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Abstract
Feature fusion is a paradigm that has found success in a num-
ber of speech related tasks. The primary objective in applying
fusion is to leverage the complementary information present in
the features. Conventionally, either early or late fusion is em-
ployed. Early fusion leads to large dimensional feature vectors.
Further, the range of feature values for different streams require
appropriate normalisation. Late fusion is carried out at score
level, where the contribution from each type of feature is deter-
mined from the set of weights used. Feature switching is yet
another paradigm that attempts to capture the diversity in the
feature types used. Feature switching gains significance par-
ticularly in the context of speaker verification, where the fea-
ture type that best discriminates a speaker is used to verify the
claims corresponding to that speaker. Earlier, feature switch-
ing was attempted in the conventional UBM-GMM framework.
In this paper, the idea is extended to the Total Variability Space
(TVS) framework. Two different feature types namelyModified
Group Delay (MGD) and Mel-Frequency Cepstral Coefficients
(MFCC) are explored in the proposed framework. Results are
presented on NIST 2010 male database for the speaker verifica-
tion task.
Index Terms: speaker verification, shared nearest neighbour,
feature-switching

1. Introduction
Fusion of multiple systems is common for performance im-
provement in the state-of-the-art speaker verification systems.
Improved performance was reported using weight-based score
fusion[1] in one of the NIST SRE 2012 submissions. The fea-
ture switching approach proposed in this paper suggests another
way of combining multiple systems. Feature switching in TVS
framework computes similarity between target speaker’s ivec-
tor and non-target speakers’ ivectors in each feature domain.
The feature domain that provides minimum inter-class similar-
ity is selected as optimal feature domain for the target speaker.
The procedure involves labelled train data and various similar-
ity measures like cosine similarity, Shared Nearest Neighbour
Similarity (SNNS) using cosine similarity and negative of Eu-
clidean distance. A novel scoring method which uses SNNS
scores, which was applied earlier in other domains, is used for
speaker verification in this paper. In the paper [1], the seventeen
systems fused varied on the basis of both features and models
used. It is of interest to explore the factors contributing to the
overall performance from each system. This study can also be
categorised as an analysis of two systems based on feature vari-
ation and the contribution of each system is analysed speaker-
wise.

Speaker-wise analysis is carried out because of the follow-
ing reasons. Although the weight-based score fusion system

is simple to implement, the weights chosen are same for all
classes. Essentially, this scheme associates higher weights to
constituent systems that perform better across all classes of the
training data. On the other hand, the scheme proposed in this
paper associates entire weight-age to the system that is hypoth-
esised to discriminate the target speaker well for each speaker.
This is based on the conjecture that a particular feature may be
more than adequate to verify the claim instead of having to com-
pute fused score after extracting all feature types[2]. We con-
sider two different features for this study, namely, the standard
MFCC and MGD features. These two features are chosen pri-
marily because there is sufficient literature that establishes their
complementarity for speaker verification [2, 3]. The choice of
the feature that is relevant for each speaker is obtained using the
training data and development data. The result might be a sin-
gle feature or a combination of features for each given speaker
in systems that are made of multiple number of constituent sys-
tems. This methodology is referred to as feature switching. Al-
though the procedure was studied earlier in the UBM-GMM
framework [4], it has to be newly devised for the TVS frame-
work(also termed as i-vector framework) due to lack of extend-
ability of the former procedure.

Feature switching method used in GMM-UBM framework
could not be used in i-vector framework, because the informa-
tion theoretic measures used are based on Mutual Information
and Kullback-Leibler divergence computed on the distributions
that characterise the target and the rest of the speakers. There-
fore, a suitable metric has to be identified for the i-vector frame-
work where each speaker is represented by a single vector. In
this paper, apart from devising a feature selection strategy in
i-vector framework, an attempt is made to study different dis-
tance measures to perform the feature selection. The feature
switching method proposed in this paper allows us to combine
any given number of systems that are based on feature type vari-
ation in the state-of-the-art TVS framework. Moreover, its ap-
plicability extends to pattern recognition tasks in other domains
as well.

In Section 2, the complementary nature of the features
namely, MFCC and MGD is established through both theo-
retical and experimental studies and the need for using com-
plementary features in this methodology is emphasised. Sec-
tion 3 provides a comprehensive discussion of feature switching
methodology in the GMM-UBM framework vs i-vector frame-
work. Further experimental details and results are presented in
Section 4 followed by conclusion in Section 5.

2. Features for Feature Switching
Feature switching will be meaningful only if features capture
diversity in speaker characteristics. In this paper, we explore
MFCC and MGD features which have shown to capture diverse
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characteristics across speakers, sounds in the literature[5, 6, 7].
A speaker verification experiment is carried out on NIST 2003
female database that has data for 207 speakers and the results
are plotted to represent the complementarity of features. Fig-
ure 1 shows plot of score by MFCC based system vs score by
MGD based system where horizontal and vertical line corre-
spond to MGD and MFCC system thresholds respectively. In
the Figure 1, scores in north-west and south-east quadrants rep-
resent the trial scores that are correctly identified by either of
the systems, but not both. The scores in these regions indicate
complementary results. Table 2 shows an improvement in EER,
when fixed weighting based score fusion was applied for NIST
2010 male database on MFCC and MGD feature based systems
with weights 0.8 and 0.2 respectively. This further highlights
the scalability of complementary information even on a differ-
ent database namely, the male NIST 2010 database. MFCC fea-
tures are well-known in speech domain and need no elabora-
tion. In the subsequent section, the importance of phase based
features for speaker verification is illustrated. MGD is shown to
be performing well for speaker verification[4], and feature ex-
traction procedure for MGD is detailed in the paper by Murthy
et al.[8].
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Figure 1: NIST 2003 Speaker Verifications Systems for MFCC
and MGD : Plot depicting complementary results

2.1. Importance of Group Delay based Features

Magnitude spectrum based MFCC features are efficient in cap-
turing the spectral envelope. While phase based MGD features
are known for more accurate capture of the formant informa-
tion, or essentially, the vocal tract shape[9]. Formant details
are crucial for a reliable representation of a speaker. Figure 2
compares the capability of mel-filterbank energy contour and
modified group delay spectrum in resolving formant locations
(vocal-tract resonances) and vocal-tract anti-resonances. Con-
tours in black colour are the original formants which are over-
laid on MFCC (top) and MGD (bottom) spectrograms. It can be
seen from the Figure 2 that MGD formants (red colour) offers
a better match with the original formants compared to MFCC
formants (yellow colour). Third and fourth formants are shown
to be significant in distinguishing a speaker[10]. Also the study
in the paper [11] suggest that first four formants are crucial in
retaining sounds’ characteristics and it is known that sounds’
characteristics vary across speakers.

Recently, there has been increase in the use of group de-
lay based features for a variety of pattern recognition problems.
Feature fusion/concatenation of MGD and MFCC features is
shown to be leading to a robust music instrument recognition
system[12]. MGD features employed individually did not per-
form better than MFCC, while feature concatenation of both
the features did. Similar results can be observed even with the
speaker verification task, but using late fusion (Table 2). MGD
features were applied for depression detection, which is a com-
mon psychiatric disorder, where speech by the patient is used

as input[13]. Though, feature concatenation was not attempted
in that paper, MGD was shown to perform comparably with
MFCC features. MGD was helpful in efficient bispectrum esti-
mation owing to its capacity to resolve frequencies better[14],
and bispectrum estimation is useful for a wide variety of ap-
plications. All these applications reiterate the effectiveness of
the deployment of MGD features for different tasks. Therefore,
MGD features can be termed as representative of speaker in-
formation, because of their formant resolution capability. Also,
they are complementary to MFCC which can be observed from
the results mentioned before.

Figure 2: Comparison of Formant resolution capability of
MFCC and MGD features

3. Feature Switching
System fusion aims at preserving the correctly identified un-
common results among the systems fused that are indicated in
Figure 1. Score fusion is a typical solution to this problem[1]. A
linear binary classifier[1] that gives a linear boundary separat-
ing target score vectors and non-target score vectors is trained
on development data and applied on evaluation data. But this
method might not preserve uncommon results to its entirety be-
cause of the non-linear nature of the boundary. Therefore an
attempt is made to choose the feature that scores best with re-
spect to a given speaker instead of a weighted score, with the
aim of retaining all correctly identified uncommon results. So,
the task of feature switching reduces to selection of the optimal
feature for every target class/speaker. Such a framework based
on Mutual Information (MI) and Kullback - Leibler Divergence
(KLD) measure was proposed in GMM-UBM framework by
Padmanabhan et al.[4]. In this paper, a method for feature
switching in the i-vector framework is proposed. This method
involves various distance and similarity measures namely Eu-
clidean Distance, Cosine Similarity, Shared Nearest Neighbour
Similarity[15].

3.1. Mutual information and Kullback - Leibler Divergence
Measure

MI is a measure of dependence[16] between two random vari-
ables. Assuming that the random variable X takes a set of val-
ues X ={x1, x2, , xM} with associated probabilities {px1

, px2
,

, pxM
}, and that the random variable Y takes a set of values Y =

{y1, y2, , yN} with associated probabilities {py1 , py2 , , pyN }.
MI is calculated using the following formula.

MI(X ,Y) =
∑

xiεX

∑

yjεY

p(xi, yj)log
p(xi, yj)

p(xi)p(yj)
(1)

KLD [17] is an asymmetric measure of the discrimination be-
tween any two probability distributions p(xi) and p(xj). KLD
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for two multivariate Gaussian distributions is given by the fol-
lowing formula[4]

DKL(p(xi)‖p(xj)) = (1/2)[log
|Σi|

|Σj|
+ Tr|Σ−1

j Σi| − d

+ (μi − μj)
T
Σj

−1(μi − μj) (2)

where p(xi) and p(xj) are given by N (μi,Σi) and N (μj ,Σj)
respectively.

3.2. Feature Switching in the GMM-UBM Framework

Feature selection[4] is carried out in the following way in the
GMM-UBM system. KLD mentioned in Section 3.1 is de-
fined for any two multivariate Gaussian distributions. But it is
to be noted that we need to compute KLD between two Gaus-
sian Mixture Models(GMM’s) and is therefore modified (Eqn.
(3)). KLD is computed between the speaker-specific model and
universal background model. Therefore, KLD serves as a mea-
sure of discrimination with respect to the background model.
Similarly, MI is computed between complex short-term Fourier
transform and corresponding feature vector, for every frame and
accumulated for entire recording. MI serves as a measure of
representativeness of feature vector with respect to the Fourier
transform of the original signal. For every speaker, a weighted
sum of both MI and KLD is computed for every feature type in
order to select the optimal feature. Feature which is more rep-
resentative and discriminative is chosen as the optimal feature.

KLD(s, u) = ΣuiπuiKLD(si, ui) (3)

where s is speaker specific GMM(N (π̂,μs,Σ)) and u is the
UBM (N (π̂,μu,Σ)), is the UBM.

Although, the improvement using feature switching in the
UBM-GMM framework was not statistically significant [4] over
that of joint features, the approach did show that features that
are relevant for speaker verification need not be the same across
all speakers. Since the results presented in [4] are encouraging,
we explore the paradigm of feature switching in the i-vector
framework. Since i-vector cannot be characterised by a distri-
bution owing to the paucity of i-vectors, new measures must be
designed for feature switching in the i-vector framework.

3.3. Cosine Similarity and Euclidean Distance

Cosine similarity is a similarity measure while Euclidean dis-
tance is a distance measure defined for any two arbitrary vectors
as per the Eqn. 4 and 5 respectively. Assuming there are two
i-vectors vi and vj .

cos(�vi, �vj) =
�vi. �vj

||�vi|| . ||�vj ||
(4)

euc(�vi, �vj) = ||�vi − �vj || (5)

3.4. Shared Nearest Neighbour Similarity

Shared Nearest Neighbour Similarity (SNNS) is a rank-based
similarity measure found to be relevant for higher dimensional
data[15]. It comes under the category of secondary measures
whose computation depends on other primary similarity mea-
sures like cosine, Euclidean etc. Recently, this measure is also
shown to combat the hubness phenomenon and curse of dimen-
sionality observed while using higher dimensional data[18, 15].
Earlier research work related to the SNNSmeasure can be found
in the domains of earth science, word clustering (text)[19].
Given n other vectors D = {d1,d2,. . . . dn}, two sets of near-
est neighbours X and Y of cardinalitym are computed for each

Figure 3: SNNS depiction with 2D vectors

of �vi and �vj from set D. The SNNS between the two i-vectors
�vi and �vj is given by the equation6. The distance/similarity
measure used to determine nearest neighbours could be any one
among the Euclidean distance measure, cosine similarity mea-
sure or other similarity measures.

SNNS(�vi, �vj) =
N(X ∩ Y)

m
(6)

3.5. Shared Nearest Neighbour Similarity Scoring with i-
vectors

This scoring measure was initially experimented by the authors
for the NIST i-vector challenge, 2012[20] to confirm its appli-
cability and scrutinise its performance trends with i-vectors. A
total of 12,582,004 trials are evaluated for a set of 1306 speak-
ers. Five i-vectors for every speaker, 9634 test i-vectors and
36,572 development i-vectors are provided as part of the chal-
lenge. The i-vectors projected onto unit sphere were used in this
experiment to highlight the effect of SNNS without subjecting
them to any further discriminant analysis, dimensionality re-
duction and channel compensation techniques like Linear Dis-
criminant Analysis (LDA), Within Class Covariance Normali-
sation (WCCN) and Probabilistic Linear Discriminant Analysis
(PLDA). Results are shown in Table 1, and the relative gain is
16% (a drop of 0.062 in terms of minDCF) for SNNS with
cosine similarity.

In the experiment using SNNS, say �vi and �vj correspond
to train vector and test vector of a particular trial respectively.
The development vectors set is chosen to comprise the set from
which nearest m neighbours are identified i.e D, mentioned in
Section 3.4. Set X and Y are determined using the chosen dis-
tance measure, and number of nearest neighbours is chosen to
be m. Score is computed for every trail by applying Eqn. (6).
SNNS with cosine similarity is observed to give the best results
in this experiment. Cosine similarity can be considered as a
meaningful measure for higher dimensional data as it captures
angular similarity and, it is not affected by a single attribute
change as much as in Euclidean distance. As can be observed
from the nature of this distance measure, it can be used as an
alternative to cosine similarity scoring without normalization,
because we use cardinality of shared nearest neighbours and n
(Total number of nearest neighbours) instead of using data (i-
vectors) directly in computing the scores. But normalization
was found to improve results further in the experiments. Gen-
erally, PLDA scoring is the last stage of current state-of-the-
art speaker verification systems. It is also known to offer an
alternative scoring method for cosine distance scoring without
normalization[21].

3.6. Feature Switching in the i-vector Framework

It is to be noted that KLD (discriminative measure) andMI (rep-
resentative measure) have to be computed between GMM’s in
GMM-UBM system. While in i-vector framework, all models
reduce to a vector of dimension of order 102. The possibility
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Table 1: Comparison of Results with Different Scoring Mea-
sures

Distance measure Performance (minDCF)
Cosine Similarity(Baseline) 0. 386

SNNS using Euclidean Distance 0. 371
(m = 10000)

SNNS using Cosine Similarity 0. 324
(m = 10000)

for computation of representative measure is absent because of
significant dimensionality reduction and inability to establish a
correspondence to original signal. Therefore, feature selection
is to be done on the basis of discriminative measures alone. The
procedure for optimal feature selection in this framework is de-
tailed below.

1. Assuming there are n speakers and m different i-vector
systems, and i represents the index of target speaker for
whom optimal feature has to be identified.

Sij =
∑

kε{1...n}−{i}

φ(i, k) (7)

where Sij refers to sum of inter-speaker similar-
ity calculated in the feature domain j for a partic-
ular target speaker i against all non-target speakers
kε{1...n} − {i}, and φ(i, k) refers to the chosen sim-
ilarity measure between train i-vector of speaker i and
train i-vector of speaker k. Similarity measures are cho-
sen to be one amongst cosine similarity, shared nearest
neighbour similarity and negative of Euclidean distance.
In this paper, all these three measures are used individu-
ally to determine the feature that must be used for every
speaker.

2. Compute (Si1, Si2,...Sim) ∀ i ε (1,2,...n) i.e similar-
ity between each speaker and corresponding non-target
speakers in every feature domain.

3. Optimal feature index, O(i) is chosen as that feature do-
main that offers minimum amount of similarity between
a speaker and corresponding non-target speakers.

O(i) = {l : lε{1...m}&min
l

(Sil)} (8)

4. After subjecting i-vectors to LDA and WCCN, feature
selection is carried out as per the procedure enlisted
above followed by scoring for all the evaluation trails.
For each claim of a particular target speaker, the score is
computed using i-vector in selected feature domain and
test i-vector in the same feature domain. The score com-
puted in this study is chosen to be SNNS owing to the
results in Section 3.5 and its characteristics.

4. Experimental Results
4.1. Experimental Setup

A gender dependent TVS system is built using NIST 1999,
2003, 2004, 2005, 2006 and 2008 databases as development
dataset. Short-term features and corresponding delta features
are concatenated to form 38-dimensional feature vector for ev-
ery frame. These feature vectors are subjected to short-term
gaussianisation. A 1024-mixture GMM-UBM is estimated
from the development dataset and 500-dimension i-vectors are
extracted. Before the application of feature switching, SNNS

Table 2: Comparison of MFCC system, MGD system and
their fusion systems’ performance(EER) on NIST 2010 male
database

Feature/Condition det5 det6 det8
MFCC with cosine(1) 4. 96 6. 05 1. 98
MGD with cosine(2) 6. 35 8. 06 2. 82
i-vector fusion(1,2) 5. 01 6. 79 3. 13
score fusion(1,2) 4. 57 5. 63 1. 68

MFCC with SNNS(3) 4. 36 7. 02 2. 17
MGD with SNNS(4) 5. 31 9. 15 2. 26
score fusion(3,4) 3. 90 7. 12 1. 66

Table 3: Comparison of Feature Switching System Results us-
ing different Distance/ Similarity metrics

φ(i, k)/Condition det5 det6 det8
Euclidean 4. 07 5. 32 1. 43
Cosine 3. 64 6. 93 1. 57
SNNS 5. 14 9. 31 3. 11

scoring and score normalisation, LDA and WCCN are applied
to i-vectors in all chosen feature domains. T-Normalisation is
used as the score normalisation strategy with a cohort set of size
150 from the same evaluation set. Telephone-telephone condi-
tions are evaluated for NIST 2010 male database[22].
4.2. Results

Results are presented in terms of Equal Error Rate (EER) for
NIST 2010 male database using MFCC-based, MGD-based and
fusion systems in Table 2. Score fusion out performed i-vector
fusion in the case of cosine similarity scoring. SNNS with co-
sine similarity was also used for the same conditions, and im-
proved performance was obtained for two out of three condi-
tions (ref Table 2). Therefore, SNNS was chosen for scoring
for all the feature switching experiments carried out.

Results for the feature switching system with varying
φ(i, k) mentioned in Section3.6 are presented in Table 3. Dif-
ferent measures used as φ(i, k) are detailed in Section 3.3, 3.4.
It is important to verify the behaviour with different similarity
measures. MGD is found to be the optimal feature for 1306,
1244 and 1097 speakers using SNNS, cosine and Euclidean
based measures respectively. It can be inferred from the results
that, feature switching carried out using cosine and Euclidean
distance showed improved results compared to i-vector fusion.
The results also indicate that MGD features are more efficient in
discriminating majority of speakers when compared to MFCC
which concurs with the formant resolution argument presented
before.

5. Conclusion
This paper presents a simple method for feature switching in
TVS framework and results are better compared to the fixed
weight-based score fusion. SNNS scoring is shown to be
performing better than cosine scoring. The feature switching
method is important because of its applicability to all those
high-data resource domains in which TVS modeling can be
used. Further detailed analysis regarding the success of certain
measures over others can be performed as part of future work.
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