CONGRUENCE

Herve Abdi*

The congruence between two configurations of points quantifies their similarity. The
configurations to be compared are, in general, produced by factor analytic methods (e.g.,
principal component analysis, correspondence analysis) that decompose an “observations by
variables” data matrix and produce one set of factor scores for the observations and one set of
factor scores (often called the loadings) for the variables. The congruence between two sets of
factor scores collected on the same units (which can be observations or variables) measures the
similarity between these two sets of scores. If, for example, two different types of factor
analysis are performed on the same data set, the congruence between the two solutions is
evaluated by the similarity of the configurations of the factor scores produced by these two
techniques.

This entry presents three coefficients used to evaluate congruence. The first coefficient is
called the coefficient of congruence: It measures the similarity of two configurations by
computing a cosine between matrices of factor scores. The second and third coefficients are
the Ry coefficient and the Mantel coefficient. These two coefficients evaluate the similarity of
the whole configuration of units. In order to do so, the factor scores of the units are first
transformed into a units-by-units square matrix, which reflects the configuration of similarity
between the units; and then the similarity between the configurations is measured by a
coefficient. For the Ry coefficient, the configuration between the units is obtained by computing
a matrix of scalar products between the units, and a cosine between two scalar product matrices
evaluates the similarity between two configurations. For the Mantel coefficient, the
configuration between the units is obtained by computing a matrix of distance between the
units, and a coefficient of correlation between two distance matrices evaluates the similarity

between the two configurations described by the distance matrices.
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The congruence coefficient was first defined by Cyril Burt—under the name of unadjusted
correlation—as a measure of the similarity between two factorial configurations. The name
congruence coefficient was later tailored by Ledyard Tucker. The congruence coefficient is
also sometimes called a monotonicity coefficient.

The R, coefficient was introduced by Yves Escoufier as a measure of similarity between

squared symmetric matrices (specifically: positive semidefinite matrices) and as a theoretical

tool to analyze multivariate techniques. The R, coefficient is used in several statistical

techniques, such as STATIS and DISTATIS. In order to compare rectangular matrices with the

R, or the Mantel coefficients, the first step is to transform these rectangular matrices into

square matrices.

The Mantel coefficient was originally introduced by Nathan Mantel in epidemiology but it
is now widely used in ecology.

The congruence and the Mantel coefficients are cosines (recall that the coefficient of
correlation is a centered cosine), and as such, they take values between —1 and +1. The Ry
coefficient is also a cosine, but because it is a cosine between two matrices of scalar products
(which, technically speaking, are positive semidefinite matrices), it corresponds actually to a
squared cosine, and therefore the Ry coefficient takes values between 0 and 1.

The computational formulas of these three coefficients are almost identical, but their usage
and theoretical foundations differ because these coefficients are applied to different types of
matrices. Also, their sampling distributions differ because of the types of matrices on which

they are applied.

Notations and Computational Formulas

A vector is an ordered list of numbers, it is denoted by a lower bold letter (e.g., X), its elements
are denoted by the same letter typeset in italic with a subscript indicating the order of the
element (e.g., x1 or x;). By default, vectors are written as columns of numbers: So, for example,
the vector x with three elements can be written as:

T1
X = i)
x3

The transpose operation transforms a column vector into a row vector, it is denoted by the
ipt T, so th ' | h d,b d d
superscript ', so the previous column vector x, when transposed, becomes a row vector denote

x' =[x1, x2, x3]. Geometrically, vectors can be interpreted as points in a multidimensional space



(with the dimension of the space being equal to the number of elements of the vector). In this
framework, the cosine between two vectors, denoted, x and y, each with 7/ elements is defined

as:
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Matrices are array of numbers whose dimensions correspond to their number of rows and

cos(X,y) =

columns. Matrices are denoted by upper cases bold letter and their elements are denoted by
italic lower case letters with subscript indicating their row and column. So, for example, X can
denote an / rows by J column matrix whose generic element is denoted x;;. The “vec” operation
transforms a matrix into a column vector whose entries are the elements of the matrix (i.e., it
unfolds the matrix). The cosine between two matrices is defined as the vector cosine between
the “vectorized” version of these two matrices. The “trace” operation applies to square matrices
and gives the sum of the diagonal elements of this matrix. The transpose operation of a matrix
is denoted by the superscript ', it exchanges the roles of the rows and the columns of a matrix,
for example, if X is an / by J, X' is a J by [ matrix. When two matrices are written next to each

other, this indicates matrix multiplication.

Congruence Coefficient

The congruence coefficient is defined when both matrices have the same number of rows and
columns (i.e., J = K). These matrices can store factor scores (for observations) or factor

loadings (for variables). The congruence coefficient is denoted ¢ or sometimes r,, and it can

be computed with three different equivalent formulas:
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R, Coefficient

The R, coefficient was defined by Robert Escoufier as a similarity coefficient between positive

semidefinite matrices (e.g., matrices such as correlation, covariance, or cross-product

matrices). Pierre Robert and Robert Escoufier later pointed out that the R, coefficient had

important mathematical properties because most multivariate analysis techniques amount to
maximizing—with suitable constraints—this coefficient. Recall, at this point, that a matrix S
is called positive semidefinite when it can be obtained as the product of a matrix by its
transpose. Formally, we say that S is positive semidefinite when there exists a matrix X such
that
S=XX". (4)

Note that as a consequence of the definition, positive semidefinite matrices are square and
symmetric, and that their diagonal elements are always larger than or equal to zero.

If S and T denote two positive semidefinite matrices of same dimensions, the R,

coefficient between them is defined as
R = trace{S' T} 5)
\/( trace{STS}) x (trace{TTT}>

This formula is computationally equivalent to
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For rectangular matrices, the first step is to transform the matrices into positive semi-

definite matrices by multiplying each matrix by its transpose. So, in order to compute the value

of the R, coefficient between the / by J matrix X and the / by K matrix Y, the first step it to

compute the cross-product matrices S and T



S=XX'" and T=YY (8)
If we combine Equations 5 and 8, we find that the R, coefficient between the two rectangular

matrices X and Y is equal to
trace { XX YY' }

Ry =
\/trace {XXTXXT} X trace {YYTYYT}

(9)

The comparison of Equations 3 and 9 shows that the congruence and the R, coefficients are

equivalent only in the case of positive semidefinite matrices.

From a linear algebra point of view, the numerator of the R, coefficient corresponds to a

scalar product between positive semidefinite matrices and therefore gives to this set of matrices

the structure of a vector space. Within this framework, the denominator of the R, coefficient
is called the Frobenius or Schur or Hilbert-Schmidt matrix scalar product, and the R,

coefficient is a cosine between matrices. This vector space structure is responsible for the

mathematical properties of the R, coefficient.

Mantel Coefficient

For the Mantel coefficient, if the data are not already in the form of distances, then the first step
is to transform these data into distances. These distances can be Euclidean distances, but any
other type of distance will work. If D and B denote the two 7 by I distance matrices of interest
(with respective generic elements d;; and b;;), then the Mantel coefficient between these two
matrices is denoted 7, and it is computed as the coefficient of correlation between their off-

diagonal elements as
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(where 4 and p are the mean of the off-diagonal elements of, respectively, matrices D and

B).



Tests and Sampling Distributions

The congruence, the R,, and the Mantel coefficients all quantify the similarity between two

matrices. An obvious practical problem is to be able to perform statistical testing on the value
of a given coefficient. In particular it is often important to be able to decide whether a value of
coefficient could have been obtained by chance alone. To perform such statistical tests, one
needs to derive the sampling distribution of these coefficients under the null hypothesis (i.e.,
in order to test whether the population coefficient is null). More sophisticated testing requires
one to derive the sampling distribution for different values of the population parameters. So
far, analytical methods have failed to completely characterize such distributions, but

computational approaches have been used with some success. Because the congruence, the R,

, and the Mantel coefficients are used with different types of matrices, their sampling
distributions differ, and so work done with each type of coefficient has been carried
independently of the others.

Some approximations for the sampling distributions have been derived recently for the

congruence coefficient and the R, coefficient, with particular attention given to the R,

coefficient. The sampling distribution for the Mantel coefficient has not been satisfactorily
approximated, and the statistical tests provided for this coefficient rely mostly on permutation

tests.

Congruence Coefficient

Recognizing that analytical methods were unsuccessful, Bruce Korth and Ledyard Tucker
decided to use Monte Carlo simulations to gain some insights into the sampling distribution of
the congruence coefficient. Their work was completed by Wendy Broadbooks and Patricia
Elmore. From this work, it seems that the sampling distribution of the congruence coefficient
depends on several parameters, including the original factorial structure and the intensity of the
population coefficient, and therefore no simple picture emerges, but some approximations can
be used. In particular, for testing that a congruence coefficient is null in the population, an
approximate conservative test is to use Fisher’s Z transform and to treat the congruence
coefficient like a coefficient of correlation. Broadbooks and Elmore have provided tables for
population values different from zero. With the availability of fast computers, these tables can

easily be extended to accommodate specific cases.



Example

Here we use an example from Hervé Abdi and Dominique Valentin (2007). Two wine experts
are rating six wines on three different scales. The results of their ratings are provided in the two

matrices below, denoted X and Y:

(1 6 7] (3 6 7]
5 3 2 4 4 3
6 1 1 7 1 1
X = 7 1 9 and Y = 9 9 9 (11)
2 5 4 2 6 6
(3 4 4| 17 5 |

For computing the congruence coefficient, these two matrices are transformed into two vectors
of 6 (products) x 3 (variables) = 18 elements each, and a cosine (cf. Equation 1) is computed
between these two vectors. This gives a value of the coefficient of congruence of ¢ =.7381. In
order to evaluate whether this value is significantly different from zero, a permutation test with
10,000 permutations was performed. In this test, the rows of one of the matrices were randomly
permuted, and the coefficient of congruence was computed for each of these 10,000
permutations. The probability of obtaining a value of ¢ =.7381 under the null hypothesis was

evaluated as the proportion of the congruence coefficients larger than ¢ =.7381. This gave a

value of p =.0259, which is small enough to reject the null hypothesis at the .05 a-level, and
thus one can conclude that the agreement between the ratings of these two experts cannot be

attributed to chance.

Ry Coefficient

Statistical approaches for the R, coefficient have focused on permutation tests. In this

framework, the permutations are performed on the entries of each column of the rectangular
matrices X and Y used to create the matrices S and T or directly on the rows and columns of S
and T. Interestingly by Frédérique Kazi-Aoual and colleagues have shown that the mean and
the variance of the permutation test distribution can be approximated directly from S and T.
To so, the first step is to derive an index of the dimensionality or rank of the matrices. This
index, denoted g, (for matrix S = XXT), is also known as v in the brain imaging literature,
where it is called a sphericity index and is used as an estimation of the number of degrees of
freedom for multivariate tests of the general linear model. The index £ depends on the set of

the L eigenvalues of the S matrix (i.e., S has rank L), denoted  4,, and it is defined as
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The mean of the set of permutated coefficients between matrices S and T is then equal to
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The case of the variance is more complex and involves computing three preliminary
quantities for each matrix. The first quantity denoted & is (for matrix S) equal to
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The second one is denoted ¢ for matrix S and is defined as

ag=I-1-p. (15)

The third one is denoted C (for matrix S) and is defined as

c _(1—1)[1(1+1)§S—(1—1)(ﬁs+2)]
s ag(1-3) '

(16)

With these notations, the variance of the permuted coefficients is obtained as

~ X2](1—1)+(1—3)CSCT
V(R)=ayan [(1+1)(1-2)(1-1)" 7

For very large matrices, the sampling distribution of the permutated coefficients is
relatively similar to a normal distribution (even though it is, in general, not normal), and
therefore one can use a Z criterion to perform null hypothesis testing or to compute confidence

intervals. For example, the criterion
z, =———211 (18

can be used to test the null hypothesis that the observed value of R, was due to chance.

The problem of the lack of normality of the permutation-based sampling distribution of the

R, coefficient has been addressed by Moonseong Heo and Ruben Gabriel, who have suggested

“normalizing” the sampling distribution by using a log transformation. Recently Julie Josse,



Jerome Pages, and Francois Husson have refined this approach and indicated that a gamma

distribution would give an even better approximation.

Ry Coefficient: An Example

As an example, of the computation of the Ry we use the two scalar product matrices obtained
from the matrices used to illustrate the congruence coefficient (cf. Equation 11). For the present
example, these original matrices are centered (i.e., the mean of each column has been subtracted
from each element of the column) prior to computing the scalar product matrices. Specifically,
if Xand Ydenote the centered matrices derived from X and Y, we obtain the following scalar

product matrices:

2956 —8.78 —20.78 —20.11 12.89 7.22 ]
—8.78 2.89 5.89 556 =344 -—2.11
— —20.78 5.89 14.89 14.56 —9.44 —5.11
S=XX = —20.11 5.56 14.56 16.22 —-10.78 —-5.44 (19)
12.89 —3.44 —9.44 —-10.78 7.22 3.56
i 722 —-2.11 —-5.11 —5.44 3.56 1.89 |
and

11.81 —-3.69 —-15.19 —-9.69 8.97 7.81
-3.69 1.81 7.31 1.81 —-3.53 —3.69
—15.19 7.31 34.81 9.31 —-16.03 —20.19
—9.69 1.81 9.31 10.81 —6.53 —5.69
8.97 —-3.53 —-16.03 —6.53 8.14 8.97
7.81 —-3.69 -20.19 -5.69 8.97 12.81

We find the following value for the R, coefficient:

_ 9.56x11.81)+(—8.78x—-3.69)+---+(1.89x12.81)
\/[(29.56)+(—8.78)2 e (1.89) |[ (11.81)+(-3.69)" +--+(12.81)|
=.7936.

(21)

To test the significance of a value of R, =.7936, we first compute the following quantities:

B, =1.0954 oy =3.9046

5, =02951 C,—13162 (22)
B, =13851 a, =3.6149

S5, =0.3666 C, =—0.7045

Plugging these values into Equations 13, 17, and 18, we find



E(R,)=0.2464,
V(R,)=0.0422,and (23)
Z, =2.66.

Assuming a normal distribution for the Z & gives a p value of .0077, which would allow

for the rejection of the null hypothesis for the observed value of the R, coefficient.

Ry Coefficient: Permutation Test

As an alternative approach to evaluate whether the value of R, =.7936 is significantly different
from zero, a permutation test with 10,000 permutations was performed. In this test, the whole
set of rows and columns (i.e., the same permutation of / elements is used to permute rows and

columns) of one of the scalar product matrices was randomly permuted, and the R, coefficient

was computed for each of these 10,000 permutations. The probability of obtaining a value of

R, =.7936 under the null hypothesis was evaluated as the proportion of the R, coefficients
larger than R, =.7936. This gave a value of p =.0281, which is small enough to reject the null
hypothesis at the .05 alpha level. It is worth noting that the normal approximation gives a more

liberal (i.e., smaller) value of p than does the nonparametric permutation test (which is more

accurate in this case because the sampling distribution of R, is not normal).

Mantel Coefficient

The exact sampling distribution of the Mantel coefficient is not known. Numerical simulations
suggest that, when the distance matrices originate from different independent populations, the
sampling distribution of the Mantel coefficient is symmetric (though not normal) with a zero
mean. In fact, Mantel, in his original paper, presented some approximations for the variance of
the sampling distributions of 7v (derived from the permutation test) and suggested that a normal
approximation could be used, but the problem is still open. In practice, though, the probability

associated to a specific value of rv is derived from permutation tests.

Example

As an example, two distance matrices derived from the congruence coefficient example (cf.
Equation 11) are used. These distance matrices can be computed directly from the scalar

product matrices used to illustrate the computation of the R, coefficient (cf. Equations 19 and

10



20). Specifically, if S is a scalar product matrix and if s denotes the vector containing the

diagonal elements of S, and if 1 denotes an / by 1 vector of ones, then the matrix D of the

squared Euclidean distances between the elements of S is obtained as (cf. Equation 4):
D=1s +s1" —2S. (24)

Using Equation 24, we transform the scalar-product matrices from Equations 19 and 20

into the following distance matrices:

0 50 86 86 11 17
50 0 6 8 17 9
8 6 0 2 41 27
D=13g 8 2 0 45 29 (25)
11 17 41 45 0 2
179 27 29 2 0 |
and
0 21 77 42 2 9]
21 0 22 9 17 22
77T 22 0 27 75 88
T= 42 9 27 0 32 35 (26)
2 17 7 32 0 3
| 9 22 8 35 3 0

For computing the Mantel coefficient, the upper diagonal elements of each of these two

matrices are stored into a vector of % Ix(I—1)=15 elements, and the standard coefficient of

correlation is computed between these two vectors. This gives a value of the Mantel coefficient
of rir = .5769. In order to evaluate whether this value is significantly different from zero, a
permutation test with 10,000 permutations was performed. In this test, the whole set of rows
and columns (i.e., the same permutation of / elements is used to permute rows and columns)
of one of the matrices was randomly permuted, and the Mantel coefficient was computed for
each of these 10,000 permutations. The probability of obtaining a value of 7y = .5769. under
the null hypothesis was evaluated as the proportion of the Mantel coefficients larger than ry =
.5769. This gave a value of p = .0265, which is small enough to reject the null hypothesis at
the .05 alpha level.

Conclusion

The congruence, R,, and Mantel coefficients all measure slightly different aspects of the

notion of congruence. The congruence coefficient is sensitive to the pattern of similarity of the

11



columns of the matrices and therefore will not detect similar configurations when one of the

configurations is rotated or dilated. By contrast, both the R, coefficient and the Mantel

coefficients are sensitive to the whole configuration and are insensitive to changes in

configuration that involve rotation or dilatation. The R, coefficient has the additional merit of

being theoretically linked to most multivariate methods and of being the base of Procrustes
methods such as STATIS or DISTATIS.

Herve Abdi
See also Coefficients of Correlation; Alienation, and Determination; Principal Components

Analysis; R?; Sampling Distributions; Matrix Algebra.
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