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Abstract
Deep belief networks (DBNs) have become a successful ap-
proach for acoustic modeling in speech recognition. DBNs ex-
hibit strong approximation properties, improved performance,
and are parameter efficient. In this work, we propose meth-
ods for applying DBNs to speaker recognition. In contrast to
prior work, our approach to DBNs for speaker recognition starts
at the acoustic modeling layer. We use sparse-output DBNs
trained with both unsupervised and supervised methods to gen-
erate statistics for use in standard vector-based speaker recogni-
tion methods. We show that a DBN can replace a GMM UBM
in this processing. Methods, qualitative analysis, and results are
given on a NIST SRE 2012 task. Overall, our results show that
DBNs show competitive performance to modern approaches in
an initial implementation of our framework.
Index Terms: speaker recognition, deep belief networks

1. Introduction
Deep Belief Networks (DBNs) have become a popular research
area in machine learning [1] and in acoustic modeling for large-
vocabulary automatic speech recognition (ASR) [2, 3]. This
research significantly expands upon earlier work on multilayer
perceptrons (MLPs) and their applications to speech process-
ing; see, for example [4]. Earlier work in MLPs focused on
“shallow” architectures—either one or two layers—that were
discriminately trained using labeled classes. The breakthrough
for DBNs has been a combination of the development of un-
supervised methods (pretraining), GPU-based acceleration, and
deeper architectures. Although one-layer MLPs are known to
be universal approximators [5], they require, potentially, a large
number of hidden units. DBNs, in contrast, use a powerful strat-
egy of unsupervised training and multiple layers that provides
parameter-efficient and accurate acoustic modeling [3].

Speaker recognition research is fundamentally different
from approaches in automatic speeech recogntion since the
focus in speaker recognition has been on vector-based ap-
proaches such as GMM supervectors [6] and the more recent
i-vectors [7]. In these approaches, a GMM universal back-
ground model (GMM UBM) is used to derive a vector repre-
sentation of an utterance which is then used for speaker model-
ing. Much of the focus of this work has been on strategies for
vector classification—simple inner product methods [7], proba-
bilistic linear discriminant analysis (PLDA) [8], support vector
machines [6], and advanced Bayesian methods [9]. Also, meth-
ods such as WCCN [10], NAP [11], and PLDA [8] for compen-
sating and modeling of speaker session and channel variation
have been key topics.
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sarily endorsed by the United States Government.

Initial approaches to using DBNs and restricted Boltzmann
machines (RBMs) for speaker recognition have appeared in [12]
and [13]. The first paper focuses on modeling of i-vectors using
RBMs. The second approach models the statistics of the output
of a DBN by i-vectors. Both of these approaches show a grow-
ing interest and moderate success in applying DBNs to speaker
recognition.

Our new approach to using DBNs for speaker recognition
is to replace a GMM UBM with a DBN in the early acous-
tic modeling stages. We use the output of a DBN, which is a
posterior probability, as a substitute for the GMM UBM mix-
ture component posterior probability which is commonly used
in GSV and i-vector systems. Similar to ASR approaches, we
use pretraining methods to model at the frame level and explore
multi-layer architectures. Additionally, we explore the role of
sparsity and selectivity in the output of the DBN and its effect
on performance.

The outline of the paper is as follows. In Section 2, we
describe DBNs and standardize notation for methods used in
the rest of the paper. Section 3 reviews standard vector-based
speaker recognition methods. Next, in Section 4, we detail our
approach for using DBNs in speaker recognition. Section 5 de-
scribes experiments using DBNs for modeling, describes some
intuition behind the process, and details experiments on the
NIST SRE 2012 evaluation using our methodology.

2. Deep Belief Networks
DBNs have been successfully used in speech recognition for
modeling the posterior probability of state given a feature vec-
tor [3], p(qt|xt). Feature vectors are typically standard frame-
based acoustic representations (e.g., MFCCs) that are usually
stacked across multiple frames. A basic training strategy to es-
timate this posterior involves multiple phases. First, pretraining
of the DBN is accomplished by successively training restricted
Boltzmann machines and stacking them. Second, optimization
with backpropagation—typically, referred to as fine-tuning—
using labels from an ASR is used to discriminately train the
DBN. Third, the resulting models can be used for realignment
and retraining—e.g., embedded Viterbi. Many variants of this
procedure have been proposed. Note that we use the term
DBN in this paper to encompass all of the different variants—
pretrained, pretrained and then fine-tuned, and trained from a
random start with standard backpropagation methods.

Since in text-independent speaker recognition time infor-
mation is ignored, only the first two steps are appropriate for
our purposes. In this section, we focus on pretraining for DBNs.
The basic process for pretraining a DBN is based upon stacking
RBMs. RBMs are an undirected graphical model with visible
and hidden units with only visible hidden connections. For ini-
tial discusions, we assume both the hidden and visible units are
Bernoulli distributed. The parameters of the RBM are given by,
W (visible/hidden connection weights), b (visible-unit bias),
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and c (hidden-unit bias). We use column vectors for b and c
and define W to have dimension Nh (number of hidden units)
by Nv (num of visible units).

Optimization of the parameters is performed by first defin-
ing the energy function,

E(v,h) = −btv − cth− htWv. (1)

The corresponding probability of a configuration is given by,

P (v,h) =
e−E(v,h)

Z
(2)

where Z is a normalizing factor obtained by summing the nu-
merator of (2) over all possible states of h and v.

As noted by many authors, optimization of the model pa-
rameters (W,b, c) using maximum likelihood methods and the
probability (2) is difficult because of the complexity of comput-
ing the normalizing factor Z. A 1-step contrastive divergence
method is used instead. Conditional probabilities for (2) are
given by,

P (h = 1|v) = σ(Wv + c) (3)

and
P (v = 1|h) = σ(Wth + b). (4)

The approximation of the gradient using the contrastive diver-
gence method is given by

− ∂L

∂W
≈ 〈h0v0

t〉 − 〈h1v
t
1〉 (5)

where L is the likelihood of the training data using the proba-
bility (2) and the angle brackets, 〈〉, indicate an average over a
training set. The quantity v0 is a training data exemplar and h0

is calculated from (3). The quantities v1 and h1 are found using
one step of Gibbs sampling [14]. We note that, strictly speak-
ing, the quantity on the right hand side of (5) is not a gradient—a
more rigorous discussion can be found in [15].

The contrastive divergence approximation method is used
in a standard gradient descent with mini-batches. For optimiza-
tion, we use the update

∆Wn+1 = m∆Wn − α
∂L

∂W
(6)

where m is a momentum term and α is the learning rate.
We found it useful (for reasons explained in the next sec-

tion) to encourage sparsity in the output of the RBM. Multiple
methods are available for incorporating a sparsity penalty in the
RBM optimization process [14, 16, 17]. One natural approach is
to use the entropy of the hidden units for a training set; this crite-
rion would tend to encourage sparsity since the entropy function
is minimized by sparse activations. Unfortunately, the deriva-
tive of this penalty term is difficult, so it is instead common to
use cross-entropy with a target probability pt. The penalty term
then becomes,

λ
∑

i∈train

∑
j∈hidden

pt log2 h
(i)
0,j + (1− pt) log2(1− h(i)

0,j) (7)

where λ is a scaling on the penalty term and h(i)
0,j is the jth

entry of h(i)
0 (as in (5)) calculated from the ith element of the

training set.
The sparse penalty term in (7) can be incorporated in the

contrastive divergence optimization (5) by modifying the first
term in the equation to be,

〈q0v0
t〉 − 〈h1v

t
1〉 (8)

where
q0 = φpt1 + (1− φ)h0 (9)

and 0 ≤ φ ≤ 1, see [14, 16] for more details.
The posterior probabilities in (3) and (4) assume that both

x and h have a Bernoulli distribution. For cepstral inputs to the
DBN, a better assumption is that the visible layer has a Gaus-
sian distribution. In this case, the posterior (4) becomes a nor-
mal distribution, and v1 is replaced by Wth0 + b in both (5)
and (8).

3. Vector-Based Speaker Recognition
We used the term vector-based speaker recognition to encom-
pass methods which take speech utterances as input and then
find a vector-representation based upon the statistics of a GMM
universal background model (GMM UBM). Standard meth-
ods in this area are the early GMM supervector techniques
(GSV) [6] and the more recent i-vector approaches [7, 18].

Both the GSV and i-vector approaches rely upon a two-
stage process. For the first stage, sufficient statistics are calcu-
lated from a sequence of feature vectors, {xt}, t = 1, . . . , Nt,

s0 =
∑
t

[
p(1|xt) · · · p(Nm|xt)

]t (10)

s1 =
∑
t

[
p(1|xt)xt · · · p(Nm|xt)xt

]t (11)

s2 =
∑
t

[
p(1|xt)xt ∗ xt · · · p(Nm|xt)xt ∗ xt

]t (12)

where p(i|xt) is the posterior probability of a mixture compo-
nent, Nm is the number of mixture components, and ’∗’ indi-
cates element-wise multiplication.

For the GSV approach, a supervector is then calculated by
using MAP adaptation to find a mean supervector. This mean
vector is then transformed (e.g., by NAP and KL-divergence
motivated weighting [6]) to obtain a supervector that can
be used in standard classification approaches—inner-product
based, SVMs, etc. For the i-vector approach, dimension re-
duction to a set of factors is used [7]. Using a total variability
space representation Ty + m0 and a Gaussian assumption, an
estimate ŷ of y is found. The resulting factors are whitened,
length-normalized, and used as inputs to inner-product, PLDA,
or other backend-classifiers [7, 18].

4. DBNs for Speaker Recognition
We combine DBNs with vector-based methods by first geo-
metrically interpreting the standard GMM-based approaches in
Section 3. In these approaches, the set of posterior probabilities
of the mixture component {p(i|x)} act as a partition of unity of
the input feature space (in the topological sense, see, e.g., [19]).
This comment is just another way of saying that

Nm∑
i=1

p(i|x) = 1. (13)

Another important point is that the posterior probabilities p(i|x)
are “localized” in the sense that, as a function of x, they are
large near the ith mixture mean and small near the jth mixture
mean for j 6= i. This qualitative analysis applies in the main
mass of the feature space. We note that outside of this region,
in “overflow” areas of the space (in vector quantization terms),
the tails of the exponential distributions dominate.

The interpretation, then, of the statistics in (10) as they are
used in speaker recognition is that they are used to form local
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estimates of mean shift from a global mean supervector calcu-
lated across the data. These local shifts describe how a speaker’s
acoustic output deviates from a reference across multiple acous-
tic regions in feature space. Both the partition-of-unity property
and the locality of the partitioning process provide a vector de-
scription of speaker characteristics.

The straightforward method of extending this approach to
DBNs is to replace the GMM UBM posterior in (10) with a
DBN hidden unit generated posterior (3). Since methods for i-
vectors and GSVs only rely upon these quantities, we can easily
revise standard methodology to incorporate this approach. We
note that in practice the output of a DBN may not be appro-
priately scaled, so dividing by ct = 1tp(h = 1|xt) will be
necessary. Additionally, if multi-frame inputs to the DBN are
used to estimate posterior in (3), then the center frame can be
used in the sufficient statistics calculation.

Another important point is that the DBN output is not au-
tomatically assured to be localized. This property can be seen
by considering a one layer network. If we look at the ith output
in (3), then this corresponds to the ith row of W, σ(wix+ ci).
This description shows us that we are partitioning the data into
two half-spaces with a hyperplane—a non-local representation.
Two factors can help increase sparsity in the output. Because of
the high-dimension of the DBN processing and the sparsity of
data in a high-dimensional space, we can bias DBN training as
in Section 2 to create sparse outputs. Additionally, combining
multiple layers of RBMs into a DBN can successively partition
the space with greater locality to create a sparse output.

In addition to using sparsity in pretraining, we also ex-
plored generating sparse outputs by using labeled data. The
most straightforward method borrows methodology from the
ASR community. We use the most likely mixture component
from a GMM UBM per frame as a sequence of labels for train-
ing the DBN. This method serves as an alternative approach for
obtaining sparse outputs from a DBN.

5. Experiments
5.1. NIST SRE 2012
Our experiments are based upon the NIST 2012 Speaker Recog-
nition Evaluation (SRE). In NIST SRE 2012, the task focused
on speaker detection using multi-utterance enrollment and a va-
riety of test conditions. Participants were given access to most
of the enrollment data prior to the release of test data for de-
velopment. For the purposes of this paper, we focus upon the
core training condition which included both microphone and
telephone data from approximately 1900 target speakers.

Multiple test conditions for the NIST SRE were avail-
able. Because of statistical significance, for our experiments we
chose extended trials for the common evaluation condition. The
common evaluation conditions included five different tests. To
narrow the scope of our experiments, we looked at conditions
1, microphone interview speech in test, and condition 2, phone
call speech in test. Both of these conditions tested performance
without additive noise and are similar to prior NIST SRE eval-
uations. We evaluated the performance of systems using the
NIST criterion, Cprimary. The NIST criterion is obtained by
averaging the performance at two operating points using a nor-
malized cost function, Cnorm. This cost function is defined as

Cnorm(θ) =Pmiss(θ)+

1− Pt

2Pt
[Pfa(θ|known) + Pfa(θ|unknown)] .

(14)

where θ is a threshold, Pt is the given probability of a target,

Pmiss is the miss rate, andPfa is the false alarm rate from known
and unknown impostors in false trials. Note that we have as-
sumed the evaluation weighting of 0.5 for known and unknown
false alarms. If we let θA be the threshold for Pt = 0.01 and
θB be the threshold for Pt = 0.001, then evaluation criterion is

Cprimary = 0.5 [Cnorm(θA) + Cnorm(θB)] . (15)

5.2. Baseline Systems
Baseline systems for the NIST SRE experiments were derived
from participation in the NIST evaluation. Both an SVM GSV
system and an i-vector system were used for experiments. Our
approach to system construction was to create systems with
good performance that could be adapted to our proposed DBN
approach. Creating more complex models and multiple feature
fusions is beyond the scope of this work (and can be a challeng-
ing task, see [20]).

In all cases, the input audio waveform was pre-processed
to normalize the sampling rate to 8 kHz. Also, both noise re-
duction and tone-removal were performed as in [21]. Features
were then generated using MFCCs plus c0 and associated delta-
features for a total of 40 features. Feature warping was applied
to the features. SAD for telephony speech was based on a com-
bination of energy features and a GMM SAD system. SAD for
microphone data was based on a two-channel strategy, see [21].

To standardize the approach, we used a GMM UBM with
512 mixture components for both the SVM GSV and i-vector
systems. The expansion dimension for the SVM was as a result
20480 dimensions. For SVM training, we used a one-versus-
rest approach where only target speakers were used in the train-
ing. This approach is similar to methods in language recogni-
tion and is similar to other approaches using “anti-models” in
NIST SRE 2012 [22, 23, 20].

For the i-vector system, a T matrix with rank 600 was
used. The resulting factors were whitened, length normalized
and then WCCN was applied. Training a model was accom-
plished by averaging all i-vectors. Note that the reduced number
of mixtures (down from a typical 2048) impacted performance.
After raw scores were found for both systems, both Z- and T-
norm were applied. T-norm models were based upon other tar-
get speakers. Z-norm was based on a set of utterances from
NIST SRE 2005.

5.3. Training DBNs
We trained DBNs with a GPU system using contrastive-
divergence and the algorithms in Section 2. For the DBN
configuration, we used an input of one frame of data—a 40-
dimensional input. For each layer in the DBN, we consistently
used a dimension of 512 for the output. Our set of available
training data set was drawn from the entire NIST SRE 2012 tar-
get data—approximately 1,300 hours of data. Using this entire
data set was intractable, so we reduced data in two ways. For
every epoch of processing, we only considered a fraction of the
data set (typically 10%). Also, we structured the mini-batches
by downsampling the feature vector set; we usually kept only
every 10th vector. This reduction had the side-effect that the
training data was less correlated.

For our experiments, we constructed pretrained DBNs with
both 1- and 2-layers. We found that the contrastive divergence
procedure was somewhat sensitive and proper care needed to
be taken to obtain reasonable outputs. For our experiments, we
used a learning rate of α = 0.005, a momentum of 0.9, and
approximately 30 epochs of training. Progress during training
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Table 1: Performance of DBN system for various configurations on a NIST SRE evaluation task.

System Num Layers Pretrain (Y/N) Sparse (Y/N) Supervised (Y/N) Cprimary Mic Cprimary Tel
SVM GSV - - - - 0.333 0.422
i-vector - - - - 0.462 0.528
SVM DBN 1 Y N N 0.582 0.717
SVM DBN 1 Y Y N 0.483 0.638
DBN i-vector 1 Y Y N 0.549 0.664
SVM DBN 2 Y N N 0.581 0.785
SVM DBN 2 Y Y N 0.560 0.697
SVM DBN 2 N - Y 0.343 0.439
SVM DBN 3 N - Y 0.360 0.459
DBN i-vector 2 N - Y 0.451 0.523
DBN i-vector 3 N - Y 0.467 0.546

was monitored using standard criteria [14]. We found it use-
ful to examine image plots of output units over time (posteri-
orgrams) to ensure good training. Signs of overtraining, local
minima, and over-active outputs appeared as lines in the poste-
riorgram. We also applied the sparsity penalty as discussed in
Section 2, equation (9). For this term, we found that a φ of 0.05
in the first stage, φ = 0.01 in later stages, and a target proba-
bility pt = 0.002 yielded sparser outputs in all cases. Example
outputs for a 1-layer pretrained DBN are shown in Figure 1.

In addition to using pretrained DBNs, we also considered
DBNs with the same architecture trained using standard back-
propagation techniques. We trained systems using a scaled con-
jugate gradient method and a cross-entropy criterion. Labels per
frame for the data were derived by taking the mixture compo-
nent of the GMM UBM with the largest posterior probability.
For training, a smaller subset of the data was used consisting
of approximately 0.5 million randomly chosen feature vectors.
Training for approximately 100 epochs was performed. As with
the sparsely trained DBN, output activations were sparse when
the system was trained correctly. This property successfully
mimics the behavior of a GMM UBM as discussed in Section 4.

5.4. DBN Speaker Recognition Results
The baseline system performance is shown in Table 1. The i-
vector performance is somewhat limited by the smaller GMM
UBM (512 mixtures), but our goal was to use a uniform set of
features and background models. The SVM system performs
well with multi-utterance enrollment. We used the DBNs de-
scribed in the last section as posterior probability generators
for “sufficient” statistics as in Section 4. The statistics were
used to build both SVM GSV systems and i-vector systems.
Because of the tracking performance between the systems, Ta-
ble 1 only documents the itermediate results for the SVM DBN
system. Best performing results are shown for both the SVM
and i-vector systems.

From the table, we see that the initial 1-layer pretrained
DBN produced results that were reasonable but not competi-
tive with GMM UBM systems. The next 1-layer system using
sparse outputs shows a substantial drop in error rate; sparsity
and the corresponding localization of statistics appears to be
a useful property for speaker discrimination. Additional pre-
trained layers did not have any effect.

From the table, we see that supervised training using GMM
UBM labels is the best approach in our current setup. As we add
more layers, the performance is similar. Qualitatively, when we
examined the image posteriorgram output, the DBN output had
sparse activations when discriminative training was used. Note,
we also tried to combine pretraining with supervised training,
but we found that pretraining was not helpful.

Our experiments show that there is a mix of issues arising

Figure 1: Example of a standard posteriorgram for contrastive diver-
gence (top) and contrastive divergence with a sparse penalty (bottom)
with a 1-layer DBN.
when using DBNs for speaker recognition. Encouraging spar-
sity in the output (“stars” in the posteriorgram) appears to be a
desirable property. The best strategy for doing this is not obvi-
ous. In pretraining, we can encourage sparsity, but it’s not clear
how the optimization can be directed to produce the best recog-
nition results. In the supervised case, sparse output using labels
perform well, but the best selection of labels is not obvious.
Overall, there is significant future work to explore supervised
and unsupervised approaches, feature sets, and improved train-
ing methods to optimize performance.

6. Conclusions
We have demonstrated a new method for incorporating DBNs
in standard systems for speaker recognition. Our approach used
a DBN in the acoustic modeling stage for generating summary
statistics. Once these statistics were generated, we used vector-
based speaker recognition systems for backend modeling. We
demonstrated that both pretraining and supervised approaches
could be used for DBNs. Evaluating on a NIST SRE 2012 task
showed the viability of the new methods, but also illustrated
challenges in best optimizing DBNs for this new process.
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