
On the Use of Bhattacharyya based GMM Distance and Neural Net Features
for Identification of Cognitive Load Levels

Tin Lay Nwe, Nguyen Trung Hieu, Bin Ma

Human Language Technology Department, Institute for Infocomm Research (I2R), A*STAR,
Singapore 138632

{tlnma,thnguyen,mabin}@i2r.a-star.edu.sg

Abstract
This paper presents a method for detecting cognitive load

levels from speech. When speech is modulated by different lev-
els of cognitive load, acoustic characteristics of speech change.
In this paper, we measure acoustic distance of a stressed ut-
terance from the baseline stress free speech using GMM-SVM
kernel with Bhattacharyya based GMM distance. In addition,
it is believed that airflow structure of speech production is non-
linear. This motivates us to investigate better techniques to cap-
ture nonlinear characteristic of stress information in acoustic
features. Inspired by the recent success of neural networks for
representation learning, we employ a single hidden layer feed
forward network with non-linear activation to extract the fea-
ture vectors. Furthermore, people have different reactions to a
particular task load. This inter-speaker difference in stress re-
sponses presents a major challenge for stress level detection.
We use a bootstrapped training process to learn the stress re-
sponse of a particular speaker. We perform experiments using
data sets from Cognitive Load with Speech and EGG (CLSE)
provided for the Cognitive Load Sub-Challenge of the INTER-
SPEECH 2014 Computational Paralinguistics Challenge. The
results show that the system with our proposed strategies per-
forms well on validation and test sets.
Index Terms: cognitive load, GMM-supervector, neural net
features

1. Introduction
Research on detecting task load stress is an important research
topic in the area of Human Computer Interaction (HCI). Cogni-
tive Load Sub-Challenge of the INTERSPEECH 2014 Compu-
tational Paralinguistics Challenge [1] focuses on the automatic
recognition of Cognitive Load (CL) in speech. The work de-
scribed in this paper aims to contribute to this challenge.

There are two main modules in cognitive load classification
system. The first module is front-end feature extraction and the
second module is back-end classifier. Many of the recent stud-
ies [2], [3], [4], [5] use Gaussian Mixture Model (GMM) as
classifier for CL classification. Recently, Support Vector Ma-
chine (SVM) becomes popular in emotion classification [6], [7]
and speaker identification [8] tasks. SVM is a novel type of
learning machine, which is an approximate implementation of
the method of structural risk minimization. SVM has shown to
provide a better generalization performance in solving various
classification problems than traditional techniques [9]. In this
paper, we use SVM as the back-end classifier.

As for front-end feature extraction, much work has be done
to extract reliable acoustic features for CL classification. In [2],
Mel-Frequency Cepstral Coefficients (MFCC), pitch and inten-

sity are used as features for cognitive load classification. In
[3], statistics of pitch, formant, spectral slope, duration, spec-
tral center of gravity and spectral energy spread are used as
features to detect cognitive load level of drivers while they are
controlling a vehicle. The study [4] investigates the effects of
cognitive load on glottal parameters (open quotient, normalized
amplitude quotient and speed quotient), and uses these param-
eters as features for cognitive load classification. The study in
[10] mentions that distribution of Cognitive Load (CL) infor-
mation across the bandwidth of speech has indicated that there
is a large variation in the amount of CL information contained
in different frequency bands of the speech signal, with the most
discriminative spectral region being 0-1 kHz. Similarly, noise
power is also usually unequally distributed. Based on the find-
ings of the study in [10], the authors in [11] utilize speech fea-
tures computed in disjoint bands of the spectrum and investigate
the effectiveness of the multi-band approach for classifying cog-
nitive load from speech in the presence of noise. The authors
in [5], investigate the use of spectral centroid frequency (SCF)
and spectral centroid amplitude (SCA) features to apply them
to the problem of automatic cognitive load classification. This
study shows that the spectral centroid features perform better
than MFCC, pitch and intensity features.

The above studies investigate quite a number of features
to discriminate between different cognitive load levels. How-
ever, the accuracies obtained by these systems are still not high
enough to allow for their use outside of laboratory environ-
ments. One reason for this might be the imperfect acoustic de-
scription of speech provided by acoustic features investigated
so far.

Acoustic characteristics of stressed speech is different from
that of stress free neutral speech. Furthermore, there are dis-
similarities in acoustic characteristics between utterances un-
der high and low task loads. Hence, Acoustic Dissimilarity
or Acoustic Distance (AD) measure of stress speech from neu-
tral speech is useful for CL classification. In our earlier work
[12], we investigate acoustic feature that characteristics AD for
emotion classification. The feature characterizes AD measure
between an emotion utterance and neutral speech. AD mea-
sure is formulated using Bhattacharyya distance based GMM-
supervectors [8]. In this work, we employ this Bhattacharyya
distance based AD measure for classifying cognitive load.

Teager [13] suggests that the true source of sound pro-
duction is vortex-flow interactions which are nonlinear. It
is believed that changes in vocal system physiology induced
by stressful conditions such as muscle tension will affect the
vortex-flow interaction patterns in the vocal tract [14]. There-
fore, nonlinear speech features are important to classify differ-
ent levels of task load stress. We investigate better techniques to
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capture nonlinear characteristic of stress information in acoustic
features. Inspired by the recent success of neural networks for
representation learning, we employ a single hidden layer feed
forward network with non-linear activation to extract the fea-
ture vectors.

Different people have different reactions to a particular task
load. A stress model will be more accurate if it can learn the
characteristics of stress response from test utterance. We use a
bootstrapped training process to learn the stress response of test
utterances.

In this paper, we explore features which are shown to be
complementary to the baseline features provided by organizers
of INTERSPEECH 2014 Computational Paralinguistics Chal-
lenge [1]. We propose to use features that characterize AD
measure based on Bhattacharyya distance. Furthermore, we ex-
tract feature vectors using a single hidden layer feed forward
network with non-linear activation to learn non-linear acoustic
characteristics of stress utterances. We use the classifier with
bootstrapping strategy [15] to learn characteristics of stress re-
sponse from test samples.

The rest of the paper is organized as follows. Section 2
presents Bhattacharyya distance based GMM supervectors that
characterize AD measure. Section 3 explain feature extraction
using neural network. Section 4 presents our classification pro-
cess with bootstrapping process. Section 5 describes database
and baseline features. Section 6 presents experimental results
and Section 7 concludes the paper.

2. GMM-supervector
The GMM-supervector can be considered of as a mapping be-
tween an utterance and a high-dimensional vector through a ker-
nel [16]. Kernels are important components for SVM learning.
It is a method of using a linear classifier to solve a non-linear
problem by nonlinearly mapping the original observations into
a higher-dimensional space, where a linear classifier is subse-
quently used. This makes linear classification in the new feature
[17] set.

2.1. Gaussian mixture model (GMM)

Gaussian mixture model (GMM) is the most effective way to
model the spectral distribution of speech. A GMM-supervector
characterizes speaker’s stress information by the GMM param-
eters such as the mean vectors, covariance matrices and mixture
weights. The density function of a GMM is defined as in equa-
tion (1).
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denotes the Gaussian density function. And,
mi, Σi and ωi are the mean, covariance matrix and weight of
ith Gaussian component, respectively. M is number of Gaus-
sian mixtures. And, x is a D-dimensional acoustic feature vec-
tor. GMM-supervector formulation using GMM-SVM kernels
based Bhattacharyya based GMM distance is as follows.

2.2. GMM-supervector with Bhattacharyya based kernel

Bhattacharyya distance is a separability measure between two
Gaussian distributions [18]. The Bhattacharyya distance be-
tween the two probability distributions is defined as in equation
(2) [8].

In equation (2) Σai and Σbi are the adapted covariance ma-
trices. And, mi

a and mi
b are the adapted mean vectors. Σui is the

covariance matrix of the Universal Background Model (UBM).
pa and pb are the probabilistic models, GMMa and GMMb,
respectively.

The first term of equation (2) gives the class separability
due to the difference between class means, while the second
term gives the class separability due to the variance between
class covariance. Based on the first two terms, Bhattacharyya
distance based kernel is formulated as in equation (3) [8].
Based on this kernel, the ith subvector of the GMM-supervector
is formulated as in equation (4)[8]. GMM-supervector with
Bhattacharyya based kernel is obtained by stacking all ith sub-
vectors of equation (4).
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If we look at equation (4), the first term reflects the dissim-
ilarity between mean of a stress utterance and that of a UBM.
This mean statistical dissimilarity gives the major characteris-
tics of the probabilistic distance. And, this term represents the
distance of a stress utterance from a reference neutral UBM.
If a reference UBM is trained using stress free neutral utter-
ances, this term is to measure the distance of a stress utterance
from a baseline stress free UBM. Besides the first-order statis-
tics of mean, the second-order statistics of covariance matrices
describing the shape of the spectral distribution is also useful to
measure the distance. If we look at the second term of equa-
tion (4), it represents the ratio between covariance of a UBM
and that of a stress utterance. In other words, this second term
describes dissimilarity measure in terms of spectral shape.

3. Neural net features
The baseline features extracted with the openSMILE toolkit
[19] and the GMM-supervector introduced in Section 2 are of-
ten considered to be low-level features as they represent various
aspects of speech including phonetic contents, speaker identi-
ties and emotions etc. The features are not specifically formu-
lated to capture the cognitive load pattern in speech. We thus be-
lieve that higher abstract features which are explicitly designed
to discriminate various cognitive load patterns will bring fur-
ther improvements to the identification system. In this section,
a feed forward neural network with a single hidden layer is pro-
posed, which is then used to transform the low-level features
to more discriminative features. The network architecture is il-
lustrated in Figure 1, where x̃ is the corrupted version of the
input feature vector x, h is the hidden layer with the number
of nodes equals to the dimension of x (over complete), and y
is the output layer with 3 nodes corresponding to the cognitive
load levels.

Formally defined:

x̃i �

"
xi with probability 0.5;
0 with probability 0.5 (5)

h � sigmoid
�
Wp1qx̃� bp1q

	
(6)

y � softmax
�
Wp2qh� bp2q

	
(7)
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Figure 1: Neural network architecture

where x̃i and xi are respectively the ith element of x̃ and x,
Wp1q and Wp2q are the weight matrices, bp1q and bp2q are the
bias vectors. The network parameters are first initialized with
the stacked denoise auto-encoder approach, then they are itera-
tively fine-tuned using the stochastic gradient descent algorithm
until the errors on the validation set stop decreasing. Once the
network is trained properly, for each input feature vector x, the
corresponding h is then used as the new feature vector.

4. Classification with bootstrapping process
To allow for a fair comparison with the baseline system we stick
to the classification scheme suggested by the challenge organiz-
ers. That is we also use the WEKA data mining toolkit [20] and
employ a linear kernel Support Vector Machines (SVM) with
Sequential Minimal Optimisation (SMO). The following is our
bootstrapping process [15] to learn characteristics of the stress
response from test samples.

Firstly, we train SVM models using training data. These
models learn characteristics of the stress response from training
samples. We use these models to classify the CL levels of ut-
terances in test set. Then, we select the 20% of the test samples
with the highest scores to the models for bootstrapped training.
We combine training samples and 20% of bootstrapped sam-
ples to re-train the models referred to as bootstrapped models.

Finally, we perform classification on test set using bootstrapped
models.

5. Database and baseline features
The Cognitive Load Sub-Challenge uses Cognitive Load with
Speech and EGG (CSLE) database [21] for the detection of
3 different cognitive load levels: low(L1), medium(L2) and
high(L3). It consists of 2418 utterances. Average length of
the utterances is 4 seconds. The challenge provides 3 datasets:
training, validation and test sets. Labels of the CL for training
and validation sets are available to participants. However, labels
for test set are unknown to the participants.

From each utterance, a total of 6373 static features func-
tionals of low-level descriptor (LLD) contours are extracted.
TUMs open-source openSMILE feature extractor [19] in its re-
cent 2.0 release [22] is used to extract features. Organizers
provide these feature sets for all 3 data sets. The feature sets
are referred to as baseline feature sets. More details about the
database and the baseline features can be found in [1].

6. Experiments and results
We conduct several experiments to investigate the effectiveness
of proposed features. Firstly, we examine the capabilities of in-
dividual features sets: Bhattacharyya based GMM supervectors
(Bhat-GMM-Sup) and Neural Net (NN) features to classify CL.
Then, we integrate our proposed feature sets to the baseline fea-
ture set and observe the improvement on classification accuracy.
Finally, we investigate the CL classification performance of our
bootstrapped classifier. In all experiments, we use Unweighted
Average Recall (UAR) [1] to measure the classification accura-
cies.

Each utterance is divided into 20ms frames with 10ms over-
lapping. Each frame is multiplied by a Hamming window
to minimize signal discontinuities at the end of each frame.
From each frame, we extract Mel-Frequency Cepstral Coeffi-
cients (MFCC), Linear Predictive Cepstral Coefficient (LPCC)
and Perceptual Linear Prediction Coefficients (PLPC) features.
Each feature has 12 coefficients and their first derivatives. We
form a feature vector for each frame by concatenating all three
MFCC, LPCC and PLPC features. As each feature has a total of
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24 coefficients, a feature vector of a frame has 72 coefficients.
In all experiments, we use open-source classifier implemen-

tations of Support Vector Machines (SVM) from the WEKA
data mining toolkit [20] as classifier. Linear kernel SVM is
used, as it is known to be robust against over-fitting. For sim-
plicity we keep the complexity parameter C fixed at 0.008. We
presents the accuracy of the baseline system with our classifier
setting in 8th row of Table 1. We find that performance of our
baseline system is 0.85% lower than that of the baseline system
of the organizers [1]. The reason is the difference in complexity
parameter C in SVM classifier.

To formulate GMM-supervectors, we extract the MFCC,
LPCC and PLPC features mentioned above from each utter-
ance. Then, we use maximum a posteriori (MAP) criterion
[23] to adapt a GMM model from a Universal Background
Model(UBM) for each utterance. We train UBM via EM al-
gorithm [24]. We use Rich Transcription 2007 (RT-07) Evalu-
ation dataset to train UBMs [25]. This RT-07 dataset includes
neutral speech utterances recorded during a meeting. We use
this RT-07 set to train neutral UBMs to measure AD. We adapt
the mean and covariance only. Once we have an adapted GMM
model, we formulate GMM-supervectors using the techniques
mentioned in Section 2. CL classification accuracies on val-
idation dataset of Cognitive Load Sub-Challenge using Bhat-
tacharyya based GMM supervectors (Bhat-GMM-Sup) are pre-
sented in Table 1. We present the results for different Gaussian
mixtures. We use training set to train the CL models.

Table 1: Average accuracies (%) using individual feature sets
on development set

Setting UAR[%]
Bhat-GMM-Sup (4 mix.) 40.25
Bhat-GMM-Sup (8 mix.) 42.82
Bhat-GMM-Sup (16 mix.) 52
Bhat-GMM-Sup (32 mix.) 53.69
Bhat-GMM-Sup (64 mix.) 53.65
NN-features 65.16
baseline features 62.35

Results show that classification performance improves
when we increase the number of mixtures for GMM. We find
that these individual feature sets can not perform better than
baseline features. The reason is that baseline feature is combi-
nation of many types of acoustic features. And, each type has
its own capability to characterize stress information of an ut-
terance. AD measure using Bhattacharyya based GMM super-
vectors can be taken as a particular type of acoustic feature that
characterize stress information in terms of AD measure from a
neutral reference model.

Next, we extract features from neural network. Input of
neural network is combination of baseline features and Bhat-
tacharyya based GMM supervectors(Bhat-GMM-Sup). We se-
lect the Bhat-GMM-Sup with 16 mixtures for combination. We
extract over complete feature set. Performance of Neural Net
(NN) feature is presented in 7th row of Table 1. The result
shows that NN features perform better than the baseline system.

We observe the contribution of complementary stress in-
formation by our features by integrating them to the baseline
feature. First, we integrate Bhat-GMM-Sup feature to baseline
features and perform CL classification. The result is shown in
4th row of Table 2. The result shows that UAR improvement on
more than 2.5% absolute over baseline system which is shown

in 3rd row of Table 2. We can see that Bhat-GMM-Sup feature
provides additional stress information in terms of AD measure.
Next, we integrate Neural Net (NN) features. The result on 5th

row of Table 2 shows that UAR further improves 1% absolute.
We observe the performance of Bootstrapping (BS)

method. We use Random Forest classifier from the WEKA
data mining toolkit [20] to select bootstrapped samples. Ran-
dom Forest classifier has 1000 trees in total. The first 20% of
the samples with the highest scores from test set are selected
as bootstrapped samples. The result using Bootstrapping (BS)
method is shown in 6th row of Table 2. We find that perfor-
mance improvement by bootstrapping process is not significant.
The reason is that bootstrapping process needs reasonable num-
bers of bootstrapped samples for models to learn stress charac-
teristics from test samples well. We could select more samples
(example 30%) to see the improvement.

Finally, we conduct experiments on test set. CL labels of
the test set is unknown to the participants of Cognitive Load
Sub-Challenge. we submit result of the test set online to ob-
serve the CL classification accuracy. Out of five trials which
are allowed to the participants to try, we try 2 trials and present
the best result on 9th row of Table 2. We find that our UAR is
0.1% lower than the UAR of the organizer’s baseline system.
The reason could be complexity parameter C of SVM system
[1].

Table 2: Results on classifying cognitive loads for Cognitive
Load Sub-Challenge of COMPARE 2014

Development Set
Setting UAR[%]
Baseline 62.35
Baseline + GMM-Sup 65.01
Baseline + GMM-Sup + NN-Features 66
Baseline + GMM-Sup + NN-Features with BS 66.05

Test Set
Setting UAR[%]
Baseline + GMM-Sup + NN-Features with BS 61.5

7. Conclusions
We have presented an approach to employ Acoustic Distance
(AD) measure in GMM-supervector formulation for SVM clas-
sifier to classify cognitive loads. We formulate higher abstract
features using neural network to investigate nonlinear acous-
tic characteristics of stress utterances. Finally, we employ the
bootstrapped process in which stress models learn characteris-
tics of the stress responses from test samples. We find that our
proposed approaches provide complementary information when
we integrate our approaches to the baseline system.
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