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Abstract 
The Cognitive Load (CL) refers to the load imposed on an 
individual’s cognitive system when performing a given task, 
and is usually associated with the limitations of the human 
working memory. Stress, fatigue, lower ability to make 
decisions and perceptual narrowing are induced by cognitive 
overload which occurs when too much information has to be 
processed. As many physiological measures and for a non-
intrusive measurement, speech features have been investigated 
in order to find reliable indicators of CL levels. In this paper, 
we have investigated high-level speech events automatically 
detected using the CMU-Sphinx toolkit for speech recognition. 
Temporal events (speech onset latency, event starting time-
codes, pause and phone segments) were extracted from the 
speech transcriptions (phoneme, word, silent pause, filled 
pause, breathing). Seven audio feature sets related to the 
speech events were designed and assessed. Three-class SVM 
classifiers (Low, Medium and High level) were developed and 
assessed on the CSLE (Cognitive-Load with Speech and EGG) 
databases provided for the Interspeech'2014 Cognitive Load 
Sub-Challenge. These experiments have shown an 
improvement of 1.5 % on the Test set compared to the official 
baseline Unweighted Average Recall (UAR). 
Index Terms: cognitive load measurement, silent and filler 
pause, speech onset latency, paralinguistic challenge 

1. Introduction 
The Cognitive Load (CL) refers to the load imposed on an 
individual’s cognitive system when performing a given task 
[1]. In Neuropsychology and Psychology, the cognitive 
architecture summarily consists of a limited and short-term 
working memory with partly-independent processing units for 
visual/spatial and auditory/verbal information supervised by a 
central executive which interacts with a comparatively 
unlimited long-term memory [2, 3]. The long-term memory 
stores individual’s cognitive schemas of acquired knowledge 
which are accessible by the working memory to perform a 
task. From practice or learning, the working memory is able to 
produce and transfer new cognitive schemas to the long-term 
memory [4, 5]. Overload can occur when the working memory 
processes too much information and too fast. A high CL level 
is known to affect performance effectiveness in achieving a 
task [6]. The CL measurement is of a great interest to advance 
CL theory [4, 5] and is used for innovative design in learning 
[7] and adaptation of mobile conversational interfaces [8]. 

Three main techniques were used in the research of CL 
measurement: self-rating, dual-task and physiological 
techniques. The self-rating technique consists in a subjective 
rating measure based on the assumption that subjects are able 
to introspect their CL and report on a scaling rate the cognitive 
capacity which is allocated for the task [5]; a drawback of this 
technique is to be intrusive in case of trial series [9]. The dual-
task technique is based on the measure of performance in 
achieving simultaneously a primary and secondary task in 

order to compare the performance to that of the primary task 
for a measurement of the interference [5]. In laboratory 
environment, the secondary task is usually a memory span task 
using the capacity of the working memory [10]. In such dual-
tasks, simultaneously to the primary task, subjects are required 
to remember a series of items (e.g., letters, figures, words) for 
a further recall; a variant consists in a mental arithmetic [11]. 

The Physiological techniques are based on the assumption 
that changes in CL impact physiological measures such as 
heart rate variability, eye activity and skin conductance [12]. 
For its non-intrusive measurement, speech-based features have 
been investigated in many studies to find reliable CL 
indicators. Low-level features such as F0, intensity, MFCC 
and formant were intensively investigated for automatic 
speech-based CL classification systems [13-16]. Previous 
studies have shown that high-level features, such as speaking 
rate, pause characteristics and speech onset latency, can 
potentially be used in CL level recognition [17, 18]. 

For the Interspeech’2014 Computational Paralinguistics 
Cognitive Load Sub-Challenge [19], we paid a particular 
attention to High-Level Speech Events (HLSE) that should 
impact classification performance according to related works 
on CL measurement. In particular, we investigated the 
response time to stimulus, the speech temporalities (e.g., 
speech rates) and specific parts of the speech signal (e.g., 
pause, breathing) which are sensible to cognitive fatigue. The 
paper is organized as follows. In Section 2, the three speech 
corpora of the study are described. In Section 3, the Automatic 
Speech Recognition (ASR) system developed with the CMU-
Sphinx toolkit is described. The HLSE transcriptions are 
analyzed. Features related to HLSE are described and assessed 
using information gain method. For each corpus, the 
contribution of the most relevant HLSE feature is analyzed. In 
Section 4, several CL classifiers using feature sets related to 
HLSE are designed and assessed on the Development set. The 
best combination of audio features was investigated. The last 
section concludes the study. 

2. Speech material 
The Cognitive Load with Speech and Electroglottograph 
(CSLE) database [16] was designed for investigations on 
speakers’ CL. CSLE is made of three databases: Stroop Time 
Pressure, Stroop Dual Task and Reading Span Sentence for 
which time pressure and dual task technique were used to 
induce the higher CL level. For the three corpora, speech 
utterances were labeled into three CL levels: Low (L1), 
Medium (L2) and High (L3). 

For both Stroop Time Pressure and Stroop Dual Task 
databases, the primary task is the Stroop test [20]: a common 
test in Psychology which shows a semantic interference 
phenomenon. The Stroop effect and numerous variants of the 
test were investigated [21, 22] with a convergence in the 
results: the response latency to the stimulus increases with the 
CL level. In the Stroop test, subjects are instructed to 
pronounce the name of colors displayed on a screen. Two CL 
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levels are basically induced: (1) low-level of CL, the font color 
is similar to the color name; this stimulus refers to the 
congruent test (e.g., when “blue” is displayed in blue font, the 
subject is required to say “blue”), (2) high-level of CL, the 
font color is different from the color name; this stimulus refers 
to the incongruent test (e.g., when “blue” is displayed in red 
font, the subject is required to say “red”). For the Stroop 
databases, ten color names (black, blue, brown, gray, green, 
orange, pink, purple, red and yellow) were chosen. Per trial, 
the ten different colors (randomly ordered) were all displayed 
at the same time and repeated twice. At the higher CL level of 
the Stroop Time Pressure database, a time pressure was added 
through a color display interval of 0.8 s. At the higher CL 
level of the Stroop Dual Task database, a secondary tone-
counting task was added. Subjects were required to count a 
specific tone played through headphones for a recall at the end 
of a trial series. Two tones of respectively 1000 Hz and 2000 
Hz were considered, a tone was played in two-second intervals 
and 200 ms before the next color display, their number of 
occurrence ranged from four to six. The tone-counting 
concerned the higher frequency tone (2000 Hz). Table 1 
summarizes the experimental conditions for each CL level of 
the Stroop Time Pressure and Stroop Dual Task databases. 

Table 1. Experimental conditions of the Stroop Time 
Pressure and Stroop Dual Task databases. 

CL 
level 

CSLE-Stroop  
with Time Pressure 

CSLE-Stroop  
with Dual Task 

L1 Congruent test 
Color series display 

Congruent test 
1 s color display interval 

L2 Incongruent test 
Color series display 

Incongruent test 
1 s color display interval 

L3 
Incongruent test 
0.8 s color display interval 

Incongruent test 
1 s color display interval 
Tone-counting 

 
For the CSLE-Reading Span Sentence database [16], the 

dual task technique was used to induce CL. In this experiment, 
subjects were required in a series of short sentences to read 
aloud the sentence displayed and to verify its logic (false or 
true) while memorizing a series of letters for a recall at the end 
of the series. For the memory span test, a set of trials was 
designed to memorize from one to four letters. Each subject 
read 75 sentences split into (1) five sets of respectively two, 
three and four sentences, and (2) six sets of five sentences. In 
each set of trials, a sentence was displayed for reading, then a 
letter appeared for 800 ms which the subjects were required to 
memorize. A practice session was provided to the subjects. 
The CL level labeling was based on the assumption that as the 
number of letters to be recalled in a set increases, the amount 
of working memory used will also increase with the CL level. 
The CL level was associated to the rank r of the sentences in 
the sets of trials for which the number of letters to recall is r-1. 
For any set of trials, Ll was decided for the first sentence 
(empty recall series), L2 for the second sentence (recall series 
made of one letter), and L3 for the third, fourth and fifth 
sentences (recall series made of two, three or four letters). 
Each subject recorded 21 L1 and L2 utterances and 33 L3 
utterances. 

26 speakers were recorded for the three databases. Speech 
data were split into Training, Development and Test sets 
respectively made of 11 (2 females and 9 males), 7 (2 females 
and 5 males) and 8 (2 females and 6 males) speakers. For both 

the Training and Development sets: the Stroop-based 
databases include nine occurrences of speech utterances per 
speaker (three utterances per CL level) with respectively an 
average duration of 16.5 s and 20.8 s for Time Pressure and 
Dual Task; the Reading Span Sentence database includes 
respectively 21, 21 and 33 speech utterances per speaker for 
the three CL levels with an average duration of 4 s. Table 2 
gives for the three databases of the Cognitive Load Sub-
Challenge the number of utterances of the Training, 
Development and Test sets. 

Table 2. Number of utterances in the Train(ing), 
Devel(opment) and Test sets of the databases. 

Database Train Devel Test 
Stroop with 
Time Pressure 99 63 72 

Stroop with 
Dual Task 99 63 72 

Reading Span 
Sentence 825 525 600 

3. High-level speech events 
Previous studies have shown systematic CL influences on 
HLSE such as silent pauses, filled pauses, disfluencies and 
speech onset latencies [17, 23, 24]. HLSE can be extracted 
from an automatic speech transcription using constraints of the 
task. We looked for improvement in CL classification using 
features tied to these events.  

3.1. Automatic speech transcription 
Speech transcriptions of the databases were obtained using the 
CMU-Sphinx toolkit [25]. This ASR system may not yet be 
robust enough for an unconstraint transcription. However, the 
linguistic characteristics (e.g., lexicon, grammar) of the 
databases should allow a sufficient robustness of the 
transcription for the automatic HLSE extraction. Version 0.8 
of the Pocketsphinx recognizer library [25] is used to develop 
the ASR system. The acoustic models were the pre-trained 
generic US-English acoustic models provided by CMU.  

Table 3. List of the unit transcriptions of the ASR.  

Phonemes 
AA   AE   AH   AO   AW   AY   B   CH  D   DH   EH   ER 
EY   F   G   HH   IH   IY   JH   K   L   M   N   NG   OW  
OY   P   R   S   SH   T   TH   UH   UW   V   W   Y   Z   ZH  
Silent and filler pauses 
SIL   BREATH   NOISE  COUGH   SMACK   UH   UM  

 
Table 3 gives the list of units (phonemes, silent and filler 

pauses) that the acoustic models are able to extract. For the 
transcription of Reading Span Sentence database, the acoustic 
models were not re-trained. A <phone | pause> loop search is 
implemented to get a list of phonemes and pauses with their 
time-codes. For the transcription of the Stroop databases, the 
acoustic models are re-trained on the Training set. The 
phonetic transcription of the color names results from the 
CMU Pronouncing Dictionary. 14 variants of color name 
pronunciations were added. A generic word model [26] was 
introduced and tuned on the Training set. A <color_name | 
pause | generic_word> loop search was implemented to get a 
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list of color names, phones, pauses and generic words with 
their time-codes. 

The pause and generic word transcriptions were analyzed. 
For the Reading Span Sentence database, the total duration of 
pause segments was 0.78 s in average per utterance. For the 
Stroop Time Pressure and the Stroop Dual Task databases, the 
total duration of the segments of pause and generic word was 
respectively 5.85 s and 9.39 s in average per utterance. 

3.2. High-level speech event features  
HLSE were analyzed from their statistics on the databases. 
Five usual statistics of HLSE were computed from the ASR 
time-codes of pause and phone transcriptions. 

� Speaking rate (S): the number of phones per second. 
� Articulation rate (A): the number of phones per second, 

excluding the total duration of silent pauses. 
� Pause ratio (P): the total duration of silent and filled 

pauses divided by the total duration of utterance. 
� Filled pause ratio (F): the total duration of filled pauses 

divided by the total duration of pauses. 
� Speech Onset latency (SO): the time interval between 

the presentation of the stimulus and the first phone 
(excluding the filled pauses) uttered by the subject. 

 
For the Stroop databases, five other HLSE features were 

computed from the starting time-codes of the segments labeled 
as a color name. 

� Mean (M): the average of the starting time-codes. 
� Standard deviation (SD): the standard deviation of the 

starting time-codes. 
� Kurtosis (K): the Kurtosis measure of the starting time-

codes. 
� Skewness (SK): the Skewness measure of the starting 

time-codes. 
� Color word number (C): the number of color names 

uttered by the subject. 
 

For each database, the relevance of all the features is given 
by the information gain [27] which is computed on the Train 
set with the following formula:  

 H(class) – H(class/feature) (1) 

where Shannon entropy H is estimated from a table of 
contingency and class ={L1, L2, L3}. Features for which the 
information gain is greater than zero are considered as 
relevant. 

For the Reading Span Sentence database, three features 
out of five are relevant and selected for the CL classifier. The 
ranking order of relevance is the following: SO, P and S. 
Figure 1 shows per CL level the SO histogram computed for 
each point t of the time abscissa as the number of utterances 
having a SO value in the interval [t, t + 0.1 s]; a spline curve is 
drawn from the values of the histogram. We remark that the 
SO distribution is bi-modal: the first mode (around 0.1 s) 
corresponds to the utterances of L2 and L3 levels, the second 
mode (around 0.4 s) corresponds to the utterances of L1 level. 
We notice that the speech onset latency is shorter for high CL 
level than for low CL level.  

 
Figure 1: SO histogram per CL level of the Reading 
Span Sentence utterances of the Training set. 

For the Stroop Time Pressure database, seven features out 
of ten are relevant and selected for the CL classifier. The 
ranking order of relevance is the following: SD, M, S, A, P, C 
and F. Figure 2 shows per CL level the SD histogram 
represented as in Figure 1 with a computation interval of 0.4 s. 
We remark that the SD distribution is tri-modal: the first mode 
(around 3.2 s) corresponds to the utterances of L1 CL level, 
the second mode (around 4.5 s) corresponds to the utterances 
of L3 CL level, and the third mode (around 4.9 s) corresponds 
to the utterances of L2 CL level. We notice that the SD value 
is lower for L3 CL level than for L2 CL level. The color 
display interval only introduced for the L3 CL level seems to 
achieve the synchronization of the speaker responses to the 
stimuli. 

 

 
Figure 2: SD histogram per CL level of the Stroop 
Time Pressure utterances of the Training set. 

For the Stroop Dual Task database, seven features out of 
ten are relevant and selected for the CL classifier. The ranking 
order of relevance is the following: M, F, C, K, S, SK and SO.  

 

 
Figure 3: M histogram per CL level of the Stroop 
Dual Task utterances of the Training set. 
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Figure 3 shows per CL level the M histogram represented 
as in Figure 1 with a computation interval of 0.2 s. We remark 
that the M distribution is bi-modal: the first mode (around 9.8 
s) corresponds to the utterances of L1 CL level, the second 
mode (around 10.2s) corresponds to the utterances of L2 and 
L3 CL levels. This distribution confirms the results of related 
work on the Stroop effect: under a high CL level, the response 
time to the color display increases. 

4. Cognitive load classifier 
A CL SVM classifier referred to as C1 was developed with 

the following characteristics: WEKA data mining tool kit [28], 
Support Vector Machines (SVM) classifier with linear Kernel 
and Sequential Minimal Optimization, the HLSE feature 
selection obtained by the information gain method (cf. Section 
3.2) referred to as HLSE-IG set for the utterance 
representation. To account for the imbalanced class 
distribution of the Reading Span Sentence database, the L1 
and L2 categories were up-sampled by a factor of 50%. Table 
4 gives the UAR of the C1 classifier on the Development set 
for the CLSE databases. For the Stroop databases, the UAR is 
higher in absolute value of 1.4 % compared to the Official 
Baseline Classifier (OBC). It is noticeable that seven features 
of the HLSE-IG set gave a better result than the 6,373 features 
of the official set [19] referred to as IS-2014 set. 

Table 4. UAR on the Development set of the CL 
classifier C1 based on the HLSE-IG set. 

Task Reading  
Span Sentence  

StroopTime 
Pressure 

Stroop Dual 
Task 

HLSE-IG {SO, P, S} {SD, M, S,  
  A, P, C, F} 

{M, F, C, K,  
  S, SK, SO} 

# features 3 7 7 
C1 54.9 % 76.2 % 65.1 % 
OBC  61.2 % 74.6 % 63.5 % 

 
These results have shown that the features related to the 

pauses, pause ratio (P) and filler pause ratio (F), were relevant 
for CL measurement. Other relevant features could be 
obtained from the audio analysis of pause segments. 

4.1. Audio analysis of pause and phone segments 
Two audio feature sets Pa-2010 and Pa-2014 were extracted 
from the fusion of segments of pause and generic word (for the 
Stroop databases) of each utterance. Two audio feature sets 
Ph-2010 and Ph-2014 were extracted from the fusion of the 
remaining segments (non-pause and non-generic word) of each 
utterance. The goal is to investigate the CL influence on pause 
and phone respectively. Pa-2014 and Ph-2014 sets were 
extracted using the official IS-2014 set. Pa-2010 and Ph-2010 
sets were extracted using the IS-2010 set (1,582 features) 
provided by the organizers of the Interspeech’2010 
Paralinguistics Challenge [29]. All of the features were 
extracted using the open source openSMILE feature extraction 
tools [30]. Table 5 gives the UAR on the Development set of 
the two pause-based CL classifiers (Pa-2010 and Pa-2014) and 
the two phone-based CL classifiers (Ph-2010 and Ph-2014). 
For the Stroop Dual Task database, the UAR of Pa-2010 CL 
classifier is higher in absolute value of 4.7 compared to the 
OBC. It is noticeable that phone-based CL classifiers gave the 
worst accuracy (except Ph-2014 for Stroop Time Pressure). 

These results suggest that the CL level has a lower influence 
on the phone segments than on the pause segments. 

Table 5. UAR on the Development set of the Pause-
based and Phone-based CL classifiers.  

Task Reading Span 
Sentence  

Stroop Time 
Pressure 

Stroop Dual 
Task 

Pa-2010 51.5 % 68.2 % 68.2 % 
Pa-2014 52.7 % 66.8 % 63.5 % 
Ph-2010 46.5 % 63.5 % 55.6 % 
Ph-2014 49.4 % 71.4 % 60.3 % 
C1 54.9 % 76.2 % 65.1 % 
OBC 61.2 % 74.6 % 63.5 % 

 
The CL classifier referred to as C2 used an optimal 

combination of the seven audio feature sets {HLSE-IG, Pa-
2010, Pa-2014, Ph-2010, Ph-2014, IS-2014} referred as FC2 
set. The CL classifier referred to as C2N used a per cluster 
normalization method using the FC2 set. Clusters are obtained 
by an unsupervised speaker ID method [31] using the Pa-2010 
feature set. Table 6 gives the UAR on the Development set of 
the C2 and C2N classifiers for the three CLSE databases. The 
UAR of the C2N classifier was higher in absolute value of 3.1, 
6.4, and 15.9 respectively compared to the OBC. These results 
correspond to an improvement of 4.6 % of the official baseline 
result (composite result on the three databases) for the 
Cognitive Load Sub-Challenge.  

Table 6. UAR on the Development set of the CL 
classifiers using optimal combination of feature sets 

and feature selection. 

Task Reading  
Span Sentence  

Stroop 
Time Pressure 

Stroop 
Dual Task 

FC2 {HLSE-IG, 
IS-2014} 

{Pa-2010, 
Ph2014} 

{Pa-2010, 
IS-2014} 

C2 61.9 % 80.9 % 73.0 % 
C2N 64.3 % 81.0 % 79.4 % 
OBC 61.2 % 74.6 % 63.5 % 
 
The best result on the Test set, using the C2 classifier for 

Reading Span Sentence and C2N classifier for both Stroop 
tasks, was 63.1 % corresponding to an improvement of 1.5% 
compared to the OBC. C2 classifier was also used for the 
Physical Load Sub-Challenge with an UAR improvement of 
1.4 % on the Test set. 

5. Conclusions 
In this paper, we have presented seven CL classifiers which 
were based on features related to HLSE extracted from an 
ASR system. Seven feature sets were assessed: one set 
computed from the transcription time-codes, two sets extracted 
from the pause segments, two sets from the phone segments 
and two sets corresponding to the combination of the five 
previous sets and the official feature set. HLSE features have 
been shown relevant to CL classification, in particular the 
speech onset latency, the starting time-code statistics and the 
audio characteristics of the pause segments. An UAR 
improvement of 1.5% was obtained on the Test set compared 
to the result of the Official Baseline Classifier of the Cognitive 
Load Sub-Challenge. 
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