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Coefficients of

Correlation, Alienation and Determination

Hervé Abdi - Lynne J. Williams

1 Overview

The coefficient of correlation evaluates the similarity of two sets of
measurements (i.e., two dependent variables) obtained on the same
observations. The coefficient of correlation indicates the amount of
information common to the two variables. This coefficient takes val-
ues between —1 and +1 (inclusive). A value of +1 shows that the
two series of measurements are measuring the same thing. A value
of —1 indicates that the two measurements are measuring the same
thing, but one measurement varies inversely to the other. A value
of 0 indicates that the two series of measurements have nothing in
common. It is important to note that the coefficient of correlation
measures only the linear relationship between two variables and that
its value is very sensitive to outliers.
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2 Coefficients of Correlation, Alienation and Determination

The squared correlation gives the proportion of common variance
between two variables and is also called the coefficient of determi-
nation. Subtracting the coefficient of determination from unity gives
the proportion of variance not shared between two variables. This
quantity is called the coefficient of alienation.

The significance of the coefficient of correlation can be tested with
an I or a t test. We present three different approaches which can be
used to obtain p values: (1) the classical approach which relies on
Fisher’s F distributions; (2) the Monte-Carlo approach which relies
on computer simulations to derive empirical approximations of sam-
pling distributions; and (3) the non-parametric permutation (a.k.a.
randomization) test which evaluates the likelihood of the actual data
against the set of all possible configurations of these data. In addi-
tion to obtaining p values, confidence intervals can be computed
using Fisher’s Z-transform or the more modern, computationally
based and non-parametric, Efron’s Bootstrap.

Note that the coefficient of correlation always overestimates the
intensity of the correlation in the population and needs to be “cor-
rected” in order to provide a better estimation. The corrected value
is called “shrunken” or “adjusted.”

2 Notations and definition

We have S observations, and for each observation s we have two
measurements denoted W, and Y, with respective means denoted
My, and My . For each observation, we define the cross-product as
the product of the deviations of each variable to its mean. The sum
of these cross-products, denoted SCPyy, is computed as:

SCPwy = (W, — My)(Y, — My) . (1)

s

The sum of the cross-products reflects the association between the
variables. When the deviations have the same sign, they indicate a
positive relationship, when they have different signs, they indicate a
negative relationship.

The average value of the SCPyyy is called the covariance [just as
the variance, the covariance can be computed by dividing by S or
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The covariance reflects the association between the variables but it is
expressed in the original units of measurement. In order to eliminate
the units, the covariance is normalized by division by the standard
deviation of each variable. This defines the coefficient of correlation,
denoted ryy, which is equal to

COVwy = - =
Number of Observations

(3)

Rewriting the previous formula, gives a more practical formula:

SCPwy

TWY = .
\/SSwSSy

where SCP is the sum of the cross-product and SSy (resp. SSy) is
the sum of squares of W (resp. Y').

(4)

3 Correlation computation: an example

We illustrate the computation for the coefficient of correlation with
the following data, describing the values of W and Y for S = 6
subjects:

lel W2:3 W3:4 W4:4 W5:5 W6:7

Yi=16 Y,=10 Y3=12 Y, =4 Y;=8 Y3=10

Step 1: Computing the sum of the cross-products
First compute the means of W and Y

1 1

S

60
Y,=— =10.
6

Mm

My =

|

S

24
g Ws:€:4andMyI
s=1

s=1

The sum of the cross-products is then equal to

SCPyw = (Ys— My)(W, — My)

S
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= (16 — 10)(1 — 4) + (10 — 10)(3 — 4) + (12 — 10)(4 — 4)
+ (4= 10)(4 —4) + (8 — 10)(5 — 4) + (10 — 10)(7 — 4)

= (6 x =3)+ (0 x —=1) + (2 x 0) + (=6 x 0)
+(=2x 1)+ (0 x 3)

= —1840+04+0—-2+40

=20 (5)

Step 2: Computing the sums of squares
The sum of squares of Wj is obtained as

S
SSw =Y (W, — My)?

s=1
=(1—-4P2+0B-4P+@A -4 +A -4+ (-4 +(T—4)
= (=3 + (-1’ + 0+ 0>+ 1* 4 3
=9+14+04+0+1+9
=20 . (6)

The sum of squares of Y is

S
SSy = (Yo — My)’

=1

= (16 — 10)* + (10 — 10)* + (12 — 10)* + (4 — 10)?
+ (8 — 10)* + (10 — 10)?

= 6%+ 0%+ 2> + (=6)* + (—2)* + 0

=36+0+4+36+4+0

=80 . (7)

Step 3: Computing ry.y
The coefficient of correlation between W and Y is equal to

;(Y; - MY)<WS - MW) - SCPWY

Twy = =
vV SSY X SSW /SSWSSY
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=—-.5. (8)
We can interpret this value of r = —.5 as an indication of a

negative linear relationship between W and Y.

4 Some Properties of the coefficient of correlation

The coefficient of correlation is a number without unit. This occurs
because dividing the units of the numerator by the same units in
the denominator eliminates the units. Hence, the coefficient of cor-
relation can be used to compare different studies performed using
different variables.

The magnitude of the coefficient of correlation is always smaller
than or equal to 1. This happens because the numerator of the coef-
ficient of correlation (see Equation 4) is always smaller than or equal
to its denominator (this property follows from the Cauchy-Schwartz
inequality). A coefficient of correlation that is equal to +1 or —1
indicates that the plot of the observations will have all observations
positioned on a line.

The squared coefficient of correlation gives the proportion of com-
mon variance between two variables. It is also called the coefficient
of determination. In our example, the coefficient of determination is
equal to %, = .25. The proportion of variance not shared between
the variables is called the coefficient of alienation, for our example,
it is equal to 1 — rd, = .75.
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5 Interpreting correlation

5.1 Linear and nonlinear relationship

The coefficient of correlation measures only linear relationships be-
tween two variables and will miss non-linear relationships. For exam-
ple, Figure 1 displays a perfect nonlinear relationship between two
variables (i.e., the data show a U-shaped relationship with Y being
proportional to the square of W), but the coefficient of correlation
is equal to 0.

%o ooO

W

Figure 1: A perfect nonlinear relationship with a 0 correlation (ry.y = 0).

5.2 The effect of outliers

Observations far from the center of the distribution contribute a lot
to the sum of the cross-products. In fact, as illustrated in Figure 2, a
single extremely deviant observation (often called an “outlier”) can
dramatically influence the value of r.
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Figure 2: The dangerous effect of outliers on the value of the coefficient of correlation. The
correlation of the set of points represented by the circles is equal to —.87, when the point represented
by the diamond is added to the set, the correlation is now equal to +.61. This shows that an outlier
can determine the value of the coefficient of correlation.

5.3 Geometric interpretation: The coefficient of correlation is a
cosine

Each set of observations can also be seen as a vector in an S dimen-
sional space (one dimension per observation). Within this frame-
work, the correlation is equal to the cosine of the angle between the
two vectors after they have been centered by subtracting their re-
spective mean. For example, a coefficient of correlation of r = —.50
corresponds to a 150-degree angle. A coefficient of correlation of 0
corresponds to a right angle and therefore two uncorrelated vari-
ables are called orthogonal (which is derived from the Greek word
for “right-angle”).

5.4 Correlation and causation

The fact that two variables are correlated does not mean that one
variable causes the other one: correlation is not causation. For ex-
ample, in France, the number of Catholic churches in a city, as well
as the number of schools, are highly correlated with the number of
cases of cirrhosis of the liver, the number of teenage pregnancies,
and the number of violent deaths. Does this mean that churches and
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schools are sources of vice and that newborns are murderers? Here,
in fact, the observed correlation is due to a third variable, namely the
size of the cites: the larger a city, the larger the number of churches,
schools and alcoholics, etc. In this example, the correlation between
number of churches/schools and alcoholics is called a spurious corre-
lation because it reflects only their mutual correlation with a third
variable (i.e., size of the city).

6 Testing the significance of r

A null hypothesis test for » can be performed using an F statistic
obtained as:

X (S —2). (9)

1 =2

For our example, we find that

4
x4d=-=133.
3

In order to perform a statistical test, the next step is to evalu-
ate the sampling distribution of the F. This sampling distribution
provides the probability of finding any given value of the F crite-
rion (i.e., the “p” value) under the Null Hypothesis (i.e., when there
is no correlation between the variables). If this p value is smaller
than the chosen a-level (e.g., .05 or .01), then the Null Hypothesis
can be rejected and r is considered “significant.” The problem of
finding the p value can be addressed in three ways: (1) the classical
approach which uses Fisher’s F' distributions; (2) the Monte Carlo
approach which generates empirical probability distributions; and
(3) the (non-parametric) permutation test which evaluates the like-
lihood of the actual configuration of results among all other possible
configurations of results.
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Figure 3: The Fisher distribution for v1 = 1 and v2 = 4, along with the a = .05 critical value of
F =17.7086.

6.1 Finding the probability for F': Classical approach

In order to analytically derive the sampling distribution of F, several
assumptions need to be made: (1) the error of measurement is added
to the true measure; (2) the error is independent of the measure; and
(3) the mean error is normally distributed, has a mean of zero, and
a variance of o2. When theses assumptions hold and when the null
hypothesis is true, the F'statistic is distributed as a Fisher’s F' with
v1 = L and vy = S—2 degrees of freedom. (Incidentally, an equivalent
test can be performed using ¢ = v/F, which is distributed, under Hy
as a Student’s distribution with v = S — 2 degrees of freedom).

For our example, the Fisher distribution shown in Figure 3, has
vy =1land v, =5 —2=6—2 =4 and gives the sampling distri-
bution of F. Using this distribution will show that the probability
of finding a value of F' = 1.33 under Hj is equal to p ~ .313 (most
statistical packages will routinely provide this value). Such a p value
does not lead to rejecting Hy at the usual level of a = .05 or a = .01.
An equivalent way of performing a test uses critical values that cor-
respond to values of F' whose p value is equal to a given « level.
For our example, the critical value (found in tables available in most
standard textbooks) for a = .05 is equal to F(1,4) = 7.7086. Any
F with a value larger the critical value leads to reject the Null Hy-
pothesis at the chosen « level, whereas an F' value smaller than the
critical value leads to fail to reject the Null Hypothesis. For our ex-
ample, because F' = 1.33 is smaller than the critical value, of 7.7086,
we cannot reject the Null Hypothesis.
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6.2 Finding the probability for F': Monte-Carlo approach

A modern alternative to the analytical derivation of the sampling
distribution is to empirically obtain the sampling distribution of
F when the null hypothesis is true. This approach is often called
a Monte-Carlo approach (this approach owes its name to the long
standing association between probability and gaming: Monte-Carlo
is notorious for its casinos).

With the Monte-Carlo approach, we generate a large number of
random samples of observations (e.g., 1,000 or 10,000) and com-
pute for each sample r and F. In order to generate these samples,
we need to specify the shape of the population from which these
samples are obtained. Here we decided to use a normal distribution
(this makes the assumptions for the Monte-Carlo approach equiv-
alent to the assumptions of the classical approach). The frequency
distribution of these randomly generated samples provides an esti-
mation of the sampling distribution of the statistic of interest (i.e.,
r or F). For our example, Figure 4 shows the histogram of the values
of r? and F obtained for 1,000 random samples of 6 observations
each. The horizontal axes represent the different values of r* (top
panel) and F' (bottom panel) obtained for the 1,000 trials and the
vertical axis the number of occurrences of each value of r? and F.
For example, the top panel shows that 160 samples (over the 1,000
trials) have a value of r* = .01 which was between 0 and .01 (this
corresponds to the first bar of the histogram in Figure 4).

Figure 4 shows that the number of occurrences of a given value
of r? and F decreases as an inverse function of their magnitude: the
greater the value, the less likely it is to obtain it when there is no
correlation in the population (i.e., when the null hypothesis is true).
However, Figure 4 shows also that the probability of obtaining a
large value of 72 or I is not null. In other words, even when the Null
Hypothesis is true, we can obtain very large values of r? and F.

From now on, we will focus on the F' distribution, but everything
also applies to the 72 distribution. After the sampling distribution
has been obtained, the Monte-Carlo procedure follows the same steps
as the classical approach. Specifically, if the p value for the criterion is
smaller than the chosen « level, the Null Hypothesis can be rejected.
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Figure 4: Histogram of values of 2 and I’ computed from 1,000 random samples when the null
hypothesis is true. The histogram shows the empirical distribution of F and 72 under the null
hypothesis.

Equivalently, a value of F larger than the « level critical value leads
to reject the Null Hypothesis for this a level.

For our example, we find that 310 random samples (out of 1,000)
had a value of F' larger than F' = 1.33, and this corresponds to
a probability of p = .310 (compare with a value of p = .313 for
the classical approach). Because this p value is not smaller than
a = .05, we cannot reject the Null Hypothesis. Using the critical
value approach leads to the same decision. The empirical critical
value for o« = .05 is equal to 7.5500 (see Figure 4). Because the
computed value of F'= 1.33 is not larger than the 7.5500, we fail to
reject the Null Hypothesis.
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6.3 Finding the probability for F': Permutation tests

For both the Monte-Carlo and the traditional (i.e., Fisher) approaches,
we need to specify the shape of the distribution under the Null Hy-
pothesis. The Monte-Carlo approach can be used with any distribu-
tion (but we need to specify which one we want) and the classical
approach assumes a normal distribution. An alternative way to look
at a Null Hypothesis test is to evaluate if the pattern of results for
the experiment is a rare event by comparing it to all the other pat-
terns of results that could have arisen from these data. This is called
a permutation test or also sometimes a randomization test.

This non-parametric approach originated with Student and Fisher
(1935, see also Pitman, 1937, 1938) who developed the (now stan-
dard) F approach because it was possible then to compute one F
but very impractical to compute all the F’s for all possible permuta-
tions (it seems that both Student and Fisher spent some inordinate
amount of time doing so, though, in order to derive a “feel” for the
sampling distribution they were looking for). If Fisher could have
had access to modern computers, it is likely that permutation tests
would be the standard procedure.

So, in order to perform a permutation test, we need to evaluate
the probability of finding the value of the statistic of interest (e.g., r
or F) that we have obtained compared to all the values we could have
obtained by permuting the values of the sample. For our example,
we have 6 observations and therefore there are

6l =6x5x4x3x2="T720

different possible patterns of results. Each of these patterns corre-
sponds to a given permutation of the data. For instance, here is a
possible permutation of the results for our example:

Wi=1 Wy=3 Ws=4 Wy=4 Ws=5 Wg=7

Vi=8 Yo=10 Y3=16 Y, =12 Yi=10 Ys;=4

(Nota Bene, we just need to permute one of the two series of num-
bers, here we permuted Y'). This permutation gives a value of ry.y =
—.30 and of r,y = .09 . We computed the value of ryy for the re-
maining 718 permutations. The histogram is plotted in Figure 5,
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where, for convenience, we have also plotted the histogram of the
corresponding F' values.

For our example, we want to use the permutation test in order to
compute the probability associated to 73, = .25. This is obtained
by computing the proportion of 1%, larger than .25. We counted
220 12,y out of 720 larger or equal to .25, this gives a probability of

220

= — = .306 .
720

p

Interestingly this value is very close to the values found with the
two other approaches (cf. Fisher distribution p = .313 and Monte
Carlo p = .310). This similarity is confirmed by comparing Figure 5,
where we have plotted the permutation histogram for F, with Figure
3, where we have plotted the Fisher distribution.

r? : Permutation test forv, =1,v, =4
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Figure 5: Histogram of F' values computed from the 6! = 720 possible permutations of the 6
scores of the example.



14 Coefficients of Correlation, Alienation and Determination

When the number of observations is small (as it is the case for this
example with 6 observations), it is possible to compute all the pos-
sible permutations. In this case we have an exact permutation test.
But the number of permutations grows very fast when the num-
ber of observations increases. For example, with 20 observations the
total number of permutations is close to 2.4 x 10'® (this is a very
big number!). Such large numbers obviously prohibit computing all
the permutations. Therefore, for samples of large size, we approxi-
mate the permutation test by using a large number (say 10,000 or
100, 000) of random permutations (this approach is sometimes called
a Monte-Carlo permutation test).

7 Confidence intervals

7.1 Classical approach: Fisher’'s Z transform

The value of r computed from a sample is an estimation of the
correlation of the population from which this sample was obtained.
Suppose that we obtain a new sample from the same population and
that we compute the value of the coefficient of correlation for this
new sample. In what range is this value likely to fall? This question
is answered by computing the confidence interval of the coefficient of
correlation. This gives an upper bound and a lower bound between
which the population coefficient of correlation is likely to stand. For
example, we want to specify the range of values of ry.y in which the
correlation in the population has a 95% chance of falling.

Using confidence intervals is more general than a Null Hypothesis
test because if the confidence interval excludes the value 0 then we
can reject the Null Hypothesis. But a confidence interval also gives
a range of probable values for the correlation. Using confidence in-
tervals has another big advantage: we can act as if we could accept
the Null Hypothesis. In order to do so, we first compute the confi-
dence interval of the coefficient of correlation and look at the largest
magnitude it can have. If we consider that this value is small, then
we can say that even if the magnitude of the population correlation
is not zero, it is too small to be of interest.
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Conversely, we can give more weight to a conclusion if we show
that the smallest possible value for the coefficient of correlation will
still be large enough to be impressive.

The problem of computing the confidence interval for r has been
explored (once again) by Student and Fisher. Fisher found that the
problem was not simple, but that it could be simplified by transform-
ing r into another variable called Z. This transformation, which is
called the Fisher’s Z-transform, creates a new Z-variable whose a
sampling distribution is close to the normal distribution. Therefore
we can use the normal distribution to compute the confidence in-
terval of Z and this will give a lower and a higher bound for the
population values of Z. Then we can transform these bounds back
into r values (using the inverse Z-transformation) and this gives a
lower and upper bound for the possible values of r in the population.

7.1.1 Fisher's Z transform

Fisher’s Z transform is applied to a coefficient of correlation r ac-
cording to the following formula:

Z:%[ln(l—i—r)—ln(l—r)] : (10)

where In is the natural logarithm.

The inverse transformation, which gives r from Z, is obtained
using the following formula:
_exp{2xZ}—1
Cexp{2xZ}+1°

(11)

where exp {z} means to raise the number e to the power z (i.e.,
exp{z} = ¢”, and e is Euler’s constant which is approximately e ~
2.71828...). Most hand calculators can be used to compute both
transformations.

Fisher showed that the new Z variable has a sampling distribution
which is normal with a mean of 0 and a variance of S — 3. From this
distribution we can compute directly the upper and lower bound of
Z and then transform them back into values of r.
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7.1.2 How to transform r to Z: an example

We will illustrate the computation of the confidence interval for the
coefficient of correlation using the previous example where we com-
puted a coefficient of correlation of » = —.5 on a sample made of
S = 6 observations. The procedure can be decomposed into seven
steps which are detailed below.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Before doing any computation we need to choose an « level
that will correspond to the probability of finding the pop-
ulation value of r in the confidence interval. Suppose we
chose the value a = .05. This means that we want to ob-
tain a confidence interval such that there is a 95% chance
[(1—a) = (1—.05) = .95] of having the population value
being in the confidence interval that we will compute.

Find in the table of the Normal distribution the critical val-
ues corresponding to the chosen a level. Call this value Z,.
The most frequently used values are:

— Zo—n0 = 1.645  (for a = .10).

— La=.05 — 1.960 (fOI‘ a = 05)

— Zo—o1 = 2.575  (for a = .01).

— Lia=.001 = 3.325 (fOl" a = 001)

Transform r into Z using Equation 10. For the present ex-
ample, with r = —.5, we find that Z = —0.5493.

Compute a quantity called Q) as

1
7 x4 ——
@ “\V5=3

For our example we obtain:

[ 1 1
Q=Zox\c—3 960><\/; 316

Compute the lower and upper limits for Z as:
Lower Limit = Zjgyer = Z — Q = —0.5493 — 1.1316 = —1.6809
Upper Limit = Zpper = Z + Q = —0.5493 + 1.1316 = 0.5823

Transform Zigwer and Zypper N0 Tigwer and 7ypper This is done
using Equation 11. For the present example, we find that

Lower Limit = rgwer = —.9330
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Upper Limit = rypper = .5243

As you can see, the range of possible values of r is very large: the
value of the coefficient of correlation that we have computed could
come from a population whose correlation could have been as low as
Tower = —-9330 or as high as rypper = .5243. Also, because zero is in
the range of possible values, we cannot reject the Null Hypothesis
(which is the conclusion we reached with the Null Hypothesis tests).

It is worth noting that because the Z-transformation is non-linear,
the confidence interval is not symmetric around r.

Finally, current statistical practice recommends to use confidence
intervals routinely because this approach is more informative than
Null Hypothesis testing.

7.2 Modern approach: Efron’s Bootstrap

A modern Monte Carlo approach for deriving confidence intervals
was proposed by Efron (1979, 1981, see also Efron & Tibshirani,
1993). This approach, called the bootstrap, is probably the most im-
portant advance for inferential statistics in the second part of the
20th Century.

The idea is simple but could be implemented only with modern
computers which explains why it is a recent development. With the
bootstrap approach, we treat the sample as if it were the popula-
tion of interest in order to estimate the sampling distribution of a
statistic computed on the sample. Practically this means that in or-
der to estimate the sampling distribution of a statistic, we just need
to create bootstrap samples obtained by drawing observations with
replacement! from the original sample. The distribution of the boot-
strap samples is taken as the population distribution. Confidence
intervals are then computed from the percentile of this distribution.

For our example, the first bootstrap sample that we obtained
comprised the following observations (note that some observations

1 When we draw an observation with replacement, each observation is put back into the
sample after it has been drawn, therefore an observation can be drawn several times.
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r : Bootstrap Sampling Distribution

35 T T T
30 3 E
L3 S 1
D ) I - i
5200 |
£
©
wv
q5 ']5 E
H
10 | i I .
s | |
0 1
-1 -0.5 0 0.5 1
Values of r

Figure 6: Histogram of ryy values computed from 1,000 bootstraped samples drawn with
replacement from the data from our example.

are missing and some are repeated as a consequence of drawing with
replacement):

s1 = observation 5,
s9 = observation 1,
s3 = observation 3,
s4 = observation 2,
s4 = observation 3,

s¢ = observation 6 .

This gives the following values for the first bootstraped sample
obtained by drawing with replacement from our example:

W1:5 W2:1 W3:4 W4:3 W5:4 W6:7
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Vi=8 Yo=16 Y3=12 Y, =10 Yi=12 Ys=10.

This bootstraped sample gives a correlation of ryy = —.73.

If we repeat the bootstrap procedure for 1,000 samples, we obtain
the sampling distribution of ry.y as shown in Figure 6. From this
figure, it is obvious that the value of ryy varies a lot with such a
small sample (in fact, it covers the whole range of possible values,
from —1 to +1). In order to find the upper and the lower limits
of a confidence interval, we look for the corresponding percentiles.
For example, if we select a value of a = .05, we look at the val-
ues of the bootstraped distribution corresponding to the 2.5th and
the 97.5th percentile. In our example, we find that 2.5% of the val-
ues are smaller than —.9487 and that 2.5% of the values are larger
than .4093. Therefore, these two values constitute the lower and the
upper limits of the 95% confidence interval of the population esti-
mation of ryy (cf. the values obtained with Fisher’s Z transform
of —.9330 and .5243). Contrary to Fisher’s Z transform approach,
the bootstrap limits are not dependent upon assumptions about the
population or its parameters (but it is comforting to see that these
two approaches concur for our example). Because the value of 0 is
in the confidence interval of .y, we cannot reject the null hypoth-
esis. This shows once again that the confidence interval approach
provides more information than the null hypothesis approach.

8 Estimating the population correlation: shrunken and
adjusted r

The coefficient of correlation is a descriptive statistic which always
overestimates the population correlation. This problem is similar to
the problem of the estimation of the variance of a population from a
sample. In order to obtain a better estimate of the population, the
value r needs to be corrected. The corrected value of r goes under
different names: corrected r, shrunken r, or adjusted r (there are
some subtle differences between these different appellations, but we
will ignore them here) and we denote it by #2. There are several
correction formulas available, the one most often used estimates the
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value of the population correlation as

=1 {(1 —r?) (%)} . (12)

For our example, this gives:

P {(1 ) (%ﬂ _ - {(1 — 25) x ﬂ - {.75 x Zﬂ — 0.06.

With this formula, we find that the estimation of the population
correlation drops from r = . — 50 to 7 = —/7? = —/.06 = —.24.

O Particular cases of the coefficient of correlation

Mostly for historical reasons, some specific cases of the coefficient
of correlation have their own names (in part because these special
cases lead to simplified computational formulas). Specifically, when
both variables are ranks (or transformed into ranks), we obtain the
Spearman rank correlation coefficient (a related transformation will
provide the Kendall rank correlation coefficient, see Abdi, 2007);
when both variables are dichotomous (i.e., they take only the values
0 and 1), we obtain the Phi coefficient of correlation; and when only
one of the two variables is dichotomous, we obtain the point biserial
coefficient.
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