distribution.

The numerical simulations were performed on ibm rs6000-590 run-
ning aix 4.1. The program (available from the authors) was written
using the matlab programming language (version 4.2c). The random
number generator used was randn (Forsythe, Malcom, Moler, 1977).

2.3. Results. The new values for the Kolmogorov-Smirnov test of nor-
mality are given in Table 1. For ease of comparison with the original
values computed by Lilliefors (cf. Figure 1), the results are displayed
in Figure 2. As expected from the large sample size of our simulations,
the curves of the new simulations are much smoother than the original
ones.
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N α = 0.20 α = 0.15 α = 0.10 α = 0.05 α = 0.01

4 0.3027 0.3216 0.3456 0.3754 0.4129
5 0.2893 0.3027 0.3188 0.3427 0.3959
6 0.2694 0.2816 0.2982 0.3245 0.3728
7 0.2521 0.2641 0.2802 0.3041 0.3504
8 0.2387 0.2502 0.2649 0.2875 0.3331
9 0.2273 0.2382 0.2522 0.2744 0.3162
10 0.2171 0.2273 0.2410 0.2616 0.3037
11 0.2080 0.2179 0.2306 0.2506 0.2905
12 0.2004 0.2101 0.2228 0.2426 0.2812
13 0.1932 0.2025 0.2147 0.2337 0.2714
14 0.1869 0.1959 0.2077 0.2257 0.2627
15 0.1811 0.1899 0.2016 0.2196 0.2545
16 0.1758 0.1843 0.1956 0.2128 0.2477
17 0.1711 0.1794 0.1902 0.2071 0.2408
18 0.1666 0.1747 0.1852 0.2018 0.2345
19 0.1624 0.1700 0.1803 0.1965 0.2285
20 0.1589 0.1666 0.1764 0.1920 0.2226
25 0.1429 0.1498 0.1589 0.1726 0.2010
30 0.1315 0.1378 0.1460 0.1590 0.1848
31 0.1291 0.1353 0.1432 0.1559 0.1820
32 0.1274 0.1336 0.1415 0.1542 0.1798
33 0.1254 0.1314 0.1392 0.1518 0.1770
34 0.1236 0.1295 0.1373 0.1497 0.1747
35 0.1220 0.1278 0.1356 0.1478 0.1720
36 0.1203 0.1260 0.1336 0.1454 0.1695
37 0.1188 0.1245 0.1320 0.1436 0.1677
38 0.1174 0.1230 0.1303 0.1421 0.1653
39 0.1159 0.1214 0.1288 0.1402 0.1634
40 0.1147 0.1204 0.1275 0.1386 0.1616
41 0.1131 0.1186 0.1258 0.1373 0.1599
42 0.1119 0.1172 0.1244 0.1353 0.1573
43 0.1106 0.1159 0.1228 0.1339 0.1556
44 0.1095 0.1148 0.1216 0.1322 0.1542
45 0.1083 0.1134 0.1204 0.1309 0.1525
46 0.1071 0.1123 0.1189 0.1293 0.1512
47 0.1062 0.1113 0.1180 0.1282 0.1499
48 0.1047 0.1098 0.1165 0.1269 0.1476
49 0.1040 0.1089 0.1153 0.1256 0.1463
50 0.1030 0.1079 0.1142 0.1246 0.1457

Table 1. Table of the critical values for the Kolmo-
gorov-Smirnov test of normality obtained with K =
100, 000 samples for each sample size. The intersection of
a given row and column shows the critical value C(N, α)
for the sample size labelling the row and the alpha level
labelling the column.
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3. Numerical approximations for the critical values

Recall that Dagnelie (1968) indicated that the critical values given
by Lilliefors can be approximated numerically. Specifically, the critical
values C(N, α) can be obtained as a function of α and the sample size
(denoted N) with an expression of the form

(3.1) C(N,α) =
a(α)√
N + 1.5

,

where a(α) is a function of α. This approximation is precise enough
when N > 4, and for the usual alpha levels of α = .05 [a(α) = 0.886]
and α = .01 [a(α) = 1.031], but does not give good results for other
alpha levels. However, Equation 3.1 suggests a more general expression
for the value C(N,α) as a function of the sample size and the α value
of the form:

(3.2) C(N, α) =
a(α)√

N + b(α)
.

For mathematical tractability, it is convenient to re-express Equa-
tion 3.2 in order to indicate a linear relationship between the parame-
ters. This is obtained by the transformation

(3.3) C(N,α)−2 = A(α)N + B(α) ,

with

A(α) = a(α)−2 ⇐⇒ a(α) = A(α)−
1
2(3.4)

B(α) = b(α)a(α)−2 ⇐⇒ b(α) = B(α)A(α)−1 .(3.5)

Figure 3 illustrates the linearity of the relationship between C(N, α)−2

and N when α is given.

3.0.1. Fitting A(α) and B(α). The relationship between A(α) and B(α)
is clearly nonlinear as illustrated by Figure 4 which plots A(α) and
B(α) as a function of α.

A stepwise polynomial multiple regression was used to derive a poly-
nomial approximation for A(α) and B(α) as a function of α. We found
that a polynomial of degree 6 gave the best fit when using the maximal
absolute error as a criterion (see Table 3).

The coefficients of the polynomial were found to be equal to:

A(α) = +6.32207539843126− 17.1398870006148(1− α)

+ 38.42812675101057(1− α)2 − 45.93241384693391(1− α)3

+ 7.88697700041829(1− α)4 + 29.79317711037858(1− α)5

− 18.48090137098585(1− α)6 .(3.6)
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Figure 3. Dependence of critical values with respect to n.
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Figure 4. Dependence of coefficients a(α) and b(α) vs α.

and

B(α) = +12.940399038404− 53.458334259532(1− α)

+ 186.923866119699(1− α)2 − 410.582178349305(1− α)3

+ 517.377862566267(1− α)4 − 343.581476222384(1− α)5

+ 92.123451358715(1− α)6 .(3.7)
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Table 2. Maximum residual of polynomial regressions.

Degree Max. Diff.
3 0.0146
4 0.0197
5 0.0094
6 0.0092
7 0.0113
8 0.0126
9 0.0140
10 0.0146

Table 3. Maximum absolute value of the residual for
the polynomial approximation of C(N, α) from A(α) and
B(α). The smallest value is reached for a degree 6 poly-
nomial (in boldface) .

The quality of the prediction is illustrated in Figure 5, which shows
the predicted and actual values of A(α) and B(α) as well as the error
of prediction plotted as a function of α. The predicted values overlap
almost perfectly with the actual values (and, so the error is always
small); this confirms the overall good quality of the prediction.

4. Finding the probability associated to DL

Rather than using critical values for hypothesis testing, an alterna-
tive strategy is to work directly the probability associated to a specific
value of DL. The probability associated to a given value of DL is de-
noted Pr(DL). If this probability is smaller than the α level, the null
hypothesis is rejected. It does not seem possible to find an analytic
expression for Pr(DL) (or at least, we failed to find one!). However,
the results of the previous section suggest an algorithmic approach
which can easily be programmed. In short, in this section we derive a
polynomial approximation for Pr(DL).

The starting point comes from a the observation that B(α) can be
predicted from A(α) using a quadratic regression (R2 = .99963) as:

(4.1) B(α) = b0 + b1A(α) + b2A(α)2 + ε .

where ε is the error of prediction, and
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Figure 5. Polynomial regressions of coefficients A(α)
and B(α)vs α: predicted values and residuals.

b2 = 0.08861783849346

b1 = 1.30748185078790

b0 = 0.37872256037043 .(4.2)

Plugging this last equation in Equation 3.3, and replacing C(N,α)
by DL gives:

(4.3) D−2
L = b0 + (b1 + N)A(α) + b2A(α)2 .

When DL and N are known, and A(α) is the unknown. Therefore,
A(α) is a solution of the following quadratic equation:

(4.4) b0 + (b1 + N)A(α) + b2A(α)2 −D−2
L = 0.

The solution of this equation is obtained from the traditional quadratic
formula:

(4.5) A(α) =
−(b1 + N) +

√
(b1 + N)2 − 4b2

(
b0 −D−2

L

)

2b2

.
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We need, now, to obtain Pr(DL) as a function of A(α). To do that,
first we solve Equation 4.5, for A(α). Second, we express α as a function
of A(α). The value of α corresponding to a given value of A(α) will give
Pr(DL). We found that α can be expressed as a degree 10 polynomial in
A(α) (a higher polynomial does not improve the quality of prediction).
Therefore Pr(DL) can be estimated, from A(α), as

Pr(DL) = −.37782822932809 + 1.67819837908004A(α)

− 3.02959249450445A(α)2 + 2.80015798142101A(α)3

− 1.39874347510845A(α)4 + 0.40466213484419A(α)5

− 0.06353440854207A(α)6 + 0.00287462087623A(α)7

+ 0.00069650013110A(α)8 − 0.00011872227037A(α)9

+ 0.00000575586834A(α)10 + ε .(4.6)

For example, suppose that we have obtained a value of DL = .1030
from a sample of size N = 50. (Table 1 shows that Pr(DL) = .20.)
To estimate Pr(DL) we need first to compute A(α), and then use this
value in Equation 4.6. From Equation 4.5, we compute the estimate of
A(α) as:

A(α) =
−(b1 + N) +

√
(b1 + N)2 − 4b2

(
b0 −D−2

L

)

2b2

=
−(b1 + 50) +

√
(b1 + 50)2 − 4b2

(
b0 − .1030−2

)

2b2

= 1.82402308769590 .(4.7)

Plugging in this value of A(α) in Equation 4.6 gives

(4.8) Pr(DL) = .19840103775379 ≈ .20 .

As illustrated by this example, the approximated value of Pr(DL) is
correct for the first two decimal values.

5. Conclusion

In this paper we give a new table for the critical values of the Lilliefors
test. We also derive numerical approximations that give directly the
critical values and the probability associated to a given value of the
criterion for this test.
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